| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Generic hugetlb support. | 
 |  * (C) Nadia Yvette Chambers, April 2004 | 
 |  */ | 
 | #include <linux/list.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/mmu_notifier.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/sysfs.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/mmdebug.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/string_helpers.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/jhash.h> | 
 | #include <linux/numa.h> | 
 | #include <linux/llist.h> | 
 | #include <linux/cma.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/nospec.h> | 
 | #include <linux/delayacct.h> | 
 |  | 
 | #include <asm/page.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/tlb.h> | 
 |  | 
 | #include <linux/io.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/hugetlb_cgroup.h> | 
 | #include <linux/node.h> | 
 | #include <linux/page_owner.h> | 
 | #include "internal.h" | 
 | #include "hugetlb_vmemmap.h" | 
 |  | 
 | int hugetlb_max_hstate __read_mostly; | 
 | unsigned int default_hstate_idx; | 
 | struct hstate hstates[HUGE_MAX_HSTATE]; | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | static struct cma *hugetlb_cma[MAX_NUMNODES]; | 
 | static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; | 
 | static bool hugetlb_cma_page(struct page *page, unsigned int order) | 
 | { | 
 | 	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page, | 
 | 				1 << order); | 
 | } | 
 | #else | 
 | static bool hugetlb_cma_page(struct page *page, unsigned int order) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif | 
 | static unsigned long hugetlb_cma_size __initdata; | 
 |  | 
 | /* | 
 |  * Minimum page order among possible hugepage sizes, set to a proper value | 
 |  * at boot time. | 
 |  */ | 
 | static unsigned int minimum_order __read_mostly = UINT_MAX; | 
 |  | 
 | __initdata LIST_HEAD(huge_boot_pages); | 
 |  | 
 | /* for command line parsing */ | 
 | static struct hstate * __initdata parsed_hstate; | 
 | static unsigned long __initdata default_hstate_max_huge_pages; | 
 | static bool __initdata parsed_valid_hugepagesz = true; | 
 | static bool __initdata parsed_default_hugepagesz; | 
 | static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; | 
 |  | 
 | /* | 
 |  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, | 
 |  * free_huge_pages, and surplus_huge_pages. | 
 |  */ | 
 | DEFINE_SPINLOCK(hugetlb_lock); | 
 |  | 
 | /* | 
 |  * Serializes faults on the same logical page.  This is used to | 
 |  * prevent spurious OOMs when the hugepage pool is fully utilized. | 
 |  */ | 
 | static int num_fault_mutexes; | 
 | struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; | 
 |  | 
 | /* Forward declaration */ | 
 | static int hugetlb_acct_memory(struct hstate *h, long delta); | 
 |  | 
 | static inline bool subpool_is_free(struct hugepage_subpool *spool) | 
 | { | 
 | 	if (spool->count) | 
 | 		return false; | 
 | 	if (spool->max_hpages != -1) | 
 | 		return spool->used_hpages == 0; | 
 | 	if (spool->min_hpages != -1) | 
 | 		return spool->rsv_hpages == spool->min_hpages; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, | 
 | 						unsigned long irq_flags) | 
 | { | 
 | 	spin_unlock_irqrestore(&spool->lock, irq_flags); | 
 |  | 
 | 	/* If no pages are used, and no other handles to the subpool | 
 | 	 * remain, give up any reservations based on minimum size and | 
 | 	 * free the subpool */ | 
 | 	if (subpool_is_free(spool)) { | 
 | 		if (spool->min_hpages != -1) | 
 | 			hugetlb_acct_memory(spool->hstate, | 
 | 						-spool->min_hpages); | 
 | 		kfree(spool); | 
 | 	} | 
 | } | 
 |  | 
 | struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, | 
 | 						long min_hpages) | 
 | { | 
 | 	struct hugepage_subpool *spool; | 
 |  | 
 | 	spool = kzalloc(sizeof(*spool), GFP_KERNEL); | 
 | 	if (!spool) | 
 | 		return NULL; | 
 |  | 
 | 	spin_lock_init(&spool->lock); | 
 | 	spool->count = 1; | 
 | 	spool->max_hpages = max_hpages; | 
 | 	spool->hstate = h; | 
 | 	spool->min_hpages = min_hpages; | 
 |  | 
 | 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { | 
 | 		kfree(spool); | 
 | 		return NULL; | 
 | 	} | 
 | 	spool->rsv_hpages = min_hpages; | 
 |  | 
 | 	return spool; | 
 | } | 
 |  | 
 | void hugepage_put_subpool(struct hugepage_subpool *spool) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&spool->lock, flags); | 
 | 	BUG_ON(!spool->count); | 
 | 	spool->count--; | 
 | 	unlock_or_release_subpool(spool, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Subpool accounting for allocating and reserving pages. | 
 |  * Return -ENOMEM if there are not enough resources to satisfy the | 
 |  * request.  Otherwise, return the number of pages by which the | 
 |  * global pools must be adjusted (upward).  The returned value may | 
 |  * only be different than the passed value (delta) in the case where | 
 |  * a subpool minimum size must be maintained. | 
 |  */ | 
 | static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, | 
 | 				      long delta) | 
 | { | 
 | 	long ret = delta; | 
 |  | 
 | 	if (!spool) | 
 | 		return ret; | 
 |  | 
 | 	spin_lock_irq(&spool->lock); | 
 |  | 
 | 	if (spool->max_hpages != -1) {		/* maximum size accounting */ | 
 | 		if ((spool->used_hpages + delta) <= spool->max_hpages) | 
 | 			spool->used_hpages += delta; | 
 | 		else { | 
 | 			ret = -ENOMEM; | 
 | 			goto unlock_ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* minimum size accounting */ | 
 | 	if (spool->min_hpages != -1 && spool->rsv_hpages) { | 
 | 		if (delta > spool->rsv_hpages) { | 
 | 			/* | 
 | 			 * Asking for more reserves than those already taken on | 
 | 			 * behalf of subpool.  Return difference. | 
 | 			 */ | 
 | 			ret = delta - spool->rsv_hpages; | 
 | 			spool->rsv_hpages = 0; | 
 | 		} else { | 
 | 			ret = 0;	/* reserves already accounted for */ | 
 | 			spool->rsv_hpages -= delta; | 
 | 		} | 
 | 	} | 
 |  | 
 | unlock_ret: | 
 | 	spin_unlock_irq(&spool->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Subpool accounting for freeing and unreserving pages. | 
 |  * Return the number of global page reservations that must be dropped. | 
 |  * The return value may only be different than the passed value (delta) | 
 |  * in the case where a subpool minimum size must be maintained. | 
 |  */ | 
 | static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, | 
 | 				       long delta) | 
 | { | 
 | 	long ret = delta; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!spool) | 
 | 		return delta; | 
 |  | 
 | 	spin_lock_irqsave(&spool->lock, flags); | 
 |  | 
 | 	if (spool->max_hpages != -1)		/* maximum size accounting */ | 
 | 		spool->used_hpages -= delta; | 
 |  | 
 | 	 /* minimum size accounting */ | 
 | 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { | 
 | 		if (spool->rsv_hpages + delta <= spool->min_hpages) | 
 | 			ret = 0; | 
 | 		else | 
 | 			ret = spool->rsv_hpages + delta - spool->min_hpages; | 
 |  | 
 | 		spool->rsv_hpages += delta; | 
 | 		if (spool->rsv_hpages > spool->min_hpages) | 
 | 			spool->rsv_hpages = spool->min_hpages; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding | 
 | 	 * quota reference, free it now. | 
 | 	 */ | 
 | 	unlock_or_release_subpool(spool, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline struct hugepage_subpool *subpool_inode(struct inode *inode) | 
 | { | 
 | 	return HUGETLBFS_SB(inode->i_sb)->spool; | 
 | } | 
 |  | 
 | static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) | 
 | { | 
 | 	return subpool_inode(file_inode(vma->vm_file)); | 
 | } | 
 |  | 
 | /* Helper that removes a struct file_region from the resv_map cache and returns | 
 |  * it for use. | 
 |  */ | 
 | static struct file_region * | 
 | get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) | 
 | { | 
 | 	struct file_region *nrg = NULL; | 
 |  | 
 | 	VM_BUG_ON(resv->region_cache_count <= 0); | 
 |  | 
 | 	resv->region_cache_count--; | 
 | 	nrg = list_first_entry(&resv->region_cache, struct file_region, link); | 
 | 	list_del(&nrg->link); | 
 |  | 
 | 	nrg->from = from; | 
 | 	nrg->to = to; | 
 |  | 
 | 	return nrg; | 
 | } | 
 |  | 
 | static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, | 
 | 					      struct file_region *rg) | 
 | { | 
 | #ifdef CONFIG_CGROUP_HUGETLB | 
 | 	nrg->reservation_counter = rg->reservation_counter; | 
 | 	nrg->css = rg->css; | 
 | 	if (rg->css) | 
 | 		css_get(rg->css); | 
 | #endif | 
 | } | 
 |  | 
 | /* Helper that records hugetlb_cgroup uncharge info. */ | 
 | static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, | 
 | 						struct hstate *h, | 
 | 						struct resv_map *resv, | 
 | 						struct file_region *nrg) | 
 | { | 
 | #ifdef CONFIG_CGROUP_HUGETLB | 
 | 	if (h_cg) { | 
 | 		nrg->reservation_counter = | 
 | 			&h_cg->rsvd_hugepage[hstate_index(h)]; | 
 | 		nrg->css = &h_cg->css; | 
 | 		/* | 
 | 		 * The caller will hold exactly one h_cg->css reference for the | 
 | 		 * whole contiguous reservation region. But this area might be | 
 | 		 * scattered when there are already some file_regions reside in | 
 | 		 * it. As a result, many file_regions may share only one css | 
 | 		 * reference. In order to ensure that one file_region must hold | 
 | 		 * exactly one h_cg->css reference, we should do css_get for | 
 | 		 * each file_region and leave the reference held by caller | 
 | 		 * untouched. | 
 | 		 */ | 
 | 		css_get(&h_cg->css); | 
 | 		if (!resv->pages_per_hpage) | 
 | 			resv->pages_per_hpage = pages_per_huge_page(h); | 
 | 		/* pages_per_hpage should be the same for all entries in | 
 | 		 * a resv_map. | 
 | 		 */ | 
 | 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); | 
 | 	} else { | 
 | 		nrg->reservation_counter = NULL; | 
 | 		nrg->css = NULL; | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void put_uncharge_info(struct file_region *rg) | 
 | { | 
 | #ifdef CONFIG_CGROUP_HUGETLB | 
 | 	if (rg->css) | 
 | 		css_put(rg->css); | 
 | #endif | 
 | } | 
 |  | 
 | static bool has_same_uncharge_info(struct file_region *rg, | 
 | 				   struct file_region *org) | 
 | { | 
 | #ifdef CONFIG_CGROUP_HUGETLB | 
 | 	return rg->reservation_counter == org->reservation_counter && | 
 | 	       rg->css == org->css; | 
 |  | 
 | #else | 
 | 	return true; | 
 | #endif | 
 | } | 
 |  | 
 | static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) | 
 | { | 
 | 	struct file_region *nrg = NULL, *prg = NULL; | 
 |  | 
 | 	prg = list_prev_entry(rg, link); | 
 | 	if (&prg->link != &resv->regions && prg->to == rg->from && | 
 | 	    has_same_uncharge_info(prg, rg)) { | 
 | 		prg->to = rg->to; | 
 |  | 
 | 		list_del(&rg->link); | 
 | 		put_uncharge_info(rg); | 
 | 		kfree(rg); | 
 |  | 
 | 		rg = prg; | 
 | 	} | 
 |  | 
 | 	nrg = list_next_entry(rg, link); | 
 | 	if (&nrg->link != &resv->regions && nrg->from == rg->to && | 
 | 	    has_same_uncharge_info(nrg, rg)) { | 
 | 		nrg->from = rg->from; | 
 |  | 
 | 		list_del(&rg->link); | 
 | 		put_uncharge_info(rg); | 
 | 		kfree(rg); | 
 | 	} | 
 | } | 
 |  | 
 | static inline long | 
 | hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, | 
 | 		     long to, struct hstate *h, struct hugetlb_cgroup *cg, | 
 | 		     long *regions_needed) | 
 | { | 
 | 	struct file_region *nrg; | 
 |  | 
 | 	if (!regions_needed) { | 
 | 		nrg = get_file_region_entry_from_cache(map, from, to); | 
 | 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); | 
 | 		list_add(&nrg->link, rg); | 
 | 		coalesce_file_region(map, nrg); | 
 | 	} else | 
 | 		*regions_needed += 1; | 
 |  | 
 | 	return to - from; | 
 | } | 
 |  | 
 | /* | 
 |  * Must be called with resv->lock held. | 
 |  * | 
 |  * Calling this with regions_needed != NULL will count the number of pages | 
 |  * to be added but will not modify the linked list. And regions_needed will | 
 |  * indicate the number of file_regions needed in the cache to carry out to add | 
 |  * the regions for this range. | 
 |  */ | 
 | static long add_reservation_in_range(struct resv_map *resv, long f, long t, | 
 | 				     struct hugetlb_cgroup *h_cg, | 
 | 				     struct hstate *h, long *regions_needed) | 
 | { | 
 | 	long add = 0; | 
 | 	struct list_head *head = &resv->regions; | 
 | 	long last_accounted_offset = f; | 
 | 	struct file_region *iter, *trg = NULL; | 
 | 	struct list_head *rg = NULL; | 
 |  | 
 | 	if (regions_needed) | 
 | 		*regions_needed = 0; | 
 |  | 
 | 	/* In this loop, we essentially handle an entry for the range | 
 | 	 * [last_accounted_offset, iter->from), at every iteration, with some | 
 | 	 * bounds checking. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(iter, trg, head, link) { | 
 | 		/* Skip irrelevant regions that start before our range. */ | 
 | 		if (iter->from < f) { | 
 | 			/* If this region ends after the last accounted offset, | 
 | 			 * then we need to update last_accounted_offset. | 
 | 			 */ | 
 | 			if (iter->to > last_accounted_offset) | 
 | 				last_accounted_offset = iter->to; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* When we find a region that starts beyond our range, we've | 
 | 		 * finished. | 
 | 		 */ | 
 | 		if (iter->from >= t) { | 
 | 			rg = iter->link.prev; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Add an entry for last_accounted_offset -> iter->from, and | 
 | 		 * update last_accounted_offset. | 
 | 		 */ | 
 | 		if (iter->from > last_accounted_offset) | 
 | 			add += hugetlb_resv_map_add(resv, iter->link.prev, | 
 | 						    last_accounted_offset, | 
 | 						    iter->from, h, h_cg, | 
 | 						    regions_needed); | 
 |  | 
 | 		last_accounted_offset = iter->to; | 
 | 	} | 
 |  | 
 | 	/* Handle the case where our range extends beyond | 
 | 	 * last_accounted_offset. | 
 | 	 */ | 
 | 	if (!rg) | 
 | 		rg = head->prev; | 
 | 	if (last_accounted_offset < t) | 
 | 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, | 
 | 					    t, h, h_cg, regions_needed); | 
 |  | 
 | 	return add; | 
 | } | 
 |  | 
 | /* Must be called with resv->lock acquired. Will drop lock to allocate entries. | 
 |  */ | 
 | static int allocate_file_region_entries(struct resv_map *resv, | 
 | 					int regions_needed) | 
 | 	__must_hold(&resv->lock) | 
 | { | 
 | 	struct list_head allocated_regions; | 
 | 	int to_allocate = 0, i = 0; | 
 | 	struct file_region *trg = NULL, *rg = NULL; | 
 |  | 
 | 	VM_BUG_ON(regions_needed < 0); | 
 |  | 
 | 	INIT_LIST_HEAD(&allocated_regions); | 
 |  | 
 | 	/* | 
 | 	 * Check for sufficient descriptors in the cache to accommodate | 
 | 	 * the number of in progress add operations plus regions_needed. | 
 | 	 * | 
 | 	 * This is a while loop because when we drop the lock, some other call | 
 | 	 * to region_add or region_del may have consumed some region_entries, | 
 | 	 * so we keep looping here until we finally have enough entries for | 
 | 	 * (adds_in_progress + regions_needed). | 
 | 	 */ | 
 | 	while (resv->region_cache_count < | 
 | 	       (resv->adds_in_progress + regions_needed)) { | 
 | 		to_allocate = resv->adds_in_progress + regions_needed - | 
 | 			      resv->region_cache_count; | 
 |  | 
 | 		/* At this point, we should have enough entries in the cache | 
 | 		 * for all the existing adds_in_progress. We should only be | 
 | 		 * needing to allocate for regions_needed. | 
 | 		 */ | 
 | 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); | 
 |  | 
 | 		spin_unlock(&resv->lock); | 
 | 		for (i = 0; i < to_allocate; i++) { | 
 | 			trg = kmalloc(sizeof(*trg), GFP_KERNEL); | 
 | 			if (!trg) | 
 | 				goto out_of_memory; | 
 | 			list_add(&trg->link, &allocated_regions); | 
 | 		} | 
 |  | 
 | 		spin_lock(&resv->lock); | 
 |  | 
 | 		list_splice(&allocated_regions, &resv->region_cache); | 
 | 		resv->region_cache_count += to_allocate; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_of_memory: | 
 | 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) { | 
 | 		list_del(&rg->link); | 
 | 		kfree(rg); | 
 | 	} | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * Add the huge page range represented by [f, t) to the reserve | 
 |  * map.  Regions will be taken from the cache to fill in this range. | 
 |  * Sufficient regions should exist in the cache due to the previous | 
 |  * call to region_chg with the same range, but in some cases the cache will not | 
 |  * have sufficient entries due to races with other code doing region_add or | 
 |  * region_del.  The extra needed entries will be allocated. | 
 |  * | 
 |  * regions_needed is the out value provided by a previous call to region_chg. | 
 |  * | 
 |  * Return the number of new huge pages added to the map.  This number is greater | 
 |  * than or equal to zero.  If file_region entries needed to be allocated for | 
 |  * this operation and we were not able to allocate, it returns -ENOMEM. | 
 |  * region_add of regions of length 1 never allocate file_regions and cannot | 
 |  * fail; region_chg will always allocate at least 1 entry and a region_add for | 
 |  * 1 page will only require at most 1 entry. | 
 |  */ | 
 | static long region_add(struct resv_map *resv, long f, long t, | 
 | 		       long in_regions_needed, struct hstate *h, | 
 | 		       struct hugetlb_cgroup *h_cg) | 
 | { | 
 | 	long add = 0, actual_regions_needed = 0; | 
 |  | 
 | 	spin_lock(&resv->lock); | 
 | retry: | 
 |  | 
 | 	/* Count how many regions are actually needed to execute this add. */ | 
 | 	add_reservation_in_range(resv, f, t, NULL, NULL, | 
 | 				 &actual_regions_needed); | 
 |  | 
 | 	/* | 
 | 	 * Check for sufficient descriptors in the cache to accommodate | 
 | 	 * this add operation. Note that actual_regions_needed may be greater | 
 | 	 * than in_regions_needed, as the resv_map may have been modified since | 
 | 	 * the region_chg call. In this case, we need to make sure that we | 
 | 	 * allocate extra entries, such that we have enough for all the | 
 | 	 * existing adds_in_progress, plus the excess needed for this | 
 | 	 * operation. | 
 | 	 */ | 
 | 	if (actual_regions_needed > in_regions_needed && | 
 | 	    resv->region_cache_count < | 
 | 		    resv->adds_in_progress + | 
 | 			    (actual_regions_needed - in_regions_needed)) { | 
 | 		/* region_add operation of range 1 should never need to | 
 | 		 * allocate file_region entries. | 
 | 		 */ | 
 | 		VM_BUG_ON(t - f <= 1); | 
 |  | 
 | 		if (allocate_file_region_entries( | 
 | 			    resv, actual_regions_needed - in_regions_needed)) { | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); | 
 |  | 
 | 	resv->adds_in_progress -= in_regions_needed; | 
 |  | 
 | 	spin_unlock(&resv->lock); | 
 | 	return add; | 
 | } | 
 |  | 
 | /* | 
 |  * Examine the existing reserve map and determine how many | 
 |  * huge pages in the specified range [f, t) are NOT currently | 
 |  * represented.  This routine is called before a subsequent | 
 |  * call to region_add that will actually modify the reserve | 
 |  * map to add the specified range [f, t).  region_chg does | 
 |  * not change the number of huge pages represented by the | 
 |  * map.  A number of new file_region structures is added to the cache as a | 
 |  * placeholder, for the subsequent region_add call to use. At least 1 | 
 |  * file_region structure is added. | 
 |  * | 
 |  * out_regions_needed is the number of regions added to the | 
 |  * resv->adds_in_progress.  This value needs to be provided to a follow up call | 
 |  * to region_add or region_abort for proper accounting. | 
 |  * | 
 |  * Returns the number of huge pages that need to be added to the existing | 
 |  * reservation map for the range [f, t).  This number is greater or equal to | 
 |  * zero.  -ENOMEM is returned if a new file_region structure or cache entry | 
 |  * is needed and can not be allocated. | 
 |  */ | 
 | static long region_chg(struct resv_map *resv, long f, long t, | 
 | 		       long *out_regions_needed) | 
 | { | 
 | 	long chg = 0; | 
 |  | 
 | 	spin_lock(&resv->lock); | 
 |  | 
 | 	/* Count how many hugepages in this range are NOT represented. */ | 
 | 	chg = add_reservation_in_range(resv, f, t, NULL, NULL, | 
 | 				       out_regions_needed); | 
 |  | 
 | 	if (*out_regions_needed == 0) | 
 | 		*out_regions_needed = 1; | 
 |  | 
 | 	if (allocate_file_region_entries(resv, *out_regions_needed)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	resv->adds_in_progress += *out_regions_needed; | 
 |  | 
 | 	spin_unlock(&resv->lock); | 
 | 	return chg; | 
 | } | 
 |  | 
 | /* | 
 |  * Abort the in progress add operation.  The adds_in_progress field | 
 |  * of the resv_map keeps track of the operations in progress between | 
 |  * calls to region_chg and region_add.  Operations are sometimes | 
 |  * aborted after the call to region_chg.  In such cases, region_abort | 
 |  * is called to decrement the adds_in_progress counter. regions_needed | 
 |  * is the value returned by the region_chg call, it is used to decrement | 
 |  * the adds_in_progress counter. | 
 |  * | 
 |  * NOTE: The range arguments [f, t) are not needed or used in this | 
 |  * routine.  They are kept to make reading the calling code easier as | 
 |  * arguments will match the associated region_chg call. | 
 |  */ | 
 | static void region_abort(struct resv_map *resv, long f, long t, | 
 | 			 long regions_needed) | 
 | { | 
 | 	spin_lock(&resv->lock); | 
 | 	VM_BUG_ON(!resv->region_cache_count); | 
 | 	resv->adds_in_progress -= regions_needed; | 
 | 	spin_unlock(&resv->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Delete the specified range [f, t) from the reserve map.  If the | 
 |  * t parameter is LONG_MAX, this indicates that ALL regions after f | 
 |  * should be deleted.  Locate the regions which intersect [f, t) | 
 |  * and either trim, delete or split the existing regions. | 
 |  * | 
 |  * Returns the number of huge pages deleted from the reserve map. | 
 |  * In the normal case, the return value is zero or more.  In the | 
 |  * case where a region must be split, a new region descriptor must | 
 |  * be allocated.  If the allocation fails, -ENOMEM will be returned. | 
 |  * NOTE: If the parameter t == LONG_MAX, then we will never split | 
 |  * a region and possibly return -ENOMEM.  Callers specifying | 
 |  * t == LONG_MAX do not need to check for -ENOMEM error. | 
 |  */ | 
 | static long region_del(struct resv_map *resv, long f, long t) | 
 | { | 
 | 	struct list_head *head = &resv->regions; | 
 | 	struct file_region *rg, *trg; | 
 | 	struct file_region *nrg = NULL; | 
 | 	long del = 0; | 
 |  | 
 | retry: | 
 | 	spin_lock(&resv->lock); | 
 | 	list_for_each_entry_safe(rg, trg, head, link) { | 
 | 		/* | 
 | 		 * Skip regions before the range to be deleted.  file_region | 
 | 		 * ranges are normally of the form [from, to).  However, there | 
 | 		 * may be a "placeholder" entry in the map which is of the form | 
 | 		 * (from, to) with from == to.  Check for placeholder entries | 
 | 		 * at the beginning of the range to be deleted. | 
 | 		 */ | 
 | 		if (rg->to <= f && (rg->to != rg->from || rg->to != f)) | 
 | 			continue; | 
 |  | 
 | 		if (rg->from >= t) | 
 | 			break; | 
 |  | 
 | 		if (f > rg->from && t < rg->to) { /* Must split region */ | 
 | 			/* | 
 | 			 * Check for an entry in the cache before dropping | 
 | 			 * lock and attempting allocation. | 
 | 			 */ | 
 | 			if (!nrg && | 
 | 			    resv->region_cache_count > resv->adds_in_progress) { | 
 | 				nrg = list_first_entry(&resv->region_cache, | 
 | 							struct file_region, | 
 | 							link); | 
 | 				list_del(&nrg->link); | 
 | 				resv->region_cache_count--; | 
 | 			} | 
 |  | 
 | 			if (!nrg) { | 
 | 				spin_unlock(&resv->lock); | 
 | 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | 
 | 				if (!nrg) | 
 | 					return -ENOMEM; | 
 | 				goto retry; | 
 | 			} | 
 |  | 
 | 			del += t - f; | 
 | 			hugetlb_cgroup_uncharge_file_region( | 
 | 				resv, rg, t - f, false); | 
 |  | 
 | 			/* New entry for end of split region */ | 
 | 			nrg->from = t; | 
 | 			nrg->to = rg->to; | 
 |  | 
 | 			copy_hugetlb_cgroup_uncharge_info(nrg, rg); | 
 |  | 
 | 			INIT_LIST_HEAD(&nrg->link); | 
 |  | 
 | 			/* Original entry is trimmed */ | 
 | 			rg->to = f; | 
 |  | 
 | 			list_add(&nrg->link, &rg->link); | 
 | 			nrg = NULL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */ | 
 | 			del += rg->to - rg->from; | 
 | 			hugetlb_cgroup_uncharge_file_region(resv, rg, | 
 | 							    rg->to - rg->from, true); | 
 | 			list_del(&rg->link); | 
 | 			kfree(rg); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (f <= rg->from) {	/* Trim beginning of region */ | 
 | 			hugetlb_cgroup_uncharge_file_region(resv, rg, | 
 | 							    t - rg->from, false); | 
 |  | 
 | 			del += t - rg->from; | 
 | 			rg->from = t; | 
 | 		} else {		/* Trim end of region */ | 
 | 			hugetlb_cgroup_uncharge_file_region(resv, rg, | 
 | 							    rg->to - f, false); | 
 |  | 
 | 			del += rg->to - f; | 
 | 			rg->to = f; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock(&resv->lock); | 
 | 	kfree(nrg); | 
 | 	return del; | 
 | } | 
 |  | 
 | /* | 
 |  * A rare out of memory error was encountered which prevented removal of | 
 |  * the reserve map region for a page.  The huge page itself was free'ed | 
 |  * and removed from the page cache.  This routine will adjust the subpool | 
 |  * usage count, and the global reserve count if needed.  By incrementing | 
 |  * these counts, the reserve map entry which could not be deleted will | 
 |  * appear as a "reserved" entry instead of simply dangling with incorrect | 
 |  * counts. | 
 |  */ | 
 | void hugetlb_fix_reserve_counts(struct inode *inode) | 
 | { | 
 | 	struct hugepage_subpool *spool = subpool_inode(inode); | 
 | 	long rsv_adjust; | 
 | 	bool reserved = false; | 
 |  | 
 | 	rsv_adjust = hugepage_subpool_get_pages(spool, 1); | 
 | 	if (rsv_adjust > 0) { | 
 | 		struct hstate *h = hstate_inode(inode); | 
 |  | 
 | 		if (!hugetlb_acct_memory(h, 1)) | 
 | 			reserved = true; | 
 | 	} else if (!rsv_adjust) { | 
 | 		reserved = true; | 
 | 	} | 
 |  | 
 | 	if (!reserved) | 
 | 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * Count and return the number of huge pages in the reserve map | 
 |  * that intersect with the range [f, t). | 
 |  */ | 
 | static long region_count(struct resv_map *resv, long f, long t) | 
 | { | 
 | 	struct list_head *head = &resv->regions; | 
 | 	struct file_region *rg; | 
 | 	long chg = 0; | 
 |  | 
 | 	spin_lock(&resv->lock); | 
 | 	/* Locate each segment we overlap with, and count that overlap. */ | 
 | 	list_for_each_entry(rg, head, link) { | 
 | 		long seg_from; | 
 | 		long seg_to; | 
 |  | 
 | 		if (rg->to <= f) | 
 | 			continue; | 
 | 		if (rg->from >= t) | 
 | 			break; | 
 |  | 
 | 		seg_from = max(rg->from, f); | 
 | 		seg_to = min(rg->to, t); | 
 |  | 
 | 		chg += seg_to - seg_from; | 
 | 	} | 
 | 	spin_unlock(&resv->lock); | 
 |  | 
 | 	return chg; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert the address within this vma to the page offset within | 
 |  * the mapping, in pagecache page units; huge pages here. | 
 |  */ | 
 | static pgoff_t vma_hugecache_offset(struct hstate *h, | 
 | 			struct vm_area_struct *vma, unsigned long address) | 
 | { | 
 | 	return ((address - vma->vm_start) >> huge_page_shift(h)) + | 
 | 			(vma->vm_pgoff >> huge_page_order(h)); | 
 | } | 
 |  | 
 | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, | 
 | 				     unsigned long address) | 
 | { | 
 | 	return vma_hugecache_offset(hstate_vma(vma), vma, address); | 
 | } | 
 | EXPORT_SYMBOL_GPL(linear_hugepage_index); | 
 |  | 
 | /* | 
 |  * Return the size of the pages allocated when backing a VMA. In the majority | 
 |  * cases this will be same size as used by the page table entries. | 
 |  */ | 
 | unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) | 
 | { | 
 | 	if (vma->vm_ops && vma->vm_ops->pagesize) | 
 | 		return vma->vm_ops->pagesize(vma); | 
 | 	return PAGE_SIZE; | 
 | } | 
 | EXPORT_SYMBOL_GPL(vma_kernel_pagesize); | 
 |  | 
 | /* | 
 |  * Return the page size being used by the MMU to back a VMA. In the majority | 
 |  * of cases, the page size used by the kernel matches the MMU size. On | 
 |  * architectures where it differs, an architecture-specific 'strong' | 
 |  * version of this symbol is required. | 
 |  */ | 
 | __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | 
 | { | 
 | 	return vma_kernel_pagesize(vma); | 
 | } | 
 |  | 
 | /* | 
 |  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom | 
 |  * bits of the reservation map pointer, which are always clear due to | 
 |  * alignment. | 
 |  */ | 
 | #define HPAGE_RESV_OWNER    (1UL << 0) | 
 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | 
 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) | 
 |  | 
 | /* | 
 |  * These helpers are used to track how many pages are reserved for | 
 |  * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | 
 |  * is guaranteed to have their future faults succeed. | 
 |  * | 
 |  * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | 
 |  * the reserve counters are updated with the hugetlb_lock held. It is safe | 
 |  * to reset the VMA at fork() time as it is not in use yet and there is no | 
 |  * chance of the global counters getting corrupted as a result of the values. | 
 |  * | 
 |  * The private mapping reservation is represented in a subtly different | 
 |  * manner to a shared mapping.  A shared mapping has a region map associated | 
 |  * with the underlying file, this region map represents the backing file | 
 |  * pages which have ever had a reservation assigned which this persists even | 
 |  * after the page is instantiated.  A private mapping has a region map | 
 |  * associated with the original mmap which is attached to all VMAs which | 
 |  * reference it, this region map represents those offsets which have consumed | 
 |  * reservation ie. where pages have been instantiated. | 
 |  */ | 
 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) | 
 | { | 
 | 	return (unsigned long)vma->vm_private_data; | 
 | } | 
 |  | 
 | static void set_vma_private_data(struct vm_area_struct *vma, | 
 | 							unsigned long value) | 
 | { | 
 | 	vma->vm_private_data = (void *)value; | 
 | } | 
 |  | 
 | static void | 
 | resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, | 
 | 					  struct hugetlb_cgroup *h_cg, | 
 | 					  struct hstate *h) | 
 | { | 
 | #ifdef CONFIG_CGROUP_HUGETLB | 
 | 	if (!h_cg || !h) { | 
 | 		resv_map->reservation_counter = NULL; | 
 | 		resv_map->pages_per_hpage = 0; | 
 | 		resv_map->css = NULL; | 
 | 	} else { | 
 | 		resv_map->reservation_counter = | 
 | 			&h_cg->rsvd_hugepage[hstate_index(h)]; | 
 | 		resv_map->pages_per_hpage = pages_per_huge_page(h); | 
 | 		resv_map->css = &h_cg->css; | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | struct resv_map *resv_map_alloc(void) | 
 | { | 
 | 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | 
 | 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); | 
 |  | 
 | 	if (!resv_map || !rg) { | 
 | 		kfree(resv_map); | 
 | 		kfree(rg); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	kref_init(&resv_map->refs); | 
 | 	spin_lock_init(&resv_map->lock); | 
 | 	INIT_LIST_HEAD(&resv_map->regions); | 
 |  | 
 | 	resv_map->adds_in_progress = 0; | 
 | 	/* | 
 | 	 * Initialize these to 0. On shared mappings, 0's here indicate these | 
 | 	 * fields don't do cgroup accounting. On private mappings, these will be | 
 | 	 * re-initialized to the proper values, to indicate that hugetlb cgroup | 
 | 	 * reservations are to be un-charged from here. | 
 | 	 */ | 
 | 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); | 
 |  | 
 | 	INIT_LIST_HEAD(&resv_map->region_cache); | 
 | 	list_add(&rg->link, &resv_map->region_cache); | 
 | 	resv_map->region_cache_count = 1; | 
 |  | 
 | 	return resv_map; | 
 | } | 
 |  | 
 | void resv_map_release(struct kref *ref) | 
 | { | 
 | 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | 
 | 	struct list_head *head = &resv_map->region_cache; | 
 | 	struct file_region *rg, *trg; | 
 |  | 
 | 	/* Clear out any active regions before we release the map. */ | 
 | 	region_del(resv_map, 0, LONG_MAX); | 
 |  | 
 | 	/* ... and any entries left in the cache */ | 
 | 	list_for_each_entry_safe(rg, trg, head, link) { | 
 | 		list_del(&rg->link); | 
 | 		kfree(rg); | 
 | 	} | 
 |  | 
 | 	VM_BUG_ON(resv_map->adds_in_progress); | 
 |  | 
 | 	kfree(resv_map); | 
 | } | 
 |  | 
 | static inline struct resv_map *inode_resv_map(struct inode *inode) | 
 | { | 
 | 	/* | 
 | 	 * At inode evict time, i_mapping may not point to the original | 
 | 	 * address space within the inode.  This original address space | 
 | 	 * contains the pointer to the resv_map.  So, always use the | 
 | 	 * address space embedded within the inode. | 
 | 	 * The VERY common case is inode->mapping == &inode->i_data but, | 
 | 	 * this may not be true for device special inodes. | 
 | 	 */ | 
 | 	return (struct resv_map *)(&inode->i_data)->private_data; | 
 | } | 
 |  | 
 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | 
 | { | 
 | 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
 | 	if (vma->vm_flags & VM_MAYSHARE) { | 
 | 		struct address_space *mapping = vma->vm_file->f_mapping; | 
 | 		struct inode *inode = mapping->host; | 
 |  | 
 | 		return inode_resv_map(inode); | 
 |  | 
 | 	} else { | 
 | 		return (struct resv_map *)(get_vma_private_data(vma) & | 
 | 							~HPAGE_RESV_MASK); | 
 | 	} | 
 | } | 
 |  | 
 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) | 
 | { | 
 | 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
 | 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); | 
 |  | 
 | 	set_vma_private_data(vma, (get_vma_private_data(vma) & | 
 | 				HPAGE_RESV_MASK) | (unsigned long)map); | 
 | } | 
 |  | 
 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | 
 | { | 
 | 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
 | 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); | 
 |  | 
 | 	set_vma_private_data(vma, get_vma_private_data(vma) | flags); | 
 | } | 
 |  | 
 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | 
 | { | 
 | 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
 |  | 
 | 	return (get_vma_private_data(vma) & flag) != 0; | 
 | } | 
 |  | 
 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ | 
 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) | 
 | { | 
 | 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); | 
 | 	if (!(vma->vm_flags & VM_MAYSHARE)) | 
 | 		vma->vm_private_data = (void *)0; | 
 | } | 
 |  | 
 | /* | 
 |  * Reset and decrement one ref on hugepage private reservation. | 
 |  * Called with mm->mmap_sem writer semaphore held. | 
 |  * This function should be only used by move_vma() and operate on | 
 |  * same sized vma. It should never come here with last ref on the | 
 |  * reservation. | 
 |  */ | 
 | void clear_vma_resv_huge_pages(struct vm_area_struct *vma) | 
 | { | 
 | 	/* | 
 | 	 * Clear the old hugetlb private page reservation. | 
 | 	 * It has already been transferred to new_vma. | 
 | 	 * | 
 | 	 * During a mremap() operation of a hugetlb vma we call move_vma() | 
 | 	 * which copies vma into new_vma and unmaps vma. After the copy | 
 | 	 * operation both new_vma and vma share a reference to the resv_map | 
 | 	 * struct, and at that point vma is about to be unmapped. We don't | 
 | 	 * want to return the reservation to the pool at unmap of vma because | 
 | 	 * the reservation still lives on in new_vma, so simply decrement the | 
 | 	 * ref here and remove the resv_map reference from this vma. | 
 | 	 */ | 
 | 	struct resv_map *reservations = vma_resv_map(vma); | 
 |  | 
 | 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
 | 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations); | 
 | 		kref_put(&reservations->refs, resv_map_release); | 
 | 	} | 
 |  | 
 | 	reset_vma_resv_huge_pages(vma); | 
 | } | 
 |  | 
 | /* Returns true if the VMA has associated reserve pages */ | 
 | static bool vma_has_reserves(struct vm_area_struct *vma, long chg) | 
 | { | 
 | 	if (vma->vm_flags & VM_NORESERVE) { | 
 | 		/* | 
 | 		 * This address is already reserved by other process(chg == 0), | 
 | 		 * so, we should decrement reserved count. Without decrementing, | 
 | 		 * reserve count remains after releasing inode, because this | 
 | 		 * allocated page will go into page cache and is regarded as | 
 | 		 * coming from reserved pool in releasing step.  Currently, we | 
 | 		 * don't have any other solution to deal with this situation | 
 | 		 * properly, so add work-around here. | 
 | 		 */ | 
 | 		if (vma->vm_flags & VM_MAYSHARE && chg == 0) | 
 | 			return true; | 
 | 		else | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	/* Shared mappings always use reserves */ | 
 | 	if (vma->vm_flags & VM_MAYSHARE) { | 
 | 		/* | 
 | 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD | 
 | 		 * be a region map for all pages.  The only situation where | 
 | 		 * there is no region map is if a hole was punched via | 
 | 		 * fallocate.  In this case, there really are no reserves to | 
 | 		 * use.  This situation is indicated if chg != 0. | 
 | 		 */ | 
 | 		if (chg) | 
 | 			return false; | 
 | 		else | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Only the process that called mmap() has reserves for | 
 | 	 * private mappings. | 
 | 	 */ | 
 | 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
 | 		/* | 
 | 		 * Like the shared case above, a hole punch or truncate | 
 | 		 * could have been performed on the private mapping. | 
 | 		 * Examine the value of chg to determine if reserves | 
 | 		 * actually exist or were previously consumed. | 
 | 		 * Very Subtle - The value of chg comes from a previous | 
 | 		 * call to vma_needs_reserves().  The reserve map for | 
 | 		 * private mappings has different (opposite) semantics | 
 | 		 * than that of shared mappings.  vma_needs_reserves() | 
 | 		 * has already taken this difference in semantics into | 
 | 		 * account.  Therefore, the meaning of chg is the same | 
 | 		 * as in the shared case above.  Code could easily be | 
 | 		 * combined, but keeping it separate draws attention to | 
 | 		 * subtle differences. | 
 | 		 */ | 
 | 		if (chg) | 
 | 			return false; | 
 | 		else | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void enqueue_huge_page(struct hstate *h, struct page *page) | 
 | { | 
 | 	int nid = page_to_nid(page); | 
 |  | 
 | 	lockdep_assert_held(&hugetlb_lock); | 
 | 	VM_BUG_ON_PAGE(page_count(page), page); | 
 |  | 
 | 	list_move(&page->lru, &h->hugepage_freelists[nid]); | 
 | 	h->free_huge_pages++; | 
 | 	h->free_huge_pages_node[nid]++; | 
 | 	SetHPageFreed(page); | 
 | } | 
 |  | 
 | static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) | 
 | { | 
 | 	struct page *page; | 
 | 	bool pin = !!(current->flags & PF_MEMALLOC_PIN); | 
 |  | 
 | 	lockdep_assert_held(&hugetlb_lock); | 
 | 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { | 
 | 		if (pin && !is_pinnable_page(page)) | 
 | 			continue; | 
 |  | 
 | 		if (PageHWPoison(page)) | 
 | 			continue; | 
 |  | 
 | 		list_move(&page->lru, &h->hugepage_activelist); | 
 | 		set_page_refcounted(page); | 
 | 		ClearHPageFreed(page); | 
 | 		h->free_huge_pages--; | 
 | 		h->free_huge_pages_node[nid]--; | 
 | 		return page; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, | 
 | 		nodemask_t *nmask) | 
 | { | 
 | 	unsigned int cpuset_mems_cookie; | 
 | 	struct zonelist *zonelist; | 
 | 	struct zone *zone; | 
 | 	struct zoneref *z; | 
 | 	int node = NUMA_NO_NODE; | 
 |  | 
 | 	zonelist = node_zonelist(nid, gfp_mask); | 
 |  | 
 | retry_cpuset: | 
 | 	cpuset_mems_cookie = read_mems_allowed_begin(); | 
 | 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { | 
 | 		struct page *page; | 
 |  | 
 | 		if (!cpuset_zone_allowed(zone, gfp_mask)) | 
 | 			continue; | 
 | 		/* | 
 | 		 * no need to ask again on the same node. Pool is node rather than | 
 | 		 * zone aware | 
 | 		 */ | 
 | 		if (zone_to_nid(zone) == node) | 
 | 			continue; | 
 | 		node = zone_to_nid(zone); | 
 |  | 
 | 		page = dequeue_huge_page_node_exact(h, node); | 
 | 		if (page) | 
 | 			return page; | 
 | 	} | 
 | 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) | 
 | 		goto retry_cpuset; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct page *dequeue_huge_page_vma(struct hstate *h, | 
 | 				struct vm_area_struct *vma, | 
 | 				unsigned long address, int avoid_reserve, | 
 | 				long chg) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	struct mempolicy *mpol; | 
 | 	gfp_t gfp_mask; | 
 | 	nodemask_t *nodemask; | 
 | 	int nid; | 
 |  | 
 | 	/* | 
 | 	 * A child process with MAP_PRIVATE mappings created by their parent | 
 | 	 * have no page reserves. This check ensures that reservations are | 
 | 	 * not "stolen". The child may still get SIGKILLed | 
 | 	 */ | 
 | 	if (!vma_has_reserves(vma, chg) && | 
 | 			h->free_huge_pages - h->resv_huge_pages == 0) | 
 | 		goto err; | 
 |  | 
 | 	/* If reserves cannot be used, ensure enough pages are in the pool */ | 
 | 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) | 
 | 		goto err; | 
 |  | 
 | 	gfp_mask = htlb_alloc_mask(h); | 
 | 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); | 
 |  | 
 | 	if (mpol_is_preferred_many(mpol)) { | 
 | 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); | 
 |  | 
 | 		/* Fallback to all nodes if page==NULL */ | 
 | 		nodemask = NULL; | 
 | 	} | 
 |  | 
 | 	if (!page) | 
 | 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); | 
 |  | 
 | 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { | 
 | 		SetHPageRestoreReserve(page); | 
 | 		h->resv_huge_pages--; | 
 | 	} | 
 |  | 
 | 	mpol_cond_put(mpol); | 
 | 	return page; | 
 |  | 
 | err: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * common helper functions for hstate_next_node_to_{alloc|free}. | 
 |  * We may have allocated or freed a huge page based on a different | 
 |  * nodes_allowed previously, so h->next_node_to_{alloc|free} might | 
 |  * be outside of *nodes_allowed.  Ensure that we use an allowed | 
 |  * node for alloc or free. | 
 |  */ | 
 | static int next_node_allowed(int nid, nodemask_t *nodes_allowed) | 
 | { | 
 | 	nid = next_node_in(nid, *nodes_allowed); | 
 | 	VM_BUG_ON(nid >= MAX_NUMNODES); | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) | 
 | { | 
 | 	if (!node_isset(nid, *nodes_allowed)) | 
 | 		nid = next_node_allowed(nid, nodes_allowed); | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * returns the previously saved node ["this node"] from which to | 
 |  * allocate a persistent huge page for the pool and advance the | 
 |  * next node from which to allocate, handling wrap at end of node | 
 |  * mask. | 
 |  */ | 
 | static int hstate_next_node_to_alloc(struct hstate *h, | 
 | 					nodemask_t *nodes_allowed) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	VM_BUG_ON(!nodes_allowed); | 
 |  | 
 | 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); | 
 | 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * helper for remove_pool_huge_page() - return the previously saved | 
 |  * node ["this node"] from which to free a huge page.  Advance the | 
 |  * next node id whether or not we find a free huge page to free so | 
 |  * that the next attempt to free addresses the next node. | 
 |  */ | 
 | static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	VM_BUG_ON(!nodes_allowed); | 
 |  | 
 | 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); | 
 | 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\ | 
 | 	for (nr_nodes = nodes_weight(*mask);				\ | 
 | 		nr_nodes > 0 &&						\ | 
 | 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\ | 
 | 		nr_nodes--) | 
 |  | 
 | #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\ | 
 | 	for (nr_nodes = nodes_weight(*mask);				\ | 
 | 		nr_nodes > 0 &&						\ | 
 | 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\ | 
 | 		nr_nodes--) | 
 |  | 
 | /* used to demote non-gigantic_huge pages as well */ | 
 | static void __destroy_compound_gigantic_page(struct page *page, | 
 | 					unsigned int order, bool demote) | 
 | { | 
 | 	int i; | 
 | 	int nr_pages = 1 << order; | 
 | 	struct page *p = page + 1; | 
 |  | 
 | 	atomic_set(compound_mapcount_ptr(page), 0); | 
 | 	atomic_set(compound_pincount_ptr(page), 0); | 
 |  | 
 | 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { | 
 | 		p->mapping = NULL; | 
 | 		clear_compound_head(p); | 
 | 		if (!demote) | 
 | 			set_page_refcounted(p); | 
 | 	} | 
 |  | 
 | 	set_compound_order(page, 0); | 
 | #ifdef CONFIG_64BIT | 
 | 	page[1].compound_nr = 0; | 
 | #endif | 
 | 	__ClearPageHead(page); | 
 | } | 
 |  | 
 | static void destroy_compound_hugetlb_page_for_demote(struct page *page, | 
 | 					unsigned int order) | 
 | { | 
 | 	__destroy_compound_gigantic_page(page, order, true); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE | 
 | static void destroy_compound_gigantic_page(struct page *page, | 
 | 					unsigned int order) | 
 | { | 
 | 	__destroy_compound_gigantic_page(page, order, false); | 
 | } | 
 |  | 
 | static void free_gigantic_page(struct page *page, unsigned int order) | 
 | { | 
 | 	/* | 
 | 	 * If the page isn't allocated using the cma allocator, | 
 | 	 * cma_release() returns false. | 
 | 	 */ | 
 | #ifdef CONFIG_CMA | 
 | 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) | 
 | 		return; | 
 | #endif | 
 |  | 
 | 	free_contig_range(page_to_pfn(page), 1 << order); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CONTIG_ALLOC | 
 | static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, | 
 | 		int nid, nodemask_t *nodemask) | 
 | { | 
 | 	unsigned long nr_pages = pages_per_huge_page(h); | 
 | 	if (nid == NUMA_NO_NODE) | 
 | 		nid = numa_mem_id(); | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | 	{ | 
 | 		struct page *page; | 
 | 		int node; | 
 |  | 
 | 		if (hugetlb_cma[nid]) { | 
 | 			page = cma_alloc(hugetlb_cma[nid], nr_pages, | 
 | 					huge_page_order(h), true); | 
 | 			if (page) | 
 | 				return page; | 
 | 		} | 
 |  | 
 | 		if (!(gfp_mask & __GFP_THISNODE)) { | 
 | 			for_each_node_mask(node, *nodemask) { | 
 | 				if (node == nid || !hugetlb_cma[node]) | 
 | 					continue; | 
 |  | 
 | 				page = cma_alloc(hugetlb_cma[node], nr_pages, | 
 | 						huge_page_order(h), true); | 
 | 				if (page) | 
 | 					return page; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); | 
 | } | 
 |  | 
 | #else /* !CONFIG_CONTIG_ALLOC */ | 
 | static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, | 
 | 					int nid, nodemask_t *nodemask) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif /* CONFIG_CONTIG_ALLOC */ | 
 |  | 
 | #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ | 
 | static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, | 
 | 					int nid, nodemask_t *nodemask) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | static inline void free_gigantic_page(struct page *page, unsigned int order) { } | 
 | static inline void destroy_compound_gigantic_page(struct page *page, | 
 | 						unsigned int order) { } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Remove hugetlb page from lists, and update dtor so that page appears | 
 |  * as just a compound page. | 
 |  * | 
 |  * A reference is held on the page, except in the case of demote. | 
 |  * | 
 |  * Must be called with hugetlb lock held. | 
 |  */ | 
 | static void __remove_hugetlb_page(struct hstate *h, struct page *page, | 
 | 							bool adjust_surplus, | 
 | 							bool demote) | 
 | { | 
 | 	int nid = page_to_nid(page); | 
 |  | 
 | 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); | 
 | 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); | 
 |  | 
 | 	lockdep_assert_held(&hugetlb_lock); | 
 | 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) | 
 | 		return; | 
 |  | 
 | 	list_del(&page->lru); | 
 |  | 
 | 	if (HPageFreed(page)) { | 
 | 		h->free_huge_pages--; | 
 | 		h->free_huge_pages_node[nid]--; | 
 | 	} | 
 | 	if (adjust_surplus) { | 
 | 		h->surplus_huge_pages--; | 
 | 		h->surplus_huge_pages_node[nid]--; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Very subtle | 
 | 	 * | 
 | 	 * For non-gigantic pages set the destructor to the normal compound | 
 | 	 * page dtor.  This is needed in case someone takes an additional | 
 | 	 * temporary ref to the page, and freeing is delayed until they drop | 
 | 	 * their reference. | 
 | 	 * | 
 | 	 * For gigantic pages set the destructor to the null dtor.  This | 
 | 	 * destructor will never be called.  Before freeing the gigantic | 
 | 	 * page destroy_compound_gigantic_page will turn the compound page | 
 | 	 * into a simple group of pages.  After this the destructor does not | 
 | 	 * apply. | 
 | 	 * | 
 | 	 * This handles the case where more than one ref is held when and | 
 | 	 * after update_and_free_page is called. | 
 | 	 * | 
 | 	 * In the case of demote we do not ref count the page as it will soon | 
 | 	 * be turned into a page of smaller size. | 
 | 	 */ | 
 | 	if (!demote) | 
 | 		set_page_refcounted(page); | 
 | 	if (hstate_is_gigantic(h)) | 
 | 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR); | 
 | 	else | 
 | 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); | 
 |  | 
 | 	h->nr_huge_pages--; | 
 | 	h->nr_huge_pages_node[nid]--; | 
 | } | 
 |  | 
 | static void remove_hugetlb_page(struct hstate *h, struct page *page, | 
 | 							bool adjust_surplus) | 
 | { | 
 | 	__remove_hugetlb_page(h, page, adjust_surplus, false); | 
 | } | 
 |  | 
 | static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page, | 
 | 							bool adjust_surplus) | 
 | { | 
 | 	__remove_hugetlb_page(h, page, adjust_surplus, true); | 
 | } | 
 |  | 
 | static void add_hugetlb_page(struct hstate *h, struct page *page, | 
 | 			     bool adjust_surplus) | 
 | { | 
 | 	int zeroed; | 
 | 	int nid = page_to_nid(page); | 
 |  | 
 | 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page); | 
 |  | 
 | 	lockdep_assert_held(&hugetlb_lock); | 
 |  | 
 | 	INIT_LIST_HEAD(&page->lru); | 
 | 	h->nr_huge_pages++; | 
 | 	h->nr_huge_pages_node[nid]++; | 
 |  | 
 | 	if (adjust_surplus) { | 
 | 		h->surplus_huge_pages++; | 
 | 		h->surplus_huge_pages_node[nid]++; | 
 | 	} | 
 |  | 
 | 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); | 
 | 	set_page_private(page, 0); | 
 | 	SetHPageVmemmapOptimized(page); | 
 |  | 
 | 	/* | 
 | 	 * This page is about to be managed by the hugetlb allocator and | 
 | 	 * should have no users.  Drop our reference, and check for others | 
 | 	 * just in case. | 
 | 	 */ | 
 | 	zeroed = put_page_testzero(page); | 
 | 	if (!zeroed) | 
 | 		/* | 
 | 		 * It is VERY unlikely soneone else has taken a ref on | 
 | 		 * the page.  In this case, we simply return as the | 
 | 		 * hugetlb destructor (free_huge_page) will be called | 
 | 		 * when this other ref is dropped. | 
 | 		 */ | 
 | 		return; | 
 |  | 
 | 	arch_clear_hugepage_flags(page); | 
 | 	enqueue_huge_page(h, page); | 
 | } | 
 |  | 
 | static void __update_and_free_page(struct hstate *h, struct page *page) | 
 | { | 
 | 	int i; | 
 | 	struct page *subpage = page; | 
 |  | 
 | 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) | 
 | 		return; | 
 |  | 
 | 	if (hugetlb_vmemmap_alloc(h, page)) { | 
 | 		spin_lock_irq(&hugetlb_lock); | 
 | 		/* | 
 | 		 * If we cannot allocate vmemmap pages, just refuse to free the | 
 | 		 * page and put the page back on the hugetlb free list and treat | 
 | 		 * as a surplus page. | 
 | 		 */ | 
 | 		add_hugetlb_page(h, page, true); | 
 | 		spin_unlock_irq(&hugetlb_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < pages_per_huge_page(h); | 
 | 	     i++, subpage = mem_map_next(subpage, page, i)) { | 
 | 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error | | 
 | 				1 << PG_referenced | 1 << PG_dirty | | 
 | 				1 << PG_active | 1 << PG_private | | 
 | 				1 << PG_writeback); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Non-gigantic pages demoted from CMA allocated gigantic pages | 
 | 	 * need to be given back to CMA in free_gigantic_page. | 
 | 	 */ | 
 | 	if (hstate_is_gigantic(h) || | 
 | 	    hugetlb_cma_page(page, huge_page_order(h))) { | 
 | 		destroy_compound_gigantic_page(page, huge_page_order(h)); | 
 | 		free_gigantic_page(page, huge_page_order(h)); | 
 | 	} else { | 
 | 		__free_pages(page, huge_page_order(h)); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * As update_and_free_page() can be called under any context, so we cannot | 
 |  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the | 
 |  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate | 
 |  * the vmemmap pages. | 
 |  * | 
 |  * free_hpage_workfn() locklessly retrieves the linked list of pages to be | 
 |  * freed and frees them one-by-one. As the page->mapping pointer is going | 
 |  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node | 
 |  * structure of a lockless linked list of huge pages to be freed. | 
 |  */ | 
 | static LLIST_HEAD(hpage_freelist); | 
 |  | 
 | static void free_hpage_workfn(struct work_struct *work) | 
 | { | 
 | 	struct llist_node *node; | 
 |  | 
 | 	node = llist_del_all(&hpage_freelist); | 
 |  | 
 | 	while (node) { | 
 | 		struct page *page; | 
 | 		struct hstate *h; | 
 |  | 
 | 		page = container_of((struct address_space **)node, | 
 | 				     struct page, mapping); | 
 | 		node = node->next; | 
 | 		page->mapping = NULL; | 
 | 		/* | 
 | 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() | 
 | 		 * is going to trigger because a previous call to | 
 | 		 * remove_hugetlb_page() will set_compound_page_dtor(page, | 
 | 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly. | 
 | 		 */ | 
 | 		h = size_to_hstate(page_size(page)); | 
 |  | 
 | 		__update_and_free_page(h, page); | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 | static DECLARE_WORK(free_hpage_work, free_hpage_workfn); | 
 |  | 
 | static inline void flush_free_hpage_work(struct hstate *h) | 
 | { | 
 | 	if (hugetlb_optimize_vmemmap_pages(h)) | 
 | 		flush_work(&free_hpage_work); | 
 | } | 
 |  | 
 | static void update_and_free_page(struct hstate *h, struct page *page, | 
 | 				 bool atomic) | 
 | { | 
 | 	if (!HPageVmemmapOptimized(page) || !atomic) { | 
 | 		__update_and_free_page(h, page); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. | 
 | 	 * | 
 | 	 * Only call schedule_work() if hpage_freelist is previously | 
 | 	 * empty. Otherwise, schedule_work() had been called but the workfn | 
 | 	 * hasn't retrieved the list yet. | 
 | 	 */ | 
 | 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist)) | 
 | 		schedule_work(&free_hpage_work); | 
 | } | 
 |  | 
 | static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) | 
 | { | 
 | 	struct page *page, *t_page; | 
 |  | 
 | 	list_for_each_entry_safe(page, t_page, list, lru) { | 
 | 		update_and_free_page(h, page, false); | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 |  | 
 | struct hstate *size_to_hstate(unsigned long size) | 
 | { | 
 | 	struct hstate *h; | 
 |  | 
 | 	for_each_hstate(h) { | 
 | 		if (huge_page_size(h) == size) | 
 | 			return h; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void free_huge_page(struct page *page) | 
 | { | 
 | 	/* | 
 | 	 * Can't pass hstate in here because it is called from the | 
 | 	 * compound page destructor. | 
 | 	 */ | 
 | 	struct hstate *h = page_hstate(page); | 
 | 	int nid = page_to_nid(page); | 
 | 	struct hugepage_subpool *spool = hugetlb_page_subpool(page); | 
 | 	bool restore_reserve; | 
 | 	unsigned long flags; | 
 |  | 
 | 	VM_BUG_ON_PAGE(page_count(page), page); | 
 | 	VM_BUG_ON_PAGE(page_mapcount(page), page); | 
 |  | 
 | 	hugetlb_set_page_subpool(page, NULL); | 
 | 	if (PageAnon(page)) | 
 | 		__ClearPageAnonExclusive(page); | 
 | 	page->mapping = NULL; | 
 | 	restore_reserve = HPageRestoreReserve(page); | 
 | 	ClearHPageRestoreReserve(page); | 
 |  | 
 | 	/* | 
 | 	 * If HPageRestoreReserve was set on page, page allocation consumed a | 
 | 	 * reservation.  If the page was associated with a subpool, there | 
 | 	 * would have been a page reserved in the subpool before allocation | 
 | 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the | 
 | 	 * reservation, do not call hugepage_subpool_put_pages() as this will | 
 | 	 * remove the reserved page from the subpool. | 
 | 	 */ | 
 | 	if (!restore_reserve) { | 
 | 		/* | 
 | 		 * A return code of zero implies that the subpool will be | 
 | 		 * under its minimum size if the reservation is not restored | 
 | 		 * after page is free.  Therefore, force restore_reserve | 
 | 		 * operation. | 
 | 		 */ | 
 | 		if (hugepage_subpool_put_pages(spool, 1) == 0) | 
 | 			restore_reserve = true; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&hugetlb_lock, flags); | 
 | 	ClearHPageMigratable(page); | 
 | 	hugetlb_cgroup_uncharge_page(hstate_index(h), | 
 | 				     pages_per_huge_page(h), page); | 
 | 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), | 
 | 					  pages_per_huge_page(h), page); | 
 | 	if (restore_reserve) | 
 | 		h->resv_huge_pages++; | 
 |  | 
 | 	if (HPageTemporary(page)) { | 
 | 		remove_hugetlb_page(h, page, false); | 
 | 		spin_unlock_irqrestore(&hugetlb_lock, flags); | 
 | 		update_and_free_page(h, page, true); | 
 | 	} else if (h->surplus_huge_pages_node[nid]) { | 
 | 		/* remove the page from active list */ | 
 | 		remove_hugetlb_page(h, page, true); | 
 | 		spin_unlock_irqrestore(&hugetlb_lock, flags); | 
 | 		update_and_free_page(h, page, true); | 
 | 	} else { | 
 | 		arch_clear_hugepage_flags(page); | 
 | 		enqueue_huge_page(h, page); | 
 | 		spin_unlock_irqrestore(&hugetlb_lock, flags); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Must be called with the hugetlb lock held | 
 |  */ | 
 | static void __prep_account_new_huge_page(struct hstate *h, int nid) | 
 | { | 
 | 	lockdep_assert_held(&hugetlb_lock); | 
 | 	h->nr_huge_pages++; | 
 | 	h->nr_huge_pages_node[nid]++; | 
 | } | 
 |  | 
 | static void __prep_new_huge_page(struct hstate *h, struct page *page) | 
 | { | 
 | 	hugetlb_vmemmap_free(h, page); | 
 | 	INIT_LIST_HEAD(&page->lru); | 
 | 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); | 
 | 	hugetlb_set_page_subpool(page, NULL); | 
 | 	set_hugetlb_cgroup(page, NULL); | 
 | 	set_hugetlb_cgroup_rsvd(page, NULL); | 
 | } | 
 |  | 
 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) | 
 | { | 
 | 	__prep_new_huge_page(h, page); | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	__prep_account_new_huge_page(h, nid); | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 | } | 
 |  | 
 | static bool __prep_compound_gigantic_page(struct page *page, unsigned int order, | 
 | 								bool demote) | 
 | { | 
 | 	int i, j; | 
 | 	int nr_pages = 1 << order; | 
 | 	struct page *p = page + 1; | 
 |  | 
 | 	/* we rely on prep_new_huge_page to set the destructor */ | 
 | 	set_compound_order(page, order); | 
 | 	__ClearPageReserved(page); | 
 | 	__SetPageHead(page); | 
 | 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { | 
 | 		/* | 
 | 		 * For gigantic hugepages allocated through bootmem at | 
 | 		 * boot, it's safer to be consistent with the not-gigantic | 
 | 		 * hugepages and clear the PG_reserved bit from all tail pages | 
 | 		 * too.  Otherwise drivers using get_user_pages() to access tail | 
 | 		 * pages may get the reference counting wrong if they see | 
 | 		 * PG_reserved set on a tail page (despite the head page not | 
 | 		 * having PG_reserved set).  Enforcing this consistency between | 
 | 		 * head and tail pages allows drivers to optimize away a check | 
 | 		 * on the head page when they need know if put_page() is needed | 
 | 		 * after get_user_pages(). | 
 | 		 */ | 
 | 		__ClearPageReserved(p); | 
 | 		/* | 
 | 		 * Subtle and very unlikely | 
 | 		 * | 
 | 		 * Gigantic 'page allocators' such as memblock or cma will | 
 | 		 * return a set of pages with each page ref counted.  We need | 
 | 		 * to turn this set of pages into a compound page with tail | 
 | 		 * page ref counts set to zero.  Code such as speculative page | 
 | 		 * cache adding could take a ref on a 'to be' tail page. | 
 | 		 * We need to respect any increased ref count, and only set | 
 | 		 * the ref count to zero if count is currently 1.  If count | 
 | 		 * is not 1, we return an error.  An error return indicates | 
 | 		 * the set of pages can not be converted to a gigantic page. | 
 | 		 * The caller who allocated the pages should then discard the | 
 | 		 * pages using the appropriate free interface. | 
 | 		 * | 
 | 		 * In the case of demote, the ref count will be zero. | 
 | 		 */ | 
 | 		if (!demote) { | 
 | 			if (!page_ref_freeze(p, 1)) { | 
 | 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); | 
 | 				goto out_error; | 
 | 			} | 
 | 		} else { | 
 | 			VM_BUG_ON_PAGE(page_count(p), p); | 
 | 		} | 
 | 		set_compound_head(p, page); | 
 | 	} | 
 | 	atomic_set(compound_mapcount_ptr(page), -1); | 
 | 	atomic_set(compound_pincount_ptr(page), 0); | 
 | 	return true; | 
 |  | 
 | out_error: | 
 | 	/* undo tail page modifications made above */ | 
 | 	p = page + 1; | 
 | 	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) { | 
 | 		clear_compound_head(p); | 
 | 		set_page_refcounted(p); | 
 | 	} | 
 | 	/* need to clear PG_reserved on remaining tail pages  */ | 
 | 	for (; j < nr_pages; j++, p = mem_map_next(p, page, j)) | 
 | 		__ClearPageReserved(p); | 
 | 	set_compound_order(page, 0); | 
 | #ifdef CONFIG_64BIT | 
 | 	page[1].compound_nr = 0; | 
 | #endif | 
 | 	__ClearPageHead(page); | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool prep_compound_gigantic_page(struct page *page, unsigned int order) | 
 | { | 
 | 	return __prep_compound_gigantic_page(page, order, false); | 
 | } | 
 |  | 
 | static bool prep_compound_gigantic_page_for_demote(struct page *page, | 
 | 							unsigned int order) | 
 | { | 
 | 	return __prep_compound_gigantic_page(page, order, true); | 
 | } | 
 |  | 
 | /* | 
 |  * PageHuge() only returns true for hugetlbfs pages, but not for normal or | 
 |  * transparent huge pages.  See the PageTransHuge() documentation for more | 
 |  * details. | 
 |  */ | 
 | int PageHuge(struct page *page) | 
 | { | 
 | 	if (!PageCompound(page)) | 
 | 		return 0; | 
 |  | 
 | 	page = compound_head(page); | 
 | 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR; | 
 | } | 
 | EXPORT_SYMBOL_GPL(PageHuge); | 
 |  | 
 | /* | 
 |  * PageHeadHuge() only returns true for hugetlbfs head page, but not for | 
 |  * normal or transparent huge pages. | 
 |  */ | 
 | int PageHeadHuge(struct page *page_head) | 
 | { | 
 | 	if (!PageHead(page_head)) | 
 | 		return 0; | 
 |  | 
 | 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; | 
 | } | 
 | EXPORT_SYMBOL_GPL(PageHeadHuge); | 
 |  | 
 | /* | 
 |  * Find and lock address space (mapping) in write mode. | 
 |  * | 
 |  * Upon entry, the page is locked which means that page_mapping() is | 
 |  * stable.  Due to locking order, we can only trylock_write.  If we can | 
 |  * not get the lock, simply return NULL to caller. | 
 |  */ | 
 | struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) | 
 | { | 
 | 	struct address_space *mapping = page_mapping(hpage); | 
 |  | 
 | 	if (!mapping) | 
 | 		return mapping; | 
 |  | 
 | 	if (i_mmap_trylock_write(mapping)) | 
 | 		return mapping; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | pgoff_t hugetlb_basepage_index(struct page *page) | 
 | { | 
 | 	struct page *page_head = compound_head(page); | 
 | 	pgoff_t index = page_index(page_head); | 
 | 	unsigned long compound_idx; | 
 |  | 
 | 	if (compound_order(page_head) >= MAX_ORDER) | 
 | 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head); | 
 | 	else | 
 | 		compound_idx = page - page_head; | 
 |  | 
 | 	return (index << compound_order(page_head)) + compound_idx; | 
 | } | 
 |  | 
 | static struct page *alloc_buddy_huge_page(struct hstate *h, | 
 | 		gfp_t gfp_mask, int nid, nodemask_t *nmask, | 
 | 		nodemask_t *node_alloc_noretry) | 
 | { | 
 | 	int order = huge_page_order(h); | 
 | 	struct page *page; | 
 | 	bool alloc_try_hard = true; | 
 |  | 
 | 	/* | 
 | 	 * By default we always try hard to allocate the page with | 
 | 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in | 
 | 	 * a loop (to adjust global huge page counts) and previous allocation | 
 | 	 * failed, do not continue to try hard on the same node.  Use the | 
 | 	 * node_alloc_noretry bitmap to manage this state information. | 
 | 	 */ | 
 | 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) | 
 | 		alloc_try_hard = false; | 
 | 	gfp_mask |= __GFP_COMP|__GFP_NOWARN; | 
 | 	if (alloc_try_hard) | 
 | 		gfp_mask |= __GFP_RETRY_MAYFAIL; | 
 | 	if (nid == NUMA_NO_NODE) | 
 | 		nid = numa_mem_id(); | 
 | 	page = __alloc_pages(gfp_mask, order, nid, nmask); | 
 | 	if (page) | 
 | 		__count_vm_event(HTLB_BUDDY_PGALLOC); | 
 | 	else | 
 | 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | 
 |  | 
 | 	/* | 
 | 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this | 
 | 	 * indicates an overall state change.  Clear bit so that we resume | 
 | 	 * normal 'try hard' allocations. | 
 | 	 */ | 
 | 	if (node_alloc_noretry && page && !alloc_try_hard) | 
 | 		node_clear(nid, *node_alloc_noretry); | 
 |  | 
 | 	/* | 
 | 	 * If we tried hard to get a page but failed, set bit so that | 
 | 	 * subsequent attempts will not try as hard until there is an | 
 | 	 * overall state change. | 
 | 	 */ | 
 | 	if (node_alloc_noretry && !page && alloc_try_hard) | 
 | 		node_set(nid, *node_alloc_noretry); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Common helper to allocate a fresh hugetlb page. All specific allocators | 
 |  * should use this function to get new hugetlb pages | 
 |  */ | 
 | static struct page *alloc_fresh_huge_page(struct hstate *h, | 
 | 		gfp_t gfp_mask, int nid, nodemask_t *nmask, | 
 | 		nodemask_t *node_alloc_noretry) | 
 | { | 
 | 	struct page *page; | 
 | 	bool retry = false; | 
 |  | 
 | retry: | 
 | 	if (hstate_is_gigantic(h)) | 
 | 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask); | 
 | 	else | 
 | 		page = alloc_buddy_huge_page(h, gfp_mask, | 
 | 				nid, nmask, node_alloc_noretry); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	if (hstate_is_gigantic(h)) { | 
 | 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) { | 
 | 			/* | 
 | 			 * Rare failure to convert pages to compound page. | 
 | 			 * Free pages and try again - ONCE! | 
 | 			 */ | 
 | 			free_gigantic_page(page, huge_page_order(h)); | 
 | 			if (!retry) { | 
 | 				retry = true; | 
 | 				goto retry; | 
 | 			} | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 | 	prep_new_huge_page(h, page, page_to_nid(page)); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved | 
 |  * manner. | 
 |  */ | 
 | static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, | 
 | 				nodemask_t *node_alloc_noretry) | 
 | { | 
 | 	struct page *page; | 
 | 	int nr_nodes, node; | 
 | 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; | 
 |  | 
 | 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | 
 | 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, | 
 | 						node_alloc_noretry); | 
 | 		if (page) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (!page) | 
 | 		return 0; | 
 |  | 
 | 	put_page(page); /* free it into the hugepage allocator */ | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove huge page from pool from next node to free.  Attempt to keep | 
 |  * persistent huge pages more or less balanced over allowed nodes. | 
 |  * This routine only 'removes' the hugetlb page.  The caller must make | 
 |  * an additional call to free the page to low level allocators. | 
 |  * Called with hugetlb_lock locked. | 
 |  */ | 
 | static struct page *remove_pool_huge_page(struct hstate *h, | 
 | 						nodemask_t *nodes_allowed, | 
 | 						 bool acct_surplus) | 
 | { | 
 | 	int nr_nodes, node; | 
 | 	struct page *page = NULL; | 
 |  | 
 | 	lockdep_assert_held(&hugetlb_lock); | 
 | 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { | 
 | 		/* | 
 | 		 * If we're returning unused surplus pages, only examine | 
 | 		 * nodes with surplus pages. | 
 | 		 */ | 
 | 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) && | 
 | 		    !list_empty(&h->hugepage_freelists[node])) { | 
 | 			page = list_entry(h->hugepage_freelists[node].next, | 
 | 					  struct page, lru); | 
 | 			remove_hugetlb_page(h, page, acct_surplus); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Dissolve a given free hugepage into free buddy pages. This function does | 
 |  * nothing for in-use hugepages and non-hugepages. | 
 |  * This function returns values like below: | 
 |  * | 
 |  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages | 
 |  *           when the system is under memory pressure and the feature of | 
 |  *           freeing unused vmemmap pages associated with each hugetlb page | 
 |  *           is enabled. | 
 |  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use | 
 |  *           (allocated or reserved.) | 
 |  *       0:  successfully dissolved free hugepages or the page is not a | 
 |  *           hugepage (considered as already dissolved) | 
 |  */ | 
 | int dissolve_free_huge_page(struct page *page) | 
 | { | 
 | 	int rc = -EBUSY; | 
 |  | 
 | retry: | 
 | 	/* Not to disrupt normal path by vainly holding hugetlb_lock */ | 
 | 	if (!PageHuge(page)) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	if (!PageHuge(page)) { | 
 | 		rc = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!page_count(page)) { | 
 | 		struct page *head = compound_head(page); | 
 | 		struct hstate *h = page_hstate(head); | 
 | 		if (h->free_huge_pages - h->resv_huge_pages == 0) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * We should make sure that the page is already on the free list | 
 | 		 * when it is dissolved. | 
 | 		 */ | 
 | 		if (unlikely(!HPageFreed(head))) { | 
 | 			spin_unlock_irq(&hugetlb_lock); | 
 | 			cond_resched(); | 
 |  | 
 | 			/* | 
 | 			 * Theoretically, we should return -EBUSY when we | 
 | 			 * encounter this race. In fact, we have a chance | 
 | 			 * to successfully dissolve the page if we do a | 
 | 			 * retry. Because the race window is quite small. | 
 | 			 * If we seize this opportunity, it is an optimization | 
 | 			 * for increasing the success rate of dissolving page. | 
 | 			 */ | 
 | 			goto retry; | 
 | 		} | 
 |  | 
 | 		remove_hugetlb_page(h, head, false); | 
 | 		h->max_huge_pages--; | 
 | 		spin_unlock_irq(&hugetlb_lock); | 
 |  | 
 | 		/* | 
 | 		 * Normally update_and_free_page will allocate required vmemmmap | 
 | 		 * before freeing the page.  update_and_free_page will fail to | 
 | 		 * free the page if it can not allocate required vmemmap.  We | 
 | 		 * need to adjust max_huge_pages if the page is not freed. | 
 | 		 * Attempt to allocate vmemmmap here so that we can take | 
 | 		 * appropriate action on failure. | 
 | 		 */ | 
 | 		rc = hugetlb_vmemmap_alloc(h, head); | 
 | 		if (!rc) { | 
 | 			/* | 
 | 			 * Move PageHWPoison flag from head page to the raw | 
 | 			 * error page, which makes any subpages rather than | 
 | 			 * the error page reusable. | 
 | 			 */ | 
 | 			if (PageHWPoison(head) && page != head) { | 
 | 				SetPageHWPoison(page); | 
 | 				ClearPageHWPoison(head); | 
 | 			} | 
 | 			update_and_free_page(h, head, false); | 
 | 		} else { | 
 | 			spin_lock_irq(&hugetlb_lock); | 
 | 			add_hugetlb_page(h, head, false); | 
 | 			h->max_huge_pages++; | 
 | 			spin_unlock_irq(&hugetlb_lock); | 
 | 		} | 
 |  | 
 | 		return rc; | 
 | 	} | 
 | out: | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to | 
 |  * make specified memory blocks removable from the system. | 
 |  * Note that this will dissolve a free gigantic hugepage completely, if any | 
 |  * part of it lies within the given range. | 
 |  * Also note that if dissolve_free_huge_page() returns with an error, all | 
 |  * free hugepages that were dissolved before that error are lost. | 
 |  */ | 
 | int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) | 
 | { | 
 | 	unsigned long pfn; | 
 | 	struct page *page; | 
 | 	int rc = 0; | 
 |  | 
 | 	if (!hugepages_supported()) | 
 | 		return rc; | 
 |  | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { | 
 | 		page = pfn_to_page(pfn); | 
 | 		rc = dissolve_free_huge_page(page); | 
 | 		if (rc) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocates a fresh surplus page from the page allocator. | 
 |  */ | 
 | static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, | 
 | 		int nid, nodemask_t *nmask, bool zero_ref) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	bool retry = false; | 
 |  | 
 | 	if (hstate_is_gigantic(h)) | 
 | 		return NULL; | 
 |  | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) | 
 | 		goto out_unlock; | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 |  | 
 | retry: | 
 | 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	/* | 
 | 	 * We could have raced with the pool size change. | 
 | 	 * Double check that and simply deallocate the new page | 
 | 	 * if we would end up overcommiting the surpluses. Abuse | 
 | 	 * temporary page to workaround the nasty free_huge_page | 
 | 	 * codeflow | 
 | 	 */ | 
 | 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { | 
 | 		SetHPageTemporary(page); | 
 | 		spin_unlock_irq(&hugetlb_lock); | 
 | 		put_page(page); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (zero_ref) { | 
 | 		/* | 
 | 		 * Caller requires a page with zero ref count. | 
 | 		 * We will drop ref count here.  If someone else is holding | 
 | 		 * a ref, the page will be freed when they drop it.  Abuse | 
 | 		 * temporary page flag to accomplish this. | 
 | 		 */ | 
 | 		SetHPageTemporary(page); | 
 | 		if (!put_page_testzero(page)) { | 
 | 			/* | 
 | 			 * Unexpected inflated ref count on freshly allocated | 
 | 			 * huge.  Retry once. | 
 | 			 */ | 
 | 			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n"); | 
 | 			spin_unlock_irq(&hugetlb_lock); | 
 | 			if (retry) | 
 | 				return NULL; | 
 |  | 
 | 			retry = true; | 
 | 			goto retry; | 
 | 		} | 
 | 		ClearHPageTemporary(page); | 
 | 	} | 
 |  | 
 | 	h->surplus_huge_pages++; | 
 | 	h->surplus_huge_pages_node[page_to_nid(page)]++; | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, | 
 | 				     int nid, nodemask_t *nmask) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (hstate_is_gigantic(h)) | 
 | 		return NULL; | 
 |  | 
 | 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * We do not account these pages as surplus because they are only | 
 | 	 * temporary and will be released properly on the last reference | 
 | 	 */ | 
 | 	SetHPageTemporary(page); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Use the VMA's mpolicy to allocate a huge page from the buddy. | 
 |  */ | 
 | static | 
 | struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, | 
 | 		struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	struct mempolicy *mpol; | 
 | 	gfp_t gfp_mask = htlb_alloc_mask(h); | 
 | 	int nid; | 
 | 	nodemask_t *nodemask; | 
 |  | 
 | 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); | 
 | 	if (mpol_is_preferred_many(mpol)) { | 
 | 		gfp_t gfp = gfp_mask | __GFP_NOWARN; | 
 |  | 
 | 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); | 
 | 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false); | 
 |  | 
 | 		/* Fallback to all nodes if page==NULL */ | 
 | 		nodemask = NULL; | 
 | 	} | 
 |  | 
 | 	if (!page) | 
 | 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false); | 
 | 	mpol_cond_put(mpol); | 
 | 	return page; | 
 | } | 
 |  | 
 | /* page migration callback function */ | 
 | struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, | 
 | 		nodemask_t *nmask, gfp_t gfp_mask) | 
 | { | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	if (h->free_huge_pages - h->resv_huge_pages > 0) { | 
 | 		struct page *page; | 
 |  | 
 | 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); | 
 | 		if (page) { | 
 | 			spin_unlock_irq(&hugetlb_lock); | 
 | 			return page; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 |  | 
 | 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); | 
 | } | 
 |  | 
 | /* mempolicy aware migration callback */ | 
 | struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, | 
 | 		unsigned long address) | 
 | { | 
 | 	struct mempolicy *mpol; | 
 | 	nodemask_t *nodemask; | 
 | 	struct page *page; | 
 | 	gfp_t gfp_mask; | 
 | 	int node; | 
 |  | 
 | 	gfp_mask = htlb_alloc_mask(h); | 
 | 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); | 
 | 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); | 
 | 	mpol_cond_put(mpol); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Increase the hugetlb pool such that it can accommodate a reservation | 
 |  * of size 'delta'. | 
 |  */ | 
 | static int gather_surplus_pages(struct hstate *h, long delta) | 
 | 	__must_hold(&hugetlb_lock) | 
 | { | 
 | 	struct list_head surplus_list; | 
 | 	struct page *page, *tmp; | 
 | 	int ret; | 
 | 	long i; | 
 | 	long needed, allocated; | 
 | 	bool alloc_ok = true; | 
 |  | 
 | 	lockdep_assert_held(&hugetlb_lock); | 
 | 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages; | 
 | 	if (needed <= 0) { | 
 | 		h->resv_huge_pages += delta; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	allocated = 0; | 
 | 	INIT_LIST_HEAD(&surplus_list); | 
 |  | 
 | 	ret = -ENOMEM; | 
 | retry: | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 | 	for (i = 0; i < needed; i++) { | 
 | 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), | 
 | 				NUMA_NO_NODE, NULL, true); | 
 | 		if (!page) { | 
 | 			alloc_ok = false; | 
 | 			break; | 
 | 		} | 
 | 		list_add(&page->lru, &surplus_list); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	allocated += i; | 
 |  | 
 | 	/* | 
 | 	 * After retaking hugetlb_lock, we need to recalculate 'needed' | 
 | 	 * because either resv_huge_pages or free_huge_pages may have changed. | 
 | 	 */ | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	needed = (h->resv_huge_pages + delta) - | 
 | 			(h->free_huge_pages + allocated); | 
 | 	if (needed > 0) { | 
 | 		if (alloc_ok) | 
 | 			goto retry; | 
 | 		/* | 
 | 		 * We were not able to allocate enough pages to | 
 | 		 * satisfy the entire reservation so we free what | 
 | 		 * we've allocated so far. | 
 | 		 */ | 
 | 		goto free; | 
 | 	} | 
 | 	/* | 
 | 	 * The surplus_list now contains _at_least_ the number of extra pages | 
 | 	 * needed to accommodate the reservation.  Add the appropriate number | 
 | 	 * of pages to the hugetlb pool and free the extras back to the buddy | 
 | 	 * allocator.  Commit the entire reservation here to prevent another | 
 | 	 * process from stealing the pages as they are added to the pool but | 
 | 	 * before they are reserved. | 
 | 	 */ | 
 | 	needed += allocated; | 
 | 	h->resv_huge_pages += delta; | 
 | 	ret = 0; | 
 |  | 
 | 	/* Free the needed pages to the hugetlb pool */ | 
 | 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 
 | 		if ((--needed) < 0) | 
 | 			break; | 
 | 		/* Add the page to the hugetlb allocator */ | 
 | 		enqueue_huge_page(h, page); | 
 | 	} | 
 | free: | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 |  | 
 | 	/* | 
 | 	 * Free unnecessary surplus pages to the buddy allocator. | 
 | 	 * Pages have no ref count, call free_huge_page directly. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) | 
 | 		free_huge_page(page); | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine has two main purposes: | 
 |  * 1) Decrement the reservation count (resv_huge_pages) by the value passed | 
 |  *    in unused_resv_pages.  This corresponds to the prior adjustments made | 
 |  *    to the associated reservation map. | 
 |  * 2) Free any unused surplus pages that may have been allocated to satisfy | 
 |  *    the reservation.  As many as unused_resv_pages may be freed. | 
 |  */ | 
 | static void return_unused_surplus_pages(struct hstate *h, | 
 | 					unsigned long unused_resv_pages) | 
 | { | 
 | 	unsigned long nr_pages; | 
 | 	struct page *page; | 
 | 	LIST_HEAD(page_list); | 
 |  | 
 | 	lockdep_assert_held(&hugetlb_lock); | 
 | 	/* Uncommit the reservation */ | 
 | 	h->resv_huge_pages -= unused_resv_pages; | 
 |  | 
 | 	/* Cannot return gigantic pages currently */ | 
 | 	if (hstate_is_gigantic(h)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Part (or even all) of the reservation could have been backed | 
 | 	 * by pre-allocated pages. Only free surplus pages. | 
 | 	 */ | 
 | 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages); | 
 |  | 
 | 	/* | 
 | 	 * We want to release as many surplus pages as possible, spread | 
 | 	 * evenly across all nodes with memory. Iterate across these nodes | 
 | 	 * until we can no longer free unreserved surplus pages. This occurs | 
 | 	 * when the nodes with surplus pages have no free pages. | 
 | 	 * remove_pool_huge_page() will balance the freed pages across the | 
 | 	 * on-line nodes with memory and will handle the hstate accounting. | 
 | 	 */ | 
 | 	while (nr_pages--) { | 
 | 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); | 
 | 		if (!page) | 
 | 			goto out; | 
 |  | 
 | 		list_add(&page->lru, &page_list); | 
 | 	} | 
 |  | 
 | out: | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 | 	update_and_free_pages_bulk(h, &page_list); | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation | 
 |  * are used by the huge page allocation routines to manage reservations. | 
 |  * | 
 |  * vma_needs_reservation is called to determine if the huge page at addr | 
 |  * within the vma has an associated reservation.  If a reservation is | 
 |  * needed, the value 1 is returned.  The caller is then responsible for | 
 |  * managing the global reservation and subpool usage counts.  After | 
 |  * the huge page has been allocated, vma_commit_reservation is called | 
 |  * to add the page to the reservation map.  If the page allocation fails, | 
 |  * the reservation must be ended instead of committed.  vma_end_reservation | 
 |  * is called in such cases. | 
 |  * | 
 |  * In the normal case, vma_commit_reservation returns the same value | 
 |  * as the preceding vma_needs_reservation call.  The only time this | 
 |  * is not the case is if a reserve map was changed between calls.  It | 
 |  * is the responsibility of the caller to notice the difference and | 
 |  * take appropriate action. | 
 |  * | 
 |  * vma_add_reservation is used in error paths where a reservation must | 
 |  * be restored when a newly allocated huge page must be freed.  It is | 
 |  * to be called after calling vma_needs_reservation to determine if a | 
 |  * reservation exists. | 
 |  * | 
 |  * vma_del_reservation is used in error paths where an entry in the reserve | 
 |  * map was created during huge page allocation and must be removed.  It is to | 
 |  * be called after calling vma_needs_reservation to determine if a reservation | 
 |  * exists. | 
 |  */ | 
 | enum vma_resv_mode { | 
 | 	VMA_NEEDS_RESV, | 
 | 	VMA_COMMIT_RESV, | 
 | 	VMA_END_RESV, | 
 | 	VMA_ADD_RESV, | 
 | 	VMA_DEL_RESV, | 
 | }; | 
 | static long __vma_reservation_common(struct hstate *h, | 
 | 				struct vm_area_struct *vma, unsigned long addr, | 
 | 				enum vma_resv_mode mode) | 
 | { | 
 | 	struct resv_map *resv; | 
 | 	pgoff_t idx; | 
 | 	long ret; | 
 | 	long dummy_out_regions_needed; | 
 |  | 
 | 	resv = vma_resv_map(vma); | 
 | 	if (!resv) | 
 | 		return 1; | 
 |  | 
 | 	idx = vma_hugecache_offset(h, vma, addr); | 
 | 	switch (mode) { | 
 | 	case VMA_NEEDS_RESV: | 
 | 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); | 
 | 		/* We assume that vma_reservation_* routines always operate on | 
 | 		 * 1 page, and that adding to resv map a 1 page entry can only | 
 | 		 * ever require 1 region. | 
 | 		 */ | 
 | 		VM_BUG_ON(dummy_out_regions_needed != 1); | 
 | 		break; | 
 | 	case VMA_COMMIT_RESV: | 
 | 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); | 
 | 		/* region_add calls of range 1 should never fail. */ | 
 | 		VM_BUG_ON(ret < 0); | 
 | 		break; | 
 | 	case VMA_END_RESV: | 
 | 		region_abort(resv, idx, idx + 1, 1); | 
 | 		ret = 0; | 
 | 		break; | 
 | 	case VMA_ADD_RESV: | 
 | 		if (vma->vm_flags & VM_MAYSHARE) { | 
 | 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); | 
 | 			/* region_add calls of range 1 should never fail. */ | 
 | 			VM_BUG_ON(ret < 0); | 
 | 		} else { | 
 | 			region_abort(resv, idx, idx + 1, 1); | 
 | 			ret = region_del(resv, idx, idx + 1); | 
 | 		} | 
 | 		break; | 
 | 	case VMA_DEL_RESV: | 
 | 		if (vma->vm_flags & VM_MAYSHARE) { | 
 | 			region_abort(resv, idx, idx + 1, 1); | 
 | 			ret = region_del(resv, idx, idx + 1); | 
 | 		} else { | 
 | 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); | 
 | 			/* region_add calls of range 1 should never fail. */ | 
 | 			VM_BUG_ON(ret < 0); | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) | 
 | 		return ret; | 
 | 	/* | 
 | 	 * We know private mapping must have HPAGE_RESV_OWNER set. | 
 | 	 * | 
 | 	 * In most cases, reserves always exist for private mappings. | 
 | 	 * However, a file associated with mapping could have been | 
 | 	 * hole punched or truncated after reserves were consumed. | 
 | 	 * As subsequent fault on such a range will not use reserves. | 
 | 	 * Subtle - The reserve map for private mappings has the | 
 | 	 * opposite meaning than that of shared mappings.  If NO | 
 | 	 * entry is in the reserve map, it means a reservation exists. | 
 | 	 * If an entry exists in the reserve map, it means the | 
 | 	 * reservation has already been consumed.  As a result, the | 
 | 	 * return value of this routine is the opposite of the | 
 | 	 * value returned from reserve map manipulation routines above. | 
 | 	 */ | 
 | 	if (ret > 0) | 
 | 		return 0; | 
 | 	if (ret == 0) | 
 | 		return 1; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static long vma_needs_reservation(struct hstate *h, | 
 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); | 
 | } | 
 |  | 
 | static long vma_commit_reservation(struct hstate *h, | 
 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); | 
 | } | 
 |  | 
 | static void vma_end_reservation(struct hstate *h, | 
 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); | 
 | } | 
 |  | 
 | static long vma_add_reservation(struct hstate *h, | 
 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); | 
 | } | 
 |  | 
 | static long vma_del_reservation(struct hstate *h, | 
 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); | 
 | } | 
 |  | 
 | /* | 
 |  * This routine is called to restore reservation information on error paths. | 
 |  * It should ONLY be called for pages allocated via alloc_huge_page(), and | 
 |  * the hugetlb mutex should remain held when calling this routine. | 
 |  * | 
 |  * It handles two specific cases: | 
 |  * 1) A reservation was in place and the page consumed the reservation. | 
 |  *    HPageRestoreReserve is set in the page. | 
 |  * 2) No reservation was in place for the page, so HPageRestoreReserve is | 
 |  *    not set.  However, alloc_huge_page always updates the reserve map. | 
 |  * | 
 |  * In case 1, free_huge_page later in the error path will increment the | 
 |  * global reserve count.  But, free_huge_page does not have enough context | 
 |  * to adjust the reservation map.  This case deals primarily with private | 
 |  * mappings.  Adjust the reserve map here to be consistent with global | 
 |  * reserve count adjustments to be made by free_huge_page.  Make sure the | 
 |  * reserve map indicates there is a reservation present. | 
 |  * | 
 |  * In case 2, simply undo reserve map modifications done by alloc_huge_page. | 
 |  */ | 
 | void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, | 
 | 			unsigned long address, struct page *page) | 
 | { | 
 | 	long rc = vma_needs_reservation(h, vma, address); | 
 |  | 
 | 	if (HPageRestoreReserve(page)) { | 
 | 		if (unlikely(rc < 0)) | 
 | 			/* | 
 | 			 * Rare out of memory condition in reserve map | 
 | 			 * manipulation.  Clear HPageRestoreReserve so that | 
 | 			 * global reserve count will not be incremented | 
 | 			 * by free_huge_page.  This will make it appear | 
 | 			 * as though the reservation for this page was | 
 | 			 * consumed.  This may prevent the task from | 
 | 			 * faulting in the page at a later time.  This | 
 | 			 * is better than inconsistent global huge page | 
 | 			 * accounting of reserve counts. | 
 | 			 */ | 
 | 			ClearHPageRestoreReserve(page); | 
 | 		else if (rc) | 
 | 			(void)vma_add_reservation(h, vma, address); | 
 | 		else | 
 | 			vma_end_reservation(h, vma, address); | 
 | 	} else { | 
 | 		if (!rc) { | 
 | 			/* | 
 | 			 * This indicates there is an entry in the reserve map | 
 | 			 * not added by alloc_huge_page.  We know it was added | 
 | 			 * before the alloc_huge_page call, otherwise | 
 | 			 * HPageRestoreReserve would be set on the page. | 
 | 			 * Remove the entry so that a subsequent allocation | 
 | 			 * does not consume a reservation. | 
 | 			 */ | 
 | 			rc = vma_del_reservation(h, vma, address); | 
 | 			if (rc < 0) | 
 | 				/* | 
 | 				 * VERY rare out of memory condition.  Since | 
 | 				 * we can not delete the entry, set | 
 | 				 * HPageRestoreReserve so that the reserve | 
 | 				 * count will be incremented when the page | 
 | 				 * is freed.  This reserve will be consumed | 
 | 				 * on a subsequent allocation. | 
 | 				 */ | 
 | 				SetHPageRestoreReserve(page); | 
 | 		} else if (rc < 0) { | 
 | 			/* | 
 | 			 * Rare out of memory condition from | 
 | 			 * vma_needs_reservation call.  Memory allocation is | 
 | 			 * only attempted if a new entry is needed.  Therefore, | 
 | 			 * this implies there is not an entry in the | 
 | 			 * reserve map. | 
 | 			 * | 
 | 			 * For shared mappings, no entry in the map indicates | 
 | 			 * no reservation.  We are done. | 
 | 			 */ | 
 | 			if (!(vma->vm_flags & VM_MAYSHARE)) | 
 | 				/* | 
 | 				 * For private mappings, no entry indicates | 
 | 				 * a reservation is present.  Since we can | 
 | 				 * not add an entry, set SetHPageRestoreReserve | 
 | 				 * on the page so reserve count will be | 
 | 				 * incremented when freed.  This reserve will | 
 | 				 * be consumed on a subsequent allocation. | 
 | 				 */ | 
 | 				SetHPageRestoreReserve(page); | 
 | 		} else | 
 | 			/* | 
 | 			 * No reservation present, do nothing | 
 | 			 */ | 
 | 			 vma_end_reservation(h, vma, address); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one | 
 |  * @h: struct hstate old page belongs to | 
 |  * @old_page: Old page to dissolve | 
 |  * @list: List to isolate the page in case we need to | 
 |  * Returns 0 on success, otherwise negated error. | 
 |  */ | 
 | static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, | 
 | 					struct list_head *list) | 
 | { | 
 | 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; | 
 | 	int nid = page_to_nid(old_page); | 
 | 	bool alloc_retry = false; | 
 | 	struct page *new_page; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Before dissolving the page, we need to allocate a new one for the | 
 | 	 * pool to remain stable.  Here, we allocate the page and 'prep' it | 
 | 	 * by doing everything but actually updating counters and adding to | 
 | 	 * the pool.  This simplifies and let us do most of the processing | 
 | 	 * under the lock. | 
 | 	 */ | 
 | alloc_retry: | 
 | 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); | 
 | 	if (!new_page) | 
 | 		return -ENOMEM; | 
 | 	/* | 
 | 	 * If all goes well, this page will be directly added to the free | 
 | 	 * list in the pool.  For this the ref count needs to be zero. | 
 | 	 * Attempt to drop now, and retry once if needed.  It is VERY | 
 | 	 * unlikely there is another ref on the page. | 
 | 	 * | 
 | 	 * If someone else has a reference to the page, it will be freed | 
 | 	 * when they drop their ref.  Abuse temporary page flag to accomplish | 
 | 	 * this.  Retry once if there is an inflated ref count. | 
 | 	 */ | 
 | 	SetHPageTemporary(new_page); | 
 | 	if (!put_page_testzero(new_page)) { | 
 | 		if (alloc_retry) | 
 | 			return -EBUSY; | 
 |  | 
 | 		alloc_retry = true; | 
 | 		goto alloc_retry; | 
 | 	} | 
 | 	ClearHPageTemporary(new_page); | 
 |  | 
 | 	__prep_new_huge_page(h, new_page); | 
 |  | 
 | retry: | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	if (!PageHuge(old_page)) { | 
 | 		/* | 
 | 		 * Freed from under us. Drop new_page too. | 
 | 		 */ | 
 | 		goto free_new; | 
 | 	} else if (page_count(old_page)) { | 
 | 		/* | 
 | 		 * Someone has grabbed the page, try to isolate it here. | 
 | 		 * Fail with -EBUSY if not possible. | 
 | 		 */ | 
 | 		spin_unlock_irq(&hugetlb_lock); | 
 | 		if (!isolate_huge_page(old_page, list)) | 
 | 			ret = -EBUSY; | 
 | 		spin_lock_irq(&hugetlb_lock); | 
 | 		goto free_new; | 
 | 	} else if (!HPageFreed(old_page)) { | 
 | 		/* | 
 | 		 * Page's refcount is 0 but it has not been enqueued in the | 
 | 		 * freelist yet. Race window is small, so we can succeed here if | 
 | 		 * we retry. | 
 | 		 */ | 
 | 		spin_unlock_irq(&hugetlb_lock); | 
 | 		cond_resched(); | 
 | 		goto retry; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Ok, old_page is still a genuine free hugepage. Remove it from | 
 | 		 * the freelist and decrease the counters. These will be | 
 | 		 * incremented again when calling __prep_account_new_huge_page() | 
 | 		 * and enqueue_huge_page() for new_page. The counters will remain | 
 | 		 * stable since this happens under the lock. | 
 | 		 */ | 
 | 		remove_hugetlb_page(h, old_page, false); | 
 |  | 
 | 		/* | 
 | 		 * Ref count on new page is already zero as it was dropped | 
 | 		 * earlier.  It can be directly added to the pool free list. | 
 | 		 */ | 
 | 		__prep_account_new_huge_page(h, nid); | 
 | 		enqueue_huge_page(h, new_page); | 
 |  | 
 | 		/* | 
 | 		 * Pages have been replaced, we can safely free the old one. | 
 | 		 */ | 
 | 		spin_unlock_irq(&hugetlb_lock); | 
 | 		update_and_free_page(h, old_page, false); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 |  | 
 | free_new: | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 | 	/* Page has a zero ref count, but needs a ref to be freed */ | 
 | 	set_page_refcounted(new_page); | 
 | 	update_and_free_page(h, new_page, false); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) | 
 | { | 
 | 	struct hstate *h; | 
 | 	struct page *head; | 
 | 	int ret = -EBUSY; | 
 |  | 
 | 	/* | 
 | 	 * The page might have been dissolved from under our feet, so make sure | 
 | 	 * to carefully check the state under the lock. | 
 | 	 * Return success when racing as if we dissolved the page ourselves. | 
 | 	 */ | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	if (PageHuge(page)) { | 
 | 		head = compound_head(page); | 
 | 		h = page_hstate(head); | 
 | 	} else { | 
 | 		spin_unlock_irq(&hugetlb_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 |  | 
 | 	/* | 
 | 	 * Fence off gigantic pages as there is a cyclic dependency between | 
 | 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect | 
 | 	 * of bailing out right away without further retrying. | 
 | 	 */ | 
 | 	if (hstate_is_gigantic(h)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (page_count(head) && isolate_huge_page(head, list)) | 
 | 		ret = 0; | 
 | 	else if (!page_count(head)) | 
 | 		ret = alloc_and_dissolve_huge_page(h, head, list); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct page *alloc_huge_page(struct vm_area_struct *vma, | 
 | 				    unsigned long addr, int avoid_reserve) | 
 | { | 
 | 	struct hugepage_subpool *spool = subpool_vma(vma); | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	struct page *page; | 
 | 	long map_chg, map_commit; | 
 | 	long gbl_chg; | 
 | 	int ret, idx; | 
 | 	struct hugetlb_cgroup *h_cg; | 
 | 	bool deferred_reserve; | 
 |  | 
 | 	idx = hstate_index(h); | 
 | 	/* | 
 | 	 * Examine the region/reserve map to determine if the process | 
 | 	 * has a reservation for the page to be allocated.  A return | 
 | 	 * code of zero indicates a reservation exists (no change). | 
 | 	 */ | 
 | 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); | 
 | 	if (map_chg < 0) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	/* | 
 | 	 * Processes that did not create the mapping will have no | 
 | 	 * reserves as indicated by the region/reserve map. Check | 
 | 	 * that the allocation will not exceed the subpool limit. | 
 | 	 * Allocations for MAP_NORESERVE mappings also need to be | 
 | 	 * checked against any subpool limit. | 
 | 	 */ | 
 | 	if (map_chg || avoid_reserve) { | 
 | 		gbl_chg = hugepage_subpool_get_pages(spool, 1); | 
 | 		if (gbl_chg < 0) { | 
 | 			vma_end_reservation(h, vma, addr); | 
 | 			return ERR_PTR(-ENOSPC); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Even though there was no reservation in the region/reserve | 
 | 		 * map, there could be reservations associated with the | 
 | 		 * subpool that can be used.  This would be indicated if the | 
 | 		 * return value of hugepage_subpool_get_pages() is zero. | 
 | 		 * However, if avoid_reserve is specified we still avoid even | 
 | 		 * the subpool reservations. | 
 | 		 */ | 
 | 		if (avoid_reserve) | 
 | 			gbl_chg = 1; | 
 | 	} | 
 |  | 
 | 	/* If this allocation is not consuming a reservation, charge it now. | 
 | 	 */ | 
 | 	deferred_reserve = map_chg || avoid_reserve; | 
 | 	if (deferred_reserve) { | 
 | 		ret = hugetlb_cgroup_charge_cgroup_rsvd( | 
 | 			idx, pages_per_huge_page(h), &h_cg); | 
 | 		if (ret) | 
 | 			goto out_subpool_put; | 
 | 	} | 
 |  | 
 | 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); | 
 | 	if (ret) | 
 | 		goto out_uncharge_cgroup_reservation; | 
 |  | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	/* | 
 | 	 * glb_chg is passed to indicate whether or not a page must be taken | 
 | 	 * from the global free pool (global change).  gbl_chg == 0 indicates | 
 | 	 * a reservation exists for the allocation. | 
 | 	 */ | 
 | 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); | 
 | 	if (!page) { | 
 | 		spin_unlock_irq(&hugetlb_lock); | 
 | 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr); | 
 | 		if (!page) | 
 | 			goto out_uncharge_cgroup; | 
 | 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { | 
 | 			SetHPageRestoreReserve(page); | 
 | 			h->resv_huge_pages--; | 
 | 		} | 
 | 		spin_lock_irq(&hugetlb_lock); | 
 | 		list_add(&page->lru, &h->hugepage_activelist); | 
 | 		/* Fall through */ | 
 | 	} | 
 | 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); | 
 | 	/* If allocation is not consuming a reservation, also store the | 
 | 	 * hugetlb_cgroup pointer on the page. | 
 | 	 */ | 
 | 	if (deferred_reserve) { | 
 | 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), | 
 | 						  h_cg, page); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 |  | 
 | 	hugetlb_set_page_subpool(page, spool); | 
 |  | 
 | 	map_commit = vma_commit_reservation(h, vma, addr); | 
 | 	if (unlikely(map_chg > map_commit)) { | 
 | 		/* | 
 | 		 * The page was added to the reservation map between | 
 | 		 * vma_needs_reservation and vma_commit_reservation. | 
 | 		 * This indicates a race with hugetlb_reserve_pages. | 
 | 		 * Adjust for the subpool count incremented above AND | 
 | 		 * in hugetlb_reserve_pages for the same page.  Also, | 
 | 		 * the reservation count added in hugetlb_reserve_pages | 
 | 		 * no longer applies. | 
 | 		 */ | 
 | 		long rsv_adjust; | 
 |  | 
 | 		rsv_adjust = hugepage_subpool_put_pages(spool, 1); | 
 | 		hugetlb_acct_memory(h, -rsv_adjust); | 
 | 		if (deferred_reserve) | 
 | 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), | 
 | 					pages_per_huge_page(h), page); | 
 | 	} | 
 | 	return page; | 
 |  | 
 | out_uncharge_cgroup: | 
 | 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); | 
 | out_uncharge_cgroup_reservation: | 
 | 	if (deferred_reserve) | 
 | 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), | 
 | 						    h_cg); | 
 | out_subpool_put: | 
 | 	if (map_chg || avoid_reserve) | 
 | 		hugepage_subpool_put_pages(spool, 1); | 
 | 	vma_end_reservation(h, vma, addr); | 
 | 	return ERR_PTR(-ENOSPC); | 
 | } | 
 |  | 
 | int alloc_bootmem_huge_page(struct hstate *h, int nid) | 
 | 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); | 
 | int __alloc_bootmem_huge_page(struct hstate *h, int nid) | 
 | { | 
 | 	struct huge_bootmem_page *m = NULL; /* initialize for clang */ | 
 | 	int nr_nodes, node; | 
 |  | 
 | 	/* do node specific alloc */ | 
 | 	if (nid != NUMA_NO_NODE) { | 
 | 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), | 
 | 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); | 
 | 		if (!m) | 
 | 			return 0; | 
 | 		goto found; | 
 | 	} | 
 | 	/* allocate from next node when distributing huge pages */ | 
 | 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { | 
 | 		m = memblock_alloc_try_nid_raw( | 
 | 				huge_page_size(h), huge_page_size(h), | 
 | 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node); | 
 | 		/* | 
 | 		 * Use the beginning of the huge page to store the | 
 | 		 * huge_bootmem_page struct (until gather_bootmem | 
 | 		 * puts them into the mem_map). | 
 | 		 */ | 
 | 		if (!m) | 
 | 			return 0; | 
 | 		goto found; | 
 | 	} | 
 |  | 
 | found: | 
 | 	/* Put them into a private list first because mem_map is not up yet */ | 
 | 	INIT_LIST_HEAD(&m->list); | 
 | 	list_add(&m->list, &huge_boot_pages); | 
 | 	m->hstate = h; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Put bootmem huge pages into the standard lists after mem_map is up. | 
 |  * Note: This only applies to gigantic (order > MAX_ORDER) pages. | 
 |  */ | 
 | static void __init gather_bootmem_prealloc(void) | 
 | { | 
 | 	struct huge_bootmem_page *m; | 
 |  | 
 | 	list_for_each_entry(m, &huge_boot_pages, list) { | 
 | 		struct page *page = virt_to_page(m); | 
 | 		struct hstate *h = m->hstate; | 
 |  | 
 | 		VM_BUG_ON(!hstate_is_gigantic(h)); | 
 | 		WARN_ON(page_count(page) != 1); | 
 | 		if (prep_compound_gigantic_page(page, huge_page_order(h))) { | 
 | 			WARN_ON(PageReserved(page)); | 
 | 			prep_new_huge_page(h, page, page_to_nid(page)); | 
 | 			put_page(page); /* add to the hugepage allocator */ | 
 | 		} else { | 
 | 			/* VERY unlikely inflated ref count on a tail page */ | 
 | 			free_gigantic_page(page, huge_page_order(h)); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We need to restore the 'stolen' pages to totalram_pages | 
 | 		 * in order to fix confusing memory reports from free(1) and | 
 | 		 * other side-effects, like CommitLimit going negative. | 
 | 		 */ | 
 | 		adjust_managed_page_count(page, pages_per_huge_page(h)); | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 | static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) | 
 | { | 
 | 	unsigned long i; | 
 | 	char buf[32]; | 
 |  | 
 | 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { | 
 | 		if (hstate_is_gigantic(h)) { | 
 | 			if (!alloc_bootmem_huge_page(h, nid)) | 
 | 				break; | 
 | 		} else { | 
 | 			struct page *page; | 
 | 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; | 
 |  | 
 | 			page = alloc_fresh_huge_page(h, gfp_mask, nid, | 
 | 					&node_states[N_MEMORY], NULL); | 
 | 			if (!page) | 
 | 				break; | 
 | 			put_page(page); /* free it into the hugepage allocator */ | 
 | 		} | 
 | 		cond_resched(); | 
 | 	} | 
 | 	if (i == h->max_huge_pages_node[nid]) | 
 | 		return; | 
 |  | 
 | 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); | 
 | 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n", | 
 | 		h->max_huge_pages_node[nid], buf, nid, i); | 
 | 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); | 
 | 	h->max_huge_pages_node[nid] = i; | 
 | } | 
 |  | 
 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) | 
 | { | 
 | 	unsigned long i; | 
 | 	nodemask_t *node_alloc_noretry; | 
 | 	bool node_specific_alloc = false; | 
 |  | 
 | 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */ | 
 | 	if (hstate_is_gigantic(h) && hugetlb_cma_size) { | 
 | 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* do node specific alloc */ | 
 | 	for_each_online_node(i) { | 
 | 		if (h->max_huge_pages_node[i] > 0) { | 
 | 			hugetlb_hstate_alloc_pages_onenode(h, i); | 
 | 			node_specific_alloc = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (node_specific_alloc) | 
 | 		return; | 
 |  | 
 | 	/* below will do all node balanced alloc */ | 
 | 	if (!hstate_is_gigantic(h)) { | 
 | 		/* | 
 | 		 * Bit mask controlling how hard we retry per-node allocations. | 
 | 		 * Ignore errors as lower level routines can deal with | 
 | 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot | 
 | 		 * time, we are likely in bigger trouble. | 
 | 		 */ | 
 | 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), | 
 | 						GFP_KERNEL); | 
 | 	} else { | 
 | 		/* allocations done at boot time */ | 
 | 		node_alloc_noretry = NULL; | 
 | 	} | 
 |  | 
 | 	/* bit mask controlling how hard we retry per-node allocations */ | 
 | 	if (node_alloc_noretry) | 
 | 		nodes_clear(*node_alloc_noretry); | 
 |  | 
 | 	for (i = 0; i < h->max_huge_pages; ++i) { | 
 | 		if (hstate_is_gigantic(h)) { | 
 | 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) | 
 | 				break; | 
 | 		} else if (!alloc_pool_huge_page(h, | 
 | 					 &node_states[N_MEMORY], | 
 | 					 node_alloc_noretry)) | 
 | 			break; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	if (i < h->max_huge_pages) { | 
 | 		char buf[32]; | 
 |  | 
 | 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); | 
 | 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n", | 
 | 			h->max_huge_pages, buf, i); | 
 | 		h->max_huge_pages = i; | 
 | 	} | 
 | 	kfree(node_alloc_noretry); | 
 | } | 
 |  | 
 | static void __init hugetlb_init_hstates(void) | 
 | { | 
 | 	struct hstate *h, *h2; | 
 |  | 
 | 	for_each_hstate(h) { | 
 | 		if (minimum_order > huge_page_order(h)) | 
 | 			minimum_order = huge_page_order(h); | 
 |  | 
 | 		/* oversize hugepages were init'ed in early boot */ | 
 | 		if (!hstate_is_gigantic(h)) | 
 | 			hugetlb_hstate_alloc_pages(h); | 
 |  | 
 | 		/* | 
 | 		 * Set demote order for each hstate.  Note that | 
 | 		 * h->demote_order is initially 0. | 
 | 		 * - We can not demote gigantic pages if runtime freeing | 
 | 		 *   is not supported, so skip this. | 
 | 		 * - If CMA allocation is possible, we can not demote | 
 | 		 *   HUGETLB_PAGE_ORDER or smaller size pages. | 
 | 		 */ | 
 | 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) | 
 | 			continue; | 
 | 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) | 
 | 			continue; | 
 | 		for_each_hstate(h2) { | 
 | 			if (h2 == h) | 
 | 				continue; | 
 | 			if (h2->order < h->order && | 
 | 			    h2->order > h->demote_order) | 
 | 				h->demote_order = h2->order; | 
 | 		} | 
 | 	} | 
 | 	VM_BUG_ON(minimum_order == UINT_MAX); | 
 | } | 
 |  | 
 | static void __init report_hugepages(void) | 
 | { | 
 | 	struct hstate *h; | 
 |  | 
 | 	for_each_hstate(h) { | 
 | 		char buf[32]; | 
 |  | 
 | 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); | 
 | 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", | 
 | 			buf, h->free_huge_pages); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_HIGHMEM | 
 | static void try_to_free_low(struct hstate *h, unsigned long count, | 
 | 						nodemask_t *nodes_allowed) | 
 | { | 
 | 	int i; | 
 | 	LIST_HEAD(page_list); | 
 |  | 
 | 	lockdep_assert_held(&hugetlb_lock); | 
 | 	if (hstate_is_gigantic(h)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Collect pages to be freed on a list, and free after dropping lock | 
 | 	 */ | 
 | 	for_each_node_mask(i, *nodes_allowed) { | 
 | 		struct page *page, *next; | 
 | 		struct list_head *freel = &h->hugepage_freelists[i]; | 
 | 		list_for_each_entry_safe(page, next, freel, lru) { | 
 | 			if (count >= h->nr_huge_pages) | 
 | 				goto out; | 
 | 			if (PageHighMem(page)) | 
 | 				continue; | 
 | 			remove_hugetlb_page(h, page, false); | 
 | 			list_add(&page->lru, &page_list); | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 | 	update_and_free_pages_bulk(h, &page_list); | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | } | 
 | #else | 
 | static inline void try_to_free_low(struct hstate *h, unsigned long count, | 
 | 						nodemask_t *nodes_allowed) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Increment or decrement surplus_huge_pages.  Keep node-specific counters | 
 |  * balanced by operating on them in a round-robin fashion. | 
 |  * Returns 1 if an adjustment was made. | 
 |  */ | 
 | static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, | 
 | 				int delta) | 
 | { | 
 | 	int nr_nodes, node; | 
 |  | 
 | 	lockdep_assert_held(&hugetlb_lock); | 
 | 	VM_BUG_ON(delta != -1 && delta != 1); | 
 |  | 
 | 	if (delta < 0) { | 
 | 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | 
 | 			if (h->surplus_huge_pages_node[node]) | 
 | 				goto found; | 
 | 		} | 
 | 	} else { | 
 | 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { | 
 | 			if (h->surplus_huge_pages_node[node] < | 
 | 					h->nr_huge_pages_node[node]) | 
 | 				goto found; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | found: | 
 | 	h->surplus_huge_pages += delta; | 
 | 	h->surplus_huge_pages_node[node] += delta; | 
 | 	return 1; | 
 | } | 
 |  | 
 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) | 
 | static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, | 
 | 			      nodemask_t *nodes_allowed) | 
 | { | 
 | 	unsigned long min_count, ret; | 
 | 	struct page *page; | 
 | 	LIST_HEAD(page_list); | 
 | 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); | 
 |  | 
 | 	/* | 
 | 	 * Bit mask controlling how hard we retry per-node allocations. | 
 | 	 * If we can not allocate the bit mask, do not attempt to allocate | 
 | 	 * the requested huge pages. | 
 | 	 */ | 
 | 	if (node_alloc_noretry) | 
 | 		nodes_clear(*node_alloc_noretry); | 
 | 	else | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * resize_lock mutex prevents concurrent adjustments to number of | 
 | 	 * pages in hstate via the proc/sysfs interfaces. | 
 | 	 */ | 
 | 	mutex_lock(&h->resize_lock); | 
 | 	flush_free_hpage_work(h); | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 |  | 
 | 	/* | 
 | 	 * Check for a node specific request. | 
 | 	 * Changing node specific huge page count may require a corresponding | 
 | 	 * change to the global count.  In any case, the passed node mask | 
 | 	 * (nodes_allowed) will restrict alloc/free to the specified node. | 
 | 	 */ | 
 | 	if (nid != NUMA_NO_NODE) { | 
 | 		unsigned long old_count = count; | 
 |  | 
 | 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; | 
 | 		/* | 
 | 		 * User may have specified a large count value which caused the | 
 | 		 * above calculation to overflow.  In this case, they wanted | 
 | 		 * to allocate as many huge pages as possible.  Set count to | 
 | 		 * largest possible value to align with their intention. | 
 | 		 */ | 
 | 		if (count < old_count) | 
 | 			count = ULONG_MAX; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Gigantic pages runtime allocation depend on the capability for large | 
 | 	 * page range allocation. | 
 | 	 * If the system does not provide this feature, return an error when | 
 | 	 * the user tries to allocate gigantic pages but let the user free the | 
 | 	 * boottime allocated gigantic pages. | 
 | 	 */ | 
 | 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { | 
 | 		if (count > persistent_huge_pages(h)) { | 
 | 			spin_unlock_irq(&hugetlb_lock); | 
 | 			mutex_unlock(&h->resize_lock); | 
 | 			NODEMASK_FREE(node_alloc_noretry); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		/* Fall through to decrease pool */ | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Increase the pool size | 
 | 	 * First take pages out of surplus state.  Then make up the | 
 | 	 * remaining difference by allocating fresh huge pages. | 
 | 	 * | 
 | 	 * We might race with alloc_surplus_huge_page() here and be unable | 
 | 	 * to convert a surplus huge page to a normal huge page. That is | 
 | 	 * not critical, though, it just means the overall size of the | 
 | 	 * pool might be one hugepage larger than it needs to be, but | 
 | 	 * within all the constraints specified by the sysctls. | 
 | 	 */ | 
 | 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { | 
 | 		if (!adjust_pool_surplus(h, nodes_allowed, -1)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	while (count > persistent_huge_pages(h)) { | 
 | 		/* | 
 | 		 * If this allocation races such that we no longer need the | 
 | 		 * page, free_huge_page will handle it by freeing the page | 
 | 		 * and reducing the surplus. | 
 | 		 */ | 
 | 		spin_unlock_irq(&hugetlb_lock); | 
 |  | 
 | 		/* yield cpu to avoid soft lockup */ | 
 | 		cond_resched(); | 
 |  | 
 | 		ret = alloc_pool_huge_page(h, nodes_allowed, | 
 | 						node_alloc_noretry); | 
 | 		spin_lock_irq(&hugetlb_lock); | 
 | 		if (!ret) | 
 | 			goto out; | 
 |  | 
 | 		/* Bail for signals. Probably ctrl-c from user */ | 
 | 		if (signal_pending(current)) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Decrease the pool size | 
 | 	 * First return free pages to the buddy allocator (being careful | 
 | 	 * to keep enough around to satisfy reservations).  Then place | 
 | 	 * pages into surplus state as needed so the pool will shrink | 
 | 	 * to the desired size as pages become free. | 
 | 	 * | 
 | 	 * By placing pages into the surplus state independent of the | 
 | 	 * overcommit value, we are allowing the surplus pool size to | 
 | 	 * exceed overcommit. There are few sane options here. Since | 
 | 	 * alloc_surplus_huge_page() is checking the global counter, | 
 | 	 * though, we'll note that we're not allowed to exceed surplus | 
 | 	 * and won't grow the pool anywhere else. Not until one of the | 
 | 	 * sysctls are changed, or the surplus pages go out of use. | 
 | 	 */ | 
 | 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; | 
 | 	min_count = max(count, min_count); | 
 | 	try_to_free_low(h, min_count, nodes_allowed); | 
 |  | 
 | 	/* | 
 | 	 * Collect pages to be removed on list without dropping lock | 
 | 	 */ | 
 | 	while (min_count < persistent_huge_pages(h)) { | 
 | 		page = remove_pool_huge_page(h, nodes_allowed, 0); | 
 | 		if (!page) | 
 | 			break; | 
 |  | 
 | 		list_add(&page->lru, &page_list); | 
 | 	} | 
 | 	/* free the pages after dropping lock */ | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 | 	update_and_free_pages_bulk(h, &page_list); | 
 | 	flush_free_hpage_work(h); | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 |  | 
 | 	while (count < persistent_huge_pages(h)) { | 
 | 		if (!adjust_pool_surplus(h, nodes_allowed, 1)) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	h->max_huge_pages = persistent_huge_pages(h); | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 | 	mutex_unlock(&h->resize_lock); | 
 |  | 
 | 	NODEMASK_FREE(node_alloc_noretry); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int demote_free_huge_page(struct hstate *h, struct page *page) | 
 | { | 
 | 	int i, nid = page_to_nid(page); | 
 | 	struct hstate *target_hstate; | 
 | 	int rc = 0; | 
 |  | 
 | 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); | 
 |  | 
 | 	remove_hugetlb_page_for_demote(h, page, false); | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 |  | 
 | 	rc = hugetlb_vmemmap_alloc(h, page); | 
 | 	if (rc) { | 
 | 		/* Allocation of vmemmmap failed, we can not demote page */ | 
 | 		spin_lock_irq(&hugetlb_lock); | 
 | 		set_page_refcounted(page); | 
 | 		add_hugetlb_page(h, page, false); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Use destroy_compound_hugetlb_page_for_demote for all huge page | 
 | 	 * sizes as it will not ref count pages. | 
 | 	 */ | 
 | 	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h)); | 
 |  | 
 | 	/* | 
 | 	 * Taking target hstate mutex synchronizes with set_max_huge_pages. | 
 | 	 * Without the mutex, pages added to target hstate could be marked | 
 | 	 * as surplus. | 
 | 	 * | 
 | 	 * Note that we already hold h->resize_lock.  To prevent deadlock, | 
 | 	 * use the convention of always taking larger size hstate mutex first. | 
 | 	 */ | 
 | 	mutex_lock(&target_hstate->resize_lock); | 
 | 	for (i = 0; i < pages_per_huge_page(h); | 
 | 				i += pages_per_huge_page(target_hstate)) { | 
 | 		if (hstate_is_gigantic(target_hstate)) | 
 | 			prep_compound_gigantic_page_for_demote(page + i, | 
 | 							target_hstate->order); | 
 | 		else | 
 | 			prep_compound_page(page + i, target_hstate->order); | 
 | 		set_page_private(page + i, 0); | 
 | 		set_page_refcounted(page + i); | 
 | 		prep_new_huge_page(target_hstate, page + i, nid); | 
 | 		put_page(page + i); | 
 | 	} | 
 | 	mutex_unlock(&target_hstate->resize_lock); | 
 |  | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 |  | 
 | 	/* | 
 | 	 * Not absolutely necessary, but for consistency update max_huge_pages | 
 | 	 * based on pool changes for the demoted page. | 
 | 	 */ | 
 | 	h->max_huge_pages--; | 
 | 	target_hstate->max_huge_pages += pages_per_huge_page(h); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) | 
 | 	__must_hold(&hugetlb_lock) | 
 | { | 
 | 	int nr_nodes, node; | 
 | 	struct page *page; | 
 |  | 
 | 	lockdep_assert_held(&hugetlb_lock); | 
 |  | 
 | 	/* We should never get here if no demote order */ | 
 | 	if (!h->demote_order) { | 
 | 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); | 
 | 		return -EINVAL;		/* internal error */ | 
 | 	} | 
 |  | 
 | 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { | 
 | 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) { | 
 | 			if (PageHWPoison(page)) | 
 | 				continue; | 
 |  | 
 | 			return demote_free_huge_page(h, page); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Only way to get here is if all pages on free lists are poisoned. | 
 | 	 * Return -EBUSY so that caller will not retry. | 
 | 	 */ | 
 | 	return -EBUSY; | 
 | } | 
 |  | 
 | #define HSTATE_ATTR_RO(_name) \ | 
 | 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | 
 |  | 
 | #define HSTATE_ATTR_WO(_name) \ | 
 | 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name) | 
 |  | 
 | #define HSTATE_ATTR(_name) \ | 
 | 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name) | 
 |  | 
 | static struct kobject *hugepages_kobj; | 
 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | 
 |  | 
 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); | 
 |  | 
 | static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < HUGE_MAX_HSTATE; i++) | 
 | 		if (hstate_kobjs[i] == kobj) { | 
 | 			if (nidp) | 
 | 				*nidp = NUMA_NO_NODE; | 
 | 			return &hstates[i]; | 
 | 		} | 
 |  | 
 | 	return kobj_to_node_hstate(kobj, nidp); | 
 | } | 
 |  | 
 | static ssize_t nr_hugepages_show_common(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	struct hstate *h; | 
 | 	unsigned long nr_huge_pages; | 
 | 	int nid; | 
 |  | 
 | 	h = kobj_to_hstate(kobj, &nid); | 
 | 	if (nid == NUMA_NO_NODE) | 
 | 		nr_huge_pages = h->nr_huge_pages; | 
 | 	else | 
 | 		nr_huge_pages = h->nr_huge_pages_node[nid]; | 
 |  | 
 | 	return sysfs_emit(buf, "%lu\n", nr_huge_pages); | 
 | } | 
 |  | 
 | static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, | 
 | 					   struct hstate *h, int nid, | 
 | 					   unsigned long count, size_t len) | 
 | { | 
 | 	int err; | 
 | 	nodemask_t nodes_allowed, *n_mask; | 
 |  | 
 | 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (nid == NUMA_NO_NODE) { | 
 | 		/* | 
 | 		 * global hstate attribute | 
 | 		 */ | 
 | 		if (!(obey_mempolicy && | 
 | 				init_nodemask_of_mempolicy(&nodes_allowed))) | 
 | 			n_mask = &node_states[N_MEMORY]; | 
 | 		else | 
 | 			n_mask = &nodes_allowed; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Node specific request.  count adjustment happens in | 
 | 		 * set_max_huge_pages() after acquiring hugetlb_lock. | 
 | 		 */ | 
 | 		init_nodemask_of_node(&nodes_allowed, nid); | 
 | 		n_mask = &nodes_allowed; | 
 | 	} | 
 |  | 
 | 	err = set_max_huge_pages(h, count, nid, n_mask); | 
 |  | 
 | 	return err ? err : len; | 
 | } | 
 |  | 
 | static ssize_t nr_hugepages_store_common(bool obey_mempolicy, | 
 | 					 struct kobject *kobj, const char *buf, | 
 | 					 size_t len) | 
 | { | 
 | 	struct hstate *h; | 
 | 	unsigned long count; | 
 | 	int nid; | 
 | 	int err; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &count); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	h = kobj_to_hstate(kobj, &nid); | 
 | 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); | 
 | } | 
 |  | 
 | static ssize_t nr_hugepages_show(struct kobject *kobj, | 
 | 				       struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return nr_hugepages_show_common(kobj, attr, buf); | 
 | } | 
 |  | 
 | static ssize_t nr_hugepages_store(struct kobject *kobj, | 
 | 	       struct kobj_attribute *attr, const char *buf, size_t len) | 
 | { | 
 | 	return nr_hugepages_store_common(false, kobj, buf, len); | 
 | } | 
 | HSTATE_ATTR(nr_hugepages); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 |  | 
 | /* | 
 |  * hstate attribute for optionally mempolicy-based constraint on persistent | 
 |  * huge page alloc/free. | 
 |  */ | 
 | static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, | 
 | 					   struct kobj_attribute *attr, | 
 | 					   char *buf) | 
 | { | 
 | 	return nr_hugepages_show_common(kobj, attr, buf); | 
 | } | 
 |  | 
 | static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, | 
 | 	       struct kobj_attribute *attr, const char *buf, size_t len) | 
 | { | 
 | 	return nr_hugepages_store_common(true, kobj, buf, len); | 
 | } | 
 | HSTATE_ATTR(nr_hugepages_mempolicy); | 
 | #endif | 
 |  | 
 |  | 
 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	struct hstate *h = kobj_to_hstate(kobj, NULL); | 
 | 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); | 
 | } | 
 |  | 
 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, | 
 | 		struct kobj_attribute *attr, const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long input; | 
 | 	struct hstate *h = kobj_to_hstate(kobj, NULL); | 
 |  | 
 | 	if (hstate_is_gigantic(h)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &input); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	h->nr_overcommit_huge_pages = input; | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 |  | 
 | 	return count; | 
 | } | 
 | HSTATE_ATTR(nr_overcommit_hugepages); | 
 |  | 
 | static ssize_t free_hugepages_show(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	struct hstate *h; | 
 | 	unsigned long free_huge_pages; | 
 | 	int nid; | 
 |  | 
 | 	h = kobj_to_hstate(kobj, &nid); | 
 | 	if (nid == NUMA_NO_NODE) | 
 | 		free_huge_pages = h->free_huge_pages; | 
 | 	else | 
 | 		free_huge_pages = h->free_huge_pages_node[nid]; | 
 |  | 
 | 	return sysfs_emit(buf, "%lu\n", free_huge_pages); | 
 | } | 
 | HSTATE_ATTR_RO(free_hugepages); | 
 |  | 
 | static ssize_t resv_hugepages_show(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	struct hstate *h = kobj_to_hstate(kobj, NULL); | 
 | 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); | 
 | } | 
 | HSTATE_ATTR_RO(resv_hugepages); | 
 |  | 
 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	struct hstate *h; | 
 | 	unsigned long surplus_huge_pages; | 
 | 	int nid; | 
 |  | 
 | 	h = kobj_to_hstate(kobj, &nid); | 
 | 	if (nid == NUMA_NO_NODE) | 
 | 		surplus_huge_pages = h->surplus_huge_pages; | 
 | 	else | 
 | 		surplus_huge_pages = h->surplus_huge_pages_node[nid]; | 
 |  | 
 | 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages); | 
 | } | 
 | HSTATE_ATTR_RO(surplus_hugepages); | 
 |  | 
 | static ssize_t demote_store(struct kobject *kobj, | 
 | 	       struct kobj_attribute *attr, const char *buf, size_t len) | 
 | { | 
 | 	unsigned long nr_demote; | 
 | 	unsigned long nr_available; | 
 | 	nodemask_t nodes_allowed, *n_mask; | 
 | 	struct hstate *h; | 
 | 	int err = 0; | 
 | 	int nid; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &nr_demote); | 
 | 	if (err) | 
 | 		return err; | 
 | 	h = kobj_to_hstate(kobj, &nid); | 
 |  | 
 | 	if (nid != NUMA_NO_NODE) { | 
 | 		init_nodemask_of_node(&nodes_allowed, nid); | 
 | 		n_mask = &nodes_allowed; | 
 | 	} else { | 
 | 		n_mask = &node_states[N_MEMORY]; | 
 | 	} | 
 |  | 
 | 	/* Synchronize with other sysfs operations modifying huge pages */ | 
 | 	mutex_lock(&h->resize_lock); | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 |  | 
 | 	while (nr_demote) { | 
 | 		/* | 
 | 		 * Check for available pages to demote each time thorough the | 
 | 		 * loop as demote_pool_huge_page will drop hugetlb_lock. | 
 | 		 */ | 
 | 		if (nid != NUMA_NO_NODE) | 
 | 			nr_available = h->free_huge_pages_node[nid]; | 
 | 		else | 
 | 			nr_available = h->free_huge_pages; | 
 | 		nr_available -= h->resv_huge_pages; | 
 | 		if (!nr_available) | 
 | 			break; | 
 |  | 
 | 		err = demote_pool_huge_page(h, n_mask); | 
 | 		if (err) | 
 | 			break; | 
 |  | 
 | 		nr_demote--; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 | 	mutex_unlock(&h->resize_lock); | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 | 	return len; | 
 | } | 
 | HSTATE_ATTR_WO(demote); | 
 |  | 
 | static ssize_t demote_size_show(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	int nid; | 
 | 	struct hstate *h = kobj_to_hstate(kobj, &nid); | 
 | 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; | 
 |  | 
 | 	return sysfs_emit(buf, "%lukB\n", demote_size); | 
 | } | 
 |  | 
 | static ssize_t demote_size_store(struct kobject *kobj, | 
 | 					struct kobj_attribute *attr, | 
 | 					const char *buf, size_t count) | 
 | { | 
 | 	struct hstate *h, *demote_hstate; | 
 | 	unsigned long demote_size; | 
 | 	unsigned int demote_order; | 
 | 	int nid; | 
 |  | 
 | 	demote_size = (unsigned long)memparse(buf, NULL); | 
 |  | 
 | 	demote_hstate = size_to_hstate(demote_size); | 
 | 	if (!demote_hstate) | 
 | 		return -EINVAL; | 
 | 	demote_order = demote_hstate->order; | 
 | 	if (demote_order < HUGETLB_PAGE_ORDER) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* demote order must be smaller than hstate order */ | 
 | 	h = kobj_to_hstate(kobj, &nid); | 
 | 	if (demote_order >= h->order) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* resize_lock synchronizes access to demote size and writes */ | 
 | 	mutex_lock(&h->resize_lock); | 
 | 	h->demote_order = demote_order; | 
 | 	mutex_unlock(&h->resize_lock); | 
 |  | 
 | 	return count; | 
 | } | 
 | HSTATE_ATTR(demote_size); | 
 |  | 
 | static struct attribute *hstate_attrs[] = { | 
 | 	&nr_hugepages_attr.attr, | 
 | 	&nr_overcommit_hugepages_attr.attr, | 
 | 	&free_hugepages_attr.attr, | 
 | 	&resv_hugepages_attr.attr, | 
 | 	&surplus_hugepages_attr.attr, | 
 | #ifdef CONFIG_NUMA | 
 | 	&nr_hugepages_mempolicy_attr.attr, | 
 | #endif | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static const struct attribute_group hstate_attr_group = { | 
 | 	.attrs = hstate_attrs, | 
 | }; | 
 |  | 
 | static struct attribute *hstate_demote_attrs[] = { | 
 | 	&demote_size_attr.attr, | 
 | 	&demote_attr.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static const struct attribute_group hstate_demote_attr_group = { | 
 | 	.attrs = hstate_demote_attrs, | 
 | }; | 
 |  | 
 | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, | 
 | 				    struct kobject **hstate_kobjs, | 
 | 				    const struct attribute_group *hstate_attr_group) | 
 | { | 
 | 	int retval; | 
 | 	int hi = hstate_index(h); | 
 |  | 
 | 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); | 
 | 	if (!hstate_kobjs[hi]) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); | 
 | 	if (retval) { | 
 | 		kobject_put(hstate_kobjs[hi]); | 
 | 		hstate_kobjs[hi] = NULL; | 
 | 	} | 
 |  | 
 | 	if (h->demote_order) { | 
 | 		if (sysfs_create_group(hstate_kobjs[hi], | 
 | 					&hstate_demote_attr_group)) | 
 | 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); | 
 | 	} | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static void __init hugetlb_sysfs_init(void) | 
 | { | 
 | 	struct hstate *h; | 
 | 	int err; | 
 |  | 
 | 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | 
 | 	if (!hugepages_kobj) | 
 | 		return; | 
 |  | 
 | 	for_each_hstate(h) { | 
 | 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, | 
 | 					 hstate_kobjs, &hstate_attr_group); | 
 | 		if (err) | 
 | 			pr_err("HugeTLB: Unable to add hstate %s", h->name); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 |  | 
 | /* | 
 |  * node_hstate/s - associate per node hstate attributes, via their kobjects, | 
 |  * with node devices in node_devices[] using a parallel array.  The array | 
 |  * index of a node device or _hstate == node id. | 
 |  * This is here to avoid any static dependency of the node device driver, in | 
 |  * the base kernel, on the hugetlb module. | 
 |  */ | 
 | struct node_hstate { | 
 | 	struct kobject		*hugepages_kobj; | 
 | 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE]; | 
 | }; | 
 | static struct node_hstate node_hstates[MAX_NUMNODES]; | 
 |  | 
 | /* | 
 |  * A subset of global hstate attributes for node devices | 
 |  */ | 
 | static struct attribute *per_node_hstate_attrs[] = { | 
 | 	&nr_hugepages_attr.attr, | 
 | 	&free_hugepages_attr.attr, | 
 | 	&surplus_hugepages_attr.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static const struct attribute_group per_node_hstate_attr_group = { | 
 | 	.attrs = per_node_hstate_attrs, | 
 | }; | 
 |  | 
 | /* | 
 |  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. | 
 |  * Returns node id via non-NULL nidp. | 
 |  */ | 
 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	for (nid = 0; nid < nr_node_ids; nid++) { | 
 | 		struct node_hstate *nhs = &node_hstates[nid]; | 
 | 		int i; | 
 | 		for (i = 0; i < HUGE_MAX_HSTATE; i++) | 
 | 			if (nhs->hstate_kobjs[i] == kobj) { | 
 | 				if (nidp) | 
 | 					*nidp = nid; | 
 | 				return &hstates[i]; | 
 | 			} | 
 | 	} | 
 |  | 
 | 	BUG(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Unregister hstate attributes from a single node device. | 
 |  * No-op if no hstate attributes attached. | 
 |  */ | 
 | static void hugetlb_unregister_node(struct node *node) | 
 | { | 
 | 	struct hstate *h; | 
 | 	struct node_hstate *nhs = &node_hstates[node->dev.id]; | 
 |  | 
 | 	if (!nhs->hugepages_kobj) | 
 | 		return;		/* no hstate attributes */ | 
 |  | 
 | 	for_each_hstate(h) { | 
 | 		int idx = hstate_index(h); | 
 | 		if (nhs->hstate_kobjs[idx]) { | 
 | 			kobject_put(nhs->hstate_kobjs[idx]); | 
 | 			nhs->hstate_kobjs[idx] = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	kobject_put(nhs->hugepages_kobj); | 
 | 	nhs->hugepages_kobj = NULL; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Register hstate attributes for a single node device. | 
 |  * No-op if attributes already registered. | 
 |  */ | 
 | static void hugetlb_register_node(struct node *node) | 
 | { | 
 | 	struct hstate *h; | 
 | 	struct node_hstate *nhs = &node_hstates[node->dev.id]; | 
 | 	int err; | 
 |  | 
 | 	if (nhs->hugepages_kobj) | 
 | 		return;		/* already allocated */ | 
 |  | 
 | 	nhs->hugepages_kobj = kobject_create_and_add("hugepages", | 
 | 							&node->dev.kobj); | 
 | 	if (!nhs->hugepages_kobj) | 
 | 		return; | 
 |  | 
 | 	for_each_hstate(h) { | 
 | 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, | 
 | 						nhs->hstate_kobjs, | 
 | 						&per_node_hstate_attr_group); | 
 | 		if (err) { | 
 | 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n", | 
 | 				h->name, node->dev.id); | 
 | 			hugetlb_unregister_node(node); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * hugetlb init time:  register hstate attributes for all registered node | 
 |  * devices of nodes that have memory.  All on-line nodes should have | 
 |  * registered their associated device by this time. | 
 |  */ | 
 | static void __init hugetlb_register_all_nodes(void) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		struct node *node = node_devices[nid]; | 
 | 		if (node->dev.id == nid) | 
 | 			hugetlb_register_node(node); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Let the node device driver know we're here so it can | 
 | 	 * [un]register hstate attributes on node hotplug. | 
 | 	 */ | 
 | 	register_hugetlbfs_with_node(hugetlb_register_node, | 
 | 				     hugetlb_unregister_node); | 
 | } | 
 | #else	/* !CONFIG_NUMA */ | 
 |  | 
 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | 
 | { | 
 | 	BUG(); | 
 | 	if (nidp) | 
 | 		*nidp = -1; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void hugetlb_register_all_nodes(void) { } | 
 |  | 
 | #endif | 
 |  | 
 | static int __init hugetlb_init(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < | 
 | 			__NR_HPAGEFLAGS); | 
 |  | 
 | 	if (!hugepages_supported()) { | 
 | 		if (hugetlb_max_hstate || default_hstate_max_huge_pages) | 
 | 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some | 
 | 	 * architectures depend on setup being done here. | 
 | 	 */ | 
 | 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | 
 | 	if (!parsed_default_hugepagesz) { | 
 | 		/* | 
 | 		 * If we did not parse a default huge page size, set | 
 | 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the | 
 | 		 * number of huge pages for this default size was implicitly | 
 | 		 * specified, set that here as well. | 
 | 		 * Note that the implicit setting will overwrite an explicit | 
 | 		 * setting.  A warning will be printed in this case. | 
 | 		 */ | 
 | 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); | 
 | 		if (default_hstate_max_huge_pages) { | 
 | 			if (default_hstate.max_huge_pages) { | 
 | 				char buf[32]; | 
 |  | 
 | 				string_get_size(huge_page_size(&default_hstate), | 
 | 					1, STRING_UNITS_2, buf, 32); | 
 | 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", | 
 | 					default_hstate.max_huge_pages, buf); | 
 | 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", | 
 | 					default_hstate_max_huge_pages); | 
 | 			} | 
 | 			default_hstate.max_huge_pages = | 
 | 				default_hstate_max_huge_pages; | 
 |  | 
 | 			for_each_online_node(i) | 
 | 				default_hstate.max_huge_pages_node[i] = | 
 | 					default_hugepages_in_node[i]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	hugetlb_cma_check(); | 
 | 	hugetlb_init_hstates(); | 
 | 	gather_bootmem_prealloc(); | 
 | 	report_hugepages(); | 
 |  | 
 | 	hugetlb_sysfs_init(); | 
 | 	hugetlb_register_all_nodes(); | 
 | 	hugetlb_cgroup_file_init(); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); | 
 | #else | 
 | 	num_fault_mutexes = 1; | 
 | #endif | 
 | 	hugetlb_fault_mutex_table = | 
 | 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex), | 
 | 			      GFP_KERNEL); | 
 | 	BUG_ON(!hugetlb_fault_mutex_table); | 
 |  | 
 | 	for (i = 0; i < num_fault_mutexes; i++) | 
 | 		mutex_init(&hugetlb_fault_mutex_table[i]); | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(hugetlb_init); | 
 |  | 
 | /* Overwritten by architectures with more huge page sizes */ | 
 | bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) | 
 | { | 
 | 	return size == HPAGE_SIZE; | 
 | } | 
 |  | 
 | void __init hugetlb_add_hstate(unsigned int order) | 
 | { | 
 | 	struct hstate *h; | 
 | 	unsigned long i; | 
 |  | 
 | 	if (size_to_hstate(PAGE_SIZE << order)) { | 
 | 		return; | 
 | 	} | 
 | 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); | 
 | 	BUG_ON(order == 0); | 
 | 	h = &hstates[hugetlb_max_hstate++]; | 
 | 	mutex_init(&h->resize_lock); | 
 | 	h->order = order; | 
 | 	h->mask = ~(huge_page_size(h) - 1); | 
 | 	for (i = 0; i < MAX_NUMNODES; ++i) | 
 | 		INIT_LIST_HEAD(&h->hugepage_freelists[i]); | 
 | 	INIT_LIST_HEAD(&h->hugepage_activelist); | 
 | 	h->next_nid_to_alloc = first_memory_node; | 
 | 	h->next_nid_to_free = first_memory_node; | 
 | 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", | 
 | 					huge_page_size(h)/1024); | 
 | 	hugetlb_vmemmap_init(h); | 
 |  | 
 | 	parsed_hstate = h; | 
 | } | 
 |  | 
 | bool __init __weak hugetlb_node_alloc_supported(void) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | static void __init hugepages_clear_pages_in_node(void) | 
 | { | 
 | 	if (!hugetlb_max_hstate) { | 
 | 		default_hstate_max_huge_pages = 0; | 
 | 		memset(default_hugepages_in_node, 0, | 
 | 			MAX_NUMNODES * sizeof(unsigned int)); | 
 | 	} else { | 
 | 		parsed_hstate->max_huge_pages = 0; | 
 | 		memset(parsed_hstate->max_huge_pages_node, 0, | 
 | 			MAX_NUMNODES * sizeof(unsigned int)); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * hugepages command line processing | 
 |  * hugepages normally follows a valid hugepagsz or default_hugepagsz | 
 |  * specification.  If not, ignore the hugepages value.  hugepages can also | 
 |  * be the first huge page command line  option in which case it implicitly | 
 |  * specifies the number of huge pages for the default size. | 
 |  */ | 
 | static int __init hugepages_setup(char *s) | 
 | { | 
 | 	unsigned long *mhp; | 
 | 	static unsigned long *last_mhp; | 
 | 	int node = NUMA_NO_NODE; | 
 | 	int count; | 
 | 	unsigned long tmp; | 
 | 	char *p = s; | 
 |  | 
 | 	if (!parsed_valid_hugepagesz) { | 
 | 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); | 
 | 		parsed_valid_hugepagesz = true; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter | 
 | 	 * yet, so this hugepages= parameter goes to the "default hstate". | 
 | 	 * Otherwise, it goes with the previously parsed hugepagesz or | 
 | 	 * default_hugepagesz. | 
 | 	 */ | 
 | 	else if (!hugetlb_max_hstate) | 
 | 		mhp = &default_hstate_max_huge_pages; | 
 | 	else | 
 | 		mhp = &parsed_hstate->max_huge_pages; | 
 |  | 
 | 	if (mhp == last_mhp) { | 
 | 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	while (*p) { | 
 | 		count = 0; | 
 | 		if (sscanf(p, "%lu%n", &tmp, &count) != 1) | 
 | 			goto invalid; | 
 | 		/* Parameter is node format */ | 
 | 		if (p[count] == ':') { | 
 | 			if (!hugetlb_node_alloc_supported()) { | 
 | 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); | 
 | 				return 1; | 
 | 			} | 
 | 			if (tmp >= MAX_NUMNODES || !node_online(tmp)) | 
 | 				goto invalid; | 
 | 			node = array_index_nospec(tmp, MAX_NUMNODES); | 
 | 			p += count + 1; | 
 | 			/* Parse hugepages */ | 
 | 			if (sscanf(p, "%lu%n", &tmp, &count) != 1) | 
 | 				goto invalid; | 
 | 			if (!hugetlb_max_hstate) | 
 | 				default_hugepages_in_node[node] = tmp; | 
 | 			else | 
 | 				parsed_hstate->max_huge_pages_node[node] = tmp; | 
 | 			*mhp += tmp; | 
 | 			/* Go to parse next node*/ | 
 | 			if (p[count] == ',') | 
 | 				p += count + 1; | 
 | 			else | 
 | 				break; | 
 | 		} else { | 
 | 			if (p != s) | 
 | 				goto invalid; | 
 | 			*mhp = tmp; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Global state is always initialized later in hugetlb_init. | 
 | 	 * But we need to allocate gigantic hstates here early to still | 
 | 	 * use the bootmem allocator. | 
 | 	 */ | 
 | 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) | 
 | 		hugetlb_hstate_alloc_pages(parsed_hstate); | 
 |  | 
 | 	last_mhp = mhp; | 
 |  | 
 | 	return 1; | 
 |  | 
 | invalid: | 
 | 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); | 
 | 	hugepages_clear_pages_in_node(); | 
 | 	return 1; | 
 | } | 
 | __setup("hugepages=", hugepages_setup); | 
 |  | 
 | /* | 
 |  * hugepagesz command line processing | 
 |  * A specific huge page size can only be specified once with hugepagesz. | 
 |  * hugepagesz is followed by hugepages on the command line.  The global | 
 |  * variable 'parsed_valid_hugepagesz' is used to determine if prior | 
 |  * hugepagesz argument was valid. | 
 |  */ | 
 | static int __init hugepagesz_setup(char *s) | 
 | { | 
 | 	unsigned long size; | 
 | 	struct hstate *h; | 
 |  | 
 | 	parsed_valid_hugepagesz = false; | 
 | 	size = (unsigned long)memparse(s, NULL); | 
 |  | 
 | 	if (!arch_hugetlb_valid_size(size)) { | 
 | 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	h = size_to_hstate(size); | 
 | 	if (h) { | 
 | 		/* | 
 | 		 * hstate for this size already exists.  This is normally | 
 | 		 * an error, but is allowed if the existing hstate is the | 
 | 		 * default hstate.  More specifically, it is only allowed if | 
 | 		 * the number of huge pages for the default hstate was not | 
 | 		 * previously specified. | 
 | 		 */ | 
 | 		if (!parsed_default_hugepagesz ||  h != &default_hstate || | 
 | 		    default_hstate.max_huge_pages) { | 
 | 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * No need to call hugetlb_add_hstate() as hstate already | 
 | 		 * exists.  But, do set parsed_hstate so that a following | 
 | 		 * hugepages= parameter will be applied to this hstate. | 
 | 		 */ | 
 | 		parsed_hstate = h; | 
 | 		parsed_valid_hugepagesz = true; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); | 
 | 	parsed_valid_hugepagesz = true; | 
 | 	return 1; | 
 | } | 
 | __setup("hugepagesz=", hugepagesz_setup); | 
 |  | 
 | /* | 
 |  * default_hugepagesz command line input | 
 |  * Only one instance of default_hugepagesz allowed on command line. | 
 |  */ | 
 | static int __init default_hugepagesz_setup(char *s) | 
 | { | 
 | 	unsigned long size; | 
 | 	int i; | 
 |  | 
 | 	parsed_valid_hugepagesz = false; | 
 | 	if (parsed_default_hugepagesz) { | 
 | 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	size = (unsigned long)memparse(s, NULL); | 
 |  | 
 | 	if (!arch_hugetlb_valid_size(size)) { | 
 | 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); | 
 | 	parsed_valid_hugepagesz = true; | 
 | 	parsed_default_hugepagesz = true; | 
 | 	default_hstate_idx = hstate_index(size_to_hstate(size)); | 
 |  | 
 | 	/* | 
 | 	 * The number of default huge pages (for this size) could have been | 
 | 	 * specified as the first hugetlb parameter: hugepages=X.  If so, | 
 | 	 * then default_hstate_max_huge_pages is set.  If the default huge | 
 | 	 * page size is gigantic (>= MAX_ORDER), then the pages must be | 
 | 	 * allocated here from bootmem allocator. | 
 | 	 */ | 
 | 	if (default_hstate_max_huge_pages) { | 
 | 		default_hstate.max_huge_pages = default_hstate_max_huge_pages; | 
 | 		for_each_online_node(i) | 
 | 			default_hstate.max_huge_pages_node[i] = | 
 | 				default_hugepages_in_node[i]; | 
 | 		if (hstate_is_gigantic(&default_hstate)) | 
 | 			hugetlb_hstate_alloc_pages(&default_hstate); | 
 | 		default_hstate_max_huge_pages = 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("default_hugepagesz=", default_hugepagesz_setup); | 
 |  | 
 | static unsigned int allowed_mems_nr(struct hstate *h) | 
 | { | 
 | 	int node; | 
 | 	unsigned int nr = 0; | 
 | 	nodemask_t *mpol_allowed; | 
 | 	unsigned int *array = h->free_huge_pages_node; | 
 | 	gfp_t gfp_mask = htlb_alloc_mask(h); | 
 |  | 
 | 	mpol_allowed = policy_nodemask_current(gfp_mask); | 
 |  | 
 | 	for_each_node_mask(node, cpuset_current_mems_allowed) { | 
 | 		if (!mpol_allowed || node_isset(node, *mpol_allowed)) | 
 | 			nr += array[node]; | 
 | 	} | 
 |  | 
 | 	return nr; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SYSCTL | 
 | static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, | 
 | 					  void *buffer, size_t *length, | 
 | 					  loff_t *ppos, unsigned long *out) | 
 | { | 
 | 	struct ctl_table dup_table; | 
 |  | 
 | 	/* | 
 | 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we | 
 | 	 * can duplicate the @table and alter the duplicate of it. | 
 | 	 */ | 
 | 	dup_table = *table; | 
 | 	dup_table.data = out; | 
 |  | 
 | 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); | 
 | } | 
 |  | 
 | static int hugetlb_sysctl_handler_common(bool obey_mempolicy, | 
 | 			 struct ctl_table *table, int write, | 
 | 			 void *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	struct hstate *h = &default_hstate; | 
 | 	unsigned long tmp = h->max_huge_pages; | 
 | 	int ret; | 
 |  | 
 | 	if (!hugepages_supported()) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, | 
 | 					     &tmp); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (write) | 
 | 		ret = __nr_hugepages_store_common(obey_mempolicy, h, | 
 | 						  NUMA_NO_NODE, tmp, *length); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, | 
 | 			  void *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 |  | 
 | 	return hugetlb_sysctl_handler_common(false, table, write, | 
 | 							buffer, length, ppos); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, | 
 | 			  void *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	return hugetlb_sysctl_handler_common(true, table, write, | 
 | 							buffer, length, ppos); | 
 | } | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | int hugetlb_overcommit_handler(struct ctl_table *table, int write, | 
 | 		void *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	struct hstate *h = &default_hstate; | 
 | 	unsigned long tmp; | 
 | 	int ret; | 
 |  | 
 | 	if (!hugepages_supported()) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	tmp = h->nr_overcommit_huge_pages; | 
 |  | 
 | 	if (write && hstate_is_gigantic(h)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, | 
 | 					     &tmp); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (write) { | 
 | 		spin_lock_irq(&hugetlb_lock); | 
 | 		h->nr_overcommit_huge_pages = tmp; | 
 | 		spin_unlock_irq(&hugetlb_lock); | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | #endif /* CONFIG_SYSCTL */ | 
 |  | 
 | void hugetlb_report_meminfo(struct seq_file *m) | 
 | { | 
 | 	struct hstate *h; | 
 | 	unsigned long total = 0; | 
 |  | 
 | 	if (!hugepages_supported()) | 
 | 		return; | 
 |  | 
 | 	for_each_hstate(h) { | 
 | 		unsigned long count = h->nr_huge_pages; | 
 |  | 
 | 		total += huge_page_size(h) * count; | 
 |  | 
 | 		if (h == &default_hstate) | 
 | 			seq_printf(m, | 
 | 				   "HugePages_Total:   %5lu\n" | 
 | 				   "HugePages_Free:    %5lu\n" | 
 | 				   "HugePages_Rsvd:    %5lu\n" | 
 | 				   "HugePages_Surp:    %5lu\n" | 
 | 				   "Hugepagesize:   %8lu kB\n", | 
 | 				   count, | 
 | 				   h->free_huge_pages, | 
 | 				   h->resv_huge_pages, | 
 | 				   h->surplus_huge_pages, | 
 | 				   huge_page_size(h) / SZ_1K); | 
 | 	} | 
 |  | 
 | 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K); | 
 | } | 
 |  | 
 | int hugetlb_report_node_meminfo(char *buf, int len, int nid) | 
 | { | 
 | 	struct hstate *h = &default_hstate; | 
 |  | 
 | 	if (!hugepages_supported()) | 
 | 		return 0; | 
 |  | 
 | 	return sysfs_emit_at(buf, len, | 
 | 			     "Node %d HugePages_Total: %5u\n" | 
 | 			     "Node %d HugePages_Free:  %5u\n" | 
 | 			     "Node %d HugePages_Surp:  %5u\n", | 
 | 			     nid, h->nr_huge_pages_node[nid], | 
 | 			     nid, h->free_huge_pages_node[nid], | 
 | 			     nid, h->surplus_huge_pages_node[nid]); | 
 | } | 
 |  | 
 | void hugetlb_show_meminfo(void) | 
 | { | 
 | 	struct hstate *h; | 
 | 	int nid; | 
 |  | 
 | 	if (!hugepages_supported()) | 
 | 		return; | 
 |  | 
 | 	for_each_node_state(nid, N_MEMORY) | 
 | 		for_each_hstate(h) | 
 | 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", | 
 | 				nid, | 
 | 				h->nr_huge_pages_node[nid], | 
 | 				h->free_huge_pages_node[nid], | 
 | 				h->surplus_huge_pages_node[nid], | 
 | 				huge_page_size(h) / SZ_1K); | 
 | } | 
 |  | 
 | void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) | 
 | { | 
 | 	seq_printf(m, "HugetlbPages:\t%8lu kB\n", | 
 | 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); | 
 | } | 
 |  | 
 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ | 
 | unsigned long hugetlb_total_pages(void) | 
 | { | 
 | 	struct hstate *h; | 
 | 	unsigned long nr_total_pages = 0; | 
 |  | 
 | 	for_each_hstate(h) | 
 | 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); | 
 | 	return nr_total_pages; | 
 | } | 
 |  | 
 | static int hugetlb_acct_memory(struct hstate *h, long delta) | 
 | { | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	if (!delta) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	/* | 
 | 	 * When cpuset is configured, it breaks the strict hugetlb page | 
 | 	 * reservation as the accounting is done on a global variable. Such | 
 | 	 * reservation is completely rubbish in the presence of cpuset because | 
 | 	 * the reservation is not checked against page availability for the | 
 | 	 * current cpuset. Application can still potentially OOM'ed by kernel | 
 | 	 * with lack of free htlb page in cpuset that the task is in. | 
 | 	 * Attempt to enforce strict accounting with cpuset is almost | 
 | 	 * impossible (or too ugly) because cpuset is too fluid that | 
 | 	 * task or memory node can be dynamically moved between cpusets. | 
 | 	 * | 
 | 	 * The change of semantics for shared hugetlb mapping with cpuset is | 
 | 	 * undesirable. However, in order to preserve some of the semantics, | 
 | 	 * we fall back to check against current free page availability as | 
 | 	 * a best attempt and hopefully to minimize the impact of changing | 
 | 	 * semantics that cpuset has. | 
 | 	 * | 
 | 	 * Apart from cpuset, we also have memory policy mechanism that | 
 | 	 * also determines from which node the kernel will allocate memory | 
 | 	 * in a NUMA system. So similar to cpuset, we also should consider | 
 | 	 * the memory policy of the current task. Similar to the description | 
 | 	 * above. | 
 | 	 */ | 
 | 	if (delta > 0) { | 
 | 		if (gather_surplus_pages(h, delta) < 0) | 
 | 			goto out; | 
 |  | 
 | 		if (delta > allowed_mems_nr(h)) { | 
 | 			return_unused_surplus_pages(h, delta); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 | 	if (delta < 0) | 
 | 		return_unused_surplus_pages(h, (unsigned long) -delta); | 
 |  | 
 | out: | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) | 
 | { | 
 | 	struct resv_map *resv = vma_resv_map(vma); | 
 |  | 
 | 	/* | 
 | 	 * This new VMA should share its siblings reservation map if present. | 
 | 	 * The VMA will only ever have a valid reservation map pointer where | 
 | 	 * it is being copied for another still existing VMA.  As that VMA | 
 | 	 * has a reference to the reservation map it cannot disappear until | 
 | 	 * after this open call completes.  It is therefore safe to take a | 
 | 	 * new reference here without additional locking. | 
 | 	 */ | 
 | 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
 | 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv); | 
 | 		kref_get(&resv->refs); | 
 | 	} | 
 | } | 
 |  | 
 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) | 
 | { | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	struct resv_map *resv = vma_resv_map(vma); | 
 | 	struct hugepage_subpool *spool = subpool_vma(vma); | 
 | 	unsigned long reserve, start, end; | 
 | 	long gbl_reserve; | 
 |  | 
 | 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | 
 | 		return; | 
 |  | 
 | 	start = vma_hugecache_offset(h, vma, vma->vm_start); | 
 | 	end = vma_hugecache_offset(h, vma, vma->vm_end); | 
 |  | 
 | 	reserve = (end - start) - region_count(resv, start, end); | 
 | 	hugetlb_cgroup_uncharge_counter(resv, start, end); | 
 | 	if (reserve) { | 
 | 		/* | 
 | 		 * Decrement reserve counts.  The global reserve count may be | 
 | 		 * adjusted if the subpool has a minimum size. | 
 | 		 */ | 
 | 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve); | 
 | 		hugetlb_acct_memory(h, -gbl_reserve); | 
 | 	} | 
 |  | 
 | 	kref_put(&resv->refs, resv_map_release); | 
 | } | 
 |  | 
 | static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	if (addr & ~(huge_page_mask(hstate_vma(vma)))) | 
 | 		return -EINVAL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) | 
 | { | 
 | 	return huge_page_size(hstate_vma(vma)); | 
 | } | 
 |  | 
 | /* | 
 |  * We cannot handle pagefaults against hugetlb pages at all.  They cause | 
 |  * handle_mm_fault() to try to instantiate regular-sized pages in the | 
 |  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get | 
 |  * this far. | 
 |  */ | 
 | static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) | 
 | { | 
 | 	BUG(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * When a new function is introduced to vm_operations_struct and added | 
 |  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. | 
 |  * This is because under System V memory model, mappings created via | 
 |  * shmget/shmat with "huge page" specified are backed by hugetlbfs files, | 
 |  * their original vm_ops are overwritten with shm_vm_ops. | 
 |  */ | 
 | const struct vm_operations_struct hugetlb_vm_ops = { | 
 | 	.fault = hugetlb_vm_op_fault, | 
 | 	.open = hugetlb_vm_op_open, | 
 | 	.close = hugetlb_vm_op_close, | 
 | 	.may_split = hugetlb_vm_op_split, | 
 | 	.pagesize = hugetlb_vm_op_pagesize, | 
 | }; | 
 |  | 
 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, | 
 | 				int writable) | 
 | { | 
 | 	pte_t entry; | 
 | 	unsigned int shift = huge_page_shift(hstate_vma(vma)); | 
 |  | 
 | 	if (writable) { | 
 | 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, | 
 | 					 vma->vm_page_prot))); | 
 | 	} else { | 
 | 		entry = huge_pte_wrprotect(mk_huge_pte(page, | 
 | 					   vma->vm_page_prot)); | 
 | 	} | 
 | 	entry = pte_mkyoung(entry); | 
 | 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags); | 
 |  | 
 | 	return entry; | 
 | } | 
 |  | 
 | static void set_huge_ptep_writable(struct vm_area_struct *vma, | 
 | 				   unsigned long address, pte_t *ptep) | 
 | { | 
 | 	pte_t entry; | 
 |  | 
 | 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); | 
 | 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) | 
 | 		update_mmu_cache(vma, address, ptep); | 
 | } | 
 |  | 
 | bool is_hugetlb_entry_migration(pte_t pte) | 
 | { | 
 | 	swp_entry_t swp; | 
 |  | 
 | 	if (huge_pte_none(pte) || pte_present(pte)) | 
 | 		return false; | 
 | 	swp = pte_to_swp_entry(pte); | 
 | 	if (is_migration_entry(swp)) | 
 | 		return true; | 
 | 	else | 
 | 		return false; | 
 | } | 
 |  | 
 | static bool is_hugetlb_entry_hwpoisoned(pte_t pte) | 
 | { | 
 | 	swp_entry_t swp; | 
 |  | 
 | 	if (huge_pte_none(pte) || pte_present(pte)) | 
 | 		return false; | 
 | 	swp = pte_to_swp_entry(pte); | 
 | 	if (is_hwpoison_entry(swp)) | 
 | 		return true; | 
 | 	else | 
 | 		return false; | 
 | } | 
 |  | 
 | static void | 
 | hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, | 
 | 		     struct page *new_page) | 
 | { | 
 | 	__SetPageUptodate(new_page); | 
 | 	hugepage_add_new_anon_rmap(new_page, vma, addr); | 
 | 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); | 
 | 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); | 
 | 	ClearHPageRestoreReserve(new_page); | 
 | 	SetHPageMigratable(new_page); | 
 | } | 
 |  | 
 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | 
 | 			    struct vm_area_struct *dst_vma, | 
 | 			    struct vm_area_struct *src_vma) | 
 | { | 
 | 	pte_t *src_pte, *dst_pte, entry, dst_entry; | 
 | 	struct page *ptepage; | 
 | 	unsigned long addr; | 
 | 	bool cow = is_cow_mapping(src_vma->vm_flags); | 
 | 	struct hstate *h = hstate_vma(src_vma); | 
 | 	unsigned long sz = huge_page_size(h); | 
 | 	unsigned long npages = pages_per_huge_page(h); | 
 | 	struct address_space *mapping = src_vma->vm_file->f_mapping; | 
 | 	struct mmu_notifier_range range; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (cow) { | 
 | 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src, | 
 | 					src_vma->vm_start, | 
 | 					src_vma->vm_end); | 
 | 		mmu_notifier_invalidate_range_start(&range); | 
 | 		mmap_assert_write_locked(src); | 
 | 		raw_write_seqcount_begin(&src->write_protect_seq); | 
 | 	} else { | 
 | 		/* | 
 | 		 * For shared mappings i_mmap_rwsem must be held to call | 
 | 		 * huge_pte_alloc, otherwise the returned ptep could go | 
 | 		 * away if part of a shared pmd and another thread calls | 
 | 		 * huge_pmd_unshare. | 
 | 		 */ | 
 | 		i_mmap_lock_read(mapping); | 
 | 	} | 
 |  | 
 | 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { | 
 | 		spinlock_t *src_ptl, *dst_ptl; | 
 | 		src_pte = huge_pte_offset(src, addr, sz); | 
 | 		if (!src_pte) | 
 | 			continue; | 
 | 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); | 
 | 		if (!dst_pte) { | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the pagetables are shared don't copy or take references. | 
 | 		 * dst_pte == src_pte is the common case of src/dest sharing. | 
 | 		 * | 
 | 		 * However, src could have 'unshared' and dst shares with | 
 | 		 * another vma.  If dst_pte !none, this implies sharing. | 
 | 		 * Check here before taking page table lock, and once again | 
 | 		 * after taking the lock below. | 
 | 		 */ | 
 | 		dst_entry = huge_ptep_get(dst_pte); | 
 | 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) | 
 | 			continue; | 
 |  | 
 | 		dst_ptl = huge_pte_lock(h, dst, dst_pte); | 
 | 		src_ptl = huge_pte_lockptr(h, src, src_pte); | 
 | 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
 | 		entry = huge_ptep_get(src_pte); | 
 | 		dst_entry = huge_ptep_get(dst_pte); | 
 | again: | 
 | 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { | 
 | 			/* | 
 | 			 * Skip if src entry none.  Also, skip in the | 
 | 			 * unlikely case dst entry !none as this implies | 
 | 			 * sharing with another vma. | 
 | 			 */ | 
 | 			; | 
 | 		} else if (unlikely(is_hugetlb_entry_migration(entry) || | 
 | 				    is_hugetlb_entry_hwpoisoned(entry))) { | 
 | 			swp_entry_t swp_entry = pte_to_swp_entry(entry); | 
 | 			bool uffd_wp = huge_pte_uffd_wp(entry); | 
 |  | 
 | 			if (!is_readable_migration_entry(swp_entry) && cow) { | 
 | 				/* | 
 | 				 * COW mappings require pages in both | 
 | 				 * parent and child to be set to read. | 
 | 				 */ | 
 | 				swp_entry = make_readable_migration_entry( | 
 | 							swp_offset(swp_entry)); | 
 | 				entry = swp_entry_to_pte(swp_entry); | 
 | 				if (userfaultfd_wp(src_vma) && uffd_wp) | 
 | 					entry = huge_pte_mkuffd_wp(entry); | 
 | 				set_huge_swap_pte_at(src, addr, src_pte, | 
 | 						     entry, sz); | 
 | 			} | 
 | 			if (!userfaultfd_wp(dst_vma) && uffd_wp) | 
 | 				entry = huge_pte_clear_uffd_wp(entry); | 
 | 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); | 
 | 		} else if (unlikely(is_pte_marker(entry))) { | 
 | 			/* | 
 | 			 * We copy the pte marker only if the dst vma has | 
 | 			 * uffd-wp enabled. | 
 | 			 */ | 
 | 			if (userfaultfd_wp(dst_vma)) | 
 | 				set_huge_pte_at(dst, addr, dst_pte, entry); | 
 | 		} else { | 
 | 			entry = huge_ptep_get(src_pte); | 
 | 			ptepage = pte_page(entry); | 
 | 			get_page(ptepage); | 
 |  | 
 | 			/* | 
 | 			 * Failing to duplicate the anon rmap is a rare case | 
 | 			 * where we see pinned hugetlb pages while they're | 
 | 			 * prone to COW. We need to do the COW earlier during | 
 | 			 * fork. | 
 | 			 * | 
 | 			 * When pre-allocating the page or copying data, we | 
 | 			 * need to be without the pgtable locks since we could | 
 | 			 * sleep during the process. | 
 | 			 */ | 
 | 			if (!PageAnon(ptepage)) { | 
 | 				page_dup_file_rmap(ptepage, true); | 
 | 			} else if (page_try_dup_anon_rmap(ptepage, true, | 
 | 							  src_vma)) { | 
 | 				pte_t src_pte_old = entry; | 
 | 				struct page *new; | 
 |  | 
 | 				spin_unlock(src_ptl); | 
 | 				spin_unlock(dst_ptl); | 
 | 				/* Do not use reserve as it's private owned */ | 
 | 				new = alloc_huge_page(dst_vma, addr, 1); | 
 | 				if (IS_ERR(new)) { | 
 | 					put_page(ptepage); | 
 | 					ret = PTR_ERR(new); | 
 | 					break; | 
 | 				} | 
 | 				copy_user_huge_page(new, ptepage, addr, dst_vma, | 
 | 						    npages); | 
 | 				put_page(ptepage); | 
 |  | 
 | 				/* Install the new huge page if src pte stable */ | 
 | 				dst_ptl = huge_pte_lock(h, dst, dst_pte); | 
 | 				src_ptl = huge_pte_lockptr(h, src, src_pte); | 
 | 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
 | 				entry = huge_ptep_get(src_pte); | 
 | 				if (!pte_same(src_pte_old, entry)) { | 
 | 					restore_reserve_on_error(h, dst_vma, addr, | 
 | 								new); | 
 | 					put_page(new); | 
 | 					/* dst_entry won't change as in child */ | 
 | 					goto again; | 
 | 				} | 
 | 				hugetlb_install_page(dst_vma, dst_pte, addr, new); | 
 | 				spin_unlock(src_ptl); | 
 | 				spin_unlock(dst_ptl); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (cow) { | 
 | 				/* | 
 | 				 * No need to notify as we are downgrading page | 
 | 				 * table protection not changing it to point | 
 | 				 * to a new page. | 
 | 				 * | 
 | 				 * See Documentation/vm/mmu_notifier.rst | 
 | 				 */ | 
 | 				huge_ptep_set_wrprotect(src, addr, src_pte); | 
 | 				entry = huge_pte_wrprotect(entry); | 
 | 			} | 
 |  | 
 | 			set_huge_pte_at(dst, addr, dst_pte, entry); | 
 | 			hugetlb_count_add(npages, dst); | 
 | 		} | 
 | 		spin_unlock(src_ptl); | 
 | 		spin_unlock(dst_ptl); | 
 | 	} | 
 |  | 
 | 	if (cow) { | 
 | 		raw_write_seqcount_end(&src->write_protect_seq); | 
 | 		mmu_notifier_invalidate_range_end(&range); | 
 | 	} else { | 
 | 		i_mmap_unlock_read(mapping); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, | 
 | 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) | 
 | { | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	spinlock_t *src_ptl, *dst_ptl; | 
 | 	pte_t pte; | 
 |  | 
 | 	dst_ptl = huge_pte_lock(h, mm, dst_pte); | 
 | 	src_ptl = huge_pte_lockptr(h, mm, src_pte); | 
 |  | 
 | 	/* | 
 | 	 * We don't have to worry about the ordering of src and dst ptlocks | 
 | 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock. | 
 | 	 */ | 
 | 	if (src_ptl != dst_ptl) | 
 | 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
 |  | 
 | 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); | 
 | 	set_huge_pte_at(mm, new_addr, dst_pte, pte); | 
 |  | 
 | 	if (src_ptl != dst_ptl) | 
 | 		spin_unlock(src_ptl); | 
 | 	spin_unlock(dst_ptl); | 
 | } | 
 |  | 
 | int move_hugetlb_page_tables(struct vm_area_struct *vma, | 
 | 			     struct vm_area_struct *new_vma, | 
 | 			     unsigned long old_addr, unsigned long new_addr, | 
 | 			     unsigned long len) | 
 | { | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	struct address_space *mapping = vma->vm_file->f_mapping; | 
 | 	unsigned long sz = huge_page_size(h); | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long old_end = old_addr + len; | 
 | 	unsigned long old_addr_copy; | 
 | 	pte_t *src_pte, *dst_pte; | 
 | 	struct mmu_notifier_range range; | 
 | 	bool shared_pmd = false; | 
 |  | 
 | 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, | 
 | 				old_end); | 
 | 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); | 
 | 	/* | 
 | 	 * In case of shared PMDs, we should cover the maximum possible | 
 | 	 * range. | 
 | 	 */ | 
 | 	flush_cache_range(vma, range.start, range.end); | 
 |  | 
 | 	mmu_notifier_invalidate_range_start(&range); | 
 | 	/* Prevent race with file truncation */ | 
 | 	i_mmap_lock_write(mapping); | 
 | 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) { | 
 | 		src_pte = huge_pte_offset(mm, old_addr, sz); | 
 | 		if (!src_pte) | 
 | 			continue; | 
 | 		if (huge_pte_none(huge_ptep_get(src_pte))) | 
 | 			continue; | 
 |  | 
 | 		/* old_addr arg to huge_pmd_unshare() is a pointer and so the | 
 | 		 * arg may be modified. Pass a copy instead to preserve the | 
 | 		 * value in old_addr. | 
 | 		 */ | 
 | 		old_addr_copy = old_addr; | 
 |  | 
 | 		if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) { | 
 | 			shared_pmd = true; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); | 
 | 		if (!dst_pte) | 
 | 			break; | 
 |  | 
 | 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); | 
 | 	} | 
 |  | 
 | 	if (shared_pmd) | 
 | 		flush_tlb_range(vma, range.start, range.end); | 
 | 	else | 
 | 		flush_tlb_range(vma, old_end - len, old_end); | 
 | 	mmu_notifier_invalidate_range_end(&range); | 
 | 	i_mmap_unlock_write(mapping); | 
 |  | 
 | 	return len + old_addr - old_end; | 
 | } | 
 |  | 
 | static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, | 
 | 				   unsigned long start, unsigned long end, | 
 | 				   struct page *ref_page, zap_flags_t zap_flags) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long address; | 
 | 	pte_t *ptep; | 
 | 	pte_t pte; | 
 | 	spinlock_t *ptl; | 
 | 	struct page *page; | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	unsigned long sz = huge_page_size(h); | 
 | 	struct mmu_notifier_range range; | 
 | 	bool force_flush = false; | 
 |  | 
 | 	WARN_ON(!is_vm_hugetlb_page(vma)); | 
 | 	BUG_ON(start & ~huge_page_mask(h)); | 
 | 	BUG_ON(end & ~huge_page_mask(h)); | 
 |  | 
 | 	/* | 
 | 	 * This is a hugetlb vma, all the pte entries should point | 
 | 	 * to huge page. | 
 | 	 */ | 
 | 	tlb_change_page_size(tlb, sz); | 
 | 	tlb_start_vma(tlb, vma); | 
 |  | 
 | 	/* | 
 | 	 * If sharing possible, alert mmu notifiers of worst case. | 
 | 	 */ | 
 | 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, | 
 | 				end); | 
 | 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); | 
 | 	mmu_notifier_invalidate_range_start(&range); | 
 | 	address = start; | 
 | 	for (; address < end; address += sz) { | 
 | 		ptep = huge_pte_offset(mm, address, sz); | 
 | 		if (!ptep) | 
 | 			continue; | 
 |  | 
 | 		ptl = huge_pte_lock(h, mm, ptep); | 
 | 		if (huge_pmd_unshare(mm, vma, &address, ptep)) { | 
 | 			spin_unlock(ptl); | 
 | 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); | 
 | 			force_flush = true; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pte = huge_ptep_get(ptep); | 
 | 		if (huge_pte_none(pte)) { | 
 | 			spin_unlock(ptl); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Migrating hugepage or HWPoisoned hugepage is already | 
 | 		 * unmapped and its refcount is dropped, so just clear pte here. | 
 | 		 */ | 
 | 		if (unlikely(!pte_present(pte))) { | 
 | 			/* | 
 | 			 * If the pte was wr-protected by uffd-wp in any of the | 
 | 			 * swap forms, meanwhile the caller does not want to | 
 | 			 * drop the uffd-wp bit in this zap, then replace the | 
 | 			 * pte with a marker. | 
 | 			 */ | 
 | 			if (pte_swp_uffd_wp_any(pte) && | 
 | 			    !(zap_flags & ZAP_FLAG_DROP_MARKER)) | 
 | 				set_huge_pte_at(mm, address, ptep, | 
 | 						make_pte_marker(PTE_MARKER_UFFD_WP)); | 
 | 			else | 
 | 				huge_pte_clear(mm, address, ptep, sz); | 
 | 			spin_unlock(ptl); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		page = pte_page(pte); | 
 | 		/* | 
 | 		 * If a reference page is supplied, it is because a specific | 
 | 		 * page is being unmapped, not a range. Ensure the page we | 
 | 		 * are about to unmap is the actual page of interest. | 
 | 		 */ | 
 | 		if (ref_page) { | 
 | 			if (page != ref_page) { | 
 | 				spin_unlock(ptl); | 
 | 				continue; | 
 | 			} | 
 | 			/* | 
 | 			 * Mark the VMA as having unmapped its page so that | 
 | 			 * future faults in this VMA will fail rather than | 
 | 			 * looking like data was lost | 
 | 			 */ | 
 | 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | 
 | 		} | 
 |  | 
 | 		pte = huge_ptep_get_and_clear(mm, address, ptep); | 
 | 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address); | 
 | 		if (huge_pte_dirty(pte)) | 
 | 			set_page_dirty(page); | 
 | 		/* Leave a uffd-wp pte marker if needed */ | 
 | 		if (huge_pte_uffd_wp(pte) && | 
 | 		    !(zap_flags & ZAP_FLAG_DROP_MARKER)) | 
 | 			set_huge_pte_at(mm, address, ptep, | 
 | 					make_pte_marker(PTE_MARKER_UFFD_WP)); | 
 | 		hugetlb_count_sub(pages_per_huge_page(h), mm); | 
 | 		page_remove_rmap(page, vma, true); | 
 |  | 
 | 		spin_unlock(ptl); | 
 | 		tlb_remove_page_size(tlb, page, huge_page_size(h)); | 
 | 		/* | 
 | 		 * Bail out after unmapping reference page if supplied | 
 | 		 */ | 
 | 		if (ref_page) | 
 | 			break; | 
 | 	} | 
 | 	mmu_notifier_invalidate_range_end(&range); | 
 | 	tlb_end_vma(tlb, vma); | 
 |  | 
 | 	/* | 
 | 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We | 
 | 	 * could defer the flush until now, since by holding i_mmap_rwsem we | 
 | 	 * guaranteed that the last refernece would not be dropped. But we must | 
 | 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be | 
 | 	 * dropped and the last reference to the shared PMDs page might be | 
 | 	 * dropped as well. | 
 | 	 * | 
 | 	 * In theory we could defer the freeing of the PMD pages as well, but | 
 | 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to | 
 | 	 * detect sharing, so we cannot defer the release of the page either. | 
 | 	 * Instead, do flush now. | 
 | 	 */ | 
 | 	if (force_flush) | 
 | 		tlb_flush_mmu_tlbonly(tlb); | 
 | } | 
 |  | 
 | void __unmap_hugepage_range_final(struct mmu_gather *tlb, | 
 | 			  struct vm_area_struct *vma, unsigned long start, | 
 | 			  unsigned long end, struct page *ref_page, | 
 | 			  zap_flags_t zap_flags) | 
 | { | 
 | 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); | 
 |  | 
 | 	/* | 
 | 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable | 
 | 	 * test will fail on a vma being torn down, and not grab a page table | 
 | 	 * on its way out.  We're lucky that the flag has such an appropriate | 
 | 	 * name, and can in fact be safely cleared here. We could clear it | 
 | 	 * before the __unmap_hugepage_range above, but all that's necessary | 
 | 	 * is to clear it before releasing the i_mmap_rwsem. This works | 
 | 	 * because in the context this is called, the VMA is about to be | 
 | 	 * destroyed and the i_mmap_rwsem is held. | 
 | 	 */ | 
 | 	vma->vm_flags &= ~VM_MAYSHARE; | 
 | } | 
 |  | 
 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 
 | 			  unsigned long end, struct page *ref_page, | 
 | 			  zap_flags_t zap_flags) | 
 | { | 
 | 	struct mmu_gather tlb; | 
 |  | 
 | 	tlb_gather_mmu(&tlb, vma->vm_mm); | 
 | 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); | 
 | 	tlb_finish_mmu(&tlb); | 
 | } | 
 |  | 
 | /* | 
 |  * This is called when the original mapper is failing to COW a MAP_PRIVATE | 
 |  * mapping it owns the reserve page for. The intention is to unmap the page | 
 |  * from other VMAs and let the children be SIGKILLed if they are faulting the | 
 |  * same region. | 
 |  */ | 
 | static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 			      struct page *page, unsigned long address) | 
 | { | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	struct vm_area_struct *iter_vma; | 
 | 	struct address_space *mapping; | 
 | 	pgoff_t pgoff; | 
 |  | 
 | 	/* | 
 | 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation | 
 | 	 * from page cache lookup which is in HPAGE_SIZE units. | 
 | 	 */ | 
 | 	address = address & huge_page_mask(h); | 
 | 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + | 
 | 			vma->vm_pgoff; | 
 | 	mapping = vma->vm_file->f_mapping; | 
 |  | 
 | 	/* | 
 | 	 * Take the mapping lock for the duration of the table walk. As | 
 | 	 * this mapping should be shared between all the VMAs, | 
 | 	 * __unmap_hugepage_range() is called as the lock is already held | 
 | 	 */ | 
 | 	i_mmap_lock_write(mapping); | 
 | 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { | 
 | 		/* Do not unmap the current VMA */ | 
 | 		if (iter_vma == vma) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Shared VMAs have their own reserves and do not affect | 
 | 		 * MAP_PRIVATE accounting but it is possible that a shared | 
 | 		 * VMA is using the same page so check and skip such VMAs. | 
 | 		 */ | 
 | 		if (iter_vma->vm_flags & VM_MAYSHARE) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Unmap the page from other VMAs without their own reserves. | 
 | 		 * They get marked to be SIGKILLed if they fault in these | 
 | 		 * areas. This is because a future no-page fault on this VMA | 
 | 		 * could insert a zeroed page instead of the data existing | 
 | 		 * from the time of fork. This would look like data corruption | 
 | 		 */ | 
 | 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | 
 | 			unmap_hugepage_range(iter_vma, address, | 
 | 					     address + huge_page_size(h), page, 0); | 
 | 	} | 
 | 	i_mmap_unlock_write(mapping); | 
 | } | 
 |  | 
 | /* | 
 |  * hugetlb_wp() should be called with page lock of the original hugepage held. | 
 |  * Called with hugetlb_fault_mutex_table held and pte_page locked so we | 
 |  * cannot race with other handlers or page migration. | 
 |  * Keep the pte_same checks anyway to make transition from the mutex easier. | 
 |  */ | 
 | static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		       unsigned long address, pte_t *ptep, unsigned int flags, | 
 | 		       struct page *pagecache_page, spinlock_t *ptl) | 
 | { | 
 | 	const bool unshare = flags & FAULT_FLAG_UNSHARE; | 
 | 	pte_t pte; | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	struct page *old_page, *new_page; | 
 | 	int outside_reserve = 0; | 
 | 	vm_fault_t ret = 0; | 
 | 	unsigned long haddr = address & huge_page_mask(h); | 
 | 	struct mmu_notifier_range range; | 
 |  | 
 | 	VM_BUG_ON(unshare && (flags & FOLL_WRITE)); | 
 | 	VM_BUG_ON(!unshare && !(flags & FOLL_WRITE)); | 
 |  | 
 | 	pte = huge_ptep_get(ptep); | 
 | 	old_page = pte_page(pte); | 
 |  | 
 | 	delayacct_wpcopy_start(); | 
 |  | 
 | retry_avoidcopy: | 
 | 	/* | 
 | 	 * If no-one else is actually using this page, we're the exclusive | 
 | 	 * owner and can reuse this page. | 
 | 	 */ | 
 | 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { | 
 | 		if (!PageAnonExclusive(old_page)) | 
 | 			page_move_anon_rmap(old_page, vma); | 
 | 		if (likely(!unshare)) | 
 | 			set_huge_ptep_writable(vma, haddr, ptep); | 
 |  | 
 | 		delayacct_wpcopy_end(); | 
 | 		return 0; | 
 | 	} | 
 | 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), | 
 | 		       old_page); | 
 |  | 
 | 	/* | 
 | 	 * If the process that created a MAP_PRIVATE mapping is about to | 
 | 	 * perform a COW due to a shared page count, attempt to satisfy | 
 | 	 * the allocation without using the existing reserves. The pagecache | 
 | 	 * page is used to determine if the reserve at this address was | 
 | 	 * consumed or not. If reserves were used, a partial faulted mapping | 
 | 	 * at the time of fork() could consume its reserves on COW instead | 
 | 	 * of the full address range. | 
 | 	 */ | 
 | 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && | 
 | 			old_page != pagecache_page) | 
 | 		outside_reserve = 1; | 
 |  | 
 | 	get_page(old_page); | 
 |  | 
 | 	/* | 
 | 	 * Drop page table lock as buddy allocator may be called. It will | 
 | 	 * be acquired again before returning to the caller, as expected. | 
 | 	 */ | 
 | 	spin_unlock(ptl); | 
 | 	new_page = alloc_huge_page(vma, haddr, outside_reserve); | 
 |  | 
 | 	if (IS_ERR(new_page)) { | 
 | 		/* | 
 | 		 * If a process owning a MAP_PRIVATE mapping fails to COW, | 
 | 		 * it is due to references held by a child and an insufficient | 
 | 		 * huge page pool. To guarantee the original mappers | 
 | 		 * reliability, unmap the page from child processes. The child | 
 | 		 * may get SIGKILLed if it later faults. | 
 | 		 */ | 
 | 		if (outside_reserve) { | 
 | 			struct address_space *mapping = vma->vm_file->f_mapping; | 
 | 			pgoff_t idx; | 
 | 			u32 hash; | 
 |  | 
 | 			put_page(old_page); | 
 | 			BUG_ON(huge_pte_none(pte)); | 
 | 			/* | 
 | 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before | 
 | 			 * unmapping.  unmapping needs to hold i_mmap_rwsem | 
 | 			 * in write mode.  Dropping i_mmap_rwsem in read mode | 
 | 			 * here is OK as COW mappings do not interact with | 
 | 			 * PMD sharing. | 
 | 			 * | 
 | 			 * Reacquire both after unmap operation. | 
 | 			 */ | 
 | 			idx = vma_hugecache_offset(h, vma, haddr); | 
 | 			hash = hugetlb_fault_mutex_hash(mapping, idx); | 
 | 			mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
 | 			i_mmap_unlock_read(mapping); | 
 |  | 
 | 			unmap_ref_private(mm, vma, old_page, haddr); | 
 |  | 
 | 			i_mmap_lock_read(mapping); | 
 | 			mutex_lock(&hugetlb_fault_mutex_table[hash]); | 
 | 			spin_lock(ptl); | 
 | 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); | 
 | 			if (likely(ptep && | 
 | 				   pte_same(huge_ptep_get(ptep), pte))) | 
 | 				goto retry_avoidcopy; | 
 | 			/* | 
 | 			 * race occurs while re-acquiring page table | 
 | 			 * lock, and our job is done. | 
 | 			 */ | 
 | 			delayacct_wpcopy_end(); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		ret = vmf_error(PTR_ERR(new_page)); | 
 | 		goto out_release_old; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When the original hugepage is shared one, it does not have | 
 | 	 * anon_vma prepared. | 
 | 	 */ | 
 | 	if (unlikely(anon_vma_prepare(vma))) { | 
 | 		ret = VM_FAULT_OOM; | 
 | 		goto out_release_all; | 
 | 	} | 
 |  | 
 | 	copy_user_huge_page(new_page, old_page, address, vma, | 
 | 			    pages_per_huge_page(h)); | 
 | 	__SetPageUptodate(new_page); | 
 |  | 
 | 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, | 
 | 				haddr + huge_page_size(h)); | 
 | 	mmu_notifier_invalidate_range_start(&range); | 
 |  | 
 | 	/* | 
 | 	 * Retake the page table lock to check for racing updates | 
 | 	 * before the page tables are altered | 
 | 	 */ | 
 | 	spin_lock(ptl); | 
 | 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); | 
 | 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { | 
 | 		ClearHPageRestoreReserve(new_page); | 
 |  | 
 | 		/* Break COW or unshare */ | 
 | 		huge_ptep_clear_flush(vma, haddr, ptep); | 
 | 		mmu_notifier_invalidate_range(mm, range.start, range.end); | 
 | 		page_remove_rmap(old_page, vma, true); | 
 | 		hugepage_add_new_anon_rmap(new_page, vma, haddr); | 
 | 		set_huge_pte_at(mm, haddr, ptep, | 
 | 				make_huge_pte(vma, new_page, !unshare)); | 
 | 		SetHPageMigratable(new_page); | 
 | 		/* Make the old page be freed below */ | 
 | 		new_page = old_page; | 
 | 	} | 
 | 	spin_unlock(ptl); | 
 | 	mmu_notifier_invalidate_range_end(&range); | 
 | out_release_all: | 
 | 	/* | 
 | 	 * No restore in case of successful pagetable update (Break COW or | 
 | 	 * unshare) | 
 | 	 */ | 
 | 	if (new_page != old_page) | 
 | 		restore_reserve_on_error(h, vma, haddr, new_page); | 
 | 	put_page(new_page); | 
 | out_release_old: | 
 | 	put_page(old_page); | 
 |  | 
 | 	spin_lock(ptl); /* Caller expects lock to be held */ | 
 |  | 
 | 	delayacct_wpcopy_end(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Return the pagecache page at a given address within a VMA */ | 
 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, | 
 | 			struct vm_area_struct *vma, unsigned long address) | 
 | { | 
 | 	struct address_space *mapping; | 
 | 	pgoff_t idx; | 
 |  | 
 | 	mapping = vma->vm_file->f_mapping; | 
 | 	idx = vma_hugecache_offset(h, vma, address); | 
 |  | 
 | 	return find_lock_page(mapping, idx); | 
 | } | 
 |  | 
 | /* | 
 |  * Return whether there is a pagecache page to back given address within VMA. | 
 |  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. | 
 |  */ | 
 | static bool hugetlbfs_pagecache_present(struct hstate *h, | 
 | 			struct vm_area_struct *vma, unsigned long address) | 
 | { | 
 | 	struct address_space *mapping; | 
 | 	pgoff_t idx; | 
 | 	struct page *page; | 
 |  | 
 | 	mapping = vma->vm_file->f_mapping; | 
 | 	idx = vma_hugecache_offset(h, vma, address); | 
 |  | 
 | 	page = find_get_page(mapping, idx); | 
 | 	if (page) | 
 | 		put_page(page); | 
 | 	return page != NULL; | 
 | } | 
 |  | 
 | int huge_add_to_page_cache(struct page *page, struct address_space *mapping, | 
 | 			   pgoff_t idx) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 | 	struct hstate *h = hstate_inode(inode); | 
 | 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 | 	ClearHPageRestoreReserve(page); | 
 |  | 
 | 	/* | 
 | 	 * set page dirty so that it will not be removed from cache/file | 
 | 	 * by non-hugetlbfs specific code paths. | 
 | 	 */ | 
 | 	set_page_dirty(page); | 
 |  | 
 | 	spin_lock(&inode->i_lock); | 
 | 	inode->i_blocks += blocks_per_huge_page(h); | 
 | 	spin_unlock(&inode->i_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, | 
 | 						  struct address_space *mapping, | 
 | 						  pgoff_t idx, | 
 | 						  unsigned int flags, | 
 | 						  unsigned long haddr, | 
 | 						  unsigned long addr, | 
 | 						  unsigned long reason) | 
 | { | 
 | 	vm_fault_t ret; | 
 | 	u32 hash; | 
 | 	struct vm_fault vmf = { | 
 | 		.vma = vma, | 
 | 		.address = haddr, | 
 | 		.real_address = addr, | 
 | 		.flags = flags, | 
 |  | 
 | 		/* | 
 | 		 * Hard to debug if it ends up being | 
 | 		 * used by a callee that assumes | 
 | 		 * something about the other | 
 | 		 * uninitialized fields... same as in | 
 | 		 * memory.c | 
 | 		 */ | 
 | 	}; | 
 |  | 
 | 	/* | 
 | 	 * hugetlb_fault_mutex and i_mmap_rwsem must be | 
 | 	 * dropped before handling userfault.  Reacquire | 
 | 	 * after handling fault to make calling code simpler. | 
 | 	 */ | 
 | 	hash = hugetlb_fault_mutex_hash(mapping, idx); | 
 | 	mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
 | 	i_mmap_unlock_read(mapping); | 
 | 	ret = handle_userfault(&vmf, reason); | 
 | 	i_mmap_lock_read(mapping); | 
 | 	mutex_lock(&hugetlb_fault_mutex_table[hash]); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static vm_fault_t hugetlb_no_page(struct mm_struct *mm, | 
 | 			struct vm_area_struct *vma, | 
 | 			struct address_space *mapping, pgoff_t idx, | 
 | 			unsigned long address, pte_t *ptep, | 
 | 			pte_t old_pte, unsigned int flags) | 
 | { | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	vm_fault_t ret = VM_FAULT_SIGBUS; | 
 | 	int anon_rmap = 0; | 
 | 	unsigned long size; | 
 | 	struct page *page; | 
 | 	pte_t new_pte; | 
 | 	spinlock_t *ptl; | 
 | 	unsigned long haddr = address & huge_page_mask(h); | 
 | 	bool new_page, new_pagecache_page = false; | 
 |  | 
 | 	/* | 
 | 	 * Currently, we are forced to kill the process in the event the | 
 | 	 * original mapper has unmapped pages from the child due to a failed | 
 | 	 * COW/unsharing. Warn that such a situation has occurred as it may not | 
 | 	 * be obvious. | 
 | 	 */ | 
 | 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | 
 | 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", | 
 | 			   current->pid); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We can not race with truncation due to holding i_mmap_rwsem. | 
 | 	 * i_size is modified when holding i_mmap_rwsem, so check here | 
 | 	 * once for faults beyond end of file. | 
 | 	 */ | 
 | 	size = i_size_read(mapping->host) >> huge_page_shift(h); | 
 | 	if (idx >= size) | 
 | 		goto out; | 
 |  | 
 | retry: | 
 | 	new_page = false; | 
 | 	page = find_lock_page(mapping, idx); | 
 | 	if (!page) { | 
 | 		/* Check for page in userfault range */ | 
 | 		if (userfaultfd_missing(vma)) { | 
 | 			ret = hugetlb_handle_userfault(vma, mapping, idx, | 
 | 						       flags, haddr, address, | 
 | 						       VM_UFFD_MISSING); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		page = alloc_huge_page(vma, haddr, 0); | 
 | 		if (IS_ERR(page)) { | 
 | 			/* | 
 | 			 * Returning error will result in faulting task being | 
 | 			 * sent SIGBUS.  The hugetlb fault mutex prevents two | 
 | 			 * tasks from racing to fault in the same page which | 
 | 			 * could result in false unable to allocate errors. | 
 | 			 * Page migration does not take the fault mutex, but | 
 | 			 * does a clear then write of pte's under page table | 
 | 			 * lock.  Page fault code could race with migration, | 
 | 			 * notice the clear pte and try to allocate a page | 
 | 			 * here.  Before returning error, get ptl and make | 
 | 			 * sure there really is no pte entry. | 
 | 			 */ | 
 | 			ptl = huge_pte_lock(h, mm, ptep); | 
 | 			ret = 0; | 
 | 			if (huge_pte_none(huge_ptep_get(ptep))) | 
 | 				ret = vmf_error(PTR_ERR(page)); | 
 | 			spin_unlock(ptl); | 
 | 			goto out; | 
 | 		} | 
 | 		clear_huge_page(page, address, pages_per_huge_page(h)); | 
 | 		__SetPageUptodate(page); | 
 | 		new_page = true; | 
 |  | 
 | 		if (vma->vm_flags & VM_MAYSHARE) { | 
 | 			int err = huge_add_to_page_cache(page, mapping, idx); | 
 | 			if (err) { | 
 | 				put_page(page); | 
 | 				if (err == -EEXIST) | 
 | 					goto retry; | 
 | 				goto out; | 
 | 			} | 
 | 			new_pagecache_page = true; | 
 | 		} else { | 
 | 			lock_page(page); | 
 | 			if (unlikely(anon_vma_prepare(vma))) { | 
 | 				ret = VM_FAULT_OOM; | 
 | 				goto backout_unlocked; | 
 | 			} | 
 | 			anon_rmap = 1; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * If memory error occurs between mmap() and fault, some process | 
 | 		 * don't have hwpoisoned swap entry for errored virtual address. | 
 | 		 * So we need to block hugepage fault by PG_hwpoison bit check. | 
 | 		 */ | 
 | 		if (unlikely(PageHWPoison(page))) { | 
 | 			ret = VM_FAULT_HWPOISON_LARGE | | 
 | 				VM_FAULT_SET_HINDEX(hstate_index(h)); | 
 | 			goto backout_unlocked; | 
 | 		} | 
 |  | 
 | 		/* Check for page in userfault range. */ | 
 | 		if (userfaultfd_minor(vma)) { | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 			ret = hugetlb_handle_userfault(vma, mapping, idx, | 
 | 						       flags, haddr, address, | 
 | 						       VM_UFFD_MINOR); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we are going to COW a private mapping later, we examine the | 
 | 	 * pending reservations for this page now. This will ensure that | 
 | 	 * any allocations necessary to record that reservation occur outside | 
 | 	 * the spinlock. | 
 | 	 */ | 
 | 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { | 
 | 		if (vma_needs_reservation(h, vma, haddr) < 0) { | 
 | 			ret = VM_FAULT_OOM; | 
 | 			goto backout_unlocked; | 
 | 		} | 
 | 		/* Just decrements count, does not deallocate */ | 
 | 		vma_end_reservation(h, vma, haddr); | 
 | 	} | 
 |  | 
 | 	ptl = huge_pte_lock(h, mm, ptep); | 
 | 	ret = 0; | 
 | 	/* If pte changed from under us, retry */ | 
 | 	if (!pte_same(huge_ptep_get(ptep), old_pte)) | 
 | 		goto backout; | 
 |  | 
 | 	if (anon_rmap) { | 
 | 		ClearHPageRestoreReserve(page); | 
 | 		hugepage_add_new_anon_rmap(page, vma, haddr); | 
 | 	} else | 
 | 		page_dup_file_rmap(page, true); | 
 | 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) | 
 | 				&& (vma->vm_flags & VM_SHARED))); | 
 | 	/* | 
 | 	 * If this pte was previously wr-protected, keep it wr-protected even | 
 | 	 * if populated. | 
 | 	 */ | 
 | 	if (unlikely(pte_marker_uffd_wp(old_pte))) | 
 | 		new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte)); | 
 | 	set_huge_pte_at(mm, haddr, ptep, new_pte); | 
 |  | 
 | 	hugetlb_count_add(pages_per_huge_page(h), mm); | 
 | 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { | 
 | 		/* Optimization, do the COW without a second fault */ | 
 | 		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl); | 
 | 	} | 
 |  | 
 | 	spin_unlock(ptl); | 
 |  | 
 | 	/* | 
 | 	 * Only set HPageMigratable in newly allocated pages.  Existing pages | 
 | 	 * found in the pagecache may not have HPageMigratableset if they have | 
 | 	 * been isolated for migration. | 
 | 	 */ | 
 | 	if (new_page) | 
 | 		SetHPageMigratable(page); | 
 |  | 
 | 	unlock_page(page); | 
 | out: | 
 | 	return ret; | 
 |  | 
 | backout: | 
 | 	spin_unlock(ptl); | 
 | backout_unlocked: | 
 | 	unlock_page(page); | 
 | 	/* restore reserve for newly allocated pages not in page cache */ | 
 | 	if (new_page && !new_pagecache_page) | 
 | 		restore_reserve_on_error(h, vma, haddr, page); | 
 | 	put_page(page); | 
 | 	goto out; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) | 
 | { | 
 | 	unsigned long key[2]; | 
 | 	u32 hash; | 
 |  | 
 | 	key[0] = (unsigned long) mapping; | 
 | 	key[1] = idx; | 
 |  | 
 | 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); | 
 |  | 
 | 	return hash & (num_fault_mutexes - 1); | 
 | } | 
 | #else | 
 | /* | 
 |  * For uniprocessor systems we always use a single mutex, so just | 
 |  * return 0 and avoid the hashing overhead. | 
 |  */ | 
 | u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 			unsigned long address, unsigned int flags) | 
 | { | 
 | 	pte_t *ptep, entry; | 
 | 	spinlock_t *ptl; | 
 | 	vm_fault_t ret; | 
 | 	u32 hash; | 
 | 	pgoff_t idx; | 
 | 	struct page *page = NULL; | 
 | 	struct page *pagecache_page = NULL; | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	struct address_space *mapping; | 
 | 	int need_wait_lock = 0; | 
 | 	unsigned long haddr = address & huge_page_mask(h); | 
 |  | 
 | 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); | 
 | 	if (ptep) { | 
 | 		/* | 
 | 		 * Since we hold no locks, ptep could be stale.  That is | 
 | 		 * OK as we are only making decisions based on content and | 
 | 		 * not actually modifying content here. | 
 | 		 */ | 
 | 		entry = huge_ptep_get(ptep); | 
 | 		if (unlikely(is_hugetlb_entry_migration(entry))) { | 
 | 			migration_entry_wait_huge(vma, mm, ptep); | 
 | 			return 0; | 
 | 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | 
 | 			return VM_FAULT_HWPOISON_LARGE | | 
 | 				VM_FAULT_SET_HINDEX(hstate_index(h)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold | 
 | 	 * until finished with ptep.  This serves two purposes: | 
 | 	 * 1) It prevents huge_pmd_unshare from being called elsewhere | 
 | 	 *    and making the ptep no longer valid. | 
 | 	 * 2) It synchronizes us with i_size modifications during truncation. | 
 | 	 * | 
 | 	 * ptep could have already be assigned via huge_pte_offset.  That | 
 | 	 * is OK, as huge_pte_alloc will return the same value unless | 
 | 	 * something has changed. | 
 | 	 */ | 
 | 	mapping = vma->vm_file->f_mapping; | 
 | 	i_mmap_lock_read(mapping); | 
 | 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); | 
 | 	if (!ptep) { | 
 | 		i_mmap_unlock_read(mapping); | 
 | 		return VM_FAULT_OOM; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Serialize hugepage allocation and instantiation, so that we don't | 
 | 	 * get spurious allocation failures if two CPUs race to instantiate | 
 | 	 * the same page in the page cache. | 
 | 	 */ | 
 | 	idx = vma_hugecache_offset(h, vma, haddr); | 
 | 	hash = hugetlb_fault_mutex_hash(mapping, idx); | 
 | 	mutex_lock(&hugetlb_fault_mutex_table[hash]); | 
 |  | 
 | 	entry = huge_ptep_get(ptep); | 
 | 	/* PTE markers should be handled the same way as none pte */ | 
 | 	if (huge_pte_none_mostly(entry)) { | 
 | 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, | 
 | 				      entry, flags); | 
 | 		goto out_mutex; | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * entry could be a migration/hwpoison entry at this point, so this | 
 | 	 * check prevents the kernel from going below assuming that we have | 
 | 	 * an active hugepage in pagecache. This goto expects the 2nd page | 
 | 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will | 
 | 	 * properly handle it. | 
 | 	 */ | 
 | 	if (!pte_present(entry)) | 
 | 		goto out_mutex; | 
 |  | 
 | 	/* | 
 | 	 * If we are going to COW/unshare the mapping later, we examine the | 
 | 	 * pending reservations for this page now. This will ensure that any | 
 | 	 * allocations necessary to record that reservation occur outside the | 
 | 	 * spinlock. For private mappings, we also lookup the pagecache | 
 | 	 * page now as it is used to determine if a reservation has been | 
 | 	 * consumed. | 
 | 	 */ | 
 | 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && | 
 | 	    !huge_pte_write(entry)) { | 
 | 		if (vma_needs_reservation(h, vma, haddr) < 0) { | 
 | 			ret = VM_FAULT_OOM; | 
 | 			goto out_mutex; | 
 | 		} | 
 | 		/* Just decrements count, does not deallocate */ | 
 | 		vma_end_reservation(h, vma, haddr); | 
 |  | 
 | 		if (!(vma->vm_flags & VM_MAYSHARE)) | 
 | 			pagecache_page = hugetlbfs_pagecache_page(h, | 
 | 								vma, haddr); | 
 | 	} | 
 |  | 
 | 	ptl = huge_pte_lock(h, mm, ptep); | 
 |  | 
 | 	/* Check for a racing update before calling hugetlb_wp() */ | 
 | 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) | 
 | 		goto out_ptl; | 
 |  | 
 | 	/* Handle userfault-wp first, before trying to lock more pages */ | 
 | 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && | 
 | 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { | 
 | 		struct vm_fault vmf = { | 
 | 			.vma = vma, | 
 | 			.address = haddr, | 
 | 			.real_address = address, | 
 | 			.flags = flags, | 
 | 		}; | 
 |  | 
 | 		spin_unlock(ptl); | 
 | 		if (pagecache_page) { | 
 | 			unlock_page(pagecache_page); | 
 | 			put_page(pagecache_page); | 
 | 		} | 
 | 		mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
 | 		i_mmap_unlock_read(mapping); | 
 | 		return handle_userfault(&vmf, VM_UFFD_WP); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * hugetlb_wp() requires page locks of pte_page(entry) and | 
 | 	 * pagecache_page, so here we need take the former one | 
 | 	 * when page != pagecache_page or !pagecache_page. | 
 | 	 */ | 
 | 	page = pte_page(entry); | 
 | 	if (page != pagecache_page) | 
 | 		if (!trylock_page(page)) { | 
 | 			need_wait_lock = 1; | 
 | 			goto out_ptl; | 
 | 		} | 
 |  | 
 | 	get_page(page); | 
 |  | 
 | 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { | 
 | 		if (!huge_pte_write(entry)) { | 
 | 			ret = hugetlb_wp(mm, vma, address, ptep, flags, | 
 | 					 pagecache_page, ptl); | 
 | 			goto out_put_page; | 
 | 		} else if (likely(flags & FAULT_FLAG_WRITE)) { | 
 | 			entry = huge_pte_mkdirty(entry); | 
 | 		} | 
 | 	} | 
 | 	entry = pte_mkyoung(entry); | 
 | 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, | 
 | 						flags & FAULT_FLAG_WRITE)) | 
 | 		update_mmu_cache(vma, haddr, ptep); | 
 | out_put_page: | 
 | 	if (page != pagecache_page) | 
 | 		unlock_page(page); | 
 | 	put_page(page); | 
 | out_ptl: | 
 | 	spin_unlock(ptl); | 
 |  | 
 | 	if (pagecache_page) { | 
 | 		unlock_page(pagecache_page); | 
 | 		put_page(pagecache_page); | 
 | 	} | 
 | out_mutex: | 
 | 	mutex_unlock(&hugetlb_fault_mutex_table[hash]); | 
 | 	i_mmap_unlock_read(mapping); | 
 | 	/* | 
 | 	 * Generally it's safe to hold refcount during waiting page lock. But | 
 | 	 * here we just wait to defer the next page fault to avoid busy loop and | 
 | 	 * the page is not used after unlocked before returning from the current | 
 | 	 * page fault. So we are safe from accessing freed page, even if we wait | 
 | 	 * here without taking refcount. | 
 | 	 */ | 
 | 	if (need_wait_lock) | 
 | 		wait_on_page_locked(page); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_USERFAULTFD | 
 | /* | 
 |  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with | 
 |  * modifications for huge pages. | 
 |  */ | 
 | int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, | 
 | 			    pte_t *dst_pte, | 
 | 			    struct vm_area_struct *dst_vma, | 
 | 			    unsigned long dst_addr, | 
 | 			    unsigned long src_addr, | 
 | 			    enum mcopy_atomic_mode mode, | 
 | 			    struct page **pagep, | 
 | 			    bool wp_copy) | 
 | { | 
 | 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); | 
 | 	struct hstate *h = hstate_vma(dst_vma); | 
 | 	struct address_space *mapping = dst_vma->vm_file->f_mapping; | 
 | 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); | 
 | 	unsigned long size; | 
 | 	int vm_shared = dst_vma->vm_flags & VM_SHARED; | 
 | 	pte_t _dst_pte; | 
 | 	spinlock_t *ptl; | 
 | 	int ret = -ENOMEM; | 
 | 	struct page *page; | 
 | 	int writable; | 
 | 	bool page_in_pagecache = false; | 
 |  | 
 | 	if (is_continue) { | 
 | 		ret = -EFAULT; | 
 | 		page = find_lock_page(mapping, idx); | 
 | 		if (!page) | 
 | 			goto out; | 
 | 		page_in_pagecache = true; | 
 | 	} else if (!*pagep) { | 
 | 		/* If a page already exists, then it's UFFDIO_COPY for | 
 | 		 * a non-missing case. Return -EEXIST. | 
 | 		 */ | 
 | 		if (vm_shared && | 
 | 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { | 
 | 			ret = -EEXIST; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		page = alloc_huge_page(dst_vma, dst_addr, 0); | 
 | 		if (IS_ERR(page)) { | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		ret = copy_huge_page_from_user(page, | 
 | 						(const void __user *) src_addr, | 
 | 						pages_per_huge_page(h), false); | 
 |  | 
 | 		/* fallback to copy_from_user outside mmap_lock */ | 
 | 		if (unlikely(ret)) { | 
 | 			ret = -ENOENT; | 
 | 			/* Free the allocated page which may have | 
 | 			 * consumed a reservation. | 
 | 			 */ | 
 | 			restore_reserve_on_error(h, dst_vma, dst_addr, page); | 
 | 			put_page(page); | 
 |  | 
 | 			/* Allocate a temporary page to hold the copied | 
 | 			 * contents. | 
 | 			 */ | 
 | 			page = alloc_huge_page_vma(h, dst_vma, dst_addr); | 
 | 			if (!page) { | 
 | 				ret = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 			*pagep = page; | 
 | 			/* Set the outparam pagep and return to the caller to | 
 | 			 * copy the contents outside the lock. Don't free the | 
 | 			 * page. | 
 | 			 */ | 
 | 			goto out; | 
 | 		} | 
 | 	} else { | 
 | 		if (vm_shared && | 
 | 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { | 
 | 			put_page(*pagep); | 
 | 			ret = -EEXIST; | 
 | 			*pagep = NULL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		page = alloc_huge_page(dst_vma, dst_addr, 0); | 
 | 		if (IS_ERR(page)) { | 
 | 			ret = -ENOMEM; | 
 | 			*pagep = NULL; | 
 | 			goto out; | 
 | 		} | 
 | 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma, | 
 | 				    pages_per_huge_page(h)); | 
 | 		put_page(*pagep); | 
 | 		*pagep = NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The memory barrier inside __SetPageUptodate makes sure that | 
 | 	 * preceding stores to the page contents become visible before | 
 | 	 * the set_pte_at() write. | 
 | 	 */ | 
 | 	__SetPageUptodate(page); | 
 |  | 
 | 	/* Add shared, newly allocated pages to the page cache. */ | 
 | 	if (vm_shared && !is_continue) { | 
 | 		size = i_size_read(mapping->host) >> huge_page_shift(h); | 
 | 		ret = -EFAULT; | 
 | 		if (idx >= size) | 
 | 			goto out_release_nounlock; | 
 |  | 
 | 		/* | 
 | 		 * Serialization between remove_inode_hugepages() and | 
 | 		 * huge_add_to_page_cache() below happens through the | 
 | 		 * hugetlb_fault_mutex_table that here must be hold by | 
 | 		 * the caller. | 
 | 		 */ | 
 | 		ret = huge_add_to_page_cache(page, mapping, idx); | 
 | 		if (ret) | 
 | 			goto out_release_nounlock; | 
 | 		page_in_pagecache = true; | 
 | 	} | 
 |  | 
 | 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte); | 
 | 	spin_lock(ptl); | 
 |  | 
 | 	/* | 
 | 	 * Recheck the i_size after holding PT lock to make sure not | 
 | 	 * to leave any page mapped (as page_mapped()) beyond the end | 
 | 	 * of the i_size (remove_inode_hugepages() is strict about | 
 | 	 * enforcing that). If we bail out here, we'll also leave a | 
 | 	 * page in the radix tree in the vm_shared case beyond the end | 
 | 	 * of the i_size, but remove_inode_hugepages() will take care | 
 | 	 * of it as soon as we drop the hugetlb_fault_mutex_table. | 
 | 	 */ | 
 | 	size = i_size_read(mapping->host) >> huge_page_shift(h); | 
 | 	ret = -EFAULT; | 
 | 	if (idx >= size) | 
 | 		goto out_release_unlock; | 
 |  | 
 | 	ret = -EEXIST; | 
 | 	/* | 
 | 	 * We allow to overwrite a pte marker: consider when both MISSING|WP | 
 | 	 * registered, we firstly wr-protect a none pte which has no page cache | 
 | 	 * page backing it, then access the page. | 
 | 	 */ | 
 | 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) | 
 | 		goto out_release_unlock; | 
 |  | 
 | 	if (vm_shared) { | 
 | 		page_dup_file_rmap(page, true); | 
 | 	} else { | 
 | 		ClearHPageRestoreReserve(page); | 
 | 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY | 
 | 	 * with wp flag set, don't set pte write bit. | 
 | 	 */ | 
 | 	if (wp_copy || (is_continue && !vm_shared)) | 
 | 		writable = 0; | 
 | 	else | 
 | 		writable = dst_vma->vm_flags & VM_WRITE; | 
 |  | 
 | 	_dst_pte = make_huge_pte(dst_vma, page, writable); | 
 | 	/* | 
 | 	 * Always mark UFFDIO_COPY page dirty; note that this may not be | 
 | 	 * extremely important for hugetlbfs for now since swapping is not | 
 | 	 * supported, but we should still be clear in that this page cannot be | 
 | 	 * thrown away at will, even if write bit not set. | 
 | 	 */ | 
 | 	_dst_pte = huge_pte_mkdirty(_dst_pte); | 
 | 	_dst_pte = pte_mkyoung(_dst_pte); | 
 |  | 
 | 	if (wp_copy) | 
 | 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte); | 
 |  | 
 | 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); | 
 |  | 
 | 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, | 
 | 					dst_vma->vm_flags & VM_WRITE); | 
 | 	hugetlb_count_add(pages_per_huge_page(h), dst_mm); | 
 |  | 
 | 	/* No need to invalidate - it was non-present before */ | 
 | 	update_mmu_cache(dst_vma, dst_addr, dst_pte); | 
 |  | 
 | 	spin_unlock(ptl); | 
 | 	if (!is_continue) | 
 | 		SetHPageMigratable(page); | 
 | 	if (vm_shared || is_continue) | 
 | 		unlock_page(page); | 
 | 	ret = 0; | 
 | out: | 
 | 	return ret; | 
 | out_release_unlock: | 
 | 	spin_unlock(ptl); | 
 | 	if (vm_shared || is_continue) | 
 | 		unlock_page(page); | 
 | out_release_nounlock: | 
 | 	if (!page_in_pagecache) | 
 | 		restore_reserve_on_error(h, dst_vma, dst_addr, page); | 
 | 	put_page(page); | 
 | 	goto out; | 
 | } | 
 | #endif /* CONFIG_USERFAULTFD */ | 
 |  | 
 | static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, | 
 | 				 int refs, struct page **pages, | 
 | 				 struct vm_area_struct **vmas) | 
 | { | 
 | 	int nr; | 
 |  | 
 | 	for (nr = 0; nr < refs; nr++) { | 
 | 		if (likely(pages)) | 
 | 			pages[nr] = mem_map_offset(page, nr); | 
 | 		if (vmas) | 
 | 			vmas[nr] = vma; | 
 | 	} | 
 | } | 
 |  | 
 | static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte, | 
 | 					       bool *unshare) | 
 | { | 
 | 	pte_t pteval = huge_ptep_get(pte); | 
 |  | 
 | 	*unshare = false; | 
 | 	if (is_swap_pte(pteval)) | 
 | 		return true; | 
 | 	if (huge_pte_write(pteval)) | 
 | 		return false; | 
 | 	if (flags & FOLL_WRITE) | 
 | 		return true; | 
 | 	if (gup_must_unshare(flags, pte_page(pteval))) { | 
 | 		*unshare = true; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 			 struct page **pages, struct vm_area_struct **vmas, | 
 | 			 unsigned long *position, unsigned long *nr_pages, | 
 | 			 long i, unsigned int flags, int *locked) | 
 | { | 
 | 	unsigned long pfn_offset; | 
 | 	unsigned long vaddr = *position; | 
 | 	unsigned long remainder = *nr_pages; | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	int err = -EFAULT, refs; | 
 |  | 
 | 	while (vaddr < vma->vm_end && remainder) { | 
 | 		pte_t *pte; | 
 | 		spinlock_t *ptl = NULL; | 
 | 		bool unshare = false; | 
 | 		int absent; | 
 | 		struct page *page; | 
 |  | 
 | 		/* | 
 | 		 * If we have a pending SIGKILL, don't keep faulting pages and | 
 | 		 * potentially allocating memory. | 
 | 		 */ | 
 | 		if (fatal_signal_pending(current)) { | 
 | 			remainder = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Some archs (sparc64, sh*) have multiple pte_ts to | 
 | 		 * each hugepage.  We have to make sure we get the | 
 | 		 * first, for the page indexing below to work. | 
 | 		 * | 
 | 		 * Note that page table lock is not held when pte is null. | 
 | 		 */ | 
 | 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), | 
 | 				      huge_page_size(h)); | 
 | 		if (pte) | 
 | 			ptl = huge_pte_lock(h, mm, pte); | 
 | 		absent = !pte || huge_pte_none(huge_ptep_get(pte)); | 
 |  | 
 | 		/* | 
 | 		 * When coredumping, it suits get_dump_page if we just return | 
 | 		 * an error where there's an empty slot with no huge pagecache | 
 | 		 * to back it.  This way, we avoid allocating a hugepage, and | 
 | 		 * the sparse dumpfile avoids allocating disk blocks, but its | 
 | 		 * huge holes still show up with zeroes where they need to be. | 
 | 		 */ | 
 | 		if (absent && (flags & FOLL_DUMP) && | 
 | 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) { | 
 | 			if (pte) | 
 | 				spin_unlock(ptl); | 
 | 			remainder = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We need call hugetlb_fault for both hugepages under migration | 
 | 		 * (in which case hugetlb_fault waits for the migration,) and | 
 | 		 * hwpoisoned hugepages (in which case we need to prevent the | 
 | 		 * caller from accessing to them.) In order to do this, we use | 
 | 		 * here is_swap_pte instead of is_hugetlb_entry_migration and | 
 | 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers | 
 | 		 * both cases, and because we can't follow correct pages | 
 | 		 * directly from any kind of swap entries. | 
 | 		 */ | 
 | 		if (absent || | 
 | 		    __follow_hugetlb_must_fault(flags, pte, &unshare)) { | 
 | 			vm_fault_t ret; | 
 | 			unsigned int fault_flags = 0; | 
 |  | 
 | 			if (pte) | 
 | 				spin_unlock(ptl); | 
 | 			if (flags & FOLL_WRITE) | 
 | 				fault_flags |= FAULT_FLAG_WRITE; | 
 | 			else if (unshare) | 
 | 				fault_flags |= FAULT_FLAG_UNSHARE; | 
 | 			if (locked) | 
 | 				fault_flags |= FAULT_FLAG_ALLOW_RETRY | | 
 | 					FAULT_FLAG_KILLABLE; | 
 | 			if (flags & FOLL_NOWAIT) | 
 | 				fault_flags |= FAULT_FLAG_ALLOW_RETRY | | 
 | 					FAULT_FLAG_RETRY_NOWAIT; | 
 | 			if (flags & FOLL_TRIED) { | 
 | 				/* | 
 | 				 * Note: FAULT_FLAG_ALLOW_RETRY and | 
 | 				 * FAULT_FLAG_TRIED can co-exist | 
 | 				 */ | 
 | 				fault_flags |= FAULT_FLAG_TRIED; | 
 | 			} | 
 | 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags); | 
 | 			if (ret & VM_FAULT_ERROR) { | 
 | 				err = vm_fault_to_errno(ret, flags); | 
 | 				remainder = 0; | 
 | 				break; | 
 | 			} | 
 | 			if (ret & VM_FAULT_RETRY) { | 
 | 				if (locked && | 
 | 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) | 
 | 					*locked = 0; | 
 | 				*nr_pages = 0; | 
 | 				/* | 
 | 				 * VM_FAULT_RETRY must not return an | 
 | 				 * error, it will return zero | 
 | 				 * instead. | 
 | 				 * | 
 | 				 * No need to update "position" as the | 
 | 				 * caller will not check it after | 
 | 				 * *nr_pages is set to 0. | 
 | 				 */ | 
 | 				return i; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; | 
 | 		page = pte_page(huge_ptep_get(pte)); | 
 |  | 
 | 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && | 
 | 			       !PageAnonExclusive(page), page); | 
 |  | 
 | 		/* | 
 | 		 * If subpage information not requested, update counters | 
 | 		 * and skip the same_page loop below. | 
 | 		 */ | 
 | 		if (!pages && !vmas && !pfn_offset && | 
 | 		    (vaddr + huge_page_size(h) < vma->vm_end) && | 
 | 		    (remainder >= pages_per_huge_page(h))) { | 
 | 			vaddr += huge_page_size(h); | 
 | 			remainder -= pages_per_huge_page(h); | 
 | 			i += pages_per_huge_page(h); | 
 | 			spin_unlock(ptl); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* vaddr may not be aligned to PAGE_SIZE */ | 
 | 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, | 
 | 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); | 
 |  | 
 | 		if (pages || vmas) | 
 | 			record_subpages_vmas(mem_map_offset(page, pfn_offset), | 
 | 					     vma, refs, | 
 | 					     likely(pages) ? pages + i : NULL, | 
 | 					     vmas ? vmas + i : NULL); | 
 |  | 
 | 		if (pages) { | 
 | 			/* | 
 | 			 * try_grab_folio() should always succeed here, | 
 | 			 * because: a) we hold the ptl lock, and b) we've just | 
 | 			 * checked that the huge page is present in the page | 
 | 			 * tables. If the huge page is present, then the tail | 
 | 			 * pages must also be present. The ptl prevents the | 
 | 			 * head page and tail pages from being rearranged in | 
 | 			 * any way. So this page must be available at this | 
 | 			 * point, unless the page refcount overflowed: | 
 | 			 */ | 
 | 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, | 
 | 							 flags))) { | 
 | 				spin_unlock(ptl); | 
 | 				remainder = 0; | 
 | 				err = -ENOMEM; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		vaddr += (refs << PAGE_SHIFT); | 
 | 		remainder -= refs; | 
 | 		i += refs; | 
 |  | 
 | 		spin_unlock(ptl); | 
 | 	} | 
 | 	*nr_pages = remainder; | 
 | 	/* | 
 | 	 * setting position is actually required only if remainder is | 
 | 	 * not zero but it's faster not to add a "if (remainder)" | 
 | 	 * branch. | 
 | 	 */ | 
 | 	*position = vaddr; | 
 |  | 
 | 	return i ? i : err; | 
 | } | 
 |  | 
 | unsigned long hugetlb_change_protection(struct vm_area_struct *vma, | 
 | 		unsigned long address, unsigned long end, | 
 | 		pgprot_t newprot, unsigned long cp_flags) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long start = address; | 
 | 	pte_t *ptep; | 
 | 	pte_t pte; | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	unsigned long pages = 0, psize = huge_page_size(h); | 
 | 	bool shared_pmd = false; | 
 | 	struct mmu_notifier_range range; | 
 | 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP; | 
 | 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; | 
 |  | 
 | 	/* | 
 | 	 * In the case of shared PMDs, the area to flush could be beyond | 
 | 	 * start/end.  Set range.start/range.end to cover the maximum possible | 
 | 	 * range if PMD sharing is possible. | 
 | 	 */ | 
 | 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, | 
 | 				0, vma, mm, start, end); | 
 | 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); | 
 |  | 
 | 	BUG_ON(address >= end); | 
 | 	flush_cache_range(vma, range.start, range.end); | 
 |  | 
 | 	mmu_notifier_invalidate_range_start(&range); | 
 | 	i_mmap_lock_write(vma->vm_file->f_mapping); | 
 | 	for (; address < end; address += psize) { | 
 | 		spinlock_t *ptl; | 
 | 		ptep = huge_pte_offset(mm, address, psize); | 
 | 		if (!ptep) | 
 | 			continue; | 
 | 		ptl = huge_pte_lock(h, mm, ptep); | 
 | 		if (huge_pmd_unshare(mm, vma, &address, ptep)) { | 
 | 			/* | 
 | 			 * When uffd-wp is enabled on the vma, unshare | 
 | 			 * shouldn't happen at all.  Warn about it if it | 
 | 			 * happened due to some reason. | 
 | 			 */ | 
 | 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); | 
 | 			pages++; | 
 | 			spin_unlock(ptl); | 
 | 			shared_pmd = true; | 
 | 			continue; | 
 | 		} | 
 | 		pte = huge_ptep_get(ptep); | 
 | 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { | 
 | 			spin_unlock(ptl); | 
 | 			continue; | 
 | 		} | 
 | 		if (unlikely(is_hugetlb_entry_migration(pte))) { | 
 | 			swp_entry_t entry = pte_to_swp_entry(pte); | 
 | 			struct page *page = pfn_swap_entry_to_page(entry); | 
 |  | 
 | 			if (!is_readable_migration_entry(entry)) { | 
 | 				pte_t newpte; | 
 |  | 
 | 				if (PageAnon(page)) | 
 | 					entry = make_readable_exclusive_migration_entry( | 
 | 								swp_offset(entry)); | 
 | 				else | 
 | 					entry = make_readable_migration_entry( | 
 | 								swp_offset(entry)); | 
 | 				newpte = swp_entry_to_pte(entry); | 
 | 				if (uffd_wp) | 
 | 					newpte = pte_swp_mkuffd_wp(newpte); | 
 | 				else if (uffd_wp_resolve) | 
 | 					newpte = pte_swp_clear_uffd_wp(newpte); | 
 | 				set_huge_swap_pte_at(mm, address, ptep, | 
 | 						     newpte, psize); | 
 | 				pages++; | 
 | 			} | 
 | 			spin_unlock(ptl); | 
 | 			continue; | 
 | 		} | 
 | 		if (unlikely(pte_marker_uffd_wp(pte))) { | 
 | 			/* | 
 | 			 * This is changing a non-present pte into a none pte, | 
 | 			 * no need for huge_ptep_modify_prot_start/commit(). | 
 | 			 */ | 
 | 			if (uffd_wp_resolve) | 
 | 				huge_pte_clear(mm, address, ptep, psize); | 
 | 		} | 
 | 		if (!huge_pte_none(pte)) { | 
 | 			pte_t old_pte; | 
 | 			unsigned int shift = huge_page_shift(hstate_vma(vma)); | 
 |  | 
 | 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep); | 
 | 			pte = huge_pte_modify(old_pte, newprot); | 
 | 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags); | 
 | 			if (uffd_wp) | 
 | 				pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte)); | 
 | 			else if (uffd_wp_resolve) | 
 | 				pte = huge_pte_clear_uffd_wp(pte); | 
 | 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); | 
 | 			pages++; | 
 | 		} else { | 
 | 			/* None pte */ | 
 | 			if (unlikely(uffd_wp)) | 
 | 				/* Safe to modify directly (none->non-present). */ | 
 | 				set_huge_pte_at(mm, address, ptep, | 
 | 						make_pte_marker(PTE_MARKER_UFFD_WP)); | 
 | 		} | 
 | 		spin_unlock(ptl); | 
 | 	} | 
 | 	/* | 
 | 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare | 
 | 	 * may have cleared our pud entry and done put_page on the page table: | 
 | 	 * once we release i_mmap_rwsem, another task can do the final put_page | 
 | 	 * and that page table be reused and filled with junk.  If we actually | 
 | 	 * did unshare a page of pmds, flush the range corresponding to the pud. | 
 | 	 */ | 
 | 	if (shared_pmd) | 
 | 		flush_hugetlb_tlb_range(vma, range.start, range.end); | 
 | 	else | 
 | 		flush_hugetlb_tlb_range(vma, start, end); | 
 | 	/* | 
 | 	 * No need to call mmu_notifier_invalidate_range() we are downgrading | 
 | 	 * page table protection not changing it to point to a new page. | 
 | 	 * | 
 | 	 * See Documentation/vm/mmu_notifier.rst | 
 | 	 */ | 
 | 	i_mmap_unlock_write(vma->vm_file->f_mapping); | 
 | 	mmu_notifier_invalidate_range_end(&range); | 
 |  | 
 | 	return pages << h->order; | 
 | } | 
 |  | 
 | /* Return true if reservation was successful, false otherwise.  */ | 
 | bool hugetlb_reserve_pages(struct inode *inode, | 
 | 					long from, long to, | 
 | 					struct vm_area_struct *vma, | 
 | 					vm_flags_t vm_flags) | 
 | { | 
 | 	long chg, add = -1; | 
 | 	struct hstate *h = hstate_inode(inode); | 
 | 	struct hugepage_subpool *spool = subpool_inode(inode); | 
 | 	struct resv_map *resv_map; | 
 | 	struct hugetlb_cgroup *h_cg = NULL; | 
 | 	long gbl_reserve, regions_needed = 0; | 
 |  | 
 | 	/* This should never happen */ | 
 | 	if (from > to) { | 
 | 		VM_WARN(1, "%s called with a negative range\n", __func__); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Only apply hugepage reservation if asked. At fault time, an | 
 | 	 * attempt will be made for VM_NORESERVE to allocate a page | 
 | 	 * without using reserves | 
 | 	 */ | 
 | 	if (vm_flags & VM_NORESERVE) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Shared mappings base their reservation on the number of pages that | 
 | 	 * are already allocated on behalf of the file. Private mappings need | 
 | 	 * to reserve the full area even if read-only as mprotect() may be | 
 | 	 * called to make the mapping read-write. Assume !vma is a shm mapping | 
 | 	 */ | 
 | 	if (!vma || vma->vm_flags & VM_MAYSHARE) { | 
 | 		/* | 
 | 		 * resv_map can not be NULL as hugetlb_reserve_pages is only | 
 | 		 * called for inodes for which resv_maps were created (see | 
 | 		 * hugetlbfs_get_inode). | 
 | 		 */ | 
 | 		resv_map = inode_resv_map(inode); | 
 |  | 
 | 		chg = region_chg(resv_map, from, to, ®ions_needed); | 
 |  | 
 | 	} else { | 
 | 		/* Private mapping. */ | 
 | 		resv_map = resv_map_alloc(); | 
 | 		if (!resv_map) | 
 | 			return false; | 
 |  | 
 | 		chg = to - from; | 
 |  | 
 | 		set_vma_resv_map(vma, resv_map); | 
 | 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER); | 
 | 	} | 
 |  | 
 | 	if (chg < 0) | 
 | 		goto out_err; | 
 |  | 
 | 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), | 
 | 				chg * pages_per_huge_page(h), &h_cg) < 0) | 
 | 		goto out_err; | 
 |  | 
 | 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { | 
 | 		/* For private mappings, the hugetlb_cgroup uncharge info hangs | 
 | 		 * of the resv_map. | 
 | 		 */ | 
 | 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * There must be enough pages in the subpool for the mapping. If | 
 | 	 * the subpool has a minimum size, there may be some global | 
 | 	 * reservations already in place (gbl_reserve). | 
 | 	 */ | 
 | 	gbl_reserve = hugepage_subpool_get_pages(spool, chg); | 
 | 	if (gbl_reserve < 0) | 
 | 		goto out_uncharge_cgroup; | 
 |  | 
 | 	/* | 
 | 	 * Check enough hugepages are available for the reservation. | 
 | 	 * Hand the pages back to the subpool if there are not | 
 | 	 */ | 
 | 	if (hugetlb_acct_memory(h, gbl_reserve) < 0) | 
 | 		goto out_put_pages; | 
 |  | 
 | 	/* | 
 | 	 * Account for the reservations made. Shared mappings record regions | 
 | 	 * that have reservations as they are shared by multiple VMAs. | 
 | 	 * When the last VMA disappears, the region map says how much | 
 | 	 * the reservation was and the page cache tells how much of | 
 | 	 * the reservation was consumed. Private mappings are per-VMA and | 
 | 	 * only the consumed reservations are tracked. When the VMA | 
 | 	 * disappears, the original reservation is the VMA size and the | 
 | 	 * consumed reservations are stored in the map. Hence, nothing | 
 | 	 * else has to be done for private mappings here | 
 | 	 */ | 
 | 	if (!vma || vma->vm_flags & VM_MAYSHARE) { | 
 | 		add = region_add(resv_map, from, to, regions_needed, h, h_cg); | 
 |  | 
 | 		if (unlikely(add < 0)) { | 
 | 			hugetlb_acct_memory(h, -gbl_reserve); | 
 | 			goto out_put_pages; | 
 | 		} else if (unlikely(chg > add)) { | 
 | 			/* | 
 | 			 * pages in this range were added to the reserve | 
 | 			 * map between region_chg and region_add.  This | 
 | 			 * indicates a race with alloc_huge_page.  Adjust | 
 | 			 * the subpool and reserve counts modified above | 
 | 			 * based on the difference. | 
 | 			 */ | 
 | 			long rsv_adjust; | 
 |  | 
 | 			/* | 
 | 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the | 
 | 			 * reference to h_cg->css. See comment below for detail. | 
 | 			 */ | 
 | 			hugetlb_cgroup_uncharge_cgroup_rsvd( | 
 | 				hstate_index(h), | 
 | 				(chg - add) * pages_per_huge_page(h), h_cg); | 
 |  | 
 | 			rsv_adjust = hugepage_subpool_put_pages(spool, | 
 | 								chg - add); | 
 | 			hugetlb_acct_memory(h, -rsv_adjust); | 
 | 		} else if (h_cg) { | 
 | 			/* | 
 | 			 * The file_regions will hold their own reference to | 
 | 			 * h_cg->css. So we should release the reference held | 
 | 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are | 
 | 			 * done. | 
 | 			 */ | 
 | 			hugetlb_cgroup_put_rsvd_cgroup(h_cg); | 
 | 		} | 
 | 	} | 
 | 	return true; | 
 |  | 
 | out_put_pages: | 
 | 	/* put back original number of pages, chg */ | 
 | 	(void)hugepage_subpool_put_pages(spool, chg); | 
 | out_uncharge_cgroup: | 
 | 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), | 
 | 					    chg * pages_per_huge_page(h), h_cg); | 
 | out_err: | 
 | 	if (!vma || vma->vm_flags & VM_MAYSHARE) | 
 | 		/* Only call region_abort if the region_chg succeeded but the | 
 | 		 * region_add failed or didn't run. | 
 | 		 */ | 
 | 		if (chg >= 0 && add < 0) | 
 | 			region_abort(resv_map, from, to, regions_needed); | 
 | 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | 
 | 		kref_put(&resv_map->refs, resv_map_release); | 
 | 	return false; | 
 | } | 
 |  | 
 | long hugetlb_unreserve_pages(struct inode *inode, long start, long end, | 
 | 								long freed) | 
 | { | 
 | 	struct hstate *h = hstate_inode(inode); | 
 | 	struct resv_map *resv_map = inode_resv_map(inode); | 
 | 	long chg = 0; | 
 | 	struct hugepage_subpool *spool = subpool_inode(inode); | 
 | 	long gbl_reserve; | 
 |  | 
 | 	/* | 
 | 	 * Since this routine can be called in the evict inode path for all | 
 | 	 * hugetlbfs inodes, resv_map could be NULL. | 
 | 	 */ | 
 | 	if (resv_map) { | 
 | 		chg = region_del(resv_map, start, end); | 
 | 		/* | 
 | 		 * region_del() can fail in the rare case where a region | 
 | 		 * must be split and another region descriptor can not be | 
 | 		 * allocated.  If end == LONG_MAX, it will not fail. | 
 | 		 */ | 
 | 		if (chg < 0) | 
 | 			return chg; | 
 | 	} | 
 |  | 
 | 	spin_lock(&inode->i_lock); | 
 | 	inode->i_blocks -= (blocks_per_huge_page(h) * freed); | 
 | 	spin_unlock(&inode->i_lock); | 
 |  | 
 | 	/* | 
 | 	 * If the subpool has a minimum size, the number of global | 
 | 	 * reservations to be released may be adjusted. | 
 | 	 * | 
 | 	 * Note that !resv_map implies freed == 0. So (chg - freed) | 
 | 	 * won't go negative. | 
 | 	 */ | 
 | 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); | 
 | 	hugetlb_acct_memory(h, -gbl_reserve); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE | 
 | static unsigned long page_table_shareable(struct vm_area_struct *svma, | 
 | 				struct vm_area_struct *vma, | 
 | 				unsigned long addr, pgoff_t idx) | 
 | { | 
 | 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + | 
 | 				svma->vm_start; | 
 | 	unsigned long sbase = saddr & PUD_MASK; | 
 | 	unsigned long s_end = sbase + PUD_SIZE; | 
 |  | 
 | 	/* Allow segments to share if only one is marked locked */ | 
 | 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; | 
 | 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; | 
 |  | 
 | 	/* | 
 | 	 * match the virtual addresses, permission and the alignment of the | 
 | 	 * page table page. | 
 | 	 */ | 
 | 	if (pmd_index(addr) != pmd_index(saddr) || | 
 | 	    vm_flags != svm_flags || | 
 | 	    !range_in_vma(svma, sbase, s_end)) | 
 | 		return 0; | 
 |  | 
 | 	return saddr; | 
 | } | 
 |  | 
 | static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	unsigned long base = addr & PUD_MASK; | 
 | 	unsigned long end = base + PUD_SIZE; | 
 |  | 
 | 	/* | 
 | 	 * check on proper vm_flags and page table alignment | 
 | 	 */ | 
 | 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | #ifdef CONFIG_USERFAULTFD | 
 | 	if (uffd_disable_huge_pmd_share(vma)) | 
 | 		return false; | 
 | #endif | 
 | 	return vma_shareable(vma, addr); | 
 | } | 
 |  | 
 | /* | 
 |  * Determine if start,end range within vma could be mapped by shared pmd. | 
 |  * If yes, adjust start and end to cover range associated with possible | 
 |  * shared pmd mappings. | 
 |  */ | 
 | void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, | 
 | 				unsigned long *start, unsigned long *end) | 
 | { | 
 | 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), | 
 | 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); | 
 |  | 
 | 	/* | 
 | 	 * vma needs to span at least one aligned PUD size, and the range | 
 | 	 * must be at least partially within in. | 
 | 	 */ | 
 | 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || | 
 | 		(*end <= v_start) || (*start >= v_end)) | 
 | 		return; | 
 |  | 
 | 	/* Extend the range to be PUD aligned for a worst case scenario */ | 
 | 	if (*start > v_start) | 
 | 		*start = ALIGN_DOWN(*start, PUD_SIZE); | 
 |  | 
 | 	if (*end < v_end) | 
 | 		*end = ALIGN(*end, PUD_SIZE); | 
 | } | 
 |  | 
 | /* | 
 |  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() | 
 |  * and returns the corresponding pte. While this is not necessary for the | 
 |  * !shared pmd case because we can allocate the pmd later as well, it makes the | 
 |  * code much cleaner. | 
 |  * | 
 |  * This routine must be called with i_mmap_rwsem held in at least read mode if | 
 |  * sharing is possible.  For hugetlbfs, this prevents removal of any page | 
 |  * table entries associated with the address space.  This is important as we | 
 |  * are setting up sharing based on existing page table entries (mappings). | 
 |  */ | 
 | pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		      unsigned long addr, pud_t *pud) | 
 | { | 
 | 	struct address_space *mapping = vma->vm_file->f_mapping; | 
 | 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + | 
 | 			vma->vm_pgoff; | 
 | 	struct vm_area_struct *svma; | 
 | 	unsigned long saddr; | 
 | 	pte_t *spte = NULL; | 
 | 	pte_t *pte; | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	i_mmap_assert_locked(mapping); | 
 | 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { | 
 | 		if (svma == vma) | 
 | 			continue; | 
 |  | 
 | 		saddr = page_table_shareable(svma, vma, addr, idx); | 
 | 		if (saddr) { | 
 | 			spte = huge_pte_offset(svma->vm_mm, saddr, | 
 | 					       vma_mmu_pagesize(svma)); | 
 | 			if (spte) { | 
 | 				get_page(virt_to_page(spte)); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!spte) | 
 | 		goto out; | 
 |  | 
 | 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte); | 
 | 	if (pud_none(*pud)) { | 
 | 		pud_populate(mm, pud, | 
 | 				(pmd_t *)((unsigned long)spte & PAGE_MASK)); | 
 | 		mm_inc_nr_pmds(mm); | 
 | 	} else { | 
 | 		put_page(virt_to_page(spte)); | 
 | 	} | 
 | 	spin_unlock(ptl); | 
 | out: | 
 | 	pte = (pte_t *)pmd_alloc(mm, pud, addr); | 
 | 	return pte; | 
 | } | 
 |  | 
 | /* | 
 |  * unmap huge page backed by shared pte. | 
 |  * | 
 |  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared | 
 |  * indicated by page_count > 1, unmap is achieved by clearing pud and | 
 |  * decrementing the ref count. If count == 1, the pte page is not shared. | 
 |  * | 
 |  * Called with page table lock held and i_mmap_rwsem held in write mode. | 
 |  * | 
 |  * returns: 1 successfully unmapped a shared pte page | 
 |  *	    0 the underlying pte page is not shared, or it is the last user | 
 |  */ | 
 | int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 					unsigned long *addr, pte_t *ptep) | 
 | { | 
 | 	pgd_t *pgd = pgd_offset(mm, *addr); | 
 | 	p4d_t *p4d = p4d_offset(pgd, *addr); | 
 | 	pud_t *pud = pud_offset(p4d, *addr); | 
 |  | 
 | 	i_mmap_assert_write_locked(vma->vm_file->f_mapping); | 
 | 	BUG_ON(page_count(virt_to_page(ptep)) == 0); | 
 | 	if (page_count(virt_to_page(ptep)) == 1) | 
 | 		return 0; | 
 |  | 
 | 	pud_clear(pud); | 
 | 	put_page(virt_to_page(ptep)); | 
 | 	mm_dec_nr_pmds(mm); | 
 | 	/* | 
 | 	 * This update of passed address optimizes loops sequentially | 
 | 	 * processing addresses in increments of huge page size (PMD_SIZE | 
 | 	 * in this case).  By clearing the pud, a PUD_SIZE area is unmapped. | 
 | 	 * Update address to the 'last page' in the cleared area so that | 
 | 	 * calling loop can move to first page past this area. | 
 | 	 */ | 
 | 	*addr |= PUD_SIZE - PMD_SIZE; | 
 | 	return 1; | 
 | } | 
 |  | 
 | #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ | 
 | pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		      unsigned long addr, pud_t *pud) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 				unsigned long *addr, pte_t *ptep) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, | 
 | 				unsigned long *start, unsigned long *end) | 
 | { | 
 | } | 
 |  | 
 | bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ | 
 |  | 
 | #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB | 
 | pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 			unsigned long addr, unsigned long sz) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pte_t *pte = NULL; | 
 |  | 
 | 	pgd = pgd_offset(mm, addr); | 
 | 	p4d = p4d_alloc(mm, pgd, addr); | 
 | 	if (!p4d) | 
 | 		return NULL; | 
 | 	pud = pud_alloc(mm, p4d, addr); | 
 | 	if (pud) { | 
 | 		if (sz == PUD_SIZE) { | 
 | 			pte = (pte_t *)pud; | 
 | 		} else { | 
 | 			BUG_ON(sz != PMD_SIZE); | 
 | 			if (want_pmd_share(vma, addr) && pud_none(*pud)) | 
 | 				pte = huge_pmd_share(mm, vma, addr, pud); | 
 | 			else | 
 | 				pte = (pte_t *)pmd_alloc(mm, pud, addr); | 
 | 		} | 
 | 	} | 
 | 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); | 
 |  | 
 | 	return pte; | 
 | } | 
 |  | 
 | /* | 
 |  * huge_pte_offset() - Walk the page table to resolve the hugepage | 
 |  * entry at address @addr | 
 |  * | 
 |  * Return: Pointer to page table entry (PUD or PMD) for | 
 |  * address @addr, or NULL if a !p*d_present() entry is encountered and the | 
 |  * size @sz doesn't match the hugepage size at this level of the page | 
 |  * table. | 
 |  */ | 
 | pte_t *huge_pte_offset(struct mm_struct *mm, | 
 | 		       unsigned long addr, unsigned long sz) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 |  | 
 | 	pgd = pgd_offset(mm, addr); | 
 | 	if (!pgd_present(*pgd)) | 
 | 		return NULL; | 
 | 	p4d = p4d_offset(pgd, addr); | 
 | 	if (!p4d_present(*p4d)) | 
 | 		return NULL; | 
 |  | 
 | 	pud = pud_offset(p4d, addr); | 
 | 	if (sz == PUD_SIZE) | 
 | 		/* must be pud huge, non-present or none */ | 
 | 		return (pte_t *)pud; | 
 | 	if (!pud_present(*pud)) | 
 | 		return NULL; | 
 | 	/* must have a valid entry and size to go further */ | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	/* must be pmd huge, non-present or none */ | 
 | 	return (pte_t *)pmd; | 
 | } | 
 |  | 
 | #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ | 
 |  | 
 | /* | 
 |  * These functions are overwritable if your architecture needs its own | 
 |  * behavior. | 
 |  */ | 
 | struct page * __weak | 
 | follow_huge_addr(struct mm_struct *mm, unsigned long address, | 
 | 			      int write) | 
 | { | 
 | 	return ERR_PTR(-EINVAL); | 
 | } | 
 |  | 
 | struct page * __weak | 
 | follow_huge_pd(struct vm_area_struct *vma, | 
 | 	       unsigned long address, hugepd_t hpd, int flags, int pdshift) | 
 | { | 
 | 	WARN(1, "hugepd follow called with no support for hugepage directory format\n"); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct page * __weak | 
 | follow_huge_pmd(struct mm_struct *mm, unsigned long address, | 
 | 		pmd_t *pmd, int flags) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	spinlock_t *ptl; | 
 | 	pte_t pte; | 
 |  | 
 | 	/* | 
 | 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via | 
 | 	 * follow_hugetlb_page(). | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(flags & FOLL_PIN)) | 
 | 		return NULL; | 
 |  | 
 | retry: | 
 | 	ptl = pmd_lockptr(mm, pmd); | 
 | 	spin_lock(ptl); | 
 | 	/* | 
 | 	 * make sure that the address range covered by this pmd is not | 
 | 	 * unmapped from other threads. | 
 | 	 */ | 
 | 	if (!pmd_huge(*pmd)) | 
 | 		goto out; | 
 | 	pte = huge_ptep_get((pte_t *)pmd); | 
 | 	if (pte_present(pte)) { | 
 | 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); | 
 | 		/* | 
 | 		 * try_grab_page() should always succeed here, because: a) we | 
 | 		 * hold the pmd (ptl) lock, and b) we've just checked that the | 
 | 		 * huge pmd (head) page is present in the page tables. The ptl | 
 | 		 * prevents the head page and tail pages from being rearranged | 
 | 		 * in any way. So this page must be available at this point, | 
 | 		 * unless the page refcount overflowed: | 
 | 		 */ | 
 | 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) { | 
 | 			page = NULL; | 
 | 			goto out; | 
 | 		} | 
 | 	} else { | 
 | 		if (is_hugetlb_entry_migration(pte)) { | 
 | 			spin_unlock(ptl); | 
 | 			__migration_entry_wait(mm, (pte_t *)pmd, ptl); | 
 | 			goto retry; | 
 | 		} | 
 | 		/* | 
 | 		 * hwpoisoned entry is treated as no_page_table in | 
 | 		 * follow_page_mask(). | 
 | 		 */ | 
 | 	} | 
 | out: | 
 | 	spin_unlock(ptl); | 
 | 	return page; | 
 | } | 
 |  | 
 | struct page * __weak | 
 | follow_huge_pud(struct mm_struct *mm, unsigned long address, | 
 | 		pud_t *pud, int flags) | 
 | { | 
 | 	if (flags & (FOLL_GET | FOLL_PIN)) | 
 | 		return NULL; | 
 |  | 
 | 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); | 
 | } | 
 |  | 
 | struct page * __weak | 
 | follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) | 
 | { | 
 | 	if (flags & (FOLL_GET | FOLL_PIN)) | 
 | 		return NULL; | 
 |  | 
 | 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); | 
 | } | 
 |  | 
 | bool isolate_huge_page(struct page *page, struct list_head *list) | 
 | { | 
 | 	bool ret = true; | 
 |  | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	if (!PageHeadHuge(page) || | 
 | 	    !HPageMigratable(page) || | 
 | 	    !get_page_unless_zero(page)) { | 
 | 		ret = false; | 
 | 		goto unlock; | 
 | 	} | 
 | 	ClearHPageMigratable(page); | 
 | 	list_move_tail(&page->lru, list); | 
 | unlock: | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int get_hwpoison_huge_page(struct page *page, bool *hugetlb) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	*hugetlb = false; | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	if (PageHeadHuge(page)) { | 
 | 		*hugetlb = true; | 
 | 		if (HPageFreed(page)) | 
 | 			ret = 0; | 
 | 		else if (HPageMigratable(page)) | 
 | 			ret = get_page_unless_zero(page); | 
 | 		else | 
 | 			ret = -EBUSY; | 
 | 	} | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int get_huge_page_for_hwpoison(unsigned long pfn, int flags) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	ret = __get_huge_page_for_hwpoison(pfn, flags); | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void putback_active_hugepage(struct page *page) | 
 | { | 
 | 	spin_lock_irq(&hugetlb_lock); | 
 | 	SetHPageMigratable(page); | 
 | 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); | 
 | 	spin_unlock_irq(&hugetlb_lock); | 
 | 	put_page(page); | 
 | } | 
 |  | 
 | void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) | 
 | { | 
 | 	struct hstate *h = page_hstate(oldpage); | 
 |  | 
 | 	hugetlb_cgroup_migrate(oldpage, newpage); | 
 | 	set_page_owner_migrate_reason(newpage, reason); | 
 |  | 
 | 	/* | 
 | 	 * transfer temporary state of the new huge page. This is | 
 | 	 * reverse to other transitions because the newpage is going to | 
 | 	 * be final while the old one will be freed so it takes over | 
 | 	 * the temporary status. | 
 | 	 * | 
 | 	 * Also note that we have to transfer the per-node surplus state | 
 | 	 * here as well otherwise the global surplus count will not match | 
 | 	 * the per-node's. | 
 | 	 */ | 
 | 	if (HPageTemporary(newpage)) { | 
 | 		int old_nid = page_to_nid(oldpage); | 
 | 		int new_nid = page_to_nid(newpage); | 
 |  | 
 | 		SetHPageTemporary(oldpage); | 
 | 		ClearHPageTemporary(newpage); | 
 |  | 
 | 		/* | 
 | 		 * There is no need to transfer the per-node surplus state | 
 | 		 * when we do not cross the node. | 
 | 		 */ | 
 | 		if (new_nid == old_nid) | 
 | 			return; | 
 | 		spin_lock_irq(&hugetlb_lock); | 
 | 		if (h->surplus_huge_pages_node[old_nid]) { | 
 | 			h->surplus_huge_pages_node[old_nid]--; | 
 | 			h->surplus_huge_pages_node[new_nid]++; | 
 | 		} | 
 | 		spin_unlock_irq(&hugetlb_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This function will unconditionally remove all the shared pmd pgtable entries | 
 |  * within the specific vma for a hugetlbfs memory range. | 
 |  */ | 
 | void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) | 
 | { | 
 | 	struct hstate *h = hstate_vma(vma); | 
 | 	unsigned long sz = huge_page_size(h); | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	struct mmu_notifier_range range; | 
 | 	unsigned long address, start, end; | 
 | 	spinlock_t *ptl; | 
 | 	pte_t *ptep; | 
 |  | 
 | 	if (!(vma->vm_flags & VM_MAYSHARE)) | 
 | 		return; | 
 |  | 
 | 	start = ALIGN(vma->vm_start, PUD_SIZE); | 
 | 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); | 
 |  | 
 | 	if (start >= end) | 
 | 		return; | 
 |  | 
 | 	flush_cache_range(vma, start, end); | 
 | 	/* | 
 | 	 * No need to call adjust_range_if_pmd_sharing_possible(), because | 
 | 	 * we have already done the PUD_SIZE alignment. | 
 | 	 */ | 
 | 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, | 
 | 				start, end); | 
 | 	mmu_notifier_invalidate_range_start(&range); | 
 | 	i_mmap_lock_write(vma->vm_file->f_mapping); | 
 | 	for (address = start; address < end; address += PUD_SIZE) { | 
 | 		unsigned long tmp = address; | 
 |  | 
 | 		ptep = huge_pte_offset(mm, address, sz); | 
 | 		if (!ptep) | 
 | 			continue; | 
 | 		ptl = huge_pte_lock(h, mm, ptep); | 
 | 		/* We don't want 'address' to be changed */ | 
 | 		huge_pmd_unshare(mm, vma, &tmp, ptep); | 
 | 		spin_unlock(ptl); | 
 | 	} | 
 | 	flush_hugetlb_tlb_range(vma, start, end); | 
 | 	i_mmap_unlock_write(vma->vm_file->f_mapping); | 
 | 	/* | 
 | 	 * No need to call mmu_notifier_invalidate_range(), see | 
 | 	 * Documentation/vm/mmu_notifier.rst. | 
 | 	 */ | 
 | 	mmu_notifier_invalidate_range_end(&range); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | static bool cma_reserve_called __initdata; | 
 |  | 
 | static int __init cmdline_parse_hugetlb_cma(char *p) | 
 | { | 
 | 	int nid, count = 0; | 
 | 	unsigned long tmp; | 
 | 	char *s = p; | 
 |  | 
 | 	while (*s) { | 
 | 		if (sscanf(s, "%lu%n", &tmp, &count) != 1) | 
 | 			break; | 
 |  | 
 | 		if (s[count] == ':') { | 
 | 			if (tmp >= MAX_NUMNODES) | 
 | 				break; | 
 | 			nid = array_index_nospec(tmp, MAX_NUMNODES); | 
 |  | 
 | 			s += count + 1; | 
 | 			tmp = memparse(s, &s); | 
 | 			hugetlb_cma_size_in_node[nid] = tmp; | 
 | 			hugetlb_cma_size += tmp; | 
 |  | 
 | 			/* | 
 | 			 * Skip the separator if have one, otherwise | 
 | 			 * break the parsing. | 
 | 			 */ | 
 | 			if (*s == ',') | 
 | 				s++; | 
 | 			else | 
 | 				break; | 
 | 		} else { | 
 | 			hugetlb_cma_size = memparse(p, &p); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); | 
 |  | 
 | void __init hugetlb_cma_reserve(int order) | 
 | { | 
 | 	unsigned long size, reserved, per_node; | 
 | 	bool node_specific_cma_alloc = false; | 
 | 	int nid; | 
 |  | 
 | 	cma_reserve_called = true; | 
 |  | 
 | 	if (!hugetlb_cma_size) | 
 | 		return; | 
 |  | 
 | 	for (nid = 0; nid < MAX_NUMNODES; nid++) { | 
 | 		if (hugetlb_cma_size_in_node[nid] == 0) | 
 | 			continue; | 
 |  | 
 | 		if (!node_online(nid)) { | 
 | 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid); | 
 | 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; | 
 | 			hugetlb_cma_size_in_node[nid] = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { | 
 | 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", | 
 | 				nid, (PAGE_SIZE << order) / SZ_1M); | 
 | 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; | 
 | 			hugetlb_cma_size_in_node[nid] = 0; | 
 | 		} else { | 
 | 			node_specific_cma_alloc = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Validate the CMA size again in case some invalid nodes specified. */ | 
 | 	if (!hugetlb_cma_size) | 
 | 		return; | 
 |  | 
 | 	if (hugetlb_cma_size < (PAGE_SIZE << order)) { | 
 | 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", | 
 | 			(PAGE_SIZE << order) / SZ_1M); | 
 | 		hugetlb_cma_size = 0; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!node_specific_cma_alloc) { | 
 | 		/* | 
 | 		 * If 3 GB area is requested on a machine with 4 numa nodes, | 
 | 		 * let's allocate 1 GB on first three nodes and ignore the last one. | 
 | 		 */ | 
 | 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); | 
 | 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", | 
 | 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M); | 
 | 	} | 
 |  | 
 | 	reserved = 0; | 
 | 	for_each_online_node(nid) { | 
 | 		int res; | 
 | 		char name[CMA_MAX_NAME]; | 
 |  | 
 | 		if (node_specific_cma_alloc) { | 
 | 			if (hugetlb_cma_size_in_node[nid] == 0) | 
 | 				continue; | 
 |  | 
 | 			size = hugetlb_cma_size_in_node[nid]; | 
 | 		} else { | 
 | 			size = min(per_node, hugetlb_cma_size - reserved); | 
 | 		} | 
 |  | 
 | 		size = round_up(size, PAGE_SIZE << order); | 
 |  | 
 | 		snprintf(name, sizeof(name), "hugetlb%d", nid); | 
 | 		/* | 
 | 		 * Note that 'order per bit' is based on smallest size that | 
 | 		 * may be returned to CMA allocator in the case of | 
 | 		 * huge page demotion. | 
 | 		 */ | 
 | 		res = cma_declare_contiguous_nid(0, size, 0, | 
 | 						PAGE_SIZE << HUGETLB_PAGE_ORDER, | 
 | 						 0, false, name, | 
 | 						 &hugetlb_cma[nid], nid); | 
 | 		if (res) { | 
 | 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d", | 
 | 				res, nid); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		reserved += size; | 
 | 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", | 
 | 			size / SZ_1M, nid); | 
 |  | 
 | 		if (reserved >= hugetlb_cma_size) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (!reserved) | 
 | 		/* | 
 | 		 * hugetlb_cma_size is used to determine if allocations from | 
 | 		 * cma are possible.  Set to zero if no cma regions are set up. | 
 | 		 */ | 
 | 		hugetlb_cma_size = 0; | 
 | } | 
 |  | 
 | void __init hugetlb_cma_check(void) | 
 | { | 
 | 	if (!hugetlb_cma_size || cma_reserve_called) | 
 | 		return; | 
 |  | 
 | 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); | 
 | } | 
 |  | 
 | #endif /* CONFIG_CMA */ |