| // SPDX-License-Identifier: GPL-2.0 | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/coredump.h> | 
 | #include <linux/mmu_notifier.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/khugepaged.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/hashtable.h> | 
 | #include <linux/userfaultfd_k.h> | 
 | #include <linux/page_idle.h> | 
 | #include <linux/page_table_check.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/shmem_fs.h> | 
 |  | 
 | #include <asm/tlb.h> | 
 | #include <asm/pgalloc.h> | 
 | #include "internal.h" | 
 |  | 
 | enum scan_result { | 
 | 	SCAN_FAIL, | 
 | 	SCAN_SUCCEED, | 
 | 	SCAN_PMD_NULL, | 
 | 	SCAN_EXCEED_NONE_PTE, | 
 | 	SCAN_EXCEED_SWAP_PTE, | 
 | 	SCAN_EXCEED_SHARED_PTE, | 
 | 	SCAN_PTE_NON_PRESENT, | 
 | 	SCAN_PTE_UFFD_WP, | 
 | 	SCAN_PAGE_RO, | 
 | 	SCAN_LACK_REFERENCED_PAGE, | 
 | 	SCAN_PAGE_NULL, | 
 | 	SCAN_SCAN_ABORT, | 
 | 	SCAN_PAGE_COUNT, | 
 | 	SCAN_PAGE_LRU, | 
 | 	SCAN_PAGE_LOCK, | 
 | 	SCAN_PAGE_ANON, | 
 | 	SCAN_PAGE_COMPOUND, | 
 | 	SCAN_ANY_PROCESS, | 
 | 	SCAN_VMA_NULL, | 
 | 	SCAN_VMA_CHECK, | 
 | 	SCAN_ADDRESS_RANGE, | 
 | 	SCAN_DEL_PAGE_LRU, | 
 | 	SCAN_ALLOC_HUGE_PAGE_FAIL, | 
 | 	SCAN_CGROUP_CHARGE_FAIL, | 
 | 	SCAN_TRUNCATED, | 
 | 	SCAN_PAGE_HAS_PRIVATE, | 
 | }; | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/huge_memory.h> | 
 |  | 
 | static struct task_struct *khugepaged_thread __read_mostly; | 
 | static DEFINE_MUTEX(khugepaged_mutex); | 
 |  | 
 | /* default scan 8*512 pte (or vmas) every 30 second */ | 
 | static unsigned int khugepaged_pages_to_scan __read_mostly; | 
 | static unsigned int khugepaged_pages_collapsed; | 
 | static unsigned int khugepaged_full_scans; | 
 | static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; | 
 | /* during fragmentation poll the hugepage allocator once every minute */ | 
 | static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; | 
 | static unsigned long khugepaged_sleep_expire; | 
 | static DEFINE_SPINLOCK(khugepaged_mm_lock); | 
 | static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); | 
 | /* | 
 |  * default collapse hugepages if there is at least one pte mapped like | 
 |  * it would have happened if the vma was large enough during page | 
 |  * fault. | 
 |  */ | 
 | static unsigned int khugepaged_max_ptes_none __read_mostly; | 
 | static unsigned int khugepaged_max_ptes_swap __read_mostly; | 
 | static unsigned int khugepaged_max_ptes_shared __read_mostly; | 
 |  | 
 | #define MM_SLOTS_HASH_BITS 10 | 
 | static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); | 
 |  | 
 | static struct kmem_cache *mm_slot_cache __read_mostly; | 
 |  | 
 | #define MAX_PTE_MAPPED_THP 8 | 
 |  | 
 | /** | 
 |  * struct mm_slot - hash lookup from mm to mm_slot | 
 |  * @hash: hash collision list | 
 |  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head | 
 |  * @mm: the mm that this information is valid for | 
 |  * @nr_pte_mapped_thp: number of pte mapped THP | 
 |  * @pte_mapped_thp: address array corresponding pte mapped THP | 
 |  */ | 
 | struct mm_slot { | 
 | 	struct hlist_node hash; | 
 | 	struct list_head mm_node; | 
 | 	struct mm_struct *mm; | 
 |  | 
 | 	/* pte-mapped THP in this mm */ | 
 | 	int nr_pte_mapped_thp; | 
 | 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct khugepaged_scan - cursor for scanning | 
 |  * @mm_head: the head of the mm list to scan | 
 |  * @mm_slot: the current mm_slot we are scanning | 
 |  * @address: the next address inside that to be scanned | 
 |  * | 
 |  * There is only the one khugepaged_scan instance of this cursor structure. | 
 |  */ | 
 | struct khugepaged_scan { | 
 | 	struct list_head mm_head; | 
 | 	struct mm_slot *mm_slot; | 
 | 	unsigned long address; | 
 | }; | 
 |  | 
 | static struct khugepaged_scan khugepaged_scan = { | 
 | 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), | 
 | }; | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, | 
 | 					 struct kobj_attribute *attr, | 
 | 					 char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); | 
 | } | 
 |  | 
 | static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, | 
 | 					  struct kobj_attribute *attr, | 
 | 					  const char *buf, size_t count) | 
 | { | 
 | 	unsigned int msecs; | 
 | 	int err; | 
 |  | 
 | 	err = kstrtouint(buf, 10, &msecs); | 
 | 	if (err) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_scan_sleep_millisecs = msecs; | 
 | 	khugepaged_sleep_expire = 0; | 
 | 	wake_up_interruptible(&khugepaged_wait); | 
 |  | 
 | 	return count; | 
 | } | 
 | static struct kobj_attribute scan_sleep_millisecs_attr = | 
 | 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, | 
 | 	       scan_sleep_millisecs_store); | 
 |  | 
 | static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, | 
 | 					  struct kobj_attribute *attr, | 
 | 					  char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); | 
 | } | 
 |  | 
 | static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, | 
 | 					   struct kobj_attribute *attr, | 
 | 					   const char *buf, size_t count) | 
 | { | 
 | 	unsigned int msecs; | 
 | 	int err; | 
 |  | 
 | 	err = kstrtouint(buf, 10, &msecs); | 
 | 	if (err) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_alloc_sleep_millisecs = msecs; | 
 | 	khugepaged_sleep_expire = 0; | 
 | 	wake_up_interruptible(&khugepaged_wait); | 
 |  | 
 | 	return count; | 
 | } | 
 | static struct kobj_attribute alloc_sleep_millisecs_attr = | 
 | 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, | 
 | 	       alloc_sleep_millisecs_store); | 
 |  | 
 | static ssize_t pages_to_scan_show(struct kobject *kobj, | 
 | 				  struct kobj_attribute *attr, | 
 | 				  char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); | 
 | } | 
 | static ssize_t pages_to_scan_store(struct kobject *kobj, | 
 | 				   struct kobj_attribute *attr, | 
 | 				   const char *buf, size_t count) | 
 | { | 
 | 	unsigned int pages; | 
 | 	int err; | 
 |  | 
 | 	err = kstrtouint(buf, 10, &pages); | 
 | 	if (err || !pages) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_pages_to_scan = pages; | 
 |  | 
 | 	return count; | 
 | } | 
 | static struct kobj_attribute pages_to_scan_attr = | 
 | 	__ATTR(pages_to_scan, 0644, pages_to_scan_show, | 
 | 	       pages_to_scan_store); | 
 |  | 
 | static ssize_t pages_collapsed_show(struct kobject *kobj, | 
 | 				    struct kobj_attribute *attr, | 
 | 				    char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); | 
 | } | 
 | static struct kobj_attribute pages_collapsed_attr = | 
 | 	__ATTR_RO(pages_collapsed); | 
 |  | 
 | static ssize_t full_scans_show(struct kobject *kobj, | 
 | 			       struct kobj_attribute *attr, | 
 | 			       char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans); | 
 | } | 
 | static struct kobj_attribute full_scans_attr = | 
 | 	__ATTR_RO(full_scans); | 
 |  | 
 | static ssize_t khugepaged_defrag_show(struct kobject *kobj, | 
 | 				      struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return single_hugepage_flag_show(kobj, attr, buf, | 
 | 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | 
 | } | 
 | static ssize_t khugepaged_defrag_store(struct kobject *kobj, | 
 | 				       struct kobj_attribute *attr, | 
 | 				       const char *buf, size_t count) | 
 | { | 
 | 	return single_hugepage_flag_store(kobj, attr, buf, count, | 
 | 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | 
 | } | 
 | static struct kobj_attribute khugepaged_defrag_attr = | 
 | 	__ATTR(defrag, 0644, khugepaged_defrag_show, | 
 | 	       khugepaged_defrag_store); | 
 |  | 
 | /* | 
 |  * max_ptes_none controls if khugepaged should collapse hugepages over | 
 |  * any unmapped ptes in turn potentially increasing the memory | 
 |  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not | 
 |  * reduce the available free memory in the system as it | 
 |  * runs. Increasing max_ptes_none will instead potentially reduce the | 
 |  * free memory in the system during the khugepaged scan. | 
 |  */ | 
 | static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, | 
 | 					     struct kobj_attribute *attr, | 
 | 					     char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); | 
 | } | 
 | static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, | 
 | 					      struct kobj_attribute *attr, | 
 | 					      const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long max_ptes_none; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &max_ptes_none); | 
 | 	if (err || max_ptes_none > HPAGE_PMD_NR-1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_max_ptes_none = max_ptes_none; | 
 |  | 
 | 	return count; | 
 | } | 
 | static struct kobj_attribute khugepaged_max_ptes_none_attr = | 
 | 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, | 
 | 	       khugepaged_max_ptes_none_store); | 
 |  | 
 | static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj, | 
 | 					     struct kobj_attribute *attr, | 
 | 					     char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); | 
 | } | 
 |  | 
 | static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj, | 
 | 					      struct kobj_attribute *attr, | 
 | 					      const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long max_ptes_swap; | 
 |  | 
 | 	err  = kstrtoul(buf, 10, &max_ptes_swap); | 
 | 	if (err || max_ptes_swap > HPAGE_PMD_NR-1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_max_ptes_swap = max_ptes_swap; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static struct kobj_attribute khugepaged_max_ptes_swap_attr = | 
 | 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show, | 
 | 	       khugepaged_max_ptes_swap_store); | 
 |  | 
 | static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj, | 
 | 					       struct kobj_attribute *attr, | 
 | 					       char *buf) | 
 | { | 
 | 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); | 
 | } | 
 |  | 
 | static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj, | 
 | 					      struct kobj_attribute *attr, | 
 | 					      const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long max_ptes_shared; | 
 |  | 
 | 	err  = kstrtoul(buf, 10, &max_ptes_shared); | 
 | 	if (err || max_ptes_shared > HPAGE_PMD_NR-1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_max_ptes_shared = max_ptes_shared; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static struct kobj_attribute khugepaged_max_ptes_shared_attr = | 
 | 	__ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show, | 
 | 	       khugepaged_max_ptes_shared_store); | 
 |  | 
 | static struct attribute *khugepaged_attr[] = { | 
 | 	&khugepaged_defrag_attr.attr, | 
 | 	&khugepaged_max_ptes_none_attr.attr, | 
 | 	&khugepaged_max_ptes_swap_attr.attr, | 
 | 	&khugepaged_max_ptes_shared_attr.attr, | 
 | 	&pages_to_scan_attr.attr, | 
 | 	&pages_collapsed_attr.attr, | 
 | 	&full_scans_attr.attr, | 
 | 	&scan_sleep_millisecs_attr.attr, | 
 | 	&alloc_sleep_millisecs_attr.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | struct attribute_group khugepaged_attr_group = { | 
 | 	.attrs = khugepaged_attr, | 
 | 	.name = "khugepaged", | 
 | }; | 
 | #endif /* CONFIG_SYSFS */ | 
 |  | 
 | int hugepage_madvise(struct vm_area_struct *vma, | 
 | 		     unsigned long *vm_flags, int advice) | 
 | { | 
 | 	switch (advice) { | 
 | 	case MADV_HUGEPAGE: | 
 | #ifdef CONFIG_S390 | 
 | 		/* | 
 | 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 | 
 | 		 * can't handle this properly after s390_enable_sie, so we simply | 
 | 		 * ignore the madvise to prevent qemu from causing a SIGSEGV. | 
 | 		 */ | 
 | 		if (mm_has_pgste(vma->vm_mm)) | 
 | 			return 0; | 
 | #endif | 
 | 		*vm_flags &= ~VM_NOHUGEPAGE; | 
 | 		*vm_flags |= VM_HUGEPAGE; | 
 | 		/* | 
 | 		 * If the vma become good for khugepaged to scan, | 
 | 		 * register it here without waiting a page fault that | 
 | 		 * may not happen any time soon. | 
 | 		 */ | 
 | 		khugepaged_enter_vma(vma, *vm_flags); | 
 | 		break; | 
 | 	case MADV_NOHUGEPAGE: | 
 | 		*vm_flags &= ~VM_HUGEPAGE; | 
 | 		*vm_flags |= VM_NOHUGEPAGE; | 
 | 		/* | 
 | 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning | 
 | 		 * this vma even if we leave the mm registered in khugepaged if | 
 | 		 * it got registered before VM_NOHUGEPAGE was set. | 
 | 		 */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __init khugepaged_init(void) | 
 | { | 
 | 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", | 
 | 					  sizeof(struct mm_slot), | 
 | 					  __alignof__(struct mm_slot), 0, NULL); | 
 | 	if (!mm_slot_cache) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; | 
 | 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; | 
 | 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; | 
 | 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __init khugepaged_destroy(void) | 
 | { | 
 | 	kmem_cache_destroy(mm_slot_cache); | 
 | } | 
 |  | 
 | static inline struct mm_slot *alloc_mm_slot(void) | 
 | { | 
 | 	if (!mm_slot_cache)	/* initialization failed */ | 
 | 		return NULL; | 
 | 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); | 
 | } | 
 |  | 
 | static inline void free_mm_slot(struct mm_slot *mm_slot) | 
 | { | 
 | 	kmem_cache_free(mm_slot_cache, mm_slot); | 
 | } | 
 |  | 
 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 |  | 
 | 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) | 
 | 		if (mm == mm_slot->mm) | 
 | 			return mm_slot; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void insert_to_mm_slots_hash(struct mm_struct *mm, | 
 | 				    struct mm_slot *mm_slot) | 
 | { | 
 | 	mm_slot->mm = mm; | 
 | 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); | 
 | } | 
 |  | 
 | static inline int khugepaged_test_exit(struct mm_struct *mm) | 
 | { | 
 | 	return atomic_read(&mm->mm_users) == 0; | 
 | } | 
 |  | 
 | bool hugepage_vma_check(struct vm_area_struct *vma, | 
 | 			unsigned long vm_flags) | 
 | { | 
 | 	if (!transhuge_vma_enabled(vma, vm_flags)) | 
 | 		return false; | 
 |  | 
 | 	if (vm_flags & VM_NO_KHUGEPAGED) | 
 | 		return false; | 
 |  | 
 | 	/* Don't run khugepaged against DAX vma */ | 
 | 	if (vma_is_dax(vma)) | 
 | 		return false; | 
 |  | 
 | 	if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - | 
 | 				vma->vm_pgoff, HPAGE_PMD_NR)) | 
 | 		return false; | 
 |  | 
 | 	/* Enabled via shmem mount options or sysfs settings. */ | 
 | 	if (shmem_file(vma->vm_file)) | 
 | 		return shmem_huge_enabled(vma); | 
 |  | 
 | 	/* THP settings require madvise. */ | 
 | 	if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) | 
 | 		return false; | 
 |  | 
 | 	/* Only regular file is valid */ | 
 | 	if (file_thp_enabled(vma)) | 
 | 		return true; | 
 |  | 
 | 	if (!vma->anon_vma || !vma_is_anonymous(vma)) | 
 | 		return false; | 
 | 	if (vma_is_temporary_stack(vma)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | void __khugepaged_enter(struct mm_struct *mm) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 | 	int wakeup; | 
 |  | 
 | 	mm_slot = alloc_mm_slot(); | 
 | 	if (!mm_slot) | 
 | 		return; | 
 |  | 
 | 	/* __khugepaged_exit() must not run from under us */ | 
 | 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm); | 
 | 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { | 
 | 		free_mm_slot(mm_slot); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	spin_lock(&khugepaged_mm_lock); | 
 | 	insert_to_mm_slots_hash(mm, mm_slot); | 
 | 	/* | 
 | 	 * Insert just behind the scanning cursor, to let the area settle | 
 | 	 * down a little. | 
 | 	 */ | 
 | 	wakeup = list_empty(&khugepaged_scan.mm_head); | 
 | 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); | 
 | 	spin_unlock(&khugepaged_mm_lock); | 
 |  | 
 | 	mmgrab(mm); | 
 | 	if (wakeup) | 
 | 		wake_up_interruptible(&khugepaged_wait); | 
 | } | 
 |  | 
 | void khugepaged_enter_vma(struct vm_area_struct *vma, | 
 | 			  unsigned long vm_flags) | 
 | { | 
 | 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && | 
 | 	    khugepaged_enabled() && | 
 | 	    (((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < | 
 | 	     (vma->vm_end & HPAGE_PMD_MASK))) { | 
 | 		if (hugepage_vma_check(vma, vm_flags)) | 
 | 			__khugepaged_enter(vma->vm_mm); | 
 | 	} | 
 | } | 
 |  | 
 | void __khugepaged_exit(struct mm_struct *mm) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 | 	int free = 0; | 
 |  | 
 | 	spin_lock(&khugepaged_mm_lock); | 
 | 	mm_slot = get_mm_slot(mm); | 
 | 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { | 
 | 		hash_del(&mm_slot->hash); | 
 | 		list_del(&mm_slot->mm_node); | 
 | 		free = 1; | 
 | 	} | 
 | 	spin_unlock(&khugepaged_mm_lock); | 
 |  | 
 | 	if (free) { | 
 | 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags); | 
 | 		free_mm_slot(mm_slot); | 
 | 		mmdrop(mm); | 
 | 	} else if (mm_slot) { | 
 | 		/* | 
 | 		 * This is required to serialize against | 
 | 		 * khugepaged_test_exit() (which is guaranteed to run | 
 | 		 * under mmap sem read mode). Stop here (after we | 
 | 		 * return all pagetables will be destroyed) until | 
 | 		 * khugepaged has finished working on the pagetables | 
 | 		 * under the mmap_lock. | 
 | 		 */ | 
 | 		mmap_write_lock(mm); | 
 | 		mmap_write_unlock(mm); | 
 | 	} | 
 | } | 
 |  | 
 | static void release_pte_page(struct page *page) | 
 | { | 
 | 	mod_node_page_state(page_pgdat(page), | 
 | 			NR_ISOLATED_ANON + page_is_file_lru(page), | 
 | 			-compound_nr(page)); | 
 | 	unlock_page(page); | 
 | 	putback_lru_page(page); | 
 | } | 
 |  | 
 | static void release_pte_pages(pte_t *pte, pte_t *_pte, | 
 | 		struct list_head *compound_pagelist) | 
 | { | 
 | 	struct page *page, *tmp; | 
 |  | 
 | 	while (--_pte >= pte) { | 
 | 		pte_t pteval = *_pte; | 
 |  | 
 | 		page = pte_page(pteval); | 
 | 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && | 
 | 				!PageCompound(page)) | 
 | 			release_pte_page(page); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { | 
 | 		list_del(&page->lru); | 
 | 		release_pte_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | static bool is_refcount_suitable(struct page *page) | 
 | { | 
 | 	int expected_refcount; | 
 |  | 
 | 	expected_refcount = total_mapcount(page); | 
 | 	if (PageSwapCache(page)) | 
 | 		expected_refcount += compound_nr(page); | 
 |  | 
 | 	return page_count(page) == expected_refcount; | 
 | } | 
 |  | 
 | static int __collapse_huge_page_isolate(struct vm_area_struct *vma, | 
 | 					unsigned long address, | 
 | 					pte_t *pte, | 
 | 					struct list_head *compound_pagelist) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	pte_t *_pte; | 
 | 	int none_or_zero = 0, shared = 0, result = 0, referenced = 0; | 
 | 	bool writable = false; | 
 |  | 
 | 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; | 
 | 	     _pte++, address += PAGE_SIZE) { | 
 | 		pte_t pteval = *_pte; | 
 | 		if (pte_none(pteval) || (pte_present(pteval) && | 
 | 				is_zero_pfn(pte_pfn(pteval)))) { | 
 | 			if (!userfaultfd_armed(vma) && | 
 | 			    ++none_or_zero <= khugepaged_max_ptes_none) { | 
 | 				continue; | 
 | 			} else { | 
 | 				result = SCAN_EXCEED_NONE_PTE; | 
 | 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE); | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		if (!pte_present(pteval)) { | 
 | 			result = SCAN_PTE_NON_PRESENT; | 
 | 			goto out; | 
 | 		} | 
 | 		page = vm_normal_page(vma, address, pteval); | 
 | 		if (unlikely(!page)) { | 
 | 			result = SCAN_PAGE_NULL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		VM_BUG_ON_PAGE(!PageAnon(page), page); | 
 |  | 
 | 		if (page_mapcount(page) > 1 && | 
 | 				++shared > khugepaged_max_ptes_shared) { | 
 | 			result = SCAN_EXCEED_SHARED_PTE; | 
 | 			count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (PageCompound(page)) { | 
 | 			struct page *p; | 
 | 			page = compound_head(page); | 
 |  | 
 | 			/* | 
 | 			 * Check if we have dealt with the compound page | 
 | 			 * already | 
 | 			 */ | 
 | 			list_for_each_entry(p, compound_pagelist, lru) { | 
 | 				if (page == p) | 
 | 					goto next; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We can do it before isolate_lru_page because the | 
 | 		 * page can't be freed from under us. NOTE: PG_lock | 
 | 		 * is needed to serialize against split_huge_page | 
 | 		 * when invoked from the VM. | 
 | 		 */ | 
 | 		if (!trylock_page(page)) { | 
 | 			result = SCAN_PAGE_LOCK; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Check if the page has any GUP (or other external) pins. | 
 | 		 * | 
 | 		 * The page table that maps the page has been already unlinked | 
 | 		 * from the page table tree and this process cannot get | 
 | 		 * an additional pin on the page. | 
 | 		 * | 
 | 		 * New pins can come later if the page is shared across fork, | 
 | 		 * but not from this process. The other process cannot write to | 
 | 		 * the page, only trigger CoW. | 
 | 		 */ | 
 | 		if (!is_refcount_suitable(page)) { | 
 | 			unlock_page(page); | 
 | 			result = SCAN_PAGE_COUNT; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Isolate the page to avoid collapsing an hugepage | 
 | 		 * currently in use by the VM. | 
 | 		 */ | 
 | 		if (isolate_lru_page(page)) { | 
 | 			unlock_page(page); | 
 | 			result = SCAN_DEL_PAGE_LRU; | 
 | 			goto out; | 
 | 		} | 
 | 		mod_node_page_state(page_pgdat(page), | 
 | 				NR_ISOLATED_ANON + page_is_file_lru(page), | 
 | 				compound_nr(page)); | 
 | 		VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 		VM_BUG_ON_PAGE(PageLRU(page), page); | 
 |  | 
 | 		if (PageCompound(page)) | 
 | 			list_add_tail(&page->lru, compound_pagelist); | 
 | next: | 
 | 		/* There should be enough young pte to collapse the page */ | 
 | 		if (pte_young(pteval) || | 
 | 		    page_is_young(page) || PageReferenced(page) || | 
 | 		    mmu_notifier_test_young(vma->vm_mm, address)) | 
 | 			referenced++; | 
 |  | 
 | 		if (pte_write(pteval)) | 
 | 			writable = true; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!writable)) { | 
 | 		result = SCAN_PAGE_RO; | 
 | 	} else if (unlikely(!referenced)) { | 
 | 		result = SCAN_LACK_REFERENCED_PAGE; | 
 | 	} else { | 
 | 		result = SCAN_SUCCEED; | 
 | 		trace_mm_collapse_huge_page_isolate(page, none_or_zero, | 
 | 						    referenced, writable, result); | 
 | 		return 1; | 
 | 	} | 
 | out: | 
 | 	release_pte_pages(pte, _pte, compound_pagelist); | 
 | 	trace_mm_collapse_huge_page_isolate(page, none_or_zero, | 
 | 					    referenced, writable, result); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __collapse_huge_page_copy(pte_t *pte, struct page *page, | 
 | 				      struct vm_area_struct *vma, | 
 | 				      unsigned long address, | 
 | 				      spinlock_t *ptl, | 
 | 				      struct list_head *compound_pagelist) | 
 | { | 
 | 	struct page *src_page, *tmp; | 
 | 	pte_t *_pte; | 
 | 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR; | 
 | 				_pte++, page++, address += PAGE_SIZE) { | 
 | 		pte_t pteval = *_pte; | 
 |  | 
 | 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { | 
 | 			clear_user_highpage(page, address); | 
 | 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); | 
 | 			if (is_zero_pfn(pte_pfn(pteval))) { | 
 | 				/* | 
 | 				 * ptl mostly unnecessary. | 
 | 				 */ | 
 | 				spin_lock(ptl); | 
 | 				ptep_clear(vma->vm_mm, address, _pte); | 
 | 				spin_unlock(ptl); | 
 | 			} | 
 | 		} else { | 
 | 			src_page = pte_page(pteval); | 
 | 			copy_user_highpage(page, src_page, address, vma); | 
 | 			if (!PageCompound(src_page)) | 
 | 				release_pte_page(src_page); | 
 | 			/* | 
 | 			 * ptl mostly unnecessary, but preempt has to | 
 | 			 * be disabled to update the per-cpu stats | 
 | 			 * inside page_remove_rmap(). | 
 | 			 */ | 
 | 			spin_lock(ptl); | 
 | 			ptep_clear(vma->vm_mm, address, _pte); | 
 | 			page_remove_rmap(src_page, vma, false); | 
 | 			spin_unlock(ptl); | 
 | 			free_page_and_swap_cache(src_page); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { | 
 | 		list_del(&src_page->lru); | 
 | 		release_pte_page(src_page); | 
 | 	} | 
 | } | 
 |  | 
 | static void khugepaged_alloc_sleep(void) | 
 | { | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	add_wait_queue(&khugepaged_wait, &wait); | 
 | 	freezable_schedule_timeout_interruptible( | 
 | 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); | 
 | 	remove_wait_queue(&khugepaged_wait, &wait); | 
 | } | 
 |  | 
 | static int khugepaged_node_load[MAX_NUMNODES]; | 
 |  | 
 | static bool khugepaged_scan_abort(int nid) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * If node_reclaim_mode is disabled, then no extra effort is made to | 
 | 	 * allocate memory locally. | 
 | 	 */ | 
 | 	if (!node_reclaim_enabled()) | 
 | 		return false; | 
 |  | 
 | 	/* If there is a count for this node already, it must be acceptable */ | 
 | 	if (khugepaged_node_load[nid]) | 
 | 		return false; | 
 |  | 
 | 	for (i = 0; i < MAX_NUMNODES; i++) { | 
 | 		if (!khugepaged_node_load[i]) | 
 | 			continue; | 
 | 		if (node_distance(nid, i) > node_reclaim_distance) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ | 
 | static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) | 
 | { | 
 | 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static int khugepaged_find_target_node(void) | 
 | { | 
 | 	static int last_khugepaged_target_node = NUMA_NO_NODE; | 
 | 	int nid, target_node = 0, max_value = 0; | 
 |  | 
 | 	/* find first node with max normal pages hit */ | 
 | 	for (nid = 0; nid < MAX_NUMNODES; nid++) | 
 | 		if (khugepaged_node_load[nid] > max_value) { | 
 | 			max_value = khugepaged_node_load[nid]; | 
 | 			target_node = nid; | 
 | 		} | 
 |  | 
 | 	/* do some balance if several nodes have the same hit record */ | 
 | 	if (target_node <= last_khugepaged_target_node) | 
 | 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; | 
 | 				nid++) | 
 | 			if (max_value == khugepaged_node_load[nid]) { | 
 | 				target_node = nid; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 	last_khugepaged_target_node = target_node; | 
 | 	return target_node; | 
 | } | 
 |  | 
 | static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) | 
 | { | 
 | 	if (IS_ERR(*hpage)) { | 
 | 		if (!*wait) | 
 | 			return false; | 
 |  | 
 | 		*wait = false; | 
 | 		*hpage = NULL; | 
 | 		khugepaged_alloc_sleep(); | 
 | 	} else if (*hpage) { | 
 | 		put_page(*hpage); | 
 | 		*hpage = NULL; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static struct page * | 
 | khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) | 
 | { | 
 | 	VM_BUG_ON_PAGE(*hpage, *hpage); | 
 |  | 
 | 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER); | 
 | 	if (unlikely(!*hpage)) { | 
 | 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | 
 | 		*hpage = ERR_PTR(-ENOMEM); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	prep_transhuge_page(*hpage); | 
 | 	count_vm_event(THP_COLLAPSE_ALLOC); | 
 | 	return *hpage; | 
 | } | 
 | #else | 
 | static int khugepaged_find_target_node(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline struct page *alloc_khugepaged_hugepage(void) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(), | 
 | 			   HPAGE_PMD_ORDER); | 
 | 	if (page) | 
 | 		prep_transhuge_page(page); | 
 | 	return page; | 
 | } | 
 |  | 
 | static struct page *khugepaged_alloc_hugepage(bool *wait) | 
 | { | 
 | 	struct page *hpage; | 
 |  | 
 | 	do { | 
 | 		hpage = alloc_khugepaged_hugepage(); | 
 | 		if (!hpage) { | 
 | 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | 
 | 			if (!*wait) | 
 | 				return NULL; | 
 |  | 
 | 			*wait = false; | 
 | 			khugepaged_alloc_sleep(); | 
 | 		} else | 
 | 			count_vm_event(THP_COLLAPSE_ALLOC); | 
 | 	} while (unlikely(!hpage) && likely(khugepaged_enabled())); | 
 |  | 
 | 	return hpage; | 
 | } | 
 |  | 
 | static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) | 
 | { | 
 | 	/* | 
 | 	 * If the hpage allocated earlier was briefly exposed in page cache | 
 | 	 * before collapse_file() failed, it is possible that racing lookups | 
 | 	 * have not yet completed, and would then be unpleasantly surprised by | 
 | 	 * finding the hpage reused for the same mapping at a different offset. | 
 | 	 * Just release the previous allocation if there is any danger of that. | 
 | 	 */ | 
 | 	if (*hpage && page_count(*hpage) > 1) { | 
 | 		put_page(*hpage); | 
 | 		*hpage = NULL; | 
 | 	} | 
 |  | 
 | 	if (!*hpage) | 
 | 		*hpage = khugepaged_alloc_hugepage(wait); | 
 |  | 
 | 	if (unlikely(!*hpage)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static struct page * | 
 | khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) | 
 | { | 
 | 	VM_BUG_ON(!*hpage); | 
 |  | 
 | 	return  *hpage; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * If mmap_lock temporarily dropped, revalidate vma | 
 |  * before taking mmap_lock. | 
 |  * Return 0 if succeeds, otherwise return none-zero | 
 |  * value (scan code). | 
 |  */ | 
 |  | 
 | static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, | 
 | 		struct vm_area_struct **vmap) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	unsigned long hstart, hend; | 
 |  | 
 | 	if (unlikely(khugepaged_test_exit(mm))) | 
 | 		return SCAN_ANY_PROCESS; | 
 |  | 
 | 	*vmap = vma = find_vma(mm, address); | 
 | 	if (!vma) | 
 | 		return SCAN_VMA_NULL; | 
 |  | 
 | 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
 | 	hend = vma->vm_end & HPAGE_PMD_MASK; | 
 | 	if (address < hstart || address + HPAGE_PMD_SIZE > hend) | 
 | 		return SCAN_ADDRESS_RANGE; | 
 | 	if (!hugepage_vma_check(vma, vma->vm_flags)) | 
 | 		return SCAN_VMA_CHECK; | 
 | 	/* Anon VMA expected */ | 
 | 	if (!vma->anon_vma || !vma_is_anonymous(vma)) | 
 | 		return SCAN_VMA_CHECK; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Bring missing pages in from swap, to complete THP collapse. | 
 |  * Only done if khugepaged_scan_pmd believes it is worthwhile. | 
 |  * | 
 |  * Called and returns without pte mapped or spinlocks held, | 
 |  * but with mmap_lock held to protect against vma changes. | 
 |  */ | 
 |  | 
 | static bool __collapse_huge_page_swapin(struct mm_struct *mm, | 
 | 					struct vm_area_struct *vma, | 
 | 					unsigned long haddr, pmd_t *pmd, | 
 | 					int referenced) | 
 | { | 
 | 	int swapped_in = 0; | 
 | 	vm_fault_t ret = 0; | 
 | 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); | 
 |  | 
 | 	for (address = haddr; address < end; address += PAGE_SIZE) { | 
 | 		struct vm_fault vmf = { | 
 | 			.vma = vma, | 
 | 			.address = address, | 
 | 			.pgoff = linear_page_index(vma, haddr), | 
 | 			.flags = FAULT_FLAG_ALLOW_RETRY, | 
 | 			.pmd = pmd, | 
 | 		}; | 
 |  | 
 | 		vmf.pte = pte_offset_map(pmd, address); | 
 | 		vmf.orig_pte = *vmf.pte; | 
 | 		if (!is_swap_pte(vmf.orig_pte)) { | 
 | 			pte_unmap(vmf.pte); | 
 | 			continue; | 
 | 		} | 
 | 		swapped_in++; | 
 | 		ret = do_swap_page(&vmf); | 
 |  | 
 | 		/* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */ | 
 | 		if (ret & VM_FAULT_RETRY) { | 
 | 			mmap_read_lock(mm); | 
 | 			if (hugepage_vma_revalidate(mm, haddr, &vma)) { | 
 | 				/* vma is no longer available, don't continue to swapin */ | 
 | 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); | 
 | 				return false; | 
 | 			} | 
 | 			/* check if the pmd is still valid */ | 
 | 			if (mm_find_pmd(mm, haddr) != pmd) { | 
 | 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); | 
 | 				return false; | 
 | 			} | 
 | 		} | 
 | 		if (ret & VM_FAULT_ERROR) { | 
 | 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */ | 
 | 	if (swapped_in) | 
 | 		lru_add_drain(); | 
 |  | 
 | 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); | 
 | 	return true; | 
 | } | 
 |  | 
 | static void collapse_huge_page(struct mm_struct *mm, | 
 | 				   unsigned long address, | 
 | 				   struct page **hpage, | 
 | 				   int node, int referenced, int unmapped) | 
 | { | 
 | 	LIST_HEAD(compound_pagelist); | 
 | 	pmd_t *pmd, _pmd; | 
 | 	pte_t *pte; | 
 | 	pgtable_t pgtable; | 
 | 	struct page *new_page; | 
 | 	spinlock_t *pmd_ptl, *pte_ptl; | 
 | 	int isolated = 0, result = 0; | 
 | 	struct vm_area_struct *vma; | 
 | 	struct mmu_notifier_range range; | 
 | 	gfp_t gfp; | 
 |  | 
 | 	VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
 |  | 
 | 	/* Only allocate from the target node */ | 
 | 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; | 
 |  | 
 | 	/* | 
 | 	 * Before allocating the hugepage, release the mmap_lock read lock. | 
 | 	 * The allocation can take potentially a long time if it involves | 
 | 	 * sync compaction, and we do not need to hold the mmap_lock during | 
 | 	 * that. We will recheck the vma after taking it again in write mode. | 
 | 	 */ | 
 | 	mmap_read_unlock(mm); | 
 | 	new_page = khugepaged_alloc_page(hpage, gfp, node); | 
 | 	if (!new_page) { | 
 | 		result = SCAN_ALLOC_HUGE_PAGE_FAIL; | 
 | 		goto out_nolock; | 
 | 	} | 
 |  | 
 | 	if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { | 
 | 		result = SCAN_CGROUP_CHARGE_FAIL; | 
 | 		goto out_nolock; | 
 | 	} | 
 | 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); | 
 |  | 
 | 	mmap_read_lock(mm); | 
 | 	result = hugepage_vma_revalidate(mm, address, &vma); | 
 | 	if (result) { | 
 | 		mmap_read_unlock(mm); | 
 | 		goto out_nolock; | 
 | 	} | 
 |  | 
 | 	pmd = mm_find_pmd(mm, address); | 
 | 	if (!pmd) { | 
 | 		result = SCAN_PMD_NULL; | 
 | 		mmap_read_unlock(mm); | 
 | 		goto out_nolock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * __collapse_huge_page_swapin always returns with mmap_lock locked. | 
 | 	 * If it fails, we release mmap_lock and jump out_nolock. | 
 | 	 * Continuing to collapse causes inconsistency. | 
 | 	 */ | 
 | 	if (unmapped && !__collapse_huge_page_swapin(mm, vma, address, | 
 | 						     pmd, referenced)) { | 
 | 		mmap_read_unlock(mm); | 
 | 		goto out_nolock; | 
 | 	} | 
 |  | 
 | 	mmap_read_unlock(mm); | 
 | 	/* | 
 | 	 * Prevent all access to pagetables with the exception of | 
 | 	 * gup_fast later handled by the ptep_clear_flush and the VM | 
 | 	 * handled by the anon_vma lock + PG_lock. | 
 | 	 */ | 
 | 	mmap_write_lock(mm); | 
 | 	result = hugepage_vma_revalidate(mm, address, &vma); | 
 | 	if (result) | 
 | 		goto out_up_write; | 
 | 	/* check if the pmd is still valid */ | 
 | 	if (mm_find_pmd(mm, address) != pmd) | 
 | 		goto out_up_write; | 
 |  | 
 | 	anon_vma_lock_write(vma->anon_vma); | 
 |  | 
 | 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, | 
 | 				address, address + HPAGE_PMD_SIZE); | 
 | 	mmu_notifier_invalidate_range_start(&range); | 
 |  | 
 | 	pte = pte_offset_map(pmd, address); | 
 | 	pte_ptl = pte_lockptr(mm, pmd); | 
 |  | 
 | 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ | 
 | 	/* | 
 | 	 * After this gup_fast can't run anymore. This also removes | 
 | 	 * any huge TLB entry from the CPU so we won't allow | 
 | 	 * huge and small TLB entries for the same virtual address | 
 | 	 * to avoid the risk of CPU bugs in that area. | 
 | 	 */ | 
 | 	_pmd = pmdp_collapse_flush(vma, address, pmd); | 
 | 	spin_unlock(pmd_ptl); | 
 | 	mmu_notifier_invalidate_range_end(&range); | 
 |  | 
 | 	spin_lock(pte_ptl); | 
 | 	isolated = __collapse_huge_page_isolate(vma, address, pte, | 
 | 			&compound_pagelist); | 
 | 	spin_unlock(pte_ptl); | 
 |  | 
 | 	if (unlikely(!isolated)) { | 
 | 		pte_unmap(pte); | 
 | 		spin_lock(pmd_ptl); | 
 | 		BUG_ON(!pmd_none(*pmd)); | 
 | 		/* | 
 | 		 * We can only use set_pmd_at when establishing | 
 | 		 * hugepmds and never for establishing regular pmds that | 
 | 		 * points to regular pagetables. Use pmd_populate for that | 
 | 		 */ | 
 | 		pmd_populate(mm, pmd, pmd_pgtable(_pmd)); | 
 | 		spin_unlock(pmd_ptl); | 
 | 		anon_vma_unlock_write(vma->anon_vma); | 
 | 		result = SCAN_FAIL; | 
 | 		goto out_up_write; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * All pages are isolated and locked so anon_vma rmap | 
 | 	 * can't run anymore. | 
 | 	 */ | 
 | 	anon_vma_unlock_write(vma->anon_vma); | 
 |  | 
 | 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl, | 
 | 			&compound_pagelist); | 
 | 	pte_unmap(pte); | 
 | 	/* | 
 | 	 * spin_lock() below is not the equivalent of smp_wmb(), but | 
 | 	 * the smp_wmb() inside __SetPageUptodate() can be reused to | 
 | 	 * avoid the copy_huge_page writes to become visible after | 
 | 	 * the set_pmd_at() write. | 
 | 	 */ | 
 | 	__SetPageUptodate(new_page); | 
 | 	pgtable = pmd_pgtable(_pmd); | 
 |  | 
 | 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot); | 
 | 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); | 
 |  | 
 | 	spin_lock(pmd_ptl); | 
 | 	BUG_ON(!pmd_none(*pmd)); | 
 | 	page_add_new_anon_rmap(new_page, vma, address); | 
 | 	lru_cache_add_inactive_or_unevictable(new_page, vma); | 
 | 	pgtable_trans_huge_deposit(mm, pmd, pgtable); | 
 | 	set_pmd_at(mm, address, pmd, _pmd); | 
 | 	update_mmu_cache_pmd(vma, address, pmd); | 
 | 	spin_unlock(pmd_ptl); | 
 |  | 
 | 	*hpage = NULL; | 
 |  | 
 | 	khugepaged_pages_collapsed++; | 
 | 	result = SCAN_SUCCEED; | 
 | out_up_write: | 
 | 	mmap_write_unlock(mm); | 
 | out_nolock: | 
 | 	if (!IS_ERR_OR_NULL(*hpage)) | 
 | 		mem_cgroup_uncharge(page_folio(*hpage)); | 
 | 	trace_mm_collapse_huge_page(mm, isolated, result); | 
 | 	return; | 
 | } | 
 |  | 
 | static int khugepaged_scan_pmd(struct mm_struct *mm, | 
 | 			       struct vm_area_struct *vma, | 
 | 			       unsigned long address, | 
 | 			       struct page **hpage) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte, *_pte; | 
 | 	int ret = 0, result = 0, referenced = 0; | 
 | 	int none_or_zero = 0, shared = 0; | 
 | 	struct page *page = NULL; | 
 | 	unsigned long _address; | 
 | 	spinlock_t *ptl; | 
 | 	int node = NUMA_NO_NODE, unmapped = 0; | 
 | 	bool writable = false; | 
 |  | 
 | 	VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
 |  | 
 | 	pmd = mm_find_pmd(mm, address); | 
 | 	if (!pmd) { | 
 | 		result = SCAN_PMD_NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); | 
 | 	pte = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; | 
 | 	     _pte++, _address += PAGE_SIZE) { | 
 | 		pte_t pteval = *_pte; | 
 | 		if (is_swap_pte(pteval)) { | 
 | 			if (++unmapped <= khugepaged_max_ptes_swap) { | 
 | 				/* | 
 | 				 * Always be strict with uffd-wp | 
 | 				 * enabled swap entries.  Please see | 
 | 				 * comment below for pte_uffd_wp(). | 
 | 				 */ | 
 | 				if (pte_swp_uffd_wp(pteval)) { | 
 | 					result = SCAN_PTE_UFFD_WP; | 
 | 					goto out_unmap; | 
 | 				} | 
 | 				continue; | 
 | 			} else { | 
 | 				result = SCAN_EXCEED_SWAP_PTE; | 
 | 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); | 
 | 				goto out_unmap; | 
 | 			} | 
 | 		} | 
 | 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { | 
 | 			if (!userfaultfd_armed(vma) && | 
 | 			    ++none_or_zero <= khugepaged_max_ptes_none) { | 
 | 				continue; | 
 | 			} else { | 
 | 				result = SCAN_EXCEED_NONE_PTE; | 
 | 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE); | 
 | 				goto out_unmap; | 
 | 			} | 
 | 		} | 
 | 		if (pte_uffd_wp(pteval)) { | 
 | 			/* | 
 | 			 * Don't collapse the page if any of the small | 
 | 			 * PTEs are armed with uffd write protection. | 
 | 			 * Here we can also mark the new huge pmd as | 
 | 			 * write protected if any of the small ones is | 
 | 			 * marked but that could bring unknown | 
 | 			 * userfault messages that falls outside of | 
 | 			 * the registered range.  So, just be simple. | 
 | 			 */ | 
 | 			result = SCAN_PTE_UFFD_WP; | 
 | 			goto out_unmap; | 
 | 		} | 
 | 		if (pte_write(pteval)) | 
 | 			writable = true; | 
 |  | 
 | 		page = vm_normal_page(vma, _address, pteval); | 
 | 		if (unlikely(!page)) { | 
 | 			result = SCAN_PAGE_NULL; | 
 | 			goto out_unmap; | 
 | 		} | 
 |  | 
 | 		if (page_mapcount(page) > 1 && | 
 | 				++shared > khugepaged_max_ptes_shared) { | 
 | 			result = SCAN_EXCEED_SHARED_PTE; | 
 | 			count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); | 
 | 			goto out_unmap; | 
 | 		} | 
 |  | 
 | 		page = compound_head(page); | 
 |  | 
 | 		/* | 
 | 		 * Record which node the original page is from and save this | 
 | 		 * information to khugepaged_node_load[]. | 
 | 		 * Khugepaged will allocate hugepage from the node has the max | 
 | 		 * hit record. | 
 | 		 */ | 
 | 		node = page_to_nid(page); | 
 | 		if (khugepaged_scan_abort(node)) { | 
 | 			result = SCAN_SCAN_ABORT; | 
 | 			goto out_unmap; | 
 | 		} | 
 | 		khugepaged_node_load[node]++; | 
 | 		if (!PageLRU(page)) { | 
 | 			result = SCAN_PAGE_LRU; | 
 | 			goto out_unmap; | 
 | 		} | 
 | 		if (PageLocked(page)) { | 
 | 			result = SCAN_PAGE_LOCK; | 
 | 			goto out_unmap; | 
 | 		} | 
 | 		if (!PageAnon(page)) { | 
 | 			result = SCAN_PAGE_ANON; | 
 | 			goto out_unmap; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Check if the page has any GUP (or other external) pins. | 
 | 		 * | 
 | 		 * Here the check is racy it may see totmal_mapcount > refcount | 
 | 		 * in some cases. | 
 | 		 * For example, one process with one forked child process. | 
 | 		 * The parent has the PMD split due to MADV_DONTNEED, then | 
 | 		 * the child is trying unmap the whole PMD, but khugepaged | 
 | 		 * may be scanning the parent between the child has | 
 | 		 * PageDoubleMap flag cleared and dec the mapcount.  So | 
 | 		 * khugepaged may see total_mapcount > refcount. | 
 | 		 * | 
 | 		 * But such case is ephemeral we could always retry collapse | 
 | 		 * later.  However it may report false positive if the page | 
 | 		 * has excessive GUP pins (i.e. 512).  Anyway the same check | 
 | 		 * will be done again later the risk seems low. | 
 | 		 */ | 
 | 		if (!is_refcount_suitable(page)) { | 
 | 			result = SCAN_PAGE_COUNT; | 
 | 			goto out_unmap; | 
 | 		} | 
 | 		if (pte_young(pteval) || | 
 | 		    page_is_young(page) || PageReferenced(page) || | 
 | 		    mmu_notifier_test_young(vma->vm_mm, address)) | 
 | 			referenced++; | 
 | 	} | 
 | 	if (!writable) { | 
 | 		result = SCAN_PAGE_RO; | 
 | 	} else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) { | 
 | 		result = SCAN_LACK_REFERENCED_PAGE; | 
 | 	} else { | 
 | 		result = SCAN_SUCCEED; | 
 | 		ret = 1; | 
 | 	} | 
 | out_unmap: | 
 | 	pte_unmap_unlock(pte, ptl); | 
 | 	if (ret) { | 
 | 		node = khugepaged_find_target_node(); | 
 | 		/* collapse_huge_page will return with the mmap_lock released */ | 
 | 		collapse_huge_page(mm, address, hpage, node, | 
 | 				referenced, unmapped); | 
 | 	} | 
 | out: | 
 | 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, | 
 | 				     none_or_zero, result, unmapped); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void collect_mm_slot(struct mm_slot *mm_slot) | 
 | { | 
 | 	struct mm_struct *mm = mm_slot->mm; | 
 |  | 
 | 	lockdep_assert_held(&khugepaged_mm_lock); | 
 |  | 
 | 	if (khugepaged_test_exit(mm)) { | 
 | 		/* free mm_slot */ | 
 | 		hash_del(&mm_slot->hash); | 
 | 		list_del(&mm_slot->mm_node); | 
 |  | 
 | 		/* | 
 | 		 * Not strictly needed because the mm exited already. | 
 | 		 * | 
 | 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); | 
 | 		 */ | 
 |  | 
 | 		/* khugepaged_mm_lock actually not necessary for the below */ | 
 | 		free_mm_slot(mm_slot); | 
 | 		mmdrop(mm); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_SHMEM | 
 | /* | 
 |  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then | 
 |  * khugepaged should try to collapse the page table. | 
 |  */ | 
 | static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm, | 
 | 					 unsigned long addr) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 |  | 
 | 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK); | 
 |  | 
 | 	spin_lock(&khugepaged_mm_lock); | 
 | 	mm_slot = get_mm_slot(mm); | 
 | 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) | 
 | 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; | 
 | 	spin_unlock(&khugepaged_mm_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 				  unsigned long addr, pmd_t *pmdp) | 
 | { | 
 | 	spinlock_t *ptl; | 
 | 	pmd_t pmd; | 
 |  | 
 | 	mmap_assert_write_locked(mm); | 
 | 	ptl = pmd_lock(vma->vm_mm, pmdp); | 
 | 	pmd = pmdp_collapse_flush(vma, addr, pmdp); | 
 | 	spin_unlock(ptl); | 
 | 	mm_dec_nr_ptes(mm); | 
 | 	page_table_check_pte_clear_range(mm, addr, pmd); | 
 | 	pte_free(mm, pmd_pgtable(pmd)); | 
 | } | 
 |  | 
 | /** | 
 |  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at | 
 |  * address haddr. | 
 |  * | 
 |  * @mm: process address space where collapse happens | 
 |  * @addr: THP collapse address | 
 |  * | 
 |  * This function checks whether all the PTEs in the PMD are pointing to the | 
 |  * right THP. If so, retract the page table so the THP can refault in with | 
 |  * as pmd-mapped. | 
 |  */ | 
 | void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) | 
 | { | 
 | 	unsigned long haddr = addr & HPAGE_PMD_MASK; | 
 | 	struct vm_area_struct *vma = find_vma(mm, haddr); | 
 | 	struct page *hpage; | 
 | 	pte_t *start_pte, *pte; | 
 | 	pmd_t *pmd; | 
 | 	spinlock_t *ptl; | 
 | 	int count = 0; | 
 | 	int i; | 
 |  | 
 | 	if (!vma || !vma->vm_file || | 
 | 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * This vm_flags may not have VM_HUGEPAGE if the page was not | 
 | 	 * collapsed by this mm. But we can still collapse if the page is | 
 | 	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check() | 
 | 	 * will not fail the vma for missing VM_HUGEPAGE | 
 | 	 */ | 
 | 	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE)) | 
 | 		return; | 
 |  | 
 | 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ | 
 | 	if (userfaultfd_wp(vma)) | 
 | 		return; | 
 |  | 
 | 	hpage = find_lock_page(vma->vm_file->f_mapping, | 
 | 			       linear_page_index(vma, haddr)); | 
 | 	if (!hpage) | 
 | 		return; | 
 |  | 
 | 	if (!PageHead(hpage)) | 
 | 		goto drop_hpage; | 
 |  | 
 | 	pmd = mm_find_pmd(mm, haddr); | 
 | 	if (!pmd) | 
 | 		goto drop_hpage; | 
 |  | 
 | 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); | 
 |  | 
 | 	/* step 1: check all mapped PTEs are to the right huge page */ | 
 | 	for (i = 0, addr = haddr, pte = start_pte; | 
 | 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { | 
 | 		struct page *page; | 
 |  | 
 | 		/* empty pte, skip */ | 
 | 		if (pte_none(*pte)) | 
 | 			continue; | 
 |  | 
 | 		/* page swapped out, abort */ | 
 | 		if (!pte_present(*pte)) | 
 | 			goto abort; | 
 |  | 
 | 		page = vm_normal_page(vma, addr, *pte); | 
 |  | 
 | 		/* | 
 | 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the | 
 | 		 * page table, but the new page will not be a subpage of hpage. | 
 | 		 */ | 
 | 		if (hpage + i != page) | 
 | 			goto abort; | 
 | 		count++; | 
 | 	} | 
 |  | 
 | 	/* step 2: adjust rmap */ | 
 | 	for (i = 0, addr = haddr, pte = start_pte; | 
 | 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { | 
 | 		struct page *page; | 
 |  | 
 | 		if (pte_none(*pte)) | 
 | 			continue; | 
 | 		page = vm_normal_page(vma, addr, *pte); | 
 | 		page_remove_rmap(page, vma, false); | 
 | 	} | 
 |  | 
 | 	pte_unmap_unlock(start_pte, ptl); | 
 |  | 
 | 	/* step 3: set proper refcount and mm_counters. */ | 
 | 	if (count) { | 
 | 		page_ref_sub(hpage, count); | 
 | 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); | 
 | 	} | 
 |  | 
 | 	/* step 4: collapse pmd */ | 
 | 	collapse_and_free_pmd(mm, vma, haddr, pmd); | 
 | drop_hpage: | 
 | 	unlock_page(hpage); | 
 | 	put_page(hpage); | 
 | 	return; | 
 |  | 
 | abort: | 
 | 	pte_unmap_unlock(start_pte, ptl); | 
 | 	goto drop_hpage; | 
 | } | 
 |  | 
 | static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) | 
 | { | 
 | 	struct mm_struct *mm = mm_slot->mm; | 
 | 	int i; | 
 |  | 
 | 	if (likely(mm_slot->nr_pte_mapped_thp == 0)) | 
 | 		return; | 
 |  | 
 | 	if (!mmap_write_trylock(mm)) | 
 | 		return; | 
 |  | 
 | 	if (unlikely(khugepaged_test_exit(mm))) | 
 | 		goto out; | 
 |  | 
 | 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) | 
 | 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]); | 
 |  | 
 | out: | 
 | 	mm_slot->nr_pte_mapped_thp = 0; | 
 | 	mmap_write_unlock(mm); | 
 | } | 
 |  | 
 | static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	struct mm_struct *mm; | 
 | 	unsigned long addr; | 
 | 	pmd_t *pmd; | 
 |  | 
 | 	i_mmap_lock_write(mapping); | 
 | 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { | 
 | 		/* | 
 | 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that | 
 | 		 * got written to. These VMAs are likely not worth investing | 
 | 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split | 
 | 		 * later. | 
 | 		 * | 
 | 		 * Not that vma->anon_vma check is racy: it can be set up after | 
 | 		 * the check but before we took mmap_lock by the fault path. | 
 | 		 * But page lock would prevent establishing any new ptes of the | 
 | 		 * page, so we are safe. | 
 | 		 * | 
 | 		 * An alternative would be drop the check, but check that page | 
 | 		 * table is clear before calling pmdp_collapse_flush() under | 
 | 		 * ptl. It has higher chance to recover THP for the VMA, but | 
 | 		 * has higher cost too. | 
 | 		 */ | 
 | 		if (vma->anon_vma) | 
 | 			continue; | 
 | 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 
 | 		if (addr & ~HPAGE_PMD_MASK) | 
 | 			continue; | 
 | 		if (vma->vm_end < addr + HPAGE_PMD_SIZE) | 
 | 			continue; | 
 | 		mm = vma->vm_mm; | 
 | 		pmd = mm_find_pmd(mm, addr); | 
 | 		if (!pmd) | 
 | 			continue; | 
 | 		/* | 
 | 		 * We need exclusive mmap_lock to retract page table. | 
 | 		 * | 
 | 		 * We use trylock due to lock inversion: we need to acquire | 
 | 		 * mmap_lock while holding page lock. Fault path does it in | 
 | 		 * reverse order. Trylock is a way to avoid deadlock. | 
 | 		 */ | 
 | 		if (mmap_write_trylock(mm)) { | 
 | 			/* | 
 | 			 * When a vma is registered with uffd-wp, we can't | 
 | 			 * recycle the pmd pgtable because there can be pte | 
 | 			 * markers installed.  Skip it only, so the rest mm/vma | 
 | 			 * can still have the same file mapped hugely, however | 
 | 			 * it'll always mapped in small page size for uffd-wp | 
 | 			 * registered ranges. | 
 | 			 */ | 
 | 			if (!khugepaged_test_exit(mm) && !userfaultfd_wp(vma)) | 
 | 				collapse_and_free_pmd(mm, vma, addr, pmd); | 
 | 			mmap_write_unlock(mm); | 
 | 		} else { | 
 | 			/* Try again later */ | 
 | 			khugepaged_add_pte_mapped_thp(mm, addr); | 
 | 		} | 
 | 	} | 
 | 	i_mmap_unlock_write(mapping); | 
 | } | 
 |  | 
 | /** | 
 |  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. | 
 |  * | 
 |  * @mm: process address space where collapse happens | 
 |  * @file: file that collapse on | 
 |  * @start: collapse start address | 
 |  * @hpage: new allocated huge page for collapse | 
 |  * @node: appointed node the new huge page allocate from | 
 |  * | 
 |  * Basic scheme is simple, details are more complex: | 
 |  *  - allocate and lock a new huge page; | 
 |  *  - scan page cache replacing old pages with the new one | 
 |  *    + swap/gup in pages if necessary; | 
 |  *    + fill in gaps; | 
 |  *    + keep old pages around in case rollback is required; | 
 |  *  - if replacing succeeds: | 
 |  *    + copy data over; | 
 |  *    + free old pages; | 
 |  *    + unlock huge page; | 
 |  *  - if replacing failed; | 
 |  *    + put all pages back and unfreeze them; | 
 |  *    + restore gaps in the page cache; | 
 |  *    + unlock and free huge page; | 
 |  */ | 
 | static void collapse_file(struct mm_struct *mm, | 
 | 		struct file *file, pgoff_t start, | 
 | 		struct page **hpage, int node) | 
 | { | 
 | 	struct address_space *mapping = file->f_mapping; | 
 | 	gfp_t gfp; | 
 | 	struct page *new_page; | 
 | 	pgoff_t index, end = start + HPAGE_PMD_NR; | 
 | 	LIST_HEAD(pagelist); | 
 | 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); | 
 | 	int nr_none = 0, result = SCAN_SUCCEED; | 
 | 	bool is_shmem = shmem_file(file); | 
 | 	int nr; | 
 |  | 
 | 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); | 
 | 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); | 
 |  | 
 | 	/* Only allocate from the target node */ | 
 | 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; | 
 |  | 
 | 	new_page = khugepaged_alloc_page(hpage, gfp, node); | 
 | 	if (!new_page) { | 
 | 		result = SCAN_ALLOC_HUGE_PAGE_FAIL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { | 
 | 		result = SCAN_CGROUP_CHARGE_FAIL; | 
 | 		goto out; | 
 | 	} | 
 | 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); | 
 |  | 
 | 	/* | 
 | 	 * Ensure we have slots for all the pages in the range.  This is | 
 | 	 * almost certainly a no-op because most of the pages must be present | 
 | 	 */ | 
 | 	do { | 
 | 		xas_lock_irq(&xas); | 
 | 		xas_create_range(&xas); | 
 | 		if (!xas_error(&xas)) | 
 | 			break; | 
 | 		xas_unlock_irq(&xas); | 
 | 		if (!xas_nomem(&xas, GFP_KERNEL)) { | 
 | 			result = SCAN_FAIL; | 
 | 			goto out; | 
 | 		} | 
 | 	} while (1); | 
 |  | 
 | 	__SetPageLocked(new_page); | 
 | 	if (is_shmem) | 
 | 		__SetPageSwapBacked(new_page); | 
 | 	new_page->index = start; | 
 | 	new_page->mapping = mapping; | 
 |  | 
 | 	/* | 
 | 	 * At this point the new_page is locked and not up-to-date. | 
 | 	 * It's safe to insert it into the page cache, because nobody would | 
 | 	 * be able to map it or use it in another way until we unlock it. | 
 | 	 */ | 
 |  | 
 | 	xas_set(&xas, start); | 
 | 	for (index = start; index < end; index++) { | 
 | 		struct page *page = xas_next(&xas); | 
 |  | 
 | 		VM_BUG_ON(index != xas.xa_index); | 
 | 		if (is_shmem) { | 
 | 			if (!page) { | 
 | 				/* | 
 | 				 * Stop if extent has been truncated or | 
 | 				 * hole-punched, and is now completely | 
 | 				 * empty. | 
 | 				 */ | 
 | 				if (index == start) { | 
 | 					if (!xas_next_entry(&xas, end - 1)) { | 
 | 						result = SCAN_TRUNCATED; | 
 | 						goto xa_locked; | 
 | 					} | 
 | 					xas_set(&xas, index); | 
 | 				} | 
 | 				if (!shmem_charge(mapping->host, 1)) { | 
 | 					result = SCAN_FAIL; | 
 | 					goto xa_locked; | 
 | 				} | 
 | 				xas_store(&xas, new_page); | 
 | 				nr_none++; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (xa_is_value(page) || !PageUptodate(page)) { | 
 | 				xas_unlock_irq(&xas); | 
 | 				/* swap in or instantiate fallocated page */ | 
 | 				if (shmem_getpage(mapping->host, index, &page, | 
 | 						  SGP_NOALLOC)) { | 
 | 					result = SCAN_FAIL; | 
 | 					goto xa_unlocked; | 
 | 				} | 
 | 			} else if (trylock_page(page)) { | 
 | 				get_page(page); | 
 | 				xas_unlock_irq(&xas); | 
 | 			} else { | 
 | 				result = SCAN_PAGE_LOCK; | 
 | 				goto xa_locked; | 
 | 			} | 
 | 		} else {	/* !is_shmem */ | 
 | 			if (!page || xa_is_value(page)) { | 
 | 				xas_unlock_irq(&xas); | 
 | 				page_cache_sync_readahead(mapping, &file->f_ra, | 
 | 							  file, index, | 
 | 							  end - index); | 
 | 				/* drain pagevecs to help isolate_lru_page() */ | 
 | 				lru_add_drain(); | 
 | 				page = find_lock_page(mapping, index); | 
 | 				if (unlikely(page == NULL)) { | 
 | 					result = SCAN_FAIL; | 
 | 					goto xa_unlocked; | 
 | 				} | 
 | 			} else if (PageDirty(page)) { | 
 | 				/* | 
 | 				 * khugepaged only works on read-only fd, | 
 | 				 * so this page is dirty because it hasn't | 
 | 				 * been flushed since first write. There | 
 | 				 * won't be new dirty pages. | 
 | 				 * | 
 | 				 * Trigger async flush here and hope the | 
 | 				 * writeback is done when khugepaged | 
 | 				 * revisits this page. | 
 | 				 * | 
 | 				 * This is a one-off situation. We are not | 
 | 				 * forcing writeback in loop. | 
 | 				 */ | 
 | 				xas_unlock_irq(&xas); | 
 | 				filemap_flush(mapping); | 
 | 				result = SCAN_FAIL; | 
 | 				goto xa_unlocked; | 
 | 			} else if (PageWriteback(page)) { | 
 | 				xas_unlock_irq(&xas); | 
 | 				result = SCAN_FAIL; | 
 | 				goto xa_unlocked; | 
 | 			} else if (trylock_page(page)) { | 
 | 				get_page(page); | 
 | 				xas_unlock_irq(&xas); | 
 | 			} else { | 
 | 				result = SCAN_PAGE_LOCK; | 
 | 				goto xa_locked; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The page must be locked, so we can drop the i_pages lock | 
 | 		 * without racing with truncate. | 
 | 		 */ | 
 | 		VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 |  | 
 | 		/* make sure the page is up to date */ | 
 | 		if (unlikely(!PageUptodate(page))) { | 
 | 			result = SCAN_FAIL; | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If file was truncated then extended, or hole-punched, before | 
 | 		 * we locked the first page, then a THP might be there already. | 
 | 		 */ | 
 | 		if (PageTransCompound(page)) { | 
 | 			result = SCAN_PAGE_COMPOUND; | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		if (page_mapping(page) != mapping) { | 
 | 			result = SCAN_TRUNCATED; | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		if (!is_shmem && (PageDirty(page) || | 
 | 				  PageWriteback(page))) { | 
 | 			/* | 
 | 			 * khugepaged only works on read-only fd, so this | 
 | 			 * page is dirty because it hasn't been flushed | 
 | 			 * since first write. | 
 | 			 */ | 
 | 			result = SCAN_FAIL; | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		if (isolate_lru_page(page)) { | 
 | 			result = SCAN_DEL_PAGE_LRU; | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		if (page_has_private(page) && | 
 | 		    !try_to_release_page(page, GFP_KERNEL)) { | 
 | 			result = SCAN_PAGE_HAS_PRIVATE; | 
 | 			putback_lru_page(page); | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		if (page_mapped(page)) | 
 | 			try_to_unmap(page_folio(page), | 
 | 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); | 
 |  | 
 | 		xas_lock_irq(&xas); | 
 | 		xas_set(&xas, index); | 
 |  | 
 | 		VM_BUG_ON_PAGE(page != xas_load(&xas), page); | 
 |  | 
 | 		/* | 
 | 		 * The page is expected to have page_count() == 3: | 
 | 		 *  - we hold a pin on it; | 
 | 		 *  - one reference from page cache; | 
 | 		 *  - one from isolate_lru_page; | 
 | 		 */ | 
 | 		if (!page_ref_freeze(page, 3)) { | 
 | 			result = SCAN_PAGE_COUNT; | 
 | 			xas_unlock_irq(&xas); | 
 | 			putback_lru_page(page); | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Add the page to the list to be able to undo the collapse if | 
 | 		 * something go wrong. | 
 | 		 */ | 
 | 		list_add_tail(&page->lru, &pagelist); | 
 |  | 
 | 		/* Finally, replace with the new page. */ | 
 | 		xas_store(&xas, new_page); | 
 | 		continue; | 
 | out_unlock: | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 		goto xa_unlocked; | 
 | 	} | 
 | 	nr = thp_nr_pages(new_page); | 
 |  | 
 | 	if (is_shmem) | 
 | 		__mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr); | 
 | 	else { | 
 | 		__mod_lruvec_page_state(new_page, NR_FILE_THPS, nr); | 
 | 		filemap_nr_thps_inc(mapping); | 
 | 		/* | 
 | 		 * Paired with smp_mb() in do_dentry_open() to ensure | 
 | 		 * i_writecount is up to date and the update to nr_thps is | 
 | 		 * visible. Ensures the page cache will be truncated if the | 
 | 		 * file is opened writable. | 
 | 		 */ | 
 | 		smp_mb(); | 
 | 		if (inode_is_open_for_write(mapping->host)) { | 
 | 			result = SCAN_FAIL; | 
 | 			__mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr); | 
 | 			filemap_nr_thps_dec(mapping); | 
 | 			goto xa_locked; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (nr_none) { | 
 | 		__mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none); | 
 | 		if (is_shmem) | 
 | 			__mod_lruvec_page_state(new_page, NR_SHMEM, nr_none); | 
 | 	} | 
 |  | 
 | 	/* Join all the small entries into a single multi-index entry */ | 
 | 	xas_set_order(&xas, start, HPAGE_PMD_ORDER); | 
 | 	xas_store(&xas, new_page); | 
 | xa_locked: | 
 | 	xas_unlock_irq(&xas); | 
 | xa_unlocked: | 
 |  | 
 | 	/* | 
 | 	 * If collapse is successful, flush must be done now before copying. | 
 | 	 * If collapse is unsuccessful, does flush actually need to be done? | 
 | 	 * Do it anyway, to clear the state. | 
 | 	 */ | 
 | 	try_to_unmap_flush(); | 
 |  | 
 | 	if (result == SCAN_SUCCEED) { | 
 | 		struct page *page, *tmp; | 
 |  | 
 | 		/* | 
 | 		 * Replacing old pages with new one has succeeded, now we | 
 | 		 * need to copy the content and free the old pages. | 
 | 		 */ | 
 | 		index = start; | 
 | 		list_for_each_entry_safe(page, tmp, &pagelist, lru) { | 
 | 			while (index < page->index) { | 
 | 				clear_highpage(new_page + (index % HPAGE_PMD_NR)); | 
 | 				index++; | 
 | 			} | 
 | 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR), | 
 | 					page); | 
 | 			list_del(&page->lru); | 
 | 			page->mapping = NULL; | 
 | 			page_ref_unfreeze(page, 1); | 
 | 			ClearPageActive(page); | 
 | 			ClearPageUnevictable(page); | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 			index++; | 
 | 		} | 
 | 		while (index < end) { | 
 | 			clear_highpage(new_page + (index % HPAGE_PMD_NR)); | 
 | 			index++; | 
 | 		} | 
 |  | 
 | 		SetPageUptodate(new_page); | 
 | 		page_ref_add(new_page, HPAGE_PMD_NR - 1); | 
 | 		if (is_shmem) | 
 | 			set_page_dirty(new_page); | 
 | 		lru_cache_add(new_page); | 
 |  | 
 | 		/* | 
 | 		 * Remove pte page tables, so we can re-fault the page as huge. | 
 | 		 */ | 
 | 		retract_page_tables(mapping, start); | 
 | 		*hpage = NULL; | 
 |  | 
 | 		khugepaged_pages_collapsed++; | 
 | 	} else { | 
 | 		struct page *page; | 
 |  | 
 | 		/* Something went wrong: roll back page cache changes */ | 
 | 		xas_lock_irq(&xas); | 
 | 		mapping->nrpages -= nr_none; | 
 |  | 
 | 		if (is_shmem) | 
 | 			shmem_uncharge(mapping->host, nr_none); | 
 |  | 
 | 		xas_set(&xas, start); | 
 | 		xas_for_each(&xas, page, end - 1) { | 
 | 			page = list_first_entry_or_null(&pagelist, | 
 | 					struct page, lru); | 
 | 			if (!page || xas.xa_index < page->index) { | 
 | 				if (!nr_none) | 
 | 					break; | 
 | 				nr_none--; | 
 | 				/* Put holes back where they were */ | 
 | 				xas_store(&xas, NULL); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page); | 
 |  | 
 | 			/* Unfreeze the page. */ | 
 | 			list_del(&page->lru); | 
 | 			page_ref_unfreeze(page, 2); | 
 | 			xas_store(&xas, page); | 
 | 			xas_pause(&xas); | 
 | 			xas_unlock_irq(&xas); | 
 | 			unlock_page(page); | 
 | 			putback_lru_page(page); | 
 | 			xas_lock_irq(&xas); | 
 | 		} | 
 | 		VM_BUG_ON(nr_none); | 
 | 		xas_unlock_irq(&xas); | 
 |  | 
 | 		new_page->mapping = NULL; | 
 | 	} | 
 |  | 
 | 	unlock_page(new_page); | 
 | out: | 
 | 	VM_BUG_ON(!list_empty(&pagelist)); | 
 | 	if (!IS_ERR_OR_NULL(*hpage)) | 
 | 		mem_cgroup_uncharge(page_folio(*hpage)); | 
 | 	/* TODO: tracepoints */ | 
 | } | 
 |  | 
 | static void khugepaged_scan_file(struct mm_struct *mm, | 
 | 		struct file *file, pgoff_t start, struct page **hpage) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	struct address_space *mapping = file->f_mapping; | 
 | 	XA_STATE(xas, &mapping->i_pages, start); | 
 | 	int present, swap; | 
 | 	int node = NUMA_NO_NODE; | 
 | 	int result = SCAN_SUCCEED; | 
 |  | 
 | 	present = 0; | 
 | 	swap = 0; | 
 | 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); | 
 | 	rcu_read_lock(); | 
 | 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { | 
 | 		if (xas_retry(&xas, page)) | 
 | 			continue; | 
 |  | 
 | 		if (xa_is_value(page)) { | 
 | 			if (++swap > khugepaged_max_ptes_swap) { | 
 | 				result = SCAN_EXCEED_SWAP_PTE; | 
 | 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); | 
 | 				break; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * XXX: khugepaged should compact smaller compound pages | 
 | 		 * into a PMD sized page | 
 | 		 */ | 
 | 		if (PageTransCompound(page)) { | 
 | 			result = SCAN_PAGE_COMPOUND; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		node = page_to_nid(page); | 
 | 		if (khugepaged_scan_abort(node)) { | 
 | 			result = SCAN_SCAN_ABORT; | 
 | 			break; | 
 | 		} | 
 | 		khugepaged_node_load[node]++; | 
 |  | 
 | 		if (!PageLRU(page)) { | 
 | 			result = SCAN_PAGE_LRU; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (page_count(page) != | 
 | 		    1 + page_mapcount(page) + page_has_private(page)) { | 
 | 			result = SCAN_PAGE_COUNT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We probably should check if the page is referenced here, but | 
 | 		 * nobody would transfer pte_young() to PageReferenced() for us. | 
 | 		 * And rmap walk here is just too costly... | 
 | 		 */ | 
 |  | 
 | 		present++; | 
 |  | 
 | 		if (need_resched()) { | 
 | 			xas_pause(&xas); | 
 | 			cond_resched_rcu(); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (result == SCAN_SUCCEED) { | 
 | 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { | 
 | 			result = SCAN_EXCEED_NONE_PTE; | 
 | 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE); | 
 | 		} else { | 
 | 			node = khugepaged_find_target_node(); | 
 | 			collapse_file(mm, file, start, hpage, node); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* TODO: tracepoints */ | 
 | } | 
 | #else | 
 | static void khugepaged_scan_file(struct mm_struct *mm, | 
 | 		struct file *file, pgoff_t start, struct page **hpage) | 
 | { | 
 | 	BUILD_BUG(); | 
 | } | 
 |  | 
 | static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static unsigned int khugepaged_scan_mm_slot(unsigned int pages, | 
 | 					    struct page **hpage) | 
 | 	__releases(&khugepaged_mm_lock) | 
 | 	__acquires(&khugepaged_mm_lock) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 | 	struct mm_struct *mm; | 
 | 	struct vm_area_struct *vma; | 
 | 	int progress = 0; | 
 |  | 
 | 	VM_BUG_ON(!pages); | 
 | 	lockdep_assert_held(&khugepaged_mm_lock); | 
 |  | 
 | 	if (khugepaged_scan.mm_slot) | 
 | 		mm_slot = khugepaged_scan.mm_slot; | 
 | 	else { | 
 | 		mm_slot = list_entry(khugepaged_scan.mm_head.next, | 
 | 				     struct mm_slot, mm_node); | 
 | 		khugepaged_scan.address = 0; | 
 | 		khugepaged_scan.mm_slot = mm_slot; | 
 | 	} | 
 | 	spin_unlock(&khugepaged_mm_lock); | 
 | 	khugepaged_collapse_pte_mapped_thps(mm_slot); | 
 |  | 
 | 	mm = mm_slot->mm; | 
 | 	/* | 
 | 	 * Don't wait for semaphore (to avoid long wait times).  Just move to | 
 | 	 * the next mm on the list. | 
 | 	 */ | 
 | 	vma = NULL; | 
 | 	if (unlikely(!mmap_read_trylock(mm))) | 
 | 		goto breakouterloop_mmap_lock; | 
 | 	if (likely(!khugepaged_test_exit(mm))) | 
 | 		vma = find_vma(mm, khugepaged_scan.address); | 
 |  | 
 | 	progress++; | 
 | 	for (; vma; vma = vma->vm_next) { | 
 | 		unsigned long hstart, hend; | 
 |  | 
 | 		cond_resched(); | 
 | 		if (unlikely(khugepaged_test_exit(mm))) { | 
 | 			progress++; | 
 | 			break; | 
 | 		} | 
 | 		if (!hugepage_vma_check(vma, vma->vm_flags)) { | 
 | skip: | 
 | 			progress++; | 
 | 			continue; | 
 | 		} | 
 | 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
 | 		hend = vma->vm_end & HPAGE_PMD_MASK; | 
 | 		if (hstart >= hend) | 
 | 			goto skip; | 
 | 		if (khugepaged_scan.address > hend) | 
 | 			goto skip; | 
 | 		if (khugepaged_scan.address < hstart) | 
 | 			khugepaged_scan.address = hstart; | 
 | 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); | 
 | 		if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma)) | 
 | 			goto skip; | 
 |  | 
 | 		while (khugepaged_scan.address < hend) { | 
 | 			int ret; | 
 | 			cond_resched(); | 
 | 			if (unlikely(khugepaged_test_exit(mm))) | 
 | 				goto breakouterloop; | 
 |  | 
 | 			VM_BUG_ON(khugepaged_scan.address < hstart || | 
 | 				  khugepaged_scan.address + HPAGE_PMD_SIZE > | 
 | 				  hend); | 
 | 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { | 
 | 				struct file *file = get_file(vma->vm_file); | 
 | 				pgoff_t pgoff = linear_page_index(vma, | 
 | 						khugepaged_scan.address); | 
 |  | 
 | 				mmap_read_unlock(mm); | 
 | 				ret = 1; | 
 | 				khugepaged_scan_file(mm, file, pgoff, hpage); | 
 | 				fput(file); | 
 | 			} else { | 
 | 				ret = khugepaged_scan_pmd(mm, vma, | 
 | 						khugepaged_scan.address, | 
 | 						hpage); | 
 | 			} | 
 | 			/* move to next address */ | 
 | 			khugepaged_scan.address += HPAGE_PMD_SIZE; | 
 | 			progress += HPAGE_PMD_NR; | 
 | 			if (ret) | 
 | 				/* we released mmap_lock so break loop */ | 
 | 				goto breakouterloop_mmap_lock; | 
 | 			if (progress >= pages) | 
 | 				goto breakouterloop; | 
 | 		} | 
 | 	} | 
 | breakouterloop: | 
 | 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ | 
 | breakouterloop_mmap_lock: | 
 |  | 
 | 	spin_lock(&khugepaged_mm_lock); | 
 | 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); | 
 | 	/* | 
 | 	 * Release the current mm_slot if this mm is about to die, or | 
 | 	 * if we scanned all vmas of this mm. | 
 | 	 */ | 
 | 	if (khugepaged_test_exit(mm) || !vma) { | 
 | 		/* | 
 | 		 * Make sure that if mm_users is reaching zero while | 
 | 		 * khugepaged runs here, khugepaged_exit will find | 
 | 		 * mm_slot not pointing to the exiting mm. | 
 | 		 */ | 
 | 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { | 
 | 			khugepaged_scan.mm_slot = list_entry( | 
 | 				mm_slot->mm_node.next, | 
 | 				struct mm_slot, mm_node); | 
 | 			khugepaged_scan.address = 0; | 
 | 		} else { | 
 | 			khugepaged_scan.mm_slot = NULL; | 
 | 			khugepaged_full_scans++; | 
 | 		} | 
 |  | 
 | 		collect_mm_slot(mm_slot); | 
 | 	} | 
 |  | 
 | 	return progress; | 
 | } | 
 |  | 
 | static int khugepaged_has_work(void) | 
 | { | 
 | 	return !list_empty(&khugepaged_scan.mm_head) && | 
 | 		khugepaged_enabled(); | 
 | } | 
 |  | 
 | static int khugepaged_wait_event(void) | 
 | { | 
 | 	return !list_empty(&khugepaged_scan.mm_head) || | 
 | 		kthread_should_stop(); | 
 | } | 
 |  | 
 | static void khugepaged_do_scan(void) | 
 | { | 
 | 	struct page *hpage = NULL; | 
 | 	unsigned int progress = 0, pass_through_head = 0; | 
 | 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); | 
 | 	bool wait = true; | 
 |  | 
 | 	lru_add_drain_all(); | 
 |  | 
 | 	while (progress < pages) { | 
 | 		if (!khugepaged_prealloc_page(&hpage, &wait)) | 
 | 			break; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		if (unlikely(kthread_should_stop() || try_to_freeze())) | 
 | 			break; | 
 |  | 
 | 		spin_lock(&khugepaged_mm_lock); | 
 | 		if (!khugepaged_scan.mm_slot) | 
 | 			pass_through_head++; | 
 | 		if (khugepaged_has_work() && | 
 | 		    pass_through_head < 2) | 
 | 			progress += khugepaged_scan_mm_slot(pages - progress, | 
 | 							    &hpage); | 
 | 		else | 
 | 			progress = pages; | 
 | 		spin_unlock(&khugepaged_mm_lock); | 
 | 	} | 
 |  | 
 | 	if (!IS_ERR_OR_NULL(hpage)) | 
 | 		put_page(hpage); | 
 | } | 
 |  | 
 | static bool khugepaged_should_wakeup(void) | 
 | { | 
 | 	return kthread_should_stop() || | 
 | 	       time_after_eq(jiffies, khugepaged_sleep_expire); | 
 | } | 
 |  | 
 | static void khugepaged_wait_work(void) | 
 | { | 
 | 	if (khugepaged_has_work()) { | 
 | 		const unsigned long scan_sleep_jiffies = | 
 | 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs); | 
 |  | 
 | 		if (!scan_sleep_jiffies) | 
 | 			return; | 
 |  | 
 | 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; | 
 | 		wait_event_freezable_timeout(khugepaged_wait, | 
 | 					     khugepaged_should_wakeup(), | 
 | 					     scan_sleep_jiffies); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (khugepaged_enabled()) | 
 | 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); | 
 | } | 
 |  | 
 | static int khugepaged(void *none) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 |  | 
 | 	set_freezable(); | 
 | 	set_user_nice(current, MAX_NICE); | 
 |  | 
 | 	while (!kthread_should_stop()) { | 
 | 		khugepaged_do_scan(); | 
 | 		khugepaged_wait_work(); | 
 | 	} | 
 |  | 
 | 	spin_lock(&khugepaged_mm_lock); | 
 | 	mm_slot = khugepaged_scan.mm_slot; | 
 | 	khugepaged_scan.mm_slot = NULL; | 
 | 	if (mm_slot) | 
 | 		collect_mm_slot(mm_slot); | 
 | 	spin_unlock(&khugepaged_mm_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void set_recommended_min_free_kbytes(void) | 
 | { | 
 | 	struct zone *zone; | 
 | 	int nr_zones = 0; | 
 | 	unsigned long recommended_min; | 
 |  | 
 | 	if (!khugepaged_enabled()) { | 
 | 		calculate_min_free_kbytes(); | 
 | 		goto update_wmarks; | 
 | 	} | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		/* | 
 | 		 * We don't need to worry about fragmentation of | 
 | 		 * ZONE_MOVABLE since it only has movable pages. | 
 | 		 */ | 
 | 		if (zone_idx(zone) > gfp_zone(GFP_USER)) | 
 | 			continue; | 
 |  | 
 | 		nr_zones++; | 
 | 	} | 
 |  | 
 | 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */ | 
 | 	recommended_min = pageblock_nr_pages * nr_zones * 2; | 
 |  | 
 | 	/* | 
 | 	 * Make sure that on average at least two pageblocks are almost free | 
 | 	 * of another type, one for a migratetype to fall back to and a | 
 | 	 * second to avoid subsequent fallbacks of other types There are 3 | 
 | 	 * MIGRATE_TYPES we care about. | 
 | 	 */ | 
 | 	recommended_min += pageblock_nr_pages * nr_zones * | 
 | 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; | 
 |  | 
 | 	/* don't ever allow to reserve more than 5% of the lowmem */ | 
 | 	recommended_min = min(recommended_min, | 
 | 			      (unsigned long) nr_free_buffer_pages() / 20); | 
 | 	recommended_min <<= (PAGE_SHIFT-10); | 
 |  | 
 | 	if (recommended_min > min_free_kbytes) { | 
 | 		if (user_min_free_kbytes >= 0) | 
 | 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", | 
 | 				min_free_kbytes, recommended_min); | 
 |  | 
 | 		min_free_kbytes = recommended_min; | 
 | 	} | 
 |  | 
 | update_wmarks: | 
 | 	setup_per_zone_wmarks(); | 
 | } | 
 |  | 
 | int start_stop_khugepaged(void) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	mutex_lock(&khugepaged_mutex); | 
 | 	if (khugepaged_enabled()) { | 
 | 		if (!khugepaged_thread) | 
 | 			khugepaged_thread = kthread_run(khugepaged, NULL, | 
 | 							"khugepaged"); | 
 | 		if (IS_ERR(khugepaged_thread)) { | 
 | 			pr_err("khugepaged: kthread_run(khugepaged) failed\n"); | 
 | 			err = PTR_ERR(khugepaged_thread); | 
 | 			khugepaged_thread = NULL; | 
 | 			goto fail; | 
 | 		} | 
 |  | 
 | 		if (!list_empty(&khugepaged_scan.mm_head)) | 
 | 			wake_up_interruptible(&khugepaged_wait); | 
 | 	} else if (khugepaged_thread) { | 
 | 		kthread_stop(khugepaged_thread); | 
 | 		khugepaged_thread = NULL; | 
 | 	} | 
 | 	set_recommended_min_free_kbytes(); | 
 | fail: | 
 | 	mutex_unlock(&khugepaged_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | void khugepaged_min_free_kbytes_update(void) | 
 | { | 
 | 	mutex_lock(&khugepaged_mutex); | 
 | 	if (khugepaged_enabled() && khugepaged_thread) | 
 | 		set_recommended_min_free_kbytes(); | 
 | 	mutex_unlock(&khugepaged_mutex); | 
 | } |