| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * BlueZ - Bluetooth protocol stack for Linux | 
 |  * | 
 |  * Copyright (C) 2021 Intel Corporation | 
 |  */ | 
 |  | 
 | #include <linux/property.h> | 
 |  | 
 | #include <net/bluetooth/bluetooth.h> | 
 | #include <net/bluetooth/hci_core.h> | 
 | #include <net/bluetooth/mgmt.h> | 
 |  | 
 | #include "hci_request.h" | 
 | #include "hci_debugfs.h" | 
 | #include "smp.h" | 
 | #include "eir.h" | 
 | #include "msft.h" | 
 | #include "aosp.h" | 
 | #include "leds.h" | 
 |  | 
 | static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, | 
 | 				  struct sk_buff *skb) | 
 | { | 
 | 	bt_dev_dbg(hdev, "result 0x%2.2x", result); | 
 |  | 
 | 	if (hdev->req_status != HCI_REQ_PEND) | 
 | 		return; | 
 |  | 
 | 	hdev->req_result = result; | 
 | 	hdev->req_status = HCI_REQ_DONE; | 
 |  | 
 | 	if (skb) { | 
 | 		struct sock *sk = hci_skb_sk(skb); | 
 |  | 
 | 		/* Drop sk reference if set */ | 
 | 		if (sk) | 
 | 			sock_put(sk); | 
 |  | 
 | 		hdev->req_skb = skb_get(skb); | 
 | 	} | 
 |  | 
 | 	wake_up_interruptible(&hdev->req_wait_q); | 
 | } | 
 |  | 
 | static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, | 
 | 					  u32 plen, const void *param, | 
 | 					  struct sock *sk) | 
 | { | 
 | 	int len = HCI_COMMAND_HDR_SIZE + plen; | 
 | 	struct hci_command_hdr *hdr; | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	skb = bt_skb_alloc(len, GFP_ATOMIC); | 
 | 	if (!skb) | 
 | 		return NULL; | 
 |  | 
 | 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); | 
 | 	hdr->opcode = cpu_to_le16(opcode); | 
 | 	hdr->plen   = plen; | 
 |  | 
 | 	if (plen) | 
 | 		skb_put_data(skb, param, plen); | 
 |  | 
 | 	bt_dev_dbg(hdev, "skb len %d", skb->len); | 
 |  | 
 | 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; | 
 | 	hci_skb_opcode(skb) = opcode; | 
 |  | 
 | 	/* Grab a reference if command needs to be associated with a sock (e.g. | 
 | 	 * likely mgmt socket that initiated the command). | 
 | 	 */ | 
 | 	if (sk) { | 
 | 		hci_skb_sk(skb) = sk; | 
 | 		sock_hold(sk); | 
 | 	} | 
 |  | 
 | 	return skb; | 
 | } | 
 |  | 
 | static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, | 
 | 			     const void *param, u8 event, struct sock *sk) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); | 
 |  | 
 | 	/* If an error occurred during request building, there is no point in | 
 | 	 * queueing the HCI command. We can simply return. | 
 | 	 */ | 
 | 	if (req->err) | 
 | 		return; | 
 |  | 
 | 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); | 
 | 	if (!skb) { | 
 | 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", | 
 | 			   opcode); | 
 | 		req->err = -ENOMEM; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (skb_queue_empty(&req->cmd_q)) | 
 | 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START; | 
 |  | 
 | 	hci_skb_event(skb) = event; | 
 |  | 
 | 	skb_queue_tail(&req->cmd_q, skb); | 
 | } | 
 |  | 
 | static int hci_cmd_sync_run(struct hci_request *req) | 
 | { | 
 | 	struct hci_dev *hdev = req->hdev; | 
 | 	struct sk_buff *skb; | 
 | 	unsigned long flags; | 
 |  | 
 | 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); | 
 |  | 
 | 	/* If an error occurred during request building, remove all HCI | 
 | 	 * commands queued on the HCI request queue. | 
 | 	 */ | 
 | 	if (req->err) { | 
 | 		skb_queue_purge(&req->cmd_q); | 
 | 		return req->err; | 
 | 	} | 
 |  | 
 | 	/* Do not allow empty requests */ | 
 | 	if (skb_queue_empty(&req->cmd_q)) | 
 | 		return -ENODATA; | 
 |  | 
 | 	skb = skb_peek_tail(&req->cmd_q); | 
 | 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; | 
 | 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; | 
 |  | 
 | 	spin_lock_irqsave(&hdev->cmd_q.lock, flags); | 
 | 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); | 
 | 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); | 
 |  | 
 | 	queue_work(hdev->workqueue, &hdev->cmd_work); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This function requires the caller holds hdev->req_lock. */ | 
 | struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, | 
 | 				  const void *param, u8 event, u32 timeout, | 
 | 				  struct sock *sk) | 
 | { | 
 | 	struct hci_request req; | 
 | 	struct sk_buff *skb; | 
 | 	int err = 0; | 
 |  | 
 | 	bt_dev_dbg(hdev, "Opcode 0x%4x", opcode); | 
 |  | 
 | 	hci_req_init(&req, hdev); | 
 |  | 
 | 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk); | 
 |  | 
 | 	hdev->req_status = HCI_REQ_PEND; | 
 |  | 
 | 	err = hci_cmd_sync_run(&req); | 
 | 	if (err < 0) | 
 | 		return ERR_PTR(err); | 
 |  | 
 | 	err = wait_event_interruptible_timeout(hdev->req_wait_q, | 
 | 					       hdev->req_status != HCI_REQ_PEND, | 
 | 					       timeout); | 
 |  | 
 | 	if (err == -ERESTARTSYS) | 
 | 		return ERR_PTR(-EINTR); | 
 |  | 
 | 	switch (hdev->req_status) { | 
 | 	case HCI_REQ_DONE: | 
 | 		err = -bt_to_errno(hdev->req_result); | 
 | 		break; | 
 |  | 
 | 	case HCI_REQ_CANCELED: | 
 | 		err = -hdev->req_result; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		err = -ETIMEDOUT; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	hdev->req_status = 0; | 
 | 	hdev->req_result = 0; | 
 | 	skb = hdev->req_skb; | 
 | 	hdev->req_skb = NULL; | 
 |  | 
 | 	bt_dev_dbg(hdev, "end: err %d", err); | 
 |  | 
 | 	if (err < 0) { | 
 | 		kfree_skb(skb); | 
 | 		return ERR_PTR(err); | 
 | 	} | 
 |  | 
 | 	return skb; | 
 | } | 
 | EXPORT_SYMBOL(__hci_cmd_sync_sk); | 
 |  | 
 | /* This function requires the caller holds hdev->req_lock. */ | 
 | struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, | 
 | 			       const void *param, u32 timeout) | 
 | { | 
 | 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); | 
 | } | 
 | EXPORT_SYMBOL(__hci_cmd_sync); | 
 |  | 
 | /* Send HCI command and wait for command complete event */ | 
 | struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, | 
 | 			     const void *param, u32 timeout) | 
 | { | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	if (!test_bit(HCI_UP, &hdev->flags)) | 
 | 		return ERR_PTR(-ENETDOWN); | 
 |  | 
 | 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); | 
 |  | 
 | 	hci_req_sync_lock(hdev); | 
 | 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); | 
 | 	hci_req_sync_unlock(hdev); | 
 |  | 
 | 	return skb; | 
 | } | 
 | EXPORT_SYMBOL(hci_cmd_sync); | 
 |  | 
 | /* This function requires the caller holds hdev->req_lock. */ | 
 | struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, | 
 | 				  const void *param, u8 event, u32 timeout) | 
 | { | 
 | 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, | 
 | 				 NULL); | 
 | } | 
 | EXPORT_SYMBOL(__hci_cmd_sync_ev); | 
 |  | 
 | /* This function requires the caller holds hdev->req_lock. */ | 
 | int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, | 
 | 			     const void *param, u8 event, u32 timeout, | 
 | 			     struct sock *sk) | 
 | { | 
 | 	struct sk_buff *skb; | 
 | 	u8 status; | 
 |  | 
 | 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); | 
 | 	if (IS_ERR(skb)) { | 
 | 		bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode, | 
 | 			   PTR_ERR(skb)); | 
 | 		return PTR_ERR(skb); | 
 | 	} | 
 |  | 
 | 	/* If command return a status event skb will be set to NULL as there are | 
 | 	 * no parameters, in case of failure IS_ERR(skb) would have be set to | 
 | 	 * the actual error would be found with PTR_ERR(skb). | 
 | 	 */ | 
 | 	if (!skb) | 
 | 		return 0; | 
 |  | 
 | 	status = skb->data[0]; | 
 |  | 
 | 	kfree_skb(skb); | 
 |  | 
 | 	return status; | 
 | } | 
 | EXPORT_SYMBOL(__hci_cmd_sync_status_sk); | 
 |  | 
 | int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, | 
 | 			  const void *param, u32 timeout) | 
 | { | 
 | 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, | 
 | 					NULL); | 
 | } | 
 | EXPORT_SYMBOL(__hci_cmd_sync_status); | 
 |  | 
 | static void hci_cmd_sync_work(struct work_struct *work) | 
 | { | 
 | 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	/* Dequeue all entries and run them */ | 
 | 	while (1) { | 
 | 		struct hci_cmd_sync_work_entry *entry; | 
 |  | 
 | 		mutex_lock(&hdev->cmd_sync_work_lock); | 
 | 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, | 
 | 						 struct hci_cmd_sync_work_entry, | 
 | 						 list); | 
 | 		if (entry) | 
 | 			list_del(&entry->list); | 
 | 		mutex_unlock(&hdev->cmd_sync_work_lock); | 
 |  | 
 | 		if (!entry) | 
 | 			break; | 
 |  | 
 | 		bt_dev_dbg(hdev, "entry %p", entry); | 
 |  | 
 | 		if (entry->func) { | 
 | 			int err; | 
 |  | 
 | 			hci_req_sync_lock(hdev); | 
 | 			err = entry->func(hdev, entry->data); | 
 | 			if (entry->destroy) | 
 | 				entry->destroy(hdev, entry->data, err); | 
 | 			hci_req_sync_unlock(hdev); | 
 | 		} | 
 |  | 
 | 		kfree(entry); | 
 | 	} | 
 | } | 
 |  | 
 | static void hci_cmd_sync_cancel_work(struct work_struct *work) | 
 | { | 
 | 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); | 
 |  | 
 | 	cancel_delayed_work_sync(&hdev->cmd_timer); | 
 | 	cancel_delayed_work_sync(&hdev->ncmd_timer); | 
 | 	atomic_set(&hdev->cmd_cnt, 1); | 
 |  | 
 | 	wake_up_interruptible(&hdev->req_wait_q); | 
 | } | 
 |  | 
 | void hci_cmd_sync_init(struct hci_dev *hdev) | 
 | { | 
 | 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); | 
 | 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list); | 
 | 	mutex_init(&hdev->cmd_sync_work_lock); | 
 |  | 
 | 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); | 
 | } | 
 |  | 
 | void hci_cmd_sync_clear(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_cmd_sync_work_entry *entry, *tmp; | 
 |  | 
 | 	cancel_work_sync(&hdev->cmd_sync_work); | 
 |  | 
 | 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { | 
 | 		if (entry->destroy) | 
 | 			entry->destroy(hdev, entry->data, -ECANCELED); | 
 |  | 
 | 		list_del(&entry->list); | 
 | 		kfree(entry); | 
 | 	} | 
 | } | 
 |  | 
 | void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err) | 
 | { | 
 | 	bt_dev_dbg(hdev, "err 0x%2.2x", err); | 
 |  | 
 | 	if (hdev->req_status == HCI_REQ_PEND) { | 
 | 		hdev->req_result = err; | 
 | 		hdev->req_status = HCI_REQ_CANCELED; | 
 |  | 
 | 		cancel_delayed_work_sync(&hdev->cmd_timer); | 
 | 		cancel_delayed_work_sync(&hdev->ncmd_timer); | 
 | 		atomic_set(&hdev->cmd_cnt, 1); | 
 |  | 
 | 		wake_up_interruptible(&hdev->req_wait_q); | 
 | 	} | 
 | } | 
 |  | 
 | void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) | 
 | { | 
 | 	bt_dev_dbg(hdev, "err 0x%2.2x", err); | 
 |  | 
 | 	if (hdev->req_status == HCI_REQ_PEND) { | 
 | 		hdev->req_result = err; | 
 | 		hdev->req_status = HCI_REQ_CANCELED; | 
 |  | 
 | 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(hci_cmd_sync_cancel); | 
 |  | 
 | int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, | 
 | 		       void *data, hci_cmd_sync_work_destroy_t destroy) | 
 | { | 
 | 	struct hci_cmd_sync_work_entry *entry; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	entry = kmalloc(sizeof(*entry), GFP_KERNEL); | 
 | 	if (!entry) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	entry->func = func; | 
 | 	entry->data = data; | 
 | 	entry->destroy = destroy; | 
 |  | 
 | 	mutex_lock(&hdev->cmd_sync_work_lock); | 
 | 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list); | 
 | 	mutex_unlock(&hdev->cmd_sync_work_lock); | 
 |  | 
 | 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(hci_cmd_sync_queue); | 
 |  | 
 | int hci_update_eir_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_cp_write_eir cp; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	if (!hdev_is_powered(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	if (!lmp_ext_inq_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) | 
 | 		return 0; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) | 
 | 		return 0; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	eir_create(hdev, cp.data); | 
 |  | 
 | 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) | 
 | 		return 0; | 
 |  | 
 | 	memcpy(hdev->eir, cp.data, sizeof(cp.data)); | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static u8 get_service_classes(struct hci_dev *hdev) | 
 | { | 
 | 	struct bt_uuid *uuid; | 
 | 	u8 val = 0; | 
 |  | 
 | 	list_for_each_entry(uuid, &hdev->uuids, list) | 
 | 		val |= uuid->svc_hint; | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | int hci_update_class_sync(struct hci_dev *hdev) | 
 | { | 
 | 	u8 cod[3]; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	if (!hdev_is_powered(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
 | 		return 0; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) | 
 | 		return 0; | 
 |  | 
 | 	cod[0] = hdev->minor_class; | 
 | 	cod[1] = hdev->major_class; | 
 | 	cod[2] = get_service_classes(hdev); | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) | 
 | 		cod[1] |= 0x20; | 
 |  | 
 | 	if (memcmp(cod, hdev->dev_class, 3) == 0) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, | 
 | 				     sizeof(cod), cod, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) | 
 | { | 
 | 	/* If there is no connection we are OK to advertise. */ | 
 | 	if (hci_conn_num(hdev, LE_LINK) == 0) | 
 | 		return true; | 
 |  | 
 | 	/* Check le_states if there is any connection in peripheral role. */ | 
 | 	if (hdev->conn_hash.le_num_peripheral > 0) { | 
 | 		/* Peripheral connection state and non connectable mode | 
 | 		 * bit 20. | 
 | 		 */ | 
 | 		if (!connectable && !(hdev->le_states[2] & 0x10)) | 
 | 			return false; | 
 |  | 
 | 		/* Peripheral connection state and connectable mode bit 38 | 
 | 		 * and scannable bit 21. | 
 | 		 */ | 
 | 		if (connectable && (!(hdev->le_states[4] & 0x40) || | 
 | 				    !(hdev->le_states[2] & 0x20))) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	/* Check le_states if there is any connection in central role. */ | 
 | 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { | 
 | 		/* Central connection state and non connectable mode bit 18. */ | 
 | 		if (!connectable && !(hdev->le_states[2] & 0x02)) | 
 | 			return false; | 
 |  | 
 | 		/* Central connection state and connectable mode bit 35 and | 
 | 		 * scannable 19. | 
 | 		 */ | 
 | 		if (connectable && (!(hdev->le_states[4] & 0x08) || | 
 | 				    !(hdev->le_states[2] & 0x08))) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) | 
 | { | 
 | 	/* If privacy is not enabled don't use RPA */ | 
 | 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) | 
 | 		return false; | 
 |  | 
 | 	/* If basic privacy mode is enabled use RPA */ | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) | 
 | 		return true; | 
 |  | 
 | 	/* If limited privacy mode is enabled don't use RPA if we're | 
 | 	 * both discoverable and bondable. | 
 | 	 */ | 
 | 	if ((flags & MGMT_ADV_FLAG_DISCOV) && | 
 | 	    hci_dev_test_flag(hdev, HCI_BONDABLE)) | 
 | 		return false; | 
 |  | 
 | 	/* We're neither bondable nor discoverable in the limited | 
 | 	 * privacy mode, therefore use RPA. | 
 | 	 */ | 
 | 	return true; | 
 | } | 
 |  | 
 | static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) | 
 | { | 
 | 	/* If we're advertising or initiating an LE connection we can't | 
 | 	 * go ahead and change the random address at this time. This is | 
 | 	 * because the eventual initiator address used for the | 
 | 	 * subsequently created connection will be undefined (some | 
 | 	 * controllers use the new address and others the one we had | 
 | 	 * when the operation started). | 
 | 	 * | 
 | 	 * In this kind of scenario skip the update and let the random | 
 | 	 * address be updated at the next cycle. | 
 | 	 */ | 
 | 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) || | 
 | 	    hci_lookup_le_connect(hdev)) { | 
 | 		bt_dev_dbg(hdev, "Deferring random address update"); | 
 | 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, | 
 | 				     6, rpa, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, | 
 | 				   bool rpa, u8 *own_addr_type) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* If privacy is enabled use a resolvable private address. If | 
 | 	 * current RPA has expired or there is something else than | 
 | 	 * the current RPA in use, then generate a new one. | 
 | 	 */ | 
 | 	if (rpa) { | 
 | 		/* If Controller supports LL Privacy use own address type is | 
 | 		 * 0x03 | 
 | 		 */ | 
 | 		if (use_ll_privacy(hdev)) | 
 | 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; | 
 | 		else | 
 | 			*own_addr_type = ADDR_LE_DEV_RANDOM; | 
 |  | 
 | 		/* Check if RPA is valid */ | 
 | 		if (rpa_valid(hdev)) | 
 | 			return 0; | 
 |  | 
 | 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); | 
 | 		if (err < 0) { | 
 | 			bt_dev_err(hdev, "failed to generate new RPA"); | 
 | 			return err; | 
 | 		} | 
 |  | 
 | 		err = hci_set_random_addr_sync(hdev, &hdev->rpa); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* In case of required privacy without resolvable private address, | 
 | 	 * use an non-resolvable private address. This is useful for active | 
 | 	 * scanning and non-connectable advertising. | 
 | 	 */ | 
 | 	if (require_privacy) { | 
 | 		bdaddr_t nrpa; | 
 |  | 
 | 		while (true) { | 
 | 			/* The non-resolvable private address is generated | 
 | 			 * from random six bytes with the two most significant | 
 | 			 * bits cleared. | 
 | 			 */ | 
 | 			get_random_bytes(&nrpa, 6); | 
 | 			nrpa.b[5] &= 0x3f; | 
 |  | 
 | 			/* The non-resolvable private address shall not be | 
 | 			 * equal to the public address. | 
 | 			 */ | 
 | 			if (bacmp(&hdev->bdaddr, &nrpa)) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		*own_addr_type = ADDR_LE_DEV_RANDOM; | 
 |  | 
 | 		return hci_set_random_addr_sync(hdev, &nrpa); | 
 | 	} | 
 |  | 
 | 	/* If forcing static address is in use or there is no public | 
 | 	 * address use the static address as random address (but skip | 
 | 	 * the HCI command if the current random address is already the | 
 | 	 * static one. | 
 | 	 * | 
 | 	 * In case BR/EDR has been disabled on a dual-mode controller | 
 | 	 * and a static address has been configured, then use that | 
 | 	 * address instead of the public BR/EDR address. | 
 | 	 */ | 
 | 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || | 
 | 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) || | 
 | 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && | 
 | 	     bacmp(&hdev->static_addr, BDADDR_ANY))) { | 
 | 		*own_addr_type = ADDR_LE_DEV_RANDOM; | 
 | 		if (bacmp(&hdev->static_addr, &hdev->random_addr)) | 
 | 			return hci_set_random_addr_sync(hdev, | 
 | 							&hdev->static_addr); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Neither privacy nor static address is being used so use a | 
 | 	 * public address. | 
 | 	 */ | 
 | 	*own_addr_type = ADDR_LE_DEV_PUBLIC; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) | 
 | { | 
 | 	struct hci_cp_le_set_ext_adv_enable *cp; | 
 | 	struct hci_cp_ext_adv_set *set; | 
 | 	u8 data[sizeof(*cp) + sizeof(*set) * 1]; | 
 | 	u8 size; | 
 |  | 
 | 	/* If request specifies an instance that doesn't exist, fail */ | 
 | 	if (instance > 0) { | 
 | 		struct adv_info *adv; | 
 |  | 
 | 		adv = hci_find_adv_instance(hdev, instance); | 
 | 		if (!adv) | 
 | 			return -EINVAL; | 
 |  | 
 | 		/* If not enabled there is nothing to do */ | 
 | 		if (!adv->enabled) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	memset(data, 0, sizeof(data)); | 
 |  | 
 | 	cp = (void *)data; | 
 | 	set = (void *)cp->data; | 
 |  | 
 | 	/* Instance 0x00 indicates all advertising instances will be disabled */ | 
 | 	cp->num_of_sets = !!instance; | 
 | 	cp->enable = 0x00; | 
 |  | 
 | 	set->handle = instance; | 
 |  | 
 | 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, | 
 | 				     size, data, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, | 
 | 					    bdaddr_t *random_addr) | 
 | { | 
 | 	struct hci_cp_le_set_adv_set_rand_addr cp; | 
 | 	int err; | 
 |  | 
 | 	if (!instance) { | 
 | 		/* Instance 0x00 doesn't have an adv_info, instead it uses | 
 | 		 * hdev->random_addr to track its address so whenever it needs | 
 | 		 * to be updated this also set the random address since | 
 | 		 * hdev->random_addr is shared with scan state machine. | 
 | 		 */ | 
 | 		err = hci_set_random_addr_sync(hdev, random_addr); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	cp.handle = instance; | 
 | 	bacpy(&cp.bdaddr, random_addr); | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) | 
 | { | 
 | 	struct hci_cp_le_set_ext_adv_params cp; | 
 | 	bool connectable; | 
 | 	u32 flags; | 
 | 	bdaddr_t random_addr; | 
 | 	u8 own_addr_type; | 
 | 	int err; | 
 | 	struct adv_info *adv; | 
 | 	bool secondary_adv; | 
 |  | 
 | 	if (instance > 0) { | 
 | 		adv = hci_find_adv_instance(hdev, instance); | 
 | 		if (!adv) | 
 | 			return -EINVAL; | 
 | 	} else { | 
 | 		adv = NULL; | 
 | 	} | 
 |  | 
 | 	/* Updating parameters of an active instance will return a | 
 | 	 * Command Disallowed error, so we must first disable the | 
 | 	 * instance if it is active. | 
 | 	 */ | 
 | 	if (adv && !adv->pending) { | 
 | 		err = hci_disable_ext_adv_instance_sync(hdev, instance); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	flags = hci_adv_instance_flags(hdev, instance); | 
 |  | 
 | 	/* If the "connectable" instance flag was not set, then choose between | 
 | 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. | 
 | 	 */ | 
 | 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || | 
 | 		      mgmt_get_connectable(hdev); | 
 |  | 
 | 	if (!is_advertising_allowed(hdev, connectable)) | 
 | 		return -EPERM; | 
 |  | 
 | 	/* Set require_privacy to true only when non-connectable | 
 | 	 * advertising is used. In that case it is fine to use a | 
 | 	 * non-resolvable private address. | 
 | 	 */ | 
 | 	err = hci_get_random_address(hdev, !connectable, | 
 | 				     adv_use_rpa(hdev, flags), adv, | 
 | 				     &own_addr_type, &random_addr); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	if (adv) { | 
 | 		hci_cpu_to_le24(adv->min_interval, cp.min_interval); | 
 | 		hci_cpu_to_le24(adv->max_interval, cp.max_interval); | 
 | 		cp.tx_power = adv->tx_power; | 
 | 	} else { | 
 | 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); | 
 | 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); | 
 | 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; | 
 | 	} | 
 |  | 
 | 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); | 
 |  | 
 | 	if (connectable) { | 
 | 		if (secondary_adv) | 
 | 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); | 
 | 		else | 
 | 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); | 
 | 	} else if (hci_adv_instance_is_scannable(hdev, instance) || | 
 | 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) { | 
 | 		if (secondary_adv) | 
 | 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); | 
 | 		else | 
 | 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); | 
 | 	} else { | 
 | 		if (secondary_adv) | 
 | 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); | 
 | 		else | 
 | 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); | 
 | 	} | 
 |  | 
 | 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter | 
 | 	 * contains the peer’s Identity Address and the Peer_Address_Type | 
 | 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). | 
 | 	 * These parameters are used to locate the corresponding local IRK in | 
 | 	 * the resolving list; this IRK is used to generate their own address | 
 | 	 * used in the advertisement. | 
 | 	 */ | 
 | 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) | 
 | 		hci_copy_identity_address(hdev, &cp.peer_addr, | 
 | 					  &cp.peer_addr_type); | 
 |  | 
 | 	cp.own_addr_type = own_addr_type; | 
 | 	cp.channel_map = hdev->le_adv_channel_map; | 
 | 	cp.handle = instance; | 
 |  | 
 | 	if (flags & MGMT_ADV_FLAG_SEC_2M) { | 
 | 		cp.primary_phy = HCI_ADV_PHY_1M; | 
 | 		cp.secondary_phy = HCI_ADV_PHY_2M; | 
 | 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) { | 
 | 		cp.primary_phy = HCI_ADV_PHY_CODED; | 
 | 		cp.secondary_phy = HCI_ADV_PHY_CODED; | 
 | 	} else { | 
 | 		/* In all other cases use 1M */ | 
 | 		cp.primary_phy = HCI_ADV_PHY_1M; | 
 | 		cp.secondary_phy = HCI_ADV_PHY_1M; | 
 | 	} | 
 |  | 
 | 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, | 
 | 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if ((own_addr_type == ADDR_LE_DEV_RANDOM || | 
 | 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && | 
 | 	    bacmp(&random_addr, BDADDR_ANY)) { | 
 | 		/* Check if random address need to be updated */ | 
 | 		if (adv) { | 
 | 			if (!bacmp(&random_addr, &adv->random_addr)) | 
 | 				return 0; | 
 | 		} else { | 
 | 			if (!bacmp(&random_addr, &hdev->random_addr)) | 
 | 				return 0; | 
 | 		} | 
 |  | 
 | 		return hci_set_adv_set_random_addr_sync(hdev, instance, | 
 | 							&random_addr); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) | 
 | { | 
 | 	struct { | 
 | 		struct hci_cp_le_set_ext_scan_rsp_data cp; | 
 | 		u8 data[HCI_MAX_EXT_AD_LENGTH]; | 
 | 	} pdu; | 
 | 	u8 len; | 
 |  | 
 | 	memset(&pdu, 0, sizeof(pdu)); | 
 |  | 
 | 	len = eir_create_scan_rsp(hdev, instance, pdu.data); | 
 |  | 
 | 	if (hdev->scan_rsp_data_len == len && | 
 | 	    !memcmp(pdu.data, hdev->scan_rsp_data, len)) | 
 | 		return 0; | 
 |  | 
 | 	memcpy(hdev->scan_rsp_data, pdu.data, len); | 
 | 	hdev->scan_rsp_data_len = len; | 
 |  | 
 | 	pdu.cp.handle = instance; | 
 | 	pdu.cp.length = len; | 
 | 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; | 
 | 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, | 
 | 				     sizeof(pdu.cp) + len, &pdu.cp, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) | 
 | { | 
 | 	struct hci_cp_le_set_scan_rsp_data cp; | 
 | 	u8 len; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	len = eir_create_scan_rsp(hdev, instance, cp.data); | 
 |  | 
 | 	if (hdev->scan_rsp_data_len == len && | 
 | 	    !memcmp(cp.data, hdev->scan_rsp_data, len)) | 
 | 		return 0; | 
 |  | 
 | 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); | 
 | 	hdev->scan_rsp_data_len = len; | 
 |  | 
 | 	cp.length = len; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) | 
 | { | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) | 
 | 		return 0; | 
 |  | 
 | 	if (ext_adv_capable(hdev)) | 
 | 		return hci_set_ext_scan_rsp_data_sync(hdev, instance); | 
 |  | 
 | 	return __hci_set_scan_rsp_data_sync(hdev, instance); | 
 | } | 
 |  | 
 | int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) | 
 | { | 
 | 	struct hci_cp_le_set_ext_adv_enable *cp; | 
 | 	struct hci_cp_ext_adv_set *set; | 
 | 	u8 data[sizeof(*cp) + sizeof(*set) * 1]; | 
 | 	struct adv_info *adv; | 
 |  | 
 | 	if (instance > 0) { | 
 | 		adv = hci_find_adv_instance(hdev, instance); | 
 | 		if (!adv) | 
 | 			return -EINVAL; | 
 | 		/* If already enabled there is nothing to do */ | 
 | 		if (adv->enabled) | 
 | 			return 0; | 
 | 	} else { | 
 | 		adv = NULL; | 
 | 	} | 
 |  | 
 | 	cp = (void *)data; | 
 | 	set = (void *)cp->data; | 
 |  | 
 | 	memset(cp, 0, sizeof(*cp)); | 
 |  | 
 | 	cp->enable = 0x01; | 
 | 	cp->num_of_sets = 0x01; | 
 |  | 
 | 	memset(set, 0, sizeof(*set)); | 
 |  | 
 | 	set->handle = instance; | 
 |  | 
 | 	/* Set duration per instance since controller is responsible for | 
 | 	 * scheduling it. | 
 | 	 */ | 
 | 	if (adv && adv->timeout) { | 
 | 		u16 duration = adv->timeout * MSEC_PER_SEC; | 
 |  | 
 | 		/* Time = N * 10 ms */ | 
 | 		set->duration = cpu_to_le16(duration / 10); | 
 | 	} | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, | 
 | 				     sizeof(*cp) + | 
 | 				     sizeof(*set) * cp->num_of_sets, | 
 | 				     data, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = hci_setup_ext_adv_instance_sync(hdev, instance); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return hci_enable_ext_advertising_sync(hdev, instance); | 
 | } | 
 |  | 
 | static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (ext_adv_capable(hdev)) | 
 | 		return hci_start_ext_adv_sync(hdev, instance); | 
 |  | 
 | 	err = hci_update_adv_data_sync(hdev, instance); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = hci_update_scan_rsp_data_sync(hdev, instance); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return hci_enable_advertising_sync(hdev); | 
 | } | 
 |  | 
 | int hci_enable_advertising_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct adv_info *adv_instance; | 
 | 	struct hci_cp_le_set_adv_param cp; | 
 | 	u8 own_addr_type, enable = 0x01; | 
 | 	bool connectable; | 
 | 	u16 adv_min_interval, adv_max_interval; | 
 | 	u32 flags; | 
 | 	u8 status; | 
 |  | 
 | 	if (ext_adv_capable(hdev)) | 
 | 		return hci_enable_ext_advertising_sync(hdev, | 
 | 						       hdev->cur_adv_instance); | 
 |  | 
 | 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); | 
 | 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); | 
 |  | 
 | 	/* If the "connectable" instance flag was not set, then choose between | 
 | 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. | 
 | 	 */ | 
 | 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || | 
 | 		      mgmt_get_connectable(hdev); | 
 |  | 
 | 	if (!is_advertising_allowed(hdev, connectable)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	status = hci_disable_advertising_sync(hdev); | 
 | 	if (status) | 
 | 		return status; | 
 |  | 
 | 	/* Clear the HCI_LE_ADV bit temporarily so that the | 
 | 	 * hci_update_random_address knows that it's safe to go ahead | 
 | 	 * and write a new random address. The flag will be set back on | 
 | 	 * as soon as the SET_ADV_ENABLE HCI command completes. | 
 | 	 */ | 
 | 	hci_dev_clear_flag(hdev, HCI_LE_ADV); | 
 |  | 
 | 	/* Set require_privacy to true only when non-connectable | 
 | 	 * advertising is used. In that case it is fine to use a | 
 | 	 * non-resolvable private address. | 
 | 	 */ | 
 | 	status = hci_update_random_address_sync(hdev, !connectable, | 
 | 						adv_use_rpa(hdev, flags), | 
 | 						&own_addr_type); | 
 | 	if (status) | 
 | 		return status; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	if (adv_instance) { | 
 | 		adv_min_interval = adv_instance->min_interval; | 
 | 		adv_max_interval = adv_instance->max_interval; | 
 | 	} else { | 
 | 		adv_min_interval = hdev->le_adv_min_interval; | 
 | 		adv_max_interval = hdev->le_adv_max_interval; | 
 | 	} | 
 |  | 
 | 	if (connectable) { | 
 | 		cp.type = LE_ADV_IND; | 
 | 	} else { | 
 | 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) | 
 | 			cp.type = LE_ADV_SCAN_IND; | 
 | 		else | 
 | 			cp.type = LE_ADV_NONCONN_IND; | 
 |  | 
 | 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || | 
 | 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { | 
 | 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; | 
 | 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cp.min_interval = cpu_to_le16(adv_min_interval); | 
 | 	cp.max_interval = cpu_to_le16(adv_max_interval); | 
 | 	cp.own_address_type = own_addr_type; | 
 | 	cp.channel_map = hdev->le_adv_channel_map; | 
 |  | 
 | 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, | 
 | 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | 	if (status) | 
 | 		return status; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, | 
 | 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int enable_advertising_sync(struct hci_dev *hdev, void *data) | 
 | { | 
 | 	return hci_enable_advertising_sync(hdev); | 
 | } | 
 |  | 
 | int hci_enable_advertising(struct hci_dev *hdev) | 
 | { | 
 | 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && | 
 | 	    list_empty(&hdev->adv_instances)) | 
 | 		return 0; | 
 |  | 
 | 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); | 
 | } | 
 |  | 
 | int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, | 
 | 				     struct sock *sk) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!ext_adv_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	err = hci_disable_ext_adv_instance_sync(hdev, instance); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* If request specifies an instance that doesn't exist, fail */ | 
 | 	if (instance > 0 && !hci_find_adv_instance(hdev, instance)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, | 
 | 					sizeof(instance), &instance, 0, | 
 | 					HCI_CMD_TIMEOUT, sk); | 
 | } | 
 |  | 
 | static void cancel_adv_timeout(struct hci_dev *hdev) | 
 | { | 
 | 	if (hdev->adv_instance_timeout) { | 
 | 		hdev->adv_instance_timeout = 0; | 
 | 		cancel_delayed_work(&hdev->adv_instance_expire); | 
 | 	} | 
 | } | 
 |  | 
 | static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) | 
 | { | 
 | 	struct { | 
 | 		struct hci_cp_le_set_ext_adv_data cp; | 
 | 		u8 data[HCI_MAX_EXT_AD_LENGTH]; | 
 | 	} pdu; | 
 | 	u8 len; | 
 |  | 
 | 	memset(&pdu, 0, sizeof(pdu)); | 
 |  | 
 | 	len = eir_create_adv_data(hdev, instance, pdu.data); | 
 |  | 
 | 	/* There's nothing to do if the data hasn't changed */ | 
 | 	if (hdev->adv_data_len == len && | 
 | 	    memcmp(pdu.data, hdev->adv_data, len) == 0) | 
 | 		return 0; | 
 |  | 
 | 	memcpy(hdev->adv_data, pdu.data, len); | 
 | 	hdev->adv_data_len = len; | 
 |  | 
 | 	pdu.cp.length = len; | 
 | 	pdu.cp.handle = instance; | 
 | 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; | 
 | 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, | 
 | 				     sizeof(pdu.cp) + len, &pdu.cp, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) | 
 | { | 
 | 	struct hci_cp_le_set_adv_data cp; | 
 | 	u8 len; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	len = eir_create_adv_data(hdev, instance, cp.data); | 
 |  | 
 | 	/* There's nothing to do if the data hasn't changed */ | 
 | 	if (hdev->adv_data_len == len && | 
 | 	    memcmp(cp.data, hdev->adv_data, len) == 0) | 
 | 		return 0; | 
 |  | 
 | 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); | 
 | 	hdev->adv_data_len = len; | 
 |  | 
 | 	cp.length = len; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) | 
 | { | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) | 
 | 		return 0; | 
 |  | 
 | 	if (ext_adv_capable(hdev)) | 
 | 		return hci_set_ext_adv_data_sync(hdev, instance); | 
 |  | 
 | 	return hci_set_adv_data_sync(hdev, instance); | 
 | } | 
 |  | 
 | int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, | 
 | 				   bool force) | 
 | { | 
 | 	struct adv_info *adv = NULL; | 
 | 	u16 timeout; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (hdev->adv_instance_timeout) | 
 | 		return -EBUSY; | 
 |  | 
 | 	adv = hci_find_adv_instance(hdev, instance); | 
 | 	if (!adv) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* A zero timeout means unlimited advertising. As long as there is | 
 | 	 * only one instance, duration should be ignored. We still set a timeout | 
 | 	 * in case further instances are being added later on. | 
 | 	 * | 
 | 	 * If the remaining lifetime of the instance is more than the duration | 
 | 	 * then the timeout corresponds to the duration, otherwise it will be | 
 | 	 * reduced to the remaining instance lifetime. | 
 | 	 */ | 
 | 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time) | 
 | 		timeout = adv->duration; | 
 | 	else | 
 | 		timeout = adv->remaining_time; | 
 |  | 
 | 	/* The remaining time is being reduced unless the instance is being | 
 | 	 * advertised without time limit. | 
 | 	 */ | 
 | 	if (adv->timeout) | 
 | 		adv->remaining_time = adv->remaining_time - timeout; | 
 |  | 
 | 	/* Only use work for scheduling instances with legacy advertising */ | 
 | 	if (!ext_adv_capable(hdev)) { | 
 | 		hdev->adv_instance_timeout = timeout; | 
 | 		queue_delayed_work(hdev->req_workqueue, | 
 | 				   &hdev->adv_instance_expire, | 
 | 				   msecs_to_jiffies(timeout * 1000)); | 
 | 	} | 
 |  | 
 | 	/* If we're just re-scheduling the same instance again then do not | 
 | 	 * execute any HCI commands. This happens when a single instance is | 
 | 	 * being advertised. | 
 | 	 */ | 
 | 	if (!force && hdev->cur_adv_instance == instance && | 
 | 	    hci_dev_test_flag(hdev, HCI_LE_ADV)) | 
 | 		return 0; | 
 |  | 
 | 	hdev->cur_adv_instance = instance; | 
 |  | 
 | 	return hci_start_adv_sync(hdev, instance); | 
 | } | 
 |  | 
 | static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!ext_adv_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	/* Disable instance 0x00 to disable all instances */ | 
 | 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, | 
 | 					0, NULL, 0, HCI_CMD_TIMEOUT, sk); | 
 | } | 
 |  | 
 | static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) | 
 | { | 
 | 	struct adv_info *adv, *n; | 
 |  | 
 | 	if (ext_adv_capable(hdev)) | 
 | 		/* Remove all existing sets */ | 
 | 		return hci_clear_adv_sets_sync(hdev, sk); | 
 |  | 
 | 	/* This is safe as long as there is no command send while the lock is | 
 | 	 * held. | 
 | 	 */ | 
 | 	hci_dev_lock(hdev); | 
 |  | 
 | 	/* Cleanup non-ext instances */ | 
 | 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { | 
 | 		u8 instance = adv->instance; | 
 | 		int err; | 
 |  | 
 | 		if (!(force || adv->timeout)) | 
 | 			continue; | 
 |  | 
 | 		err = hci_remove_adv_instance(hdev, instance); | 
 | 		if (!err) | 
 | 			mgmt_advertising_removed(sk, hdev, instance); | 
 | 	} | 
 |  | 
 | 	hci_dev_unlock(hdev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, | 
 | 			       struct sock *sk) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* If we use extended advertising, instance has to be removed first. */ | 
 | 	if (ext_adv_capable(hdev)) | 
 | 		return hci_remove_ext_adv_instance_sync(hdev, instance, sk); | 
 |  | 
 | 	/* This is safe as long as there is no command send while the lock is | 
 | 	 * held. | 
 | 	 */ | 
 | 	hci_dev_lock(hdev); | 
 |  | 
 | 	err = hci_remove_adv_instance(hdev, instance); | 
 | 	if (!err) | 
 | 		mgmt_advertising_removed(sk, hdev, instance); | 
 |  | 
 | 	hci_dev_unlock(hdev); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* For a single instance: | 
 |  * - force == true: The instance will be removed even when its remaining | 
 |  *   lifetime is not zero. | 
 |  * - force == false: the instance will be deactivated but kept stored unless | 
 |  *   the remaining lifetime is zero. | 
 |  * | 
 |  * For instance == 0x00: | 
 |  * - force == true: All instances will be removed regardless of their timeout | 
 |  *   setting. | 
 |  * - force == false: Only instances that have a timeout will be removed. | 
 |  */ | 
 | int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, | 
 | 				u8 instance, bool force) | 
 | { | 
 | 	struct adv_info *next = NULL; | 
 | 	int err; | 
 |  | 
 | 	/* Cancel any timeout concerning the removed instance(s). */ | 
 | 	if (!instance || hdev->cur_adv_instance == instance) | 
 | 		cancel_adv_timeout(hdev); | 
 |  | 
 | 	/* Get the next instance to advertise BEFORE we remove | 
 | 	 * the current one. This can be the same instance again | 
 | 	 * if there is only one instance. | 
 | 	 */ | 
 | 	if (hdev->cur_adv_instance == instance) | 
 | 		next = hci_get_next_instance(hdev, instance); | 
 |  | 
 | 	if (!instance) { | 
 | 		err = hci_clear_adv_sync(hdev, sk, force); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} else { | 
 | 		struct adv_info *adv = hci_find_adv_instance(hdev, instance); | 
 |  | 
 | 		if (force || (adv && adv->timeout && !adv->remaining_time)) { | 
 | 			/* Don't advertise a removed instance. */ | 
 | 			if (next && next->instance == instance) | 
 | 				next = NULL; | 
 |  | 
 | 			err = hci_remove_adv_sync(hdev, instance, sk); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) | 
 | 		return 0; | 
 |  | 
 | 	if (next && !ext_adv_capable(hdev)) | 
 | 		hci_schedule_adv_instance_sync(hdev, next->instance, false); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) | 
 | { | 
 | 	struct hci_cp_read_rssi cp; | 
 |  | 
 | 	cp.handle = handle; | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, | 
 | 					sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, | 
 | 					sizeof(*cp), cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) | 
 | { | 
 | 	struct hci_cp_read_tx_power cp; | 
 |  | 
 | 	cp.handle = handle; | 
 | 	cp.type = type; | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, | 
 | 					sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | int hci_disable_advertising_sync(struct hci_dev *hdev) | 
 | { | 
 | 	u8 enable = 0x00; | 
 |  | 
 | 	/* If controller is not advertising we are done. */ | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) | 
 | 		return 0; | 
 |  | 
 | 	if (ext_adv_capable(hdev)) | 
 | 		return hci_disable_ext_adv_instance_sync(hdev, 0x00); | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, | 
 | 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, | 
 | 					   u8 filter_dup) | 
 | { | 
 | 	struct hci_cp_le_set_ext_scan_enable cp; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	cp.enable = val; | 
 | 	cp.filter_dup = filter_dup; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, | 
 | 				       u8 filter_dup) | 
 | { | 
 | 	struct hci_cp_le_set_scan_enable cp; | 
 |  | 
 | 	if (use_ext_scan(hdev)) | 
 | 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	cp.enable = val; | 
 | 	cp.filter_dup = filter_dup; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) | 
 | { | 
 | 	if (!use_ll_privacy(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	/* If controller is not/already resolving we are done. */ | 
 | 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, | 
 | 				     sizeof(val), &val, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_scan_disable_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* If controller is not scanning we are done. */ | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) | 
 | 		return 0; | 
 |  | 
 | 	if (hdev->scanning_paused) { | 
 | 		bt_dev_dbg(hdev, "Scanning is paused for suspend"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); | 
 | 	if (err) { | 
 | 		bt_dev_err(hdev, "Unable to disable scanning: %d", err); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static bool scan_use_rpa(struct hci_dev *hdev) | 
 | { | 
 | 	return hci_dev_test_flag(hdev, HCI_PRIVACY); | 
 | } | 
 |  | 
 | static void hci_start_interleave_scan(struct hci_dev *hdev) | 
 | { | 
 | 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; | 
 | 	queue_delayed_work(hdev->req_workqueue, | 
 | 			   &hdev->interleave_scan, 0); | 
 | } | 
 |  | 
 | static bool is_interleave_scanning(struct hci_dev *hdev) | 
 | { | 
 | 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; | 
 | } | 
 |  | 
 | static void cancel_interleave_scan(struct hci_dev *hdev) | 
 | { | 
 | 	bt_dev_dbg(hdev, "cancelling interleave scan"); | 
 |  | 
 | 	cancel_delayed_work_sync(&hdev->interleave_scan); | 
 |  | 
 | 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; | 
 | } | 
 |  | 
 | /* Return true if interleave_scan wasn't started until exiting this function, | 
 |  * otherwise, return false | 
 |  */ | 
 | static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) | 
 | { | 
 | 	/* Do interleaved scan only if all of the following are true: | 
 | 	 * - There is at least one ADV monitor | 
 | 	 * - At least one pending LE connection or one device to be scanned for | 
 | 	 * - Monitor offloading is not supported | 
 | 	 * If so, we should alternate between allowlist scan and one without | 
 | 	 * any filters to save power. | 
 | 	 */ | 
 | 	bool use_interleaving = hci_is_adv_monitoring(hdev) && | 
 | 				!(list_empty(&hdev->pend_le_conns) && | 
 | 				  list_empty(&hdev->pend_le_reports)) && | 
 | 				hci_get_adv_monitor_offload_ext(hdev) == | 
 | 				    HCI_ADV_MONITOR_EXT_NONE; | 
 | 	bool is_interleaving = is_interleave_scanning(hdev); | 
 |  | 
 | 	if (use_interleaving && !is_interleaving) { | 
 | 		hci_start_interleave_scan(hdev); | 
 | 		bt_dev_dbg(hdev, "starting interleave scan"); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (!use_interleaving && is_interleaving) | 
 | 		cancel_interleave_scan(hdev); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Removes connection to resolve list if needed.*/ | 
 | static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, | 
 | 					bdaddr_t *bdaddr, u8 bdaddr_type) | 
 | { | 
 | 	struct hci_cp_le_del_from_resolv_list cp; | 
 | 	struct bdaddr_list_with_irk *entry; | 
 |  | 
 | 	if (!use_ll_privacy(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	/* Check if the IRK has been programmed */ | 
 | 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, | 
 | 						bdaddr_type); | 
 | 	if (!entry) | 
 | 		return 0; | 
 |  | 
 | 	cp.bdaddr_type = bdaddr_type; | 
 | 	bacpy(&cp.bdaddr, bdaddr); | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_le_del_accept_list_sync(struct hci_dev *hdev, | 
 | 				       bdaddr_t *bdaddr, u8 bdaddr_type) | 
 | { | 
 | 	struct hci_cp_le_del_from_accept_list cp; | 
 | 	int err; | 
 |  | 
 | 	/* Check if device is on accept list before removing it */ | 
 | 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) | 
 | 		return 0; | 
 |  | 
 | 	cp.bdaddr_type = bdaddr_type; | 
 | 	bacpy(&cp.bdaddr, bdaddr); | 
 |  | 
 | 	/* Ignore errors when removing from resolving list as that is likely | 
 | 	 * that the device was never added. | 
 | 	 */ | 
 | 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); | 
 |  | 
 | 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, | 
 | 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | 	if (err) { | 
 | 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, | 
 | 		   cp.bdaddr_type); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Adds connection to resolve list if needed. | 
 |  * Setting params to NULL programs local hdev->irk | 
 |  */ | 
 | static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, | 
 | 					struct hci_conn_params *params) | 
 | { | 
 | 	struct hci_cp_le_add_to_resolv_list cp; | 
 | 	struct smp_irk *irk; | 
 | 	struct bdaddr_list_with_irk *entry; | 
 |  | 
 | 	if (!use_ll_privacy(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	/* Attempt to program local identity address, type and irk if params is | 
 | 	 * NULL. | 
 | 	 */ | 
 | 	if (!params) { | 
 | 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) | 
 | 			return 0; | 
 |  | 
 | 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); | 
 | 		memcpy(cp.peer_irk, hdev->irk, 16); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); | 
 | 	if (!irk) | 
 | 		return 0; | 
 |  | 
 | 	/* Check if the IK has _not_ been programmed yet. */ | 
 | 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, | 
 | 						¶ms->addr, | 
 | 						params->addr_type); | 
 | 	if (entry) | 
 | 		return 0; | 
 |  | 
 | 	cp.bdaddr_type = params->addr_type; | 
 | 	bacpy(&cp.bdaddr, ¶ms->addr); | 
 | 	memcpy(cp.peer_irk, irk->val, 16); | 
 |  | 
 | done: | 
 | 	if (hci_dev_test_flag(hdev, HCI_PRIVACY)) | 
 | 		memcpy(cp.local_irk, hdev->irk, 16); | 
 | 	else | 
 | 		memset(cp.local_irk, 0, 16); | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Set Device Privacy Mode. */ | 
 | static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, | 
 | 					struct hci_conn_params *params) | 
 | { | 
 | 	struct hci_cp_le_set_privacy_mode cp; | 
 | 	struct smp_irk *irk; | 
 |  | 
 | 	/* If device privacy mode has already been set there is nothing to do */ | 
 | 	if (params->privacy_mode == HCI_DEVICE_PRIVACY) | 
 | 		return 0; | 
 |  | 
 | 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also | 
 | 	 * indicates that LL Privacy has been enabled and | 
 | 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported. | 
 | 	 */ | 
 | 	if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) | 
 | 		return 0; | 
 |  | 
 | 	irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); | 
 | 	if (!irk) | 
 | 		return 0; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	cp.bdaddr_type = irk->addr_type; | 
 | 	bacpy(&cp.bdaddr, &irk->bdaddr); | 
 | 	cp.mode = HCI_DEVICE_PRIVACY; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Adds connection to allow list if needed, if the device uses RPA (has IRK) | 
 |  * this attempts to program the device in the resolving list as well and | 
 |  * properly set the privacy mode. | 
 |  */ | 
 | static int hci_le_add_accept_list_sync(struct hci_dev *hdev, | 
 | 				       struct hci_conn_params *params, | 
 | 				       u8 *num_entries) | 
 | { | 
 | 	struct hci_cp_le_add_to_accept_list cp; | 
 | 	int err; | 
 |  | 
 | 	/* During suspend, only wakeable devices can be in acceptlist */ | 
 | 	if (hdev->suspended && | 
 | 	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) | 
 | 		return 0; | 
 |  | 
 | 	/* Select filter policy to accept all advertising */ | 
 | 	if (*num_entries >= hdev->le_accept_list_size) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	/* Accept list can not be used with RPAs */ | 
 | 	if (!use_ll_privacy(hdev) && | 
 | 	    hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Attempt to program the device in the resolving list first to avoid | 
 | 	 * having to rollback in case it fails since the resolving list is | 
 | 	 * dynamic it can probably be smaller than the accept list. | 
 | 	 */ | 
 | 	err = hci_le_add_resolve_list_sync(hdev, params); | 
 | 	if (err) { | 
 | 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* Set Privacy Mode */ | 
 | 	err = hci_le_set_privacy_mode_sync(hdev, params); | 
 | 	if (err) { | 
 | 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* Check if already in accept list */ | 
 | 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, | 
 | 				   params->addr_type)) | 
 | 		return 0; | 
 |  | 
 | 	*num_entries += 1; | 
 | 	cp.bdaddr_type = params->addr_type; | 
 | 	bacpy(&cp.bdaddr, ¶ms->addr); | 
 |  | 
 | 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, | 
 | 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | 	if (err) { | 
 | 		bt_dev_err(hdev, "Unable to add to allow list: %d", err); | 
 | 		/* Rollback the device from the resolving list */ | 
 | 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, | 
 | 		   cp.bdaddr_type); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This function disables/pause all advertising instances */ | 
 | static int hci_pause_advertising_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 | 	int old_state; | 
 |  | 
 | 	/* If already been paused there is nothing to do. */ | 
 | 	if (hdev->advertising_paused) | 
 | 		return 0; | 
 |  | 
 | 	bt_dev_dbg(hdev, "Pausing directed advertising"); | 
 |  | 
 | 	/* Stop directed advertising */ | 
 | 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); | 
 | 	if (old_state) { | 
 | 		/* When discoverable timeout triggers, then just make sure | 
 | 		 * the limited discoverable flag is cleared. Even in the case | 
 | 		 * of a timeout triggered from general discoverable, it is | 
 | 		 * safe to unconditionally clear the flag. | 
 | 		 */ | 
 | 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); | 
 | 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); | 
 | 		hdev->discov_timeout = 0; | 
 | 	} | 
 |  | 
 | 	bt_dev_dbg(hdev, "Pausing advertising instances"); | 
 |  | 
 | 	/* Call to disable any advertisements active on the controller. | 
 | 	 * This will succeed even if no advertisements are configured. | 
 | 	 */ | 
 | 	err = hci_disable_advertising_sync(hdev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* If we are using software rotation, pause the loop */ | 
 | 	if (!ext_adv_capable(hdev)) | 
 | 		cancel_adv_timeout(hdev); | 
 |  | 
 | 	hdev->advertising_paused = true; | 
 | 	hdev->advertising_old_state = old_state; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This function enables all user advertising instances */ | 
 | static int hci_resume_advertising_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct adv_info *adv, *tmp; | 
 | 	int err; | 
 |  | 
 | 	/* If advertising has not been paused there is nothing  to do. */ | 
 | 	if (!hdev->advertising_paused) | 
 | 		return 0; | 
 |  | 
 | 	/* Resume directed advertising */ | 
 | 	hdev->advertising_paused = false; | 
 | 	if (hdev->advertising_old_state) { | 
 | 		hci_dev_set_flag(hdev, HCI_ADVERTISING); | 
 | 		hdev->advertising_old_state = 0; | 
 | 	} | 
 |  | 
 | 	bt_dev_dbg(hdev, "Resuming advertising instances"); | 
 |  | 
 | 	if (ext_adv_capable(hdev)) { | 
 | 		/* Call for each tracked instance to be re-enabled */ | 
 | 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { | 
 | 			err = hci_enable_ext_advertising_sync(hdev, | 
 | 							      adv->instance); | 
 | 			if (!err) | 
 | 				continue; | 
 |  | 
 | 			/* If the instance cannot be resumed remove it */ | 
 | 			hci_remove_ext_adv_instance_sync(hdev, adv->instance, | 
 | 							 NULL); | 
 | 		} | 
 | 	} else { | 
 | 		/* Schedule for most recent instance to be restarted and begin | 
 | 		 * the software rotation loop | 
 | 		 */ | 
 | 		err = hci_schedule_adv_instance_sync(hdev, | 
 | 						     hdev->cur_adv_instance, | 
 | 						     true); | 
 | 	} | 
 |  | 
 | 	hdev->advertising_paused = false; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, | 
 | 					     bool extended, struct sock *sk) | 
 | { | 
 | 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : | 
 | 					HCI_OP_READ_LOCAL_OOB_DATA; | 
 |  | 
 | 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); | 
 | } | 
 |  | 
 | /* Device must not be scanning when updating the accept list. | 
 |  * | 
 |  * Update is done using the following sequence: | 
 |  * | 
 |  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> | 
 |  * Remove Devices From Accept List -> | 
 |  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> | 
 |  * Add Devices to Accept List -> | 
 |  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> | 
 |  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> | 
 |  * Enable Scanning | 
 |  * | 
 |  * In case of failure advertising shall be restored to its original state and | 
 |  * return would disable accept list since either accept or resolving list could | 
 |  * not be programmed. | 
 |  * | 
 |  */ | 
 | static u8 hci_update_accept_list_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_conn_params *params; | 
 | 	struct bdaddr_list *b, *t; | 
 | 	u8 num_entries = 0; | 
 | 	bool pend_conn, pend_report; | 
 | 	u8 filter_policy; | 
 | 	int err; | 
 |  | 
 | 	/* Pause advertising if resolving list can be used as controllers are | 
 | 	 * cannot accept resolving list modifications while advertising. | 
 | 	 */ | 
 | 	if (use_ll_privacy(hdev)) { | 
 | 		err = hci_pause_advertising_sync(hdev); | 
 | 		if (err) { | 
 | 			bt_dev_err(hdev, "pause advertising failed: %d", err); | 
 | 			return 0x00; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Disable address resolution while reprogramming accept list since | 
 | 	 * devices that do have an IRK will be programmed in the resolving list | 
 | 	 * when LL Privacy is enabled. | 
 | 	 */ | 
 | 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); | 
 | 	if (err) { | 
 | 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* Go through the current accept list programmed into the | 
 | 	 * controller one by one and check if that address is still | 
 | 	 * in the list of pending connections or list of devices to | 
 | 	 * report. If not present in either list, then remove it from | 
 | 	 * the controller. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { | 
 | 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, | 
 | 						      &b->bdaddr, | 
 | 						      b->bdaddr_type); | 
 | 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, | 
 | 							&b->bdaddr, | 
 | 							b->bdaddr_type); | 
 |  | 
 | 		/* If the device is not likely to connect or report, | 
 | 		 * remove it from the acceptlist. | 
 | 		 */ | 
 | 		if (!pend_conn && !pend_report) { | 
 | 			hci_le_del_accept_list_sync(hdev, &b->bdaddr, | 
 | 						    b->bdaddr_type); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		num_entries++; | 
 | 	} | 
 |  | 
 | 	/* Since all no longer valid accept list entries have been | 
 | 	 * removed, walk through the list of pending connections | 
 | 	 * and ensure that any new device gets programmed into | 
 | 	 * the controller. | 
 | 	 * | 
 | 	 * If the list of the devices is larger than the list of | 
 | 	 * available accept list entries in the controller, then | 
 | 	 * just abort and return filer policy value to not use the | 
 | 	 * accept list. | 
 | 	 */ | 
 | 	list_for_each_entry(params, &hdev->pend_le_conns, action) { | 
 | 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries); | 
 | 		if (err) | 
 | 			goto done; | 
 | 	} | 
 |  | 
 | 	/* After adding all new pending connections, walk through | 
 | 	 * the list of pending reports and also add these to the | 
 | 	 * accept list if there is still space. Abort if space runs out. | 
 | 	 */ | 
 | 	list_for_each_entry(params, &hdev->pend_le_reports, action) { | 
 | 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries); | 
 | 		if (err) | 
 | 			goto done; | 
 | 	} | 
 |  | 
 | 	/* Use the allowlist unless the following conditions are all true: | 
 | 	 * - We are not currently suspending | 
 | 	 * - There are 1 or more ADV monitors registered and it's not offloaded | 
 | 	 * - Interleaved scanning is not currently using the allowlist | 
 | 	 */ | 
 | 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && | 
 | 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && | 
 | 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) | 
 | 		err = -EINVAL; | 
 |  | 
 | done: | 
 | 	filter_policy = err ? 0x00 : 0x01; | 
 |  | 
 | 	/* Enable address resolution when LL Privacy is enabled. */ | 
 | 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); | 
 | 	if (err) | 
 | 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); | 
 |  | 
 | 	/* Resume advertising if it was paused */ | 
 | 	if (use_ll_privacy(hdev)) | 
 | 		hci_resume_advertising_sync(hdev); | 
 |  | 
 | 	/* Select filter policy to use accept list */ | 
 | 	return filter_policy; | 
 | } | 
 |  | 
 | /* Returns true if an le connection is in the scanning state */ | 
 | static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_conn_hash *h = &hdev->conn_hash; | 
 | 	struct hci_conn  *c; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	list_for_each_entry_rcu(c, &h->list, list) { | 
 | 		if (c->type == LE_LINK && c->state == BT_CONNECT && | 
 | 		    test_bit(HCI_CONN_SCANNING, &c->flags)) { | 
 | 			rcu_read_unlock(); | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, | 
 | 					  u16 interval, u16 window, | 
 | 					  u8 own_addr_type, u8 filter_policy) | 
 | { | 
 | 	struct hci_cp_le_set_ext_scan_params *cp; | 
 | 	struct hci_cp_le_scan_phy_params *phy; | 
 | 	u8 data[sizeof(*cp) + sizeof(*phy) * 2]; | 
 | 	u8 num_phy = 0; | 
 |  | 
 | 	cp = (void *)data; | 
 | 	phy = (void *)cp->data; | 
 |  | 
 | 	memset(data, 0, sizeof(data)); | 
 |  | 
 | 	cp->own_addr_type = own_addr_type; | 
 | 	cp->filter_policy = filter_policy; | 
 |  | 
 | 	if (scan_1m(hdev) || scan_2m(hdev)) { | 
 | 		cp->scanning_phys |= LE_SCAN_PHY_1M; | 
 |  | 
 | 		phy->type = type; | 
 | 		phy->interval = cpu_to_le16(interval); | 
 | 		phy->window = cpu_to_le16(window); | 
 |  | 
 | 		num_phy++; | 
 | 		phy++; | 
 | 	} | 
 |  | 
 | 	if (scan_coded(hdev)) { | 
 | 		cp->scanning_phys |= LE_SCAN_PHY_CODED; | 
 |  | 
 | 		phy->type = type; | 
 | 		phy->interval = cpu_to_le16(interval); | 
 | 		phy->window = cpu_to_le16(window); | 
 |  | 
 | 		num_phy++; | 
 | 		phy++; | 
 | 	} | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, | 
 | 				     sizeof(*cp) + sizeof(*phy) * num_phy, | 
 | 				     data, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, | 
 | 				      u16 interval, u16 window, | 
 | 				      u8 own_addr_type, u8 filter_policy) | 
 | { | 
 | 	struct hci_cp_le_set_scan_param cp; | 
 |  | 
 | 	if (use_ext_scan(hdev)) | 
 | 		return hci_le_set_ext_scan_param_sync(hdev, type, interval, | 
 | 						      window, own_addr_type, | 
 | 						      filter_policy); | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	cp.type = type; | 
 | 	cp.interval = cpu_to_le16(interval); | 
 | 	cp.window = cpu_to_le16(window); | 
 | 	cp.own_address_type = own_addr_type; | 
 | 	cp.filter_policy = filter_policy; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, | 
 | 			       u16 window, u8 own_addr_type, u8 filter_policy, | 
 | 			       u8 filter_dup) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (hdev->scanning_paused) { | 
 | 		bt_dev_dbg(hdev, "Scanning is paused for suspend"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	err = hci_le_set_scan_param_sync(hdev, type, interval, window, | 
 | 					 own_addr_type, filter_policy); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); | 
 | } | 
 |  | 
 | static int hci_passive_scan_sync(struct hci_dev *hdev) | 
 | { | 
 | 	u8 own_addr_type; | 
 | 	u8 filter_policy; | 
 | 	u16 window, interval; | 
 | 	int err; | 
 |  | 
 | 	if (hdev->scanning_paused) { | 
 | 		bt_dev_dbg(hdev, "Scanning is paused for suspend"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	err = hci_scan_disable_sync(hdev); | 
 | 	if (err) { | 
 | 		bt_dev_err(hdev, "disable scanning failed: %d", err); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* Set require_privacy to false since no SCAN_REQ are send | 
 | 	 * during passive scanning. Not using an non-resolvable address | 
 | 	 * here is important so that peer devices using direct | 
 | 	 * advertising with our address will be correctly reported | 
 | 	 * by the controller. | 
 | 	 */ | 
 | 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), | 
 | 					   &own_addr_type)) | 
 | 		return 0; | 
 |  | 
 | 	if (hdev->enable_advmon_interleave_scan && | 
 | 	    hci_update_interleaved_scan_sync(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); | 
 |  | 
 | 	/* Adding or removing entries from the accept list must | 
 | 	 * happen before enabling scanning. The controller does | 
 | 	 * not allow accept list modification while scanning. | 
 | 	 */ | 
 | 	filter_policy = hci_update_accept_list_sync(hdev); | 
 |  | 
 | 	/* When the controller is using random resolvable addresses and | 
 | 	 * with that having LE privacy enabled, then controllers with | 
 | 	 * Extended Scanner Filter Policies support can now enable support | 
 | 	 * for handling directed advertising. | 
 | 	 * | 
 | 	 * So instead of using filter polices 0x00 (no acceptlist) | 
 | 	 * and 0x01 (acceptlist enabled) use the new filter policies | 
 | 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). | 
 | 	 */ | 
 | 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) && | 
 | 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) | 
 | 		filter_policy |= 0x02; | 
 |  | 
 | 	if (hdev->suspended) { | 
 | 		window = hdev->le_scan_window_suspend; | 
 | 		interval = hdev->le_scan_int_suspend; | 
 | 	} else if (hci_is_le_conn_scanning(hdev)) { | 
 | 		window = hdev->le_scan_window_connect; | 
 | 		interval = hdev->le_scan_int_connect; | 
 | 	} else if (hci_is_adv_monitoring(hdev)) { | 
 | 		window = hdev->le_scan_window_adv_monitor; | 
 | 		interval = hdev->le_scan_int_adv_monitor; | 
 | 	} else { | 
 | 		window = hdev->le_scan_window; | 
 | 		interval = hdev->le_scan_interval; | 
 | 	} | 
 |  | 
 | 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); | 
 |  | 
 | 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, | 
 | 				   own_addr_type, filter_policy, | 
 | 				   LE_SCAN_FILTER_DUP_ENABLE); | 
 | } | 
 |  | 
 | /* This function controls the passive scanning based on hdev->pend_le_conns | 
 |  * list. If there are pending LE connection we start the background scanning, | 
 |  * otherwise we stop it in the following sequence: | 
 |  * | 
 |  * If there are devices to scan: | 
 |  * | 
 |  * Disable Scanning -> Update Accept List -> | 
 |  * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> | 
 |  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> | 
 |  * Enable Scanning | 
 |  * | 
 |  * Otherwise: | 
 |  * | 
 |  * Disable Scanning | 
 |  */ | 
 | int hci_update_passive_scan_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!test_bit(HCI_UP, &hdev->flags) || | 
 | 	    test_bit(HCI_INIT, &hdev->flags) || | 
 | 	    hci_dev_test_flag(hdev, HCI_SETUP) || | 
 | 	    hci_dev_test_flag(hdev, HCI_CONFIG) || | 
 | 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) || | 
 | 	    hci_dev_test_flag(hdev, HCI_UNREGISTER)) | 
 | 		return 0; | 
 |  | 
 | 	/* No point in doing scanning if LE support hasn't been enabled */ | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) | 
 | 		return 0; | 
 |  | 
 | 	/* If discovery is active don't interfere with it */ | 
 | 	if (hdev->discovery.state != DISCOVERY_STOPPED) | 
 | 		return 0; | 
 |  | 
 | 	/* Reset RSSI and UUID filters when starting background scanning | 
 | 	 * since these filters are meant for service discovery only. | 
 | 	 * | 
 | 	 * The Start Discovery and Start Service Discovery operations | 
 | 	 * ensure to set proper values for RSSI threshold and UUID | 
 | 	 * filter list. So it is safe to just reset them here. | 
 | 	 */ | 
 | 	hci_discovery_filter_clear(hdev); | 
 |  | 
 | 	bt_dev_dbg(hdev, "ADV monitoring is %s", | 
 | 		   hci_is_adv_monitoring(hdev) ? "on" : "off"); | 
 |  | 
 | 	if (list_empty(&hdev->pend_le_conns) && | 
 | 	    list_empty(&hdev->pend_le_reports) && | 
 | 	    !hci_is_adv_monitoring(hdev)) { | 
 | 		/* If there is no pending LE connections or devices | 
 | 		 * to be scanned for or no ADV monitors, we should stop the | 
 | 		 * background scanning. | 
 | 		 */ | 
 |  | 
 | 		bt_dev_dbg(hdev, "stopping background scanning"); | 
 |  | 
 | 		err = hci_scan_disable_sync(hdev); | 
 | 		if (err) | 
 | 			bt_dev_err(hdev, "stop background scanning failed: %d", | 
 | 				   err); | 
 | 	} else { | 
 | 		/* If there is at least one pending LE connection, we should | 
 | 		 * keep the background scan running. | 
 | 		 */ | 
 |  | 
 | 		/* If controller is connecting, we should not start scanning | 
 | 		 * since some controllers are not able to scan and connect at | 
 | 		 * the same time. | 
 | 		 */ | 
 | 		if (hci_lookup_le_connect(hdev)) | 
 | 			return 0; | 
 |  | 
 | 		bt_dev_dbg(hdev, "start background scanning"); | 
 |  | 
 | 		err = hci_passive_scan_sync(hdev); | 
 | 		if (err) | 
 | 			bt_dev_err(hdev, "start background scanning failed: %d", | 
 | 				   err); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int update_passive_scan_sync(struct hci_dev *hdev, void *data) | 
 | { | 
 | 	return hci_update_passive_scan_sync(hdev); | 
 | } | 
 |  | 
 | int hci_update_passive_scan(struct hci_dev *hdev) | 
 | { | 
 | 	/* Only queue if it would have any effect */ | 
 | 	if (!test_bit(HCI_UP, &hdev->flags) || | 
 | 	    test_bit(HCI_INIT, &hdev->flags) || | 
 | 	    hci_dev_test_flag(hdev, HCI_SETUP) || | 
 | 	    hci_dev_test_flag(hdev, HCI_CONFIG) || | 
 | 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) || | 
 | 	    hci_dev_test_flag(hdev, HCI_UNREGISTER)) | 
 | 		return 0; | 
 |  | 
 | 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); | 
 | } | 
 |  | 
 | int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, | 
 | 				    sizeof(val), &val, HCI_CMD_TIMEOUT); | 
 |  | 
 | 	if (!err) { | 
 | 		if (val) { | 
 | 			hdev->features[1][0] |= LMP_HOST_SC; | 
 | 			hci_dev_set_flag(hdev, HCI_SC_ENABLED); | 
 | 		} else { | 
 | 			hdev->features[1][0] &= ~LMP_HOST_SC; | 
 | 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || | 
 | 	    lmp_host_ssp_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { | 
 | 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, | 
 | 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT); | 
 | 	} | 
 |  | 
 | 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, | 
 | 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return hci_write_sc_support_sync(hdev, 0x01); | 
 | } | 
 |  | 
 | int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) | 
 | { | 
 | 	struct hci_cp_write_le_host_supported cp; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || | 
 | 	    !lmp_bredr_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	/* Check first if we already have the right host state | 
 | 	 * (host features set) | 
 | 	 */ | 
 | 	if (le == lmp_host_le_capable(hdev) && | 
 | 	    simul == lmp_host_le_br_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	cp.le = le; | 
 | 	cp.simul = simul; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_powered_update_adv_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct adv_info *adv, *tmp; | 
 | 	int err; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) | 
 | 		return 0; | 
 |  | 
 | 	/* If RPA Resolution has not been enable yet it means the | 
 | 	 * resolving list is empty and we should attempt to program the | 
 | 	 * local IRK in order to support using own_addr_type | 
 | 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). | 
 | 	 */ | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { | 
 | 		hci_le_add_resolve_list_sync(hdev, NULL); | 
 | 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01); | 
 | 	} | 
 |  | 
 | 	/* Make sure the controller has a good default for | 
 | 	 * advertising data. This also applies to the case | 
 | 	 * where BR/EDR was toggled during the AUTO_OFF phase. | 
 | 	 */ | 
 | 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || | 
 | 	    list_empty(&hdev->adv_instances)) { | 
 | 		if (ext_adv_capable(hdev)) { | 
 | 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00); | 
 | 			if (!err) | 
 | 				hci_update_scan_rsp_data_sync(hdev, 0x00); | 
 | 		} else { | 
 | 			err = hci_update_adv_data_sync(hdev, 0x00); | 
 | 			if (!err) | 
 | 				hci_update_scan_rsp_data_sync(hdev, 0x00); | 
 | 		} | 
 |  | 
 | 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) | 
 | 			hci_enable_advertising_sync(hdev); | 
 | 	} | 
 |  | 
 | 	/* Call for each tracked instance to be scheduled */ | 
 | 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) | 
 | 		hci_schedule_adv_instance_sync(hdev, adv->instance, true); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hci_write_auth_enable_sync(struct hci_dev *hdev) | 
 | { | 
 | 	u8 link_sec; | 
 |  | 
 | 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); | 
 | 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, | 
 | 				     sizeof(link_sec), &link_sec, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) | 
 | { | 
 | 	struct hci_cp_write_page_scan_activity cp; | 
 | 	u8 type; | 
 | 	int err = 0; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
 | 		return 0; | 
 |  | 
 | 	if (hdev->hci_ver < BLUETOOTH_VER_1_2) | 
 | 		return 0; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	if (enable) { | 
 | 		type = PAGE_SCAN_TYPE_INTERLACED; | 
 |  | 
 | 		/* 160 msec page scan interval */ | 
 | 		cp.interval = cpu_to_le16(0x0100); | 
 | 	} else { | 
 | 		type = hdev->def_page_scan_type; | 
 | 		cp.interval = cpu_to_le16(hdev->def_page_scan_int); | 
 | 	} | 
 |  | 
 | 	cp.window = cpu_to_le16(hdev->def_page_scan_window); | 
 |  | 
 | 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || | 
 | 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) { | 
 | 		err = __hci_cmd_sync_status(hdev, | 
 | 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, | 
 | 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	if (hdev->page_scan_type != type) | 
 | 		err = __hci_cmd_sync_status(hdev, | 
 | 					    HCI_OP_WRITE_PAGE_SCAN_TYPE, | 
 | 					    sizeof(type), &type, | 
 | 					    HCI_CMD_TIMEOUT); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static bool disconnected_accept_list_entries(struct hci_dev *hdev) | 
 | { | 
 | 	struct bdaddr_list *b; | 
 |  | 
 | 	list_for_each_entry(b, &hdev->accept_list, list) { | 
 | 		struct hci_conn *conn; | 
 |  | 
 | 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); | 
 | 		if (!conn) | 
 | 			return true; | 
 |  | 
 | 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, | 
 | 					    sizeof(val), &val, | 
 | 					    HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | int hci_update_scan_sync(struct hci_dev *hdev) | 
 | { | 
 | 	u8 scan; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
 | 		return 0; | 
 |  | 
 | 	if (!hdev_is_powered(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	if (mgmt_powering_down(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	if (hdev->scanning_paused) | 
 | 		return 0; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || | 
 | 	    disconnected_accept_list_entries(hdev)) | 
 | 		scan = SCAN_PAGE; | 
 | 	else | 
 | 		scan = SCAN_DISABLED; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) | 
 | 		scan |= SCAN_INQUIRY; | 
 |  | 
 | 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && | 
 | 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) | 
 | 		return 0; | 
 |  | 
 | 	return hci_write_scan_enable_sync(hdev, scan); | 
 | } | 
 |  | 
 | int hci_update_name_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_cp_write_local_name cp; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, | 
 | 					    sizeof(cp), &cp, | 
 | 					    HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* This function perform powered update HCI command sequence after the HCI init | 
 |  * sequence which end up resetting all states, the sequence is as follows: | 
 |  * | 
 |  * HCI_SSP_ENABLED(Enable SSP) | 
 |  * HCI_LE_ENABLED(Enable LE) | 
 |  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> | 
 |  * Update adv data) | 
 |  * Enable Authentication | 
 |  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> | 
 |  * Set Name -> Set EIR) | 
 |  */ | 
 | int hci_powered_update_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* Register the available SMP channels (BR/EDR and LE) only when | 
 | 	 * successfully powering on the controller. This late | 
 | 	 * registration is required so that LE SMP can clearly decide if | 
 | 	 * the public address or static address is used. | 
 | 	 */ | 
 | 	smp_register(hdev); | 
 |  | 
 | 	err = hci_write_ssp_mode_sync(hdev, 0x01); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = hci_powered_update_adv_sync(hdev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = hci_write_auth_enable_sync(hdev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (lmp_bredr_capable(hdev)) { | 
 | 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) | 
 | 			hci_write_fast_connectable_sync(hdev, true); | 
 | 		else | 
 | 			hci_write_fast_connectable_sync(hdev, false); | 
 | 		hci_update_scan_sync(hdev); | 
 | 		hci_update_class_sync(hdev); | 
 | 		hci_update_name_sync(hdev); | 
 | 		hci_update_eir_sync(hdev); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address | 
 |  *				       (BD_ADDR) for a HCI device from | 
 |  *				       a firmware node property. | 
 |  * @hdev:	The HCI device | 
 |  * | 
 |  * Search the firmware node for 'local-bd-address'. | 
 |  * | 
 |  * All-zero BD addresses are rejected, because those could be properties | 
 |  * that exist in the firmware tables, but were not updated by the firmware. For | 
 |  * example, the DTS could define 'local-bd-address', with zero BD addresses. | 
 |  */ | 
 | static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) | 
 | { | 
 | 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); | 
 | 	bdaddr_t ba; | 
 | 	int ret; | 
 |  | 
 | 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", | 
 | 					    (u8 *)&ba, sizeof(ba)); | 
 | 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) | 
 | 		return; | 
 |  | 
 | 	bacpy(&hdev->public_addr, &ba); | 
 | } | 
 |  | 
 | struct hci_init_stage { | 
 | 	int (*func)(struct hci_dev *hdev); | 
 | }; | 
 |  | 
 | /* Run init stage NULL terminated function table */ | 
 | static int hci_init_stage_sync(struct hci_dev *hdev, | 
 | 			       const struct hci_init_stage *stage) | 
 | { | 
 | 	size_t i; | 
 |  | 
 | 	for (i = 0; stage[i].func; i++) { | 
 | 		int err; | 
 |  | 
 | 		err = stage[i].func(hdev); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Read Local Version */ | 
 | static int hci_read_local_version_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read BD Address */ | 
 | static int hci_read_bd_addr_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | #define HCI_INIT(_func) \ | 
 | { \ | 
 | 	.func = _func, \ | 
 | } | 
 |  | 
 | static const struct hci_init_stage hci_init0[] = { | 
 | 	/* HCI_OP_READ_LOCAL_VERSION */ | 
 | 	HCI_INIT(hci_read_local_version_sync), | 
 | 	/* HCI_OP_READ_BD_ADDR */ | 
 | 	HCI_INIT(hci_read_bd_addr_sync), | 
 | 	{} | 
 | }; | 
 |  | 
 | int hci_reset_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	set_bit(HCI_RESET, &hdev->flags); | 
 |  | 
 | 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, | 
 | 				    HCI_CMD_TIMEOUT); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hci_init0_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	/* Reset */ | 
 | 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { | 
 | 		err = hci_reset_sync(hdev); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return hci_init_stage_sync(hdev, hci_init0); | 
 | } | 
 |  | 
 | static int hci_unconf_init_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) | 
 | 		return 0; | 
 |  | 
 | 	err = hci_init0_sync(hdev); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_SETUP)) | 
 | 		hci_debugfs_create_basic(hdev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Read Local Supported Features. */ | 
 | static int hci_read_local_features_sync(struct hci_dev *hdev) | 
 | { | 
 | 	 /* Not all AMP controllers support this command */ | 
 | 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* BR Controller init stage 1 command sequence */ | 
 | static const struct hci_init_stage br_init1[] = { | 
 | 	/* HCI_OP_READ_LOCAL_FEATURES */ | 
 | 	HCI_INIT(hci_read_local_features_sync), | 
 | 	/* HCI_OP_READ_LOCAL_VERSION */ | 
 | 	HCI_INIT(hci_read_local_version_sync), | 
 | 	/* HCI_OP_READ_BD_ADDR */ | 
 | 	HCI_INIT(hci_read_bd_addr_sync), | 
 | 	{} | 
 | }; | 
 |  | 
 | /* Read Local Commands */ | 
 | static int hci_read_local_cmds_sync(struct hci_dev *hdev) | 
 | { | 
 | 	/* All Bluetooth 1.2 and later controllers should support the | 
 | 	 * HCI command for reading the local supported commands. | 
 | 	 * | 
 | 	 * Unfortunately some controllers indicate Bluetooth 1.2 support, | 
 | 	 * but do not have support for this command. If that is the case, | 
 | 	 * the driver can quirk the behavior and skip reading the local | 
 | 	 * supported commands. | 
 | 	 */ | 
 | 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 && | 
 | 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) | 
 | 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, | 
 | 					     0, NULL, HCI_CMD_TIMEOUT); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Read Local AMP Info */ | 
 | static int hci_read_local_amp_info_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read Data Blk size */ | 
 | static int hci_read_data_block_size_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read Flow Control Mode */ | 
 | static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read Location Data */ | 
 | static int hci_read_location_data_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* AMP Controller init stage 1 command sequence */ | 
 | static const struct hci_init_stage amp_init1[] = { | 
 | 	/* HCI_OP_READ_LOCAL_VERSION */ | 
 | 	HCI_INIT(hci_read_local_version_sync), | 
 | 	/* HCI_OP_READ_LOCAL_COMMANDS */ | 
 | 	HCI_INIT(hci_read_local_cmds_sync), | 
 | 	/* HCI_OP_READ_LOCAL_AMP_INFO */ | 
 | 	HCI_INIT(hci_read_local_amp_info_sync), | 
 | 	/* HCI_OP_READ_DATA_BLOCK_SIZE */ | 
 | 	HCI_INIT(hci_read_data_block_size_sync), | 
 | 	/* HCI_OP_READ_FLOW_CONTROL_MODE */ | 
 | 	HCI_INIT(hci_read_flow_control_mode_sync), | 
 | 	/* HCI_OP_READ_LOCATION_DATA */ | 
 | 	HCI_INIT(hci_read_location_data_sync), | 
 | }; | 
 |  | 
 | static int hci_init1_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	/* Reset */ | 
 | 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { | 
 | 		err = hci_reset_sync(hdev); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	switch (hdev->dev_type) { | 
 | 	case HCI_PRIMARY: | 
 | 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; | 
 | 		return hci_init_stage_sync(hdev, br_init1); | 
 | 	case HCI_AMP: | 
 | 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; | 
 | 		return hci_init_stage_sync(hdev, amp_init1); | 
 | 	default: | 
 | 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* AMP Controller init stage 2 command sequence */ | 
 | static const struct hci_init_stage amp_init2[] = { | 
 | 	/* HCI_OP_READ_LOCAL_FEATURES */ | 
 | 	HCI_INIT(hci_read_local_features_sync), | 
 | }; | 
 |  | 
 | /* Read Buffer Size (ACL mtu, max pkt, etc.) */ | 
 | static int hci_read_buffer_size_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read Class of Device */ | 
 | static int hci_read_dev_class_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read Local Name */ | 
 | static int hci_read_local_name_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read Voice Setting */ | 
 | static int hci_read_voice_setting_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read Number of Supported IAC */ | 
 | static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read Current IAC LAP */ | 
 | static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, | 
 | 				     u8 cond_type, bdaddr_t *bdaddr, | 
 | 				     u8 auto_accept) | 
 | { | 
 | 	struct hci_cp_set_event_filter cp; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
 | 		return 0; | 
 |  | 
 | 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) | 
 | 		return 0; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	cp.flt_type = flt_type; | 
 |  | 
 | 	if (flt_type != HCI_FLT_CLEAR_ALL) { | 
 | 		cp.cond_type = cond_type; | 
 | 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); | 
 | 		cp.addr_conn_flt.auto_accept = auto_accept; | 
 | 	} | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, | 
 | 				     flt_type == HCI_FLT_CLEAR_ALL ? | 
 | 				     sizeof(cp.flt_type) : sizeof(cp), &cp, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_clear_event_filter_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) | 
 | 		return 0; | 
 |  | 
 | 	/* In theory the state machine should not reach here unless | 
 | 	 * a hci_set_event_filter_sync() call succeeds, but we do | 
 | 	 * the check both for parity and as a future reminder. | 
 | 	 */ | 
 | 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) | 
 | 		return 0; | 
 |  | 
 | 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, | 
 | 					 BDADDR_ANY, 0x00); | 
 | } | 
 |  | 
 | /* Connection accept timeout ~20 secs */ | 
 | static int hci_write_ca_timeout_sync(struct hci_dev *hdev) | 
 | { | 
 | 	__le16 param = cpu_to_le16(0x7d00); | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, | 
 | 				     sizeof(param), ¶m, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* BR Controller init stage 2 command sequence */ | 
 | static const struct hci_init_stage br_init2[] = { | 
 | 	/* HCI_OP_READ_BUFFER_SIZE */ | 
 | 	HCI_INIT(hci_read_buffer_size_sync), | 
 | 	/* HCI_OP_READ_CLASS_OF_DEV */ | 
 | 	HCI_INIT(hci_read_dev_class_sync), | 
 | 	/* HCI_OP_READ_LOCAL_NAME */ | 
 | 	HCI_INIT(hci_read_local_name_sync), | 
 | 	/* HCI_OP_READ_VOICE_SETTING */ | 
 | 	HCI_INIT(hci_read_voice_setting_sync), | 
 | 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */ | 
 | 	HCI_INIT(hci_read_num_supported_iac_sync), | 
 | 	/* HCI_OP_READ_CURRENT_IAC_LAP */ | 
 | 	HCI_INIT(hci_read_current_iac_lap_sync), | 
 | 	/* HCI_OP_SET_EVENT_FLT */ | 
 | 	HCI_INIT(hci_clear_event_filter_sync), | 
 | 	/* HCI_OP_WRITE_CA_TIMEOUT */ | 
 | 	HCI_INIT(hci_write_ca_timeout_sync), | 
 | 	{} | 
 | }; | 
 |  | 
 | static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) | 
 | { | 
 | 	u8 mode = 0x01; | 
 |  | 
 | 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) | 
 | 		return 0; | 
 |  | 
 | 	/* When SSP is available, then the host features page | 
 | 	 * should also be available as well. However some | 
 | 	 * controllers list the max_page as 0 as long as SSP | 
 | 	 * has not been enabled. To achieve proper debugging | 
 | 	 * output, force the minimum max_page to 1 at least. | 
 | 	 */ | 
 | 	hdev->max_page = 0x01; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, | 
 | 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_write_eir_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_cp_write_eir cp; | 
 |  | 
 | 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) | 
 | 		return 0; | 
 |  | 
 | 	memset(hdev->eir, 0, sizeof(hdev->eir)); | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) | 
 | { | 
 | 	u8 mode; | 
 |  | 
 | 	if (!lmp_inq_rssi_capable(hdev) && | 
 | 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) | 
 | 		return 0; | 
 |  | 
 | 	/* If Extended Inquiry Result events are supported, then | 
 | 	 * they are clearly preferred over Inquiry Result with RSSI | 
 | 	 * events. | 
 | 	 */ | 
 | 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, | 
 | 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!lmp_inq_tx_pwr_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) | 
 | { | 
 | 	struct hci_cp_read_local_ext_features cp; | 
 |  | 
 | 	if (!lmp_ext_feat_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	cp.page = page; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return hci_read_local_ext_features_sync(hdev, 0x01); | 
 | } | 
 |  | 
 | /* HCI Controller init stage 2 command sequence */ | 
 | static const struct hci_init_stage hci_init2[] = { | 
 | 	/* HCI_OP_READ_LOCAL_COMMANDS */ | 
 | 	HCI_INIT(hci_read_local_cmds_sync), | 
 | 	/* HCI_OP_WRITE_SSP_MODE */ | 
 | 	HCI_INIT(hci_write_ssp_mode_1_sync), | 
 | 	/* HCI_OP_WRITE_EIR */ | 
 | 	HCI_INIT(hci_write_eir_sync), | 
 | 	/* HCI_OP_WRITE_INQUIRY_MODE */ | 
 | 	HCI_INIT(hci_write_inquiry_mode_sync), | 
 | 	/* HCI_OP_READ_INQ_RSP_TX_POWER */ | 
 | 	HCI_INIT(hci_read_inq_rsp_tx_power_sync), | 
 | 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */ | 
 | 	HCI_INIT(hci_read_local_ext_features_1_sync), | 
 | 	/* HCI_OP_WRITE_AUTH_ENABLE */ | 
 | 	HCI_INIT(hci_write_auth_enable_sync), | 
 | 	{} | 
 | }; | 
 |  | 
 | /* Read LE Buffer Size */ | 
 | static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read LE Local Supported Features */ | 
 | static int hci_le_read_local_features_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read LE Supported States */ | 
 | static int hci_le_read_supported_states_sync(struct hci_dev *hdev) | 
 | { | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* LE Controller init stage 2 command sequence */ | 
 | static const struct hci_init_stage le_init2[] = { | 
 | 	/* HCI_OP_LE_READ_BUFFER_SIZE */ | 
 | 	HCI_INIT(hci_le_read_buffer_size_sync), | 
 | 	/* HCI_OP_LE_READ_LOCAL_FEATURES */ | 
 | 	HCI_INIT(hci_le_read_local_features_sync), | 
 | 	/* HCI_OP_LE_READ_SUPPORTED_STATES */ | 
 | 	HCI_INIT(hci_le_read_supported_states_sync), | 
 | 	{} | 
 | }; | 
 |  | 
 | static int hci_init2_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	if (hdev->dev_type == HCI_AMP) | 
 | 		return hci_init_stage_sync(hdev, amp_init2); | 
 |  | 
 | 	if (lmp_bredr_capable(hdev)) { | 
 | 		err = hci_init_stage_sync(hdev, br_init2); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} else { | 
 | 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); | 
 | 	} | 
 |  | 
 | 	if (lmp_le_capable(hdev)) { | 
 | 		err = hci_init_stage_sync(hdev, le_init2); | 
 | 		if (err) | 
 | 			return err; | 
 | 		/* LE-only controllers have LE implicitly enabled */ | 
 | 		if (!lmp_bredr_capable(hdev)) | 
 | 			hci_dev_set_flag(hdev, HCI_LE_ENABLED); | 
 | 	} | 
 |  | 
 | 	return hci_init_stage_sync(hdev, hci_init2); | 
 | } | 
 |  | 
 | static int hci_set_event_mask_sync(struct hci_dev *hdev) | 
 | { | 
 | 	/* The second byte is 0xff instead of 0x9f (two reserved bits | 
 | 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the | 
 | 	 * command otherwise. | 
 | 	 */ | 
 | 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; | 
 |  | 
 | 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set | 
 | 	 * any event mask for pre 1.2 devices. | 
 | 	 */ | 
 | 	if (hdev->hci_ver < BLUETOOTH_VER_1_2) | 
 | 		return 0; | 
 |  | 
 | 	if (lmp_bredr_capable(hdev)) { | 
 | 		events[4] |= 0x01; /* Flow Specification Complete */ | 
 |  | 
 | 		/* Don't set Disconnect Complete when suspended as that | 
 | 		 * would wakeup the host when disconnecting due to | 
 | 		 * suspend. | 
 | 		 */ | 
 | 		if (hdev->suspended) | 
 | 			events[0] &= 0xef; | 
 | 	} else { | 
 | 		/* Use a different default for LE-only devices */ | 
 | 		memset(events, 0, sizeof(events)); | 
 | 		events[1] |= 0x20; /* Command Complete */ | 
 | 		events[1] |= 0x40; /* Command Status */ | 
 | 		events[1] |= 0x80; /* Hardware Error */ | 
 |  | 
 | 		/* If the controller supports the Disconnect command, enable | 
 | 		 * the corresponding event. In addition enable packet flow | 
 | 		 * control related events. | 
 | 		 */ | 
 | 		if (hdev->commands[0] & 0x20) { | 
 | 			/* Don't set Disconnect Complete when suspended as that | 
 | 			 * would wakeup the host when disconnecting due to | 
 | 			 * suspend. | 
 | 			 */ | 
 | 			if (!hdev->suspended) | 
 | 				events[0] |= 0x10; /* Disconnection Complete */ | 
 | 			events[2] |= 0x04; /* Number of Completed Packets */ | 
 | 			events[3] |= 0x02; /* Data Buffer Overflow */ | 
 | 		} | 
 |  | 
 | 		/* If the controller supports the Read Remote Version | 
 | 		 * Information command, enable the corresponding event. | 
 | 		 */ | 
 | 		if (hdev->commands[2] & 0x80) | 
 | 			events[1] |= 0x08; /* Read Remote Version Information | 
 | 					    * Complete | 
 | 					    */ | 
 |  | 
 | 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { | 
 | 			events[0] |= 0x80; /* Encryption Change */ | 
 | 			events[5] |= 0x80; /* Encryption Key Refresh Complete */ | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (lmp_inq_rssi_capable(hdev) || | 
 | 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) | 
 | 		events[4] |= 0x02; /* Inquiry Result with RSSI */ | 
 |  | 
 | 	if (lmp_ext_feat_capable(hdev)) | 
 | 		events[4] |= 0x04; /* Read Remote Extended Features Complete */ | 
 |  | 
 | 	if (lmp_esco_capable(hdev)) { | 
 | 		events[5] |= 0x08; /* Synchronous Connection Complete */ | 
 | 		events[5] |= 0x10; /* Synchronous Connection Changed */ | 
 | 	} | 
 |  | 
 | 	if (lmp_sniffsubr_capable(hdev)) | 
 | 		events[5] |= 0x20; /* Sniff Subrating */ | 
 |  | 
 | 	if (lmp_pause_enc_capable(hdev)) | 
 | 		events[5] |= 0x80; /* Encryption Key Refresh Complete */ | 
 |  | 
 | 	if (lmp_ext_inq_capable(hdev)) | 
 | 		events[5] |= 0x40; /* Extended Inquiry Result */ | 
 |  | 
 | 	if (lmp_no_flush_capable(hdev)) | 
 | 		events[7] |= 0x01; /* Enhanced Flush Complete */ | 
 |  | 
 | 	if (lmp_lsto_capable(hdev)) | 
 | 		events[6] |= 0x80; /* Link Supervision Timeout Changed */ | 
 |  | 
 | 	if (lmp_ssp_capable(hdev)) { | 
 | 		events[6] |= 0x01;	/* IO Capability Request */ | 
 | 		events[6] |= 0x02;	/* IO Capability Response */ | 
 | 		events[6] |= 0x04;	/* User Confirmation Request */ | 
 | 		events[6] |= 0x08;	/* User Passkey Request */ | 
 | 		events[6] |= 0x10;	/* Remote OOB Data Request */ | 
 | 		events[6] |= 0x20;	/* Simple Pairing Complete */ | 
 | 		events[7] |= 0x04;	/* User Passkey Notification */ | 
 | 		events[7] |= 0x08;	/* Keypress Notification */ | 
 | 		events[7] |= 0x10;	/* Remote Host Supported | 
 | 					 * Features Notification | 
 | 					 */ | 
 | 	} | 
 |  | 
 | 	if (lmp_le_capable(hdev)) | 
 | 		events[7] |= 0x20;	/* LE Meta-Event */ | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, | 
 | 				     sizeof(events), events, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_read_stored_link_key_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_cp_read_stored_link_key cp; | 
 |  | 
 | 	if (!(hdev->commands[6] & 0x20) || | 
 | 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) | 
 | 		return 0; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	bacpy(&cp.bdaddr, BDADDR_ANY); | 
 | 	cp.read_all = 0x01; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_setup_link_policy_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_cp_write_def_link_policy cp; | 
 | 	u16 link_policy = 0; | 
 |  | 
 | 	if (!(hdev->commands[5] & 0x10)) | 
 | 		return 0; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	if (lmp_rswitch_capable(hdev)) | 
 | 		link_policy |= HCI_LP_RSWITCH; | 
 | 	if (lmp_hold_capable(hdev)) | 
 | 		link_policy |= HCI_LP_HOLD; | 
 | 	if (lmp_sniff_capable(hdev)) | 
 | 		link_policy |= HCI_LP_SNIFF; | 
 | 	if (lmp_park_capable(hdev)) | 
 | 		link_policy |= HCI_LP_PARK; | 
 |  | 
 | 	cp.policy = cpu_to_le16(link_policy); | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!(hdev->commands[8] & 0x01)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!(hdev->commands[18] & 0x04) || | 
 | 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_read_page_scan_type_sync(struct hci_dev *hdev) | 
 | { | 
 | 	/* Some older Broadcom based Bluetooth 1.2 controllers do not | 
 | 	 * support the Read Page Scan Type command. Check support for | 
 | 	 * this command in the bit mask of supported commands. | 
 | 	 */ | 
 | 	if (!(hdev->commands[13] & 0x01)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read features beyond page 1 if available */ | 
 | static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) | 
 | { | 
 | 	u8 page; | 
 | 	int err; | 
 |  | 
 | 	if (!lmp_ext_feat_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; | 
 | 	     page++) { | 
 | 		err = hci_read_local_ext_features_sync(hdev, page); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* HCI Controller init stage 3 command sequence */ | 
 | static const struct hci_init_stage hci_init3[] = { | 
 | 	/* HCI_OP_SET_EVENT_MASK */ | 
 | 	HCI_INIT(hci_set_event_mask_sync), | 
 | 	/* HCI_OP_READ_STORED_LINK_KEY */ | 
 | 	HCI_INIT(hci_read_stored_link_key_sync), | 
 | 	/* HCI_OP_WRITE_DEF_LINK_POLICY */ | 
 | 	HCI_INIT(hci_setup_link_policy_sync), | 
 | 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ | 
 | 	HCI_INIT(hci_read_page_scan_activity_sync), | 
 | 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ | 
 | 	HCI_INIT(hci_read_def_err_data_reporting_sync), | 
 | 	/* HCI_OP_READ_PAGE_SCAN_TYPE */ | 
 | 	HCI_INIT(hci_read_page_scan_type_sync), | 
 | 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */ | 
 | 	HCI_INIT(hci_read_local_ext_features_all_sync), | 
 | 	{} | 
 | }; | 
 |  | 
 | static int hci_le_set_event_mask_sync(struct hci_dev *hdev) | 
 | { | 
 | 	u8 events[8]; | 
 |  | 
 | 	if (!lmp_le_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	memset(events, 0, sizeof(events)); | 
 |  | 
 | 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION) | 
 | 		events[0] |= 0x10;	/* LE Long Term Key Request */ | 
 |  | 
 | 	/* If controller supports the Connection Parameters Request | 
 | 	 * Link Layer Procedure, enable the corresponding event. | 
 | 	 */ | 
 | 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) | 
 | 		/* LE Remote Connection Parameter Request */ | 
 | 		events[0] |= 0x20; | 
 |  | 
 | 	/* If the controller supports the Data Length Extension | 
 | 	 * feature, enable the corresponding event. | 
 | 	 */ | 
 | 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) | 
 | 		events[0] |= 0x40;	/* LE Data Length Change */ | 
 |  | 
 | 	/* If the controller supports LL Privacy feature or LE Extended Adv, | 
 | 	 * enable the corresponding event. | 
 | 	 */ | 
 | 	if (use_enhanced_conn_complete(hdev)) | 
 | 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */ | 
 |  | 
 | 	/* If the controller supports Extended Scanner Filter | 
 | 	 * Policies, enable the corresponding event. | 
 | 	 */ | 
 | 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) | 
 | 		events[1] |= 0x04;	/* LE Direct Advertising Report */ | 
 |  | 
 | 	/* If the controller supports Channel Selection Algorithm #2 | 
 | 	 * feature, enable the corresponding event. | 
 | 	 */ | 
 | 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) | 
 | 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */ | 
 |  | 
 | 	/* If the controller supports the LE Set Scan Enable command, | 
 | 	 * enable the corresponding advertising report event. | 
 | 	 */ | 
 | 	if (hdev->commands[26] & 0x08) | 
 | 		events[0] |= 0x02;	/* LE Advertising Report */ | 
 |  | 
 | 	/* If the controller supports the LE Create Connection | 
 | 	 * command, enable the corresponding event. | 
 | 	 */ | 
 | 	if (hdev->commands[26] & 0x10) | 
 | 		events[0] |= 0x01;	/* LE Connection Complete */ | 
 |  | 
 | 	/* If the controller supports the LE Connection Update | 
 | 	 * command, enable the corresponding event. | 
 | 	 */ | 
 | 	if (hdev->commands[27] & 0x04) | 
 | 		events[0] |= 0x04;	/* LE Connection Update Complete */ | 
 |  | 
 | 	/* If the controller supports the LE Read Remote Used Features | 
 | 	 * command, enable the corresponding event. | 
 | 	 */ | 
 | 	if (hdev->commands[27] & 0x20) | 
 | 		/* LE Read Remote Used Features Complete */ | 
 | 		events[0] |= 0x08; | 
 |  | 
 | 	/* If the controller supports the LE Read Local P-256 | 
 | 	 * Public Key command, enable the corresponding event. | 
 | 	 */ | 
 | 	if (hdev->commands[34] & 0x02) | 
 | 		/* LE Read Local P-256 Public Key Complete */ | 
 | 		events[0] |= 0x80; | 
 |  | 
 | 	/* If the controller supports the LE Generate DHKey | 
 | 	 * command, enable the corresponding event. | 
 | 	 */ | 
 | 	if (hdev->commands[34] & 0x04) | 
 | 		events[1] |= 0x01;	/* LE Generate DHKey Complete */ | 
 |  | 
 | 	/* If the controller supports the LE Set Default PHY or | 
 | 	 * LE Set PHY commands, enable the corresponding event. | 
 | 	 */ | 
 | 	if (hdev->commands[35] & (0x20 | 0x40)) | 
 | 		events[1] |= 0x08;        /* LE PHY Update Complete */ | 
 |  | 
 | 	/* If the controller supports LE Set Extended Scan Parameters | 
 | 	 * and LE Set Extended Scan Enable commands, enable the | 
 | 	 * corresponding event. | 
 | 	 */ | 
 | 	if (use_ext_scan(hdev)) | 
 | 		events[1] |= 0x10;	/* LE Extended Advertising Report */ | 
 |  | 
 | 	/* If the controller supports the LE Extended Advertising | 
 | 	 * command, enable the corresponding event. | 
 | 	 */ | 
 | 	if (ext_adv_capable(hdev)) | 
 | 		events[2] |= 0x02;	/* LE Advertising Set Terminated */ | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, | 
 | 				     sizeof(events), events, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read LE Advertising Channel TX Power */ | 
 | static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { | 
 | 		/* HCI TS spec forbids mixing of legacy and extended | 
 | 		 * advertising commands wherein READ_ADV_TX_POWER is | 
 | 		 * also included. So do not call it if extended adv | 
 | 		 * is supported otherwise controller will return | 
 | 		 * COMMAND_DISALLOWED for extended commands. | 
 | 		 */ | 
 | 		return __hci_cmd_sync_status(hdev, | 
 | 					       HCI_OP_LE_READ_ADV_TX_POWER, | 
 | 					       0, NULL, HCI_CMD_TIMEOUT); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Read LE Min/Max Tx Power*/ | 
 | static int hci_le_read_tx_power_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!(hdev->commands[38] & 0x80) || | 
 | 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read LE Accept List Size */ | 
 | static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!(hdev->commands[26] & 0x40)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Clear LE Accept List */ | 
 | static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!(hdev->commands[26] & 0x80)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read LE Resolving List Size */ | 
 | static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!(hdev->commands[34] & 0x40)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Clear LE Resolving List */ | 
 | static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!(hdev->commands[34] & 0x20)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Set RPA timeout */ | 
 | static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) | 
 | { | 
 | 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout); | 
 |  | 
 | 	if (!(hdev->commands[35] & 0x04)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, | 
 | 				     sizeof(timeout), &timeout, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read LE Maximum Data Length */ | 
 | static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read LE Suggested Default Data Length */ | 
 | static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read LE Number of Supported Advertising Sets */ | 
 | static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!ext_adv_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, | 
 | 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Write LE Host Supported */ | 
 | static int hci_set_le_support_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_cp_write_le_host_supported cp; | 
 |  | 
 | 	/* LE-only devices do not support explicit enablement */ | 
 | 	if (!lmp_bredr_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { | 
 | 		cp.le = 0x01; | 
 | 		cp.simul = 0x00; | 
 | 	} | 
 |  | 
 | 	if (cp.le == lmp_host_le_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* LE Controller init stage 3 command sequence */ | 
 | static const struct hci_init_stage le_init3[] = { | 
 | 	/* HCI_OP_LE_SET_EVENT_MASK */ | 
 | 	HCI_INIT(hci_le_set_event_mask_sync), | 
 | 	/* HCI_OP_LE_READ_ADV_TX_POWER */ | 
 | 	HCI_INIT(hci_le_read_adv_tx_power_sync), | 
 | 	/* HCI_OP_LE_READ_TRANSMIT_POWER */ | 
 | 	HCI_INIT(hci_le_read_tx_power_sync), | 
 | 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ | 
 | 	HCI_INIT(hci_le_read_accept_list_size_sync), | 
 | 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */ | 
 | 	HCI_INIT(hci_le_clear_accept_list_sync), | 
 | 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ | 
 | 	HCI_INIT(hci_le_read_resolv_list_size_sync), | 
 | 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */ | 
 | 	HCI_INIT(hci_le_clear_resolv_list_sync), | 
 | 	/* HCI_OP_LE_SET_RPA_TIMEOUT */ | 
 | 	HCI_INIT(hci_le_set_rpa_timeout_sync), | 
 | 	/* HCI_OP_LE_READ_MAX_DATA_LEN */ | 
 | 	HCI_INIT(hci_le_read_max_data_len_sync), | 
 | 	/* HCI_OP_LE_READ_DEF_DATA_LEN */ | 
 | 	HCI_INIT(hci_le_read_def_data_len_sync), | 
 | 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ | 
 | 	HCI_INIT(hci_le_read_num_support_adv_sets_sync), | 
 | 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */ | 
 | 	HCI_INIT(hci_set_le_support_sync), | 
 | 	{} | 
 | }; | 
 |  | 
 | static int hci_init3_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	err = hci_init_stage_sync(hdev, hci_init3); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (lmp_le_capable(hdev)) | 
 | 		return hci_init_stage_sync(hdev, le_init3); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_cp_delete_stored_link_key cp; | 
 |  | 
 | 	/* Some Broadcom based Bluetooth controllers do not support the | 
 | 	 * Delete Stored Link Key command. They are clearly indicating its | 
 | 	 * absence in the bit mask of supported commands. | 
 | 	 * | 
 | 	 * Check the supported commands and only if the command is marked | 
 | 	 * as supported send it. If not supported assume that the controller | 
 | 	 * does not have actual support for stored link keys which makes this | 
 | 	 * command redundant anyway. | 
 | 	 * | 
 | 	 * Some controllers indicate that they support handling deleting | 
 | 	 * stored link keys, but they don't. The quirk lets a driver | 
 | 	 * just disable this command. | 
 | 	 */ | 
 | 	if (!(hdev->commands[6] & 0x80) || | 
 | 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) | 
 | 		return 0; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	bacpy(&cp.bdaddr, BDADDR_ANY); | 
 | 	cp.delete_all = 0x01; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) | 
 | { | 
 | 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | 
 | 	bool changed = false; | 
 |  | 
 | 	/* Set event mask page 2 if the HCI command for it is supported */ | 
 | 	if (!(hdev->commands[22] & 0x04)) | 
 | 		return 0; | 
 |  | 
 | 	/* If Connectionless Peripheral Broadcast central role is supported | 
 | 	 * enable all necessary events for it. | 
 | 	 */ | 
 | 	if (lmp_cpb_central_capable(hdev)) { | 
 | 		events[1] |= 0x40;	/* Triggered Clock Capture */ | 
 | 		events[1] |= 0x80;	/* Synchronization Train Complete */ | 
 | 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */ | 
 | 		events[2] |= 0x20;	/* CPB Channel Map Change */ | 
 | 		changed = true; | 
 | 	} | 
 |  | 
 | 	/* If Connectionless Peripheral Broadcast peripheral role is supported | 
 | 	 * enable all necessary events for it. | 
 | 	 */ | 
 | 	if (lmp_cpb_peripheral_capable(hdev)) { | 
 | 		events[2] |= 0x01;	/* Synchronization Train Received */ | 
 | 		events[2] |= 0x02;	/* CPB Receive */ | 
 | 		events[2] |= 0x04;	/* CPB Timeout */ | 
 | 		events[2] |= 0x08;	/* Truncated Page Complete */ | 
 | 		changed = true; | 
 | 	} | 
 |  | 
 | 	/* Enable Authenticated Payload Timeout Expired event if supported */ | 
 | 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { | 
 | 		events[2] |= 0x80; | 
 | 		changed = true; | 
 | 	} | 
 |  | 
 | 	/* Some Broadcom based controllers indicate support for Set Event | 
 | 	 * Mask Page 2 command, but then actually do not support it. Since | 
 | 	 * the default value is all bits set to zero, the command is only | 
 | 	 * required if the event mask has to be changed. In case no change | 
 | 	 * to the event mask is needed, skip this command. | 
 | 	 */ | 
 | 	if (!changed) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, | 
 | 				     sizeof(events), events, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read local codec list if the HCI command is supported */ | 
 | static int hci_read_local_codecs_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!(hdev->commands[29] & 0x20)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Read local pairing options if the HCI command is supported */ | 
 | static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!(hdev->commands[41] & 0x08)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Get MWS transport configuration if the HCI command is supported */ | 
 | static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!(hdev->commands[30] & 0x08)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Check for Synchronization Train support */ | 
 | static int hci_read_sync_train_params_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!lmp_sync_train_capable(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, | 
 | 				     0, NULL, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Enable Secure Connections if supported and configured */ | 
 | static int hci_write_sc_support_1_sync(struct hci_dev *hdev) | 
 | { | 
 | 	u8 support = 0x01; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || | 
 | 	    !bredr_sc_enabled(hdev)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, | 
 | 				     sizeof(support), &support, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Set erroneous data reporting if supported to the wideband speech | 
 |  * setting value | 
 |  */ | 
 | static int hci_set_err_data_report_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_cp_write_def_err_data_reporting cp; | 
 | 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); | 
 |  | 
 | 	if (!(hdev->commands[18] & 0x08) || | 
 | 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) | 
 | 		return 0; | 
 |  | 
 | 	if (enabled == hdev->err_data_reporting) | 
 | 		return 0; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : | 
 | 				ERR_DATA_REPORTING_DISABLED; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, | 
 | 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static const struct hci_init_stage hci_init4[] = { | 
 | 	 /* HCI_OP_DELETE_STORED_LINK_KEY */ | 
 | 	HCI_INIT(hci_delete_stored_link_key_sync), | 
 | 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */ | 
 | 	HCI_INIT(hci_set_event_mask_page_2_sync), | 
 | 	/* HCI_OP_READ_LOCAL_CODECS */ | 
 | 	HCI_INIT(hci_read_local_codecs_sync), | 
 | 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ | 
 | 	HCI_INIT(hci_read_local_pairing_opts_sync), | 
 | 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ | 
 | 	HCI_INIT(hci_get_mws_transport_config_sync), | 
 | 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ | 
 | 	HCI_INIT(hci_read_sync_train_params_sync), | 
 | 	/* HCI_OP_WRITE_SC_SUPPORT */ | 
 | 	HCI_INIT(hci_write_sc_support_1_sync), | 
 | 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ | 
 | 	HCI_INIT(hci_set_err_data_report_sync), | 
 | 	{} | 
 | }; | 
 |  | 
 | /* Set Suggested Default Data Length to maximum if supported */ | 
 | static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_cp_le_write_def_data_len cp; | 
 |  | 
 | 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) | 
 | 		return 0; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); | 
 | 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | /* Set Default PHY parameters if command is supported */ | 
 | static int hci_le_set_default_phy_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_cp_le_set_default_phy cp; | 
 |  | 
 | 	if (!(hdev->commands[35] & 0x20)) | 
 | 		return 0; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	cp.all_phys = 0x00; | 
 | 	cp.tx_phys = hdev->le_tx_def_phys; | 
 | 	cp.rx_phys = hdev->le_rx_def_phys; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static const struct hci_init_stage le_init4[] = { | 
 | 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */ | 
 | 	HCI_INIT(hci_le_set_write_def_data_len_sync), | 
 | 	/* HCI_OP_LE_SET_DEFAULT_PHY */ | 
 | 	HCI_INIT(hci_le_set_default_phy_sync), | 
 | 	{} | 
 | }; | 
 |  | 
 | static int hci_init4_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	err = hci_init_stage_sync(hdev, hci_init4); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (lmp_le_capable(hdev)) | 
 | 		return hci_init_stage_sync(hdev, le_init4); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hci_init_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = hci_init1_sync(hdev); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_SETUP)) | 
 | 		hci_debugfs_create_basic(hdev); | 
 |  | 
 | 	err = hci_init2_sync(hdev); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode | 
 | 	 * BR/EDR/LE type controllers. AMP controllers only need the | 
 | 	 * first two stages of init. | 
 | 	 */ | 
 | 	if (hdev->dev_type != HCI_PRIMARY) | 
 | 		return 0; | 
 |  | 
 | 	err = hci_init3_sync(hdev); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	err = hci_init4_sync(hdev); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	/* This function is only called when the controller is actually in | 
 | 	 * configured state. When the controller is marked as unconfigured, | 
 | 	 * this initialization procedure is not run. | 
 | 	 * | 
 | 	 * It means that it is possible that a controller runs through its | 
 | 	 * setup phase and then discovers missing settings. If that is the | 
 | 	 * case, then this function will not be called. It then will only | 
 | 	 * be called during the config phase. | 
 | 	 * | 
 | 	 * So only when in setup phase or config phase, create the debugfs | 
 | 	 * entries and register the SMP channels. | 
 | 	 */ | 
 | 	if (!hci_dev_test_flag(hdev, HCI_SETUP) && | 
 | 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) | 
 | 		return 0; | 
 |  | 
 | 	hci_debugfs_create_common(hdev); | 
 |  | 
 | 	if (lmp_bredr_capable(hdev)) | 
 | 		hci_debugfs_create_bredr(hdev); | 
 |  | 
 | 	if (lmp_le_capable(hdev)) | 
 | 		hci_debugfs_create_le(hdev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } | 
 |  | 
 | static const struct { | 
 | 	unsigned long quirk; | 
 | 	const char *desc; | 
 | } hci_broken_table[] = { | 
 | 	HCI_QUIRK_BROKEN(LOCAL_COMMANDS, | 
 | 			 "HCI Read Local Supported Commands not supported"), | 
 | 	HCI_QUIRK_BROKEN(STORED_LINK_KEY, | 
 | 			 "HCI Delete Stored Link Key command is advertised, " | 
 | 			 "but not supported."), | 
 | 	HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, | 
 | 			 "HCI Read Default Erroneous Data Reporting command is " | 
 | 			 "advertised, but not supported."), | 
 | 	HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, | 
 | 			 "HCI Read Transmit Power Level command is advertised, " | 
 | 			 "but not supported."), | 
 | 	HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, | 
 | 			 "HCI Set Event Filter command not supported."), | 
 | 	HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, | 
 | 			 "HCI Enhanced Setup Synchronous Connection command is " | 
 | 			 "advertised, but not supported.") | 
 | }; | 
 |  | 
 | int hci_dev_open_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { | 
 | 		ret = -ENODEV; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_SETUP) && | 
 | 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) { | 
 | 		/* Check for rfkill but allow the HCI setup stage to | 
 | 		 * proceed (which in itself doesn't cause any RF activity). | 
 | 		 */ | 
 | 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { | 
 | 			ret = -ERFKILL; | 
 | 			goto done; | 
 | 		} | 
 |  | 
 | 		/* Check for valid public address or a configured static | 
 | 		 * random address, but let the HCI setup proceed to | 
 | 		 * be able to determine if there is a public address | 
 | 		 * or not. | 
 | 		 * | 
 | 		 * In case of user channel usage, it is not important | 
 | 		 * if a public address or static random address is | 
 | 		 * available. | 
 | 		 * | 
 | 		 * This check is only valid for BR/EDR controllers | 
 | 		 * since AMP controllers do not have an address. | 
 | 		 */ | 
 | 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && | 
 | 		    hdev->dev_type == HCI_PRIMARY && | 
 | 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) && | 
 | 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) { | 
 | 			ret = -EADDRNOTAVAIL; | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (test_bit(HCI_UP, &hdev->flags)) { | 
 | 		ret = -EALREADY; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	if (hdev->open(hdev)) { | 
 | 		ret = -EIO; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	set_bit(HCI_RUNNING, &hdev->flags); | 
 | 	hci_sock_dev_event(hdev, HCI_DEV_OPEN); | 
 |  | 
 | 	atomic_set(&hdev->cmd_cnt, 1); | 
 | 	set_bit(HCI_INIT, &hdev->flags); | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_SETUP) || | 
 | 	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) { | 
 | 		bool invalid_bdaddr; | 
 | 		size_t i; | 
 |  | 
 | 		hci_sock_dev_event(hdev, HCI_DEV_SETUP); | 
 |  | 
 | 		if (hdev->setup) | 
 | 			ret = hdev->setup(hdev); | 
 |  | 
 | 		for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { | 
 | 			if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) | 
 | 				bt_dev_warn(hdev, "%s", | 
 | 					    hci_broken_table[i].desc); | 
 | 		} | 
 |  | 
 | 		/* The transport driver can set the quirk to mark the | 
 | 		 * BD_ADDR invalid before creating the HCI device or in | 
 | 		 * its setup callback. | 
 | 		 */ | 
 | 		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, | 
 | 					  &hdev->quirks); | 
 |  | 
 | 		if (ret) | 
 | 			goto setup_failed; | 
 |  | 
 | 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { | 
 | 			if (!bacmp(&hdev->public_addr, BDADDR_ANY)) | 
 | 				hci_dev_get_bd_addr_from_property(hdev); | 
 |  | 
 | 			if (bacmp(&hdev->public_addr, BDADDR_ANY) && | 
 | 			    hdev->set_bdaddr) { | 
 | 				ret = hdev->set_bdaddr(hdev, | 
 | 						       &hdev->public_addr); | 
 |  | 
 | 				/* If setting of the BD_ADDR from the device | 
 | 				 * property succeeds, then treat the address | 
 | 				 * as valid even if the invalid BD_ADDR | 
 | 				 * quirk indicates otherwise. | 
 | 				 */ | 
 | 				if (!ret) | 
 | 					invalid_bdaddr = false; | 
 | 			} | 
 | 		} | 
 |  | 
 | setup_failed: | 
 | 		/* The transport driver can set these quirks before | 
 | 		 * creating the HCI device or in its setup callback. | 
 | 		 * | 
 | 		 * For the invalid BD_ADDR quirk it is possible that | 
 | 		 * it becomes a valid address if the bootloader does | 
 | 		 * provide it (see above). | 
 | 		 * | 
 | 		 * In case any of them is set, the controller has to | 
 | 		 * start up as unconfigured. | 
 | 		 */ | 
 | 		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || | 
 | 		    invalid_bdaddr) | 
 | 			hci_dev_set_flag(hdev, HCI_UNCONFIGURED); | 
 |  | 
 | 		/* For an unconfigured controller it is required to | 
 | 		 * read at least the version information provided by | 
 | 		 * the Read Local Version Information command. | 
 | 		 * | 
 | 		 * If the set_bdaddr driver callback is provided, then | 
 | 		 * also the original Bluetooth public device address | 
 | 		 * will be read using the Read BD Address command. | 
 | 		 */ | 
 | 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) | 
 | 			ret = hci_unconf_init_sync(hdev); | 
 | 	} | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) { | 
 | 		/* If public address change is configured, ensure that | 
 | 		 * the address gets programmed. If the driver does not | 
 | 		 * support changing the public address, fail the power | 
 | 		 * on procedure. | 
 | 		 */ | 
 | 		if (bacmp(&hdev->public_addr, BDADDR_ANY) && | 
 | 		    hdev->set_bdaddr) | 
 | 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr); | 
 | 		else | 
 | 			ret = -EADDRNOTAVAIL; | 
 | 	} | 
 |  | 
 | 	if (!ret) { | 
 | 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && | 
 | 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { | 
 | 			ret = hci_init_sync(hdev); | 
 | 			if (!ret && hdev->post_init) | 
 | 				ret = hdev->post_init(hdev); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* If the HCI Reset command is clearing all diagnostic settings, | 
 | 	 * then they need to be reprogrammed after the init procedure | 
 | 	 * completed. | 
 | 	 */ | 
 | 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && | 
 | 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && | 
 | 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) | 
 | 		ret = hdev->set_diag(hdev, true); | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { | 
 | 		msft_do_open(hdev); | 
 | 		aosp_do_open(hdev); | 
 | 	} | 
 |  | 
 | 	clear_bit(HCI_INIT, &hdev->flags); | 
 |  | 
 | 	if (!ret) { | 
 | 		hci_dev_hold(hdev); | 
 | 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); | 
 | 		hci_adv_instances_set_rpa_expired(hdev, true); | 
 | 		set_bit(HCI_UP, &hdev->flags); | 
 | 		hci_sock_dev_event(hdev, HCI_DEV_UP); | 
 | 		hci_leds_update_powered(hdev, true); | 
 | 		if (!hci_dev_test_flag(hdev, HCI_SETUP) && | 
 | 		    !hci_dev_test_flag(hdev, HCI_CONFIG) && | 
 | 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && | 
 | 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && | 
 | 		    hci_dev_test_flag(hdev, HCI_MGMT) && | 
 | 		    hdev->dev_type == HCI_PRIMARY) { | 
 | 			ret = hci_powered_update_sync(hdev); | 
 | 		} | 
 | 	} else { | 
 | 		/* Init failed, cleanup */ | 
 | 		flush_work(&hdev->tx_work); | 
 |  | 
 | 		/* Since hci_rx_work() is possible to awake new cmd_work | 
 | 		 * it should be flushed first to avoid unexpected call of | 
 | 		 * hci_cmd_work() | 
 | 		 */ | 
 | 		flush_work(&hdev->rx_work); | 
 | 		flush_work(&hdev->cmd_work); | 
 |  | 
 | 		skb_queue_purge(&hdev->cmd_q); | 
 | 		skb_queue_purge(&hdev->rx_q); | 
 |  | 
 | 		if (hdev->flush) | 
 | 			hdev->flush(hdev); | 
 |  | 
 | 		if (hdev->sent_cmd) { | 
 | 			kfree_skb(hdev->sent_cmd); | 
 | 			hdev->sent_cmd = NULL; | 
 | 		} | 
 |  | 
 | 		clear_bit(HCI_RUNNING, &hdev->flags); | 
 | 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE); | 
 |  | 
 | 		hdev->close(hdev); | 
 | 		hdev->flags &= BIT(HCI_RAW); | 
 | 	} | 
 |  | 
 | done: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* This function requires the caller holds hdev->lock */ | 
 | static void hci_pend_le_actions_clear(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_conn_params *p; | 
 |  | 
 | 	list_for_each_entry(p, &hdev->le_conn_params, list) { | 
 | 		if (p->conn) { | 
 | 			hci_conn_drop(p->conn); | 
 | 			hci_conn_put(p->conn); | 
 | 			p->conn = NULL; | 
 | 		} | 
 | 		list_del_init(&p->action); | 
 | 	} | 
 |  | 
 | 	BT_DBG("All LE pending actions cleared"); | 
 | } | 
 |  | 
 | int hci_dev_close_sync(struct hci_dev *hdev) | 
 | { | 
 | 	bool auto_off; | 
 | 	int err = 0; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	cancel_work_sync(&hdev->power_on); | 
 | 	cancel_delayed_work(&hdev->power_off); | 
 | 	cancel_delayed_work(&hdev->ncmd_timer); | 
 |  | 
 | 	hci_request_cancel_all(hdev); | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && | 
 | 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && | 
 | 	    test_bit(HCI_UP, &hdev->flags)) { | 
 | 		/* Execute vendor specific shutdown routine */ | 
 | 		if (hdev->shutdown) | 
 | 			err = hdev->shutdown(hdev); | 
 | 	} | 
 |  | 
 | 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { | 
 | 		cancel_delayed_work_sync(&hdev->cmd_timer); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	hci_leds_update_powered(hdev, false); | 
 |  | 
 | 	/* Flush RX and TX works */ | 
 | 	flush_work(&hdev->tx_work); | 
 | 	flush_work(&hdev->rx_work); | 
 |  | 
 | 	if (hdev->discov_timeout > 0) { | 
 | 		hdev->discov_timeout = 0; | 
 | 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); | 
 | 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); | 
 | 	} | 
 |  | 
 | 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) | 
 | 		cancel_delayed_work(&hdev->service_cache); | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_MGMT)) { | 
 | 		struct adv_info *adv_instance; | 
 |  | 
 | 		cancel_delayed_work_sync(&hdev->rpa_expired); | 
 |  | 
 | 		list_for_each_entry(adv_instance, &hdev->adv_instances, list) | 
 | 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); | 
 | 	} | 
 |  | 
 | 	/* Avoid potential lockdep warnings from the *_flush() calls by | 
 | 	 * ensuring the workqueue is empty up front. | 
 | 	 */ | 
 | 	drain_workqueue(hdev->workqueue); | 
 |  | 
 | 	hci_dev_lock(hdev); | 
 |  | 
 | 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED); | 
 |  | 
 | 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); | 
 |  | 
 | 	if (!auto_off && hdev->dev_type == HCI_PRIMARY && | 
 | 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && | 
 | 	    hci_dev_test_flag(hdev, HCI_MGMT)) | 
 | 		__mgmt_power_off(hdev); | 
 |  | 
 | 	hci_inquiry_cache_flush(hdev); | 
 | 	hci_pend_le_actions_clear(hdev); | 
 | 	hci_conn_hash_flush(hdev); | 
 | 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ | 
 | 	smp_unregister(hdev); | 
 | 	hci_dev_unlock(hdev); | 
 |  | 
 | 	hci_sock_dev_event(hdev, HCI_DEV_DOWN); | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { | 
 | 		aosp_do_close(hdev); | 
 | 		msft_do_close(hdev); | 
 | 	} | 
 |  | 
 | 	if (hdev->flush) | 
 | 		hdev->flush(hdev); | 
 |  | 
 | 	/* Reset device */ | 
 | 	skb_queue_purge(&hdev->cmd_q); | 
 | 	atomic_set(&hdev->cmd_cnt, 1); | 
 | 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && | 
 | 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { | 
 | 		set_bit(HCI_INIT, &hdev->flags); | 
 | 		hci_reset_sync(hdev); | 
 | 		clear_bit(HCI_INIT, &hdev->flags); | 
 | 	} | 
 |  | 
 | 	/* flush cmd  work */ | 
 | 	flush_work(&hdev->cmd_work); | 
 |  | 
 | 	/* Drop queues */ | 
 | 	skb_queue_purge(&hdev->rx_q); | 
 | 	skb_queue_purge(&hdev->cmd_q); | 
 | 	skb_queue_purge(&hdev->raw_q); | 
 |  | 
 | 	/* Drop last sent command */ | 
 | 	if (hdev->sent_cmd) { | 
 | 		cancel_delayed_work_sync(&hdev->cmd_timer); | 
 | 		kfree_skb(hdev->sent_cmd); | 
 | 		hdev->sent_cmd = NULL; | 
 | 	} | 
 |  | 
 | 	clear_bit(HCI_RUNNING, &hdev->flags); | 
 | 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE); | 
 |  | 
 | 	/* After this point our queues are empty and no tasks are scheduled. */ | 
 | 	hdev->close(hdev); | 
 |  | 
 | 	/* Clear flags */ | 
 | 	hdev->flags &= BIT(HCI_RAW); | 
 | 	hci_dev_clear_volatile_flags(hdev); | 
 |  | 
 | 	/* Controller radio is available but is currently powered down */ | 
 | 	hdev->amp_status = AMP_STATUS_POWERED_DOWN; | 
 |  | 
 | 	memset(hdev->eir, 0, sizeof(hdev->eir)); | 
 | 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); | 
 | 	bacpy(&hdev->random_addr, BDADDR_ANY); | 
 |  | 
 | 	hci_dev_put(hdev); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* This function perform power on HCI command sequence as follows: | 
 |  * | 
 |  * If controller is already up (HCI_UP) performs hci_powered_update_sync | 
 |  * sequence otherwise run hci_dev_open_sync which will follow with | 
 |  * hci_powered_update_sync after the init sequence is completed. | 
 |  */ | 
 | static int hci_power_on_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (test_bit(HCI_UP, &hdev->flags) && | 
 | 	    hci_dev_test_flag(hdev, HCI_MGMT) && | 
 | 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { | 
 | 		cancel_delayed_work(&hdev->power_off); | 
 | 		return hci_powered_update_sync(hdev); | 
 | 	} | 
 |  | 
 | 	err = hci_dev_open_sync(hdev); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	/* During the HCI setup phase, a few error conditions are | 
 | 	 * ignored and they need to be checked now. If they are still | 
 | 	 * valid, it is important to return the device back off. | 
 | 	 */ | 
 | 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) || | 
 | 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || | 
 | 	    (hdev->dev_type == HCI_PRIMARY && | 
 | 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) && | 
 | 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) { | 
 | 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF); | 
 | 		hci_dev_close_sync(hdev); | 
 | 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { | 
 | 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off, | 
 | 				   HCI_AUTO_OFF_TIMEOUT); | 
 | 	} | 
 |  | 
 | 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { | 
 | 		/* For unconfigured devices, set the HCI_RAW flag | 
 | 		 * so that userspace can easily identify them. | 
 | 		 */ | 
 | 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) | 
 | 			set_bit(HCI_RAW, &hdev->flags); | 
 |  | 
 | 		/* For fully configured devices, this will send | 
 | 		 * the Index Added event. For unconfigured devices, | 
 | 		 * it will send Unconfigued Index Added event. | 
 | 		 * | 
 | 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored | 
 | 		 * and no event will be send. | 
 | 		 */ | 
 | 		mgmt_index_added(hdev); | 
 | 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { | 
 | 		/* When the controller is now configured, then it | 
 | 		 * is important to clear the HCI_RAW flag. | 
 | 		 */ | 
 | 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) | 
 | 			clear_bit(HCI_RAW, &hdev->flags); | 
 |  | 
 | 		/* Powering on the controller with HCI_CONFIG set only | 
 | 		 * happens with the transition from unconfigured to | 
 | 		 * configured. This will send the Index Added event. | 
 | 		 */ | 
 | 		mgmt_index_added(hdev); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) | 
 | { | 
 | 	struct hci_cp_remote_name_req_cancel cp; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	bacpy(&cp.bdaddr, addr); | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | int hci_stop_discovery_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct discovery_state *d = &hdev->discovery; | 
 | 	struct inquiry_entry *e; | 
 | 	int err; | 
 |  | 
 | 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state); | 
 |  | 
 | 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { | 
 | 		if (test_bit(HCI_INQUIRY, &hdev->flags)) { | 
 | 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, | 
 | 						    0, NULL, HCI_CMD_TIMEOUT); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { | 
 | 			cancel_delayed_work(&hdev->le_scan_disable); | 
 | 			cancel_delayed_work(&hdev->le_scan_restart); | 
 |  | 
 | 			err = hci_scan_disable_sync(hdev); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 	} else { | 
 | 		err = hci_scan_disable_sync(hdev); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	/* Resume advertising if it was paused */ | 
 | 	if (use_ll_privacy(hdev)) | 
 | 		hci_resume_advertising_sync(hdev); | 
 |  | 
 | 	/* No further actions needed for LE-only discovery */ | 
 | 	if (d->type == DISCOV_TYPE_LE) | 
 | 		return 0; | 
 |  | 
 | 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { | 
 | 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, | 
 | 						     NAME_PENDING); | 
 | 		if (!e) | 
 | 			return 0; | 
 |  | 
 | 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, | 
 | 					u8 reason) | 
 | { | 
 | 	struct hci_cp_disconn_phy_link cp; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	cp.phy_handle = HCI_PHY_HANDLE(handle); | 
 | 	cp.reason = reason; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, | 
 | 			       u8 reason) | 
 | { | 
 | 	struct hci_cp_disconnect cp; | 
 |  | 
 | 	if (conn->type == AMP_LINK) | 
 | 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	cp.handle = cpu_to_le16(conn->handle); | 
 | 	cp.reason = reason; | 
 |  | 
 | 	/* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not | 
 | 	 * suspending. | 
 | 	 */ | 
 | 	if (!hdev->suspended) | 
 | 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, | 
 | 						sizeof(cp), &cp, | 
 | 						HCI_EV_DISCONN_COMPLETE, | 
 | 						HCI_CMD_TIMEOUT, NULL); | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_le_connect_cancel_sync(struct hci_dev *hdev, | 
 | 				      struct hci_conn *conn) | 
 | { | 
 | 	if (test_bit(HCI_CONN_SCANNING, &conn->flags)) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, | 
 | 				     6, &conn->dst, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn) | 
 | { | 
 | 	if (conn->type == LE_LINK) | 
 | 		return hci_le_connect_cancel_sync(hdev, conn); | 
 |  | 
 | 	if (hdev->hci_ver < BLUETOOTH_VER_1_2) | 
 | 		return 0; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, | 
 | 				     6, &conn->dst, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, | 
 | 			       u8 reason) | 
 | { | 
 | 	struct hci_cp_reject_sync_conn_req cp; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	bacpy(&cp.bdaddr, &conn->dst); | 
 | 	cp.reason = reason; | 
 |  | 
 | 	/* SCO rejection has its own limited set of | 
 | 	 * allowed error values (0x0D-0x0F). | 
 | 	 */ | 
 | 	if (reason < 0x0d || reason > 0x0f) | 
 | 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, | 
 | 				u8 reason) | 
 | { | 
 | 	struct hci_cp_reject_conn_req cp; | 
 |  | 
 | 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK) | 
 | 		return hci_reject_sco_sync(hdev, conn, reason); | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 | 	bacpy(&cp.bdaddr, &conn->dst); | 
 | 	cp.reason = reason; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, | 
 | 			       u8 reason) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	switch (conn->state) { | 
 | 	case BT_CONNECTED: | 
 | 	case BT_CONFIG: | 
 | 		return hci_disconnect_sync(hdev, conn, reason); | 
 | 	case BT_CONNECT: | 
 | 		err = hci_connect_cancel_sync(hdev, conn); | 
 | 		/* Cleanup hci_conn object if it cannot be cancelled as it | 
 | 		 * likelly means the controller and host stack are out of sync. | 
 | 		 */ | 
 | 		if (err) | 
 | 			hci_conn_failed(conn, err); | 
 |  | 
 | 		return err; | 
 | 	case BT_CONNECT2: | 
 | 		return hci_reject_conn_sync(hdev, conn, reason); | 
 | 	default: | 
 | 		conn->state = BT_CLOSED; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) | 
 | { | 
 | 	struct hci_conn *conn, *tmp; | 
 | 	int err; | 
 |  | 
 | 	list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { | 
 | 		err = hci_abort_conn_sync(hdev, conn, reason); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This function perform power off HCI command sequence as follows: | 
 |  * | 
 |  * Clear Advertising | 
 |  * Stop Discovery | 
 |  * Disconnect all connections | 
 |  * hci_dev_close_sync | 
 |  */ | 
 | static int hci_power_off_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* If controller is already down there is nothing to do */ | 
 | 	if (!test_bit(HCI_UP, &hdev->flags)) | 
 | 		return 0; | 
 |  | 
 | 	if (test_bit(HCI_ISCAN, &hdev->flags) || | 
 | 	    test_bit(HCI_PSCAN, &hdev->flags)) { | 
 | 		err = hci_write_scan_enable_sync(hdev, 0x00); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	err = hci_clear_adv_sync(hdev, NULL, false); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = hci_stop_discovery_sync(hdev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Terminated due to Power Off */ | 
 | 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return hci_dev_close_sync(hdev); | 
 | } | 
 |  | 
 | int hci_set_powered_sync(struct hci_dev *hdev, u8 val) | 
 | { | 
 | 	if (val) | 
 | 		return hci_power_on_sync(hdev); | 
 |  | 
 | 	return hci_power_off_sync(hdev); | 
 | } | 
 |  | 
 | static int hci_write_iac_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct hci_cp_write_current_iac_lap cp; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) | 
 | 		return 0; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { | 
 | 		/* Limited discoverable mode */ | 
 | 		cp.num_iac = min_t(u8, hdev->num_iac, 2); | 
 | 		cp.iac_lap[0] = 0x00;	/* LIAC */ | 
 | 		cp.iac_lap[1] = 0x8b; | 
 | 		cp.iac_lap[2] = 0x9e; | 
 | 		cp.iac_lap[3] = 0x33;	/* GIAC */ | 
 | 		cp.iac_lap[4] = 0x8b; | 
 | 		cp.iac_lap[5] = 0x9e; | 
 | 	} else { | 
 | 		/* General discoverable mode */ | 
 | 		cp.num_iac = 1; | 
 | 		cp.iac_lap[0] = 0x33;	/* GIAC */ | 
 | 		cp.iac_lap[1] = 0x8b; | 
 | 		cp.iac_lap[2] = 0x9e; | 
 | 	} | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, | 
 | 				     (cp.num_iac * 3) + 1, &cp, | 
 | 				     HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | int hci_update_discoverable_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { | 
 | 		err = hci_write_iac_sync(hdev); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		err = hci_update_scan_sync(hdev); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		err = hci_update_class_sync(hdev); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	/* Advertising instances don't use the global discoverable setting, so | 
 | 	 * only update AD if advertising was enabled using Set Advertising. | 
 | 	 */ | 
 | 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { | 
 | 		err = hci_update_adv_data_sync(hdev, 0x00); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		/* Discoverable mode affects the local advertising | 
 | 		 * address in limited privacy mode. | 
 | 		 */ | 
 | 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { | 
 | 			if (ext_adv_capable(hdev)) | 
 | 				err = hci_start_ext_adv_sync(hdev, 0x00); | 
 | 			else | 
 | 				err = hci_enable_advertising_sync(hdev); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int update_discoverable_sync(struct hci_dev *hdev, void *data) | 
 | { | 
 | 	return hci_update_discoverable_sync(hdev); | 
 | } | 
 |  | 
 | int hci_update_discoverable(struct hci_dev *hdev) | 
 | { | 
 | 	/* Only queue if it would have any effect */ | 
 | 	if (hdev_is_powered(hdev) && | 
 | 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) && | 
 | 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && | 
 | 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) | 
 | 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, | 
 | 					  NULL); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int hci_update_connectable_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = hci_update_scan_sync(hdev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* If BR/EDR is not enabled and we disable advertising as a | 
 | 	 * by-product of disabling connectable, we need to update the | 
 | 	 * advertising flags. | 
 | 	 */ | 
 | 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
 | 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); | 
 |  | 
 | 	/* Update the advertising parameters if necessary */ | 
 | 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || | 
 | 	    !list_empty(&hdev->adv_instances)) { | 
 | 		if (ext_adv_capable(hdev)) | 
 | 			err = hci_start_ext_adv_sync(hdev, | 
 | 						     hdev->cur_adv_instance); | 
 | 		else | 
 | 			err = hci_enable_advertising_sync(hdev); | 
 |  | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return hci_update_passive_scan_sync(hdev); | 
 | } | 
 |  | 
 | static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) | 
 | { | 
 | 	const u8 giac[3] = { 0x33, 0x8b, 0x9e }; | 
 | 	const u8 liac[3] = { 0x00, 0x8b, 0x9e }; | 
 | 	struct hci_cp_inquiry cp; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	if (hci_dev_test_flag(hdev, HCI_INQUIRY)) | 
 | 		return 0; | 
 |  | 
 | 	hci_dev_lock(hdev); | 
 | 	hci_inquiry_cache_flush(hdev); | 
 | 	hci_dev_unlock(hdev); | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	if (hdev->discovery.limited) | 
 | 		memcpy(&cp.lap, liac, sizeof(cp.lap)); | 
 | 	else | 
 | 		memcpy(&cp.lap, giac, sizeof(cp.lap)); | 
 |  | 
 | 	cp.length = length; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, | 
 | 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) | 
 | { | 
 | 	u8 own_addr_type; | 
 | 	/* Accept list is not used for discovery */ | 
 | 	u8 filter_policy = 0x00; | 
 | 	/* Default is to enable duplicates filter */ | 
 | 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; | 
 | 	int err; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	/* If controller is scanning, it means the passive scanning is | 
 | 	 * running. Thus, we should temporarily stop it in order to set the | 
 | 	 * discovery scanning parameters. | 
 | 	 */ | 
 | 	err = hci_scan_disable_sync(hdev); | 
 | 	if (err) { | 
 | 		bt_dev_err(hdev, "Unable to disable scanning: %d", err); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	cancel_interleave_scan(hdev); | 
 |  | 
 | 	/* Pause advertising since active scanning disables address resolution | 
 | 	 * which advertising depend on in order to generate its RPAs. | 
 | 	 */ | 
 | 	if (use_ll_privacy(hdev)) { | 
 | 		err = hci_pause_advertising_sync(hdev); | 
 | 		if (err) { | 
 | 			bt_dev_err(hdev, "pause advertising failed: %d", err); | 
 | 			goto failed; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Disable address resolution while doing active scanning since the | 
 | 	 * accept list shall not be used and all reports shall reach the host | 
 | 	 * anyway. | 
 | 	 */ | 
 | 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); | 
 | 	if (err) { | 
 | 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d", | 
 | 			   err); | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	/* All active scans will be done with either a resolvable private | 
 | 	 * address (when privacy feature has been enabled) or non-resolvable | 
 | 	 * private address. | 
 | 	 */ | 
 | 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), | 
 | 					     &own_addr_type); | 
 | 	if (err < 0) | 
 | 		own_addr_type = ADDR_LE_DEV_PUBLIC; | 
 |  | 
 | 	if (hci_is_adv_monitoring(hdev)) { | 
 | 		/* Duplicate filter should be disabled when some advertisement | 
 | 		 * monitor is activated, otherwise AdvMon can only receive one | 
 | 		 * advertisement for one peer(*) during active scanning, and | 
 | 		 * might report loss to these peers. | 
 | 		 * | 
 | 		 * Note that different controllers have different meanings of | 
 | 		 * |duplicate|. Some of them consider packets with the same | 
 | 		 * address as duplicate, and others consider packets with the | 
 | 		 * same address and the same RSSI as duplicate. Although in the | 
 | 		 * latter case we don't need to disable duplicate filter, but | 
 | 		 * it is common to have active scanning for a short period of | 
 | 		 * time, the power impact should be neglectable. | 
 | 		 */ | 
 | 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE; | 
 | 	} | 
 |  | 
 | 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, | 
 | 				  hdev->le_scan_window_discovery, | 
 | 				  own_addr_type, filter_policy, filter_dup); | 
 | 	if (!err) | 
 | 		return err; | 
 |  | 
 | failed: | 
 | 	/* Resume advertising if it was paused */ | 
 | 	if (use_ll_privacy(hdev)) | 
 | 		hci_resume_advertising_sync(hdev); | 
 |  | 
 | 	/* Resume passive scanning */ | 
 | 	hci_update_passive_scan_sync(hdev); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	bt_dev_dbg(hdev, ""); | 
 |  | 
 | 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); | 
 | } | 
 |  | 
 | int hci_start_discovery_sync(struct hci_dev *hdev) | 
 | { | 
 | 	unsigned long timeout; | 
 | 	int err; | 
 |  | 
 | 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type); | 
 |  | 
 | 	switch (hdev->discovery.type) { | 
 | 	case DISCOV_TYPE_BREDR: | 
 | 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); | 
 | 	case DISCOV_TYPE_INTERLEAVED: | 
 | 		/* When running simultaneous discovery, the LE scanning time | 
 | 		 * should occupy the whole discovery time sine BR/EDR inquiry | 
 | 		 * and LE scanning are scheduled by the controller. | 
 | 		 * | 
 | 		 * For interleaving discovery in comparison, BR/EDR inquiry | 
 | 		 * and LE scanning are done sequentially with separate | 
 | 		 * timeouts. | 
 | 		 */ | 
 | 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, | 
 | 			     &hdev->quirks)) { | 
 | 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); | 
 | 			/* During simultaneous discovery, we double LE scan | 
 | 			 * interval. We must leave some time for the controller | 
 | 			 * to do BR/EDR inquiry. | 
 | 			 */ | 
 | 			err = hci_start_interleaved_discovery_sync(hdev); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); | 
 | 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); | 
 | 		break; | 
 | 	case DISCOV_TYPE_LE: | 
 | 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); | 
 | 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); | 
 |  | 
 | 	/* When service discovery is used and the controller has a | 
 | 	 * strict duplicate filter, it is important to remember the | 
 | 	 * start and duration of the scan. This is required for | 
 | 	 * restarting scanning during the discovery phase. | 
 | 	 */ | 
 | 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && | 
 | 	    hdev->discovery.result_filtering) { | 
 | 		hdev->discovery.scan_start = jiffies; | 
 | 		hdev->discovery.scan_duration = timeout; | 
 | 	} | 
 |  | 
 | 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, | 
 | 			   timeout); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void hci_suspend_monitor_sync(struct hci_dev *hdev) | 
 | { | 
 | 	switch (hci_get_adv_monitor_offload_ext(hdev)) { | 
 | 	case HCI_ADV_MONITOR_EXT_MSFT: | 
 | 		msft_suspend_sync(hdev); | 
 | 		break; | 
 | 	default: | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | /* This function disables discovery and mark it as paused */ | 
 | static int hci_pause_discovery_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int old_state = hdev->discovery.state; | 
 | 	int err; | 
 |  | 
 | 	/* If discovery already stopped/stopping/paused there nothing to do */ | 
 | 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || | 
 | 	    hdev->discovery_paused) | 
 | 		return 0; | 
 |  | 
 | 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING); | 
 | 	err = hci_stop_discovery_sync(hdev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	hdev->discovery_paused = true; | 
 | 	hdev->discovery_old_state = old_state; | 
 | 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hci_update_event_filter_sync(struct hci_dev *hdev) | 
 | { | 
 | 	struct bdaddr_list_with_flags *b; | 
 | 	u8 scan = SCAN_DISABLED; | 
 | 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags); | 
 | 	int err; | 
 |  | 
 | 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
 | 		return 0; | 
 |  | 
 | 	/* Some fake CSR controllers lock up after setting this type of | 
 | 	 * filter, so avoid sending the request altogether. | 
 | 	 */ | 
 | 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) | 
 | 		return 0; | 
 |  | 
 | 	/* Always clear event filter when starting */ | 
 | 	hci_clear_event_filter_sync(hdev); | 
 |  | 
 | 	list_for_each_entry(b, &hdev->accept_list, list) { | 
 | 		if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) | 
 | 			continue; | 
 |  | 
 | 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); | 
 |  | 
 | 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, | 
 | 						 HCI_CONN_SETUP_ALLOW_BDADDR, | 
 | 						 &b->bdaddr, | 
 | 						 HCI_CONN_SETUP_AUTO_ON); | 
 | 		if (err) | 
 | 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR", | 
 | 				   &b->bdaddr); | 
 | 		else | 
 | 			scan = SCAN_PAGE; | 
 | 	} | 
 |  | 
 | 	if (scan && !scanning) | 
 | 		hci_write_scan_enable_sync(hdev, scan); | 
 | 	else if (!scan && scanning) | 
 | 		hci_write_scan_enable_sync(hdev, scan); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This function disables scan (BR and LE) and mark it as paused */ | 
 | static int hci_pause_scan_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (hdev->scanning_paused) | 
 | 		return 0; | 
 |  | 
 | 	/* Disable page scan if enabled */ | 
 | 	if (test_bit(HCI_PSCAN, &hdev->flags)) | 
 | 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED); | 
 |  | 
 | 	hci_scan_disable_sync(hdev); | 
 |  | 
 | 	hdev->scanning_paused = true; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This function performs the HCI suspend procedures in the follow order: | 
 |  * | 
 |  * Pause discovery (active scanning/inquiry) | 
 |  * Pause Directed Advertising/Advertising | 
 |  * Pause Scanning (passive scanning in case discovery was not active) | 
 |  * Disconnect all connections | 
 |  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup | 
 |  * otherwise: | 
 |  * Update event mask (only set events that are allowed to wake up the host) | 
 |  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) | 
 |  * Update passive scanning (lower duty cycle) | 
 |  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE | 
 |  */ | 
 | int hci_suspend_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* If marked as suspended there nothing to do */ | 
 | 	if (hdev->suspended) | 
 | 		return 0; | 
 |  | 
 | 	/* Mark device as suspended */ | 
 | 	hdev->suspended = true; | 
 |  | 
 | 	/* Pause discovery if not already stopped */ | 
 | 	hci_pause_discovery_sync(hdev); | 
 |  | 
 | 	/* Pause other advertisements */ | 
 | 	hci_pause_advertising_sync(hdev); | 
 |  | 
 | 	/* Suspend monitor filters */ | 
 | 	hci_suspend_monitor_sync(hdev); | 
 |  | 
 | 	/* Prevent disconnects from causing scanning to be re-enabled */ | 
 | 	hci_pause_scan_sync(hdev); | 
 |  | 
 | 	/* Soft disconnect everything (power off) */ | 
 | 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); | 
 | 	if (err) { | 
 | 		/* Set state to BT_RUNNING so resume doesn't notify */ | 
 | 		hdev->suspend_state = BT_RUNNING; | 
 | 		hci_resume_sync(hdev); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* Only configure accept list if disconnect succeeded and wake | 
 | 	 * isn't being prevented. | 
 | 	 */ | 
 | 	if (!hdev->wakeup || !hdev->wakeup(hdev)) { | 
 | 		hdev->suspend_state = BT_SUSPEND_DISCONNECT; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Unpause to take care of updating scanning params */ | 
 | 	hdev->scanning_paused = false; | 
 |  | 
 | 	/* Update event mask so only the allowed event can wakeup the host */ | 
 | 	hci_set_event_mask_sync(hdev); | 
 |  | 
 | 	/* Enable event filter for paired devices */ | 
 | 	hci_update_event_filter_sync(hdev); | 
 |  | 
 | 	/* Update LE passive scan if enabled */ | 
 | 	hci_update_passive_scan_sync(hdev); | 
 |  | 
 | 	/* Pause scan changes again. */ | 
 | 	hdev->scanning_paused = true; | 
 |  | 
 | 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This function resumes discovery */ | 
 | static int hci_resume_discovery_sync(struct hci_dev *hdev) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* If discovery not paused there nothing to do */ | 
 | 	if (!hdev->discovery_paused) | 
 | 		return 0; | 
 |  | 
 | 	hdev->discovery_paused = false; | 
 |  | 
 | 	hci_discovery_set_state(hdev, DISCOVERY_STARTING); | 
 |  | 
 | 	err = hci_start_discovery_sync(hdev); | 
 |  | 
 | 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : | 
 | 				DISCOVERY_FINDING); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void hci_resume_monitor_sync(struct hci_dev *hdev) | 
 | { | 
 | 	switch (hci_get_adv_monitor_offload_ext(hdev)) { | 
 | 	case HCI_ADV_MONITOR_EXT_MSFT: | 
 | 		msft_resume_sync(hdev); | 
 | 		break; | 
 | 	default: | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | /* This function resume scan and reset paused flag */ | 
 | static int hci_resume_scan_sync(struct hci_dev *hdev) | 
 | { | 
 | 	if (!hdev->scanning_paused) | 
 | 		return 0; | 
 |  | 
 | 	hci_update_scan_sync(hdev); | 
 |  | 
 | 	/* Reset passive scanning to normal */ | 
 | 	hci_update_passive_scan_sync(hdev); | 
 |  | 
 | 	hdev->scanning_paused = false; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This function performs the HCI suspend procedures in the follow order: | 
 |  * | 
 |  * Restore event mask | 
 |  * Clear event filter | 
 |  * Update passive scanning (normal duty cycle) | 
 |  * Resume Directed Advertising/Advertising | 
 |  * Resume discovery (active scanning/inquiry) | 
 |  */ | 
 | int hci_resume_sync(struct hci_dev *hdev) | 
 | { | 
 | 	/* If not marked as suspended there nothing to do */ | 
 | 	if (!hdev->suspended) | 
 | 		return 0; | 
 |  | 
 | 	hdev->suspended = false; | 
 | 	hdev->scanning_paused = false; | 
 |  | 
 | 	/* Restore event mask */ | 
 | 	hci_set_event_mask_sync(hdev); | 
 |  | 
 | 	/* Clear any event filters and restore scan state */ | 
 | 	hci_clear_event_filter_sync(hdev); | 
 |  | 
 | 	/* Resume scanning */ | 
 | 	hci_resume_scan_sync(hdev); | 
 |  | 
 | 	/* Resume monitor filters */ | 
 | 	hci_resume_monitor_sync(hdev); | 
 |  | 
 | 	/* Resume other advertisements */ | 
 | 	hci_resume_advertising_sync(hdev); | 
 |  | 
 | 	/* Resume discovery */ | 
 | 	hci_resume_discovery_sync(hdev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool conn_use_rpa(struct hci_conn *conn) | 
 | { | 
 | 	struct hci_dev *hdev = conn->hdev; | 
 |  | 
 | 	return hci_dev_test_flag(hdev, HCI_PRIVACY); | 
 | } | 
 |  | 
 | static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, | 
 | 						struct hci_conn *conn) | 
 | { | 
 | 	struct hci_cp_le_set_ext_adv_params cp; | 
 | 	int err; | 
 | 	bdaddr_t random_addr; | 
 | 	u8 own_addr_type; | 
 |  | 
 | 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), | 
 | 					     &own_addr_type); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Set require_privacy to false so that the remote device has a | 
 | 	 * chance of identifying us. | 
 | 	 */ | 
 | 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, | 
 | 				     &own_addr_type, &random_addr); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); | 
 | 	cp.own_addr_type = own_addr_type; | 
 | 	cp.channel_map = hdev->le_adv_channel_map; | 
 | 	cp.tx_power = HCI_TX_POWER_INVALID; | 
 | 	cp.primary_phy = HCI_ADV_PHY_1M; | 
 | 	cp.secondary_phy = HCI_ADV_PHY_1M; | 
 | 	cp.handle = 0x00; /* Use instance 0 for directed adv */ | 
 | 	cp.own_addr_type = own_addr_type; | 
 | 	cp.peer_addr_type = conn->dst_type; | 
 | 	bacpy(&cp.peer_addr, &conn->dst); | 
 |  | 
 | 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for | 
 | 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND | 
 | 	 * does not supports advertising data when the advertising set already | 
 | 	 * contains some, the controller shall return erroc code 'Invalid | 
 | 	 * HCI Command Parameters(0x12). | 
 | 	 * So it is required to remove adv set for handle 0x00. since we use | 
 | 	 * instance 0 for directed adv. | 
 | 	 */ | 
 | 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, | 
 | 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Check if random address need to be updated */ | 
 | 	if (own_addr_type == ADDR_LE_DEV_RANDOM && | 
 | 	    bacmp(&random_addr, BDADDR_ANY) && | 
 | 	    bacmp(&random_addr, &hdev->random_addr)) { | 
 | 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00, | 
 | 						       &random_addr); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return hci_enable_ext_advertising_sync(hdev, 0x00); | 
 | } | 
 |  | 
 | static int hci_le_directed_advertising_sync(struct hci_dev *hdev, | 
 | 					    struct hci_conn *conn) | 
 | { | 
 | 	struct hci_cp_le_set_adv_param cp; | 
 | 	u8 status; | 
 | 	u8 own_addr_type; | 
 | 	u8 enable; | 
 |  | 
 | 	if (ext_adv_capable(hdev)) | 
 | 		return hci_le_ext_directed_advertising_sync(hdev, conn); | 
 |  | 
 | 	/* Clear the HCI_LE_ADV bit temporarily so that the | 
 | 	 * hci_update_random_address knows that it's safe to go ahead | 
 | 	 * and write a new random address. The flag will be set back on | 
 | 	 * as soon as the SET_ADV_ENABLE HCI command completes. | 
 | 	 */ | 
 | 	hci_dev_clear_flag(hdev, HCI_LE_ADV); | 
 |  | 
 | 	/* Set require_privacy to false so that the remote device has a | 
 | 	 * chance of identifying us. | 
 | 	 */ | 
 | 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), | 
 | 						&own_addr_type); | 
 | 	if (status) | 
 | 		return status; | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	/* Some controllers might reject command if intervals are not | 
 | 	 * within range for undirected advertising. | 
 | 	 * BCM20702A0 is known to be affected by this. | 
 | 	 */ | 
 | 	cp.min_interval = cpu_to_le16(0x0020); | 
 | 	cp.max_interval = cpu_to_le16(0x0020); | 
 |  | 
 | 	cp.type = LE_ADV_DIRECT_IND; | 
 | 	cp.own_address_type = own_addr_type; | 
 | 	cp.direct_addr_type = conn->dst_type; | 
 | 	bacpy(&cp.direct_addr, &conn->dst); | 
 | 	cp.channel_map = hdev->le_adv_channel_map; | 
 |  | 
 | 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, | 
 | 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT); | 
 | 	if (status) | 
 | 		return status; | 
 |  | 
 | 	enable = 0x01; | 
 |  | 
 | 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, | 
 | 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT); | 
 | } | 
 |  | 
 | static void set_ext_conn_params(struct hci_conn *conn, | 
 | 				struct hci_cp_le_ext_conn_param *p) | 
 | { | 
 | 	struct hci_dev *hdev = conn->hdev; | 
 |  | 
 | 	memset(p, 0, sizeof(*p)); | 
 |  | 
 | 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); | 
 | 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); | 
 | 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); | 
 | 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); | 
 | 	p->conn_latency = cpu_to_le16(conn->le_conn_latency); | 
 | 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); | 
 | 	p->min_ce_len = cpu_to_le16(0x0000); | 
 | 	p->max_ce_len = cpu_to_le16(0x0000); | 
 | } | 
 |  | 
 | static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, | 
 | 				       struct hci_conn *conn, u8 own_addr_type) | 
 | { | 
 | 	struct hci_cp_le_ext_create_conn *cp; | 
 | 	struct hci_cp_le_ext_conn_param *p; | 
 | 	u8 data[sizeof(*cp) + sizeof(*p) * 3]; | 
 | 	u32 plen; | 
 |  | 
 | 	cp = (void *)data; | 
 | 	p = (void *)cp->data; | 
 |  | 
 | 	memset(cp, 0, sizeof(*cp)); | 
 |  | 
 | 	bacpy(&cp->peer_addr, &conn->dst); | 
 | 	cp->peer_addr_type = conn->dst_type; | 
 | 	cp->own_addr_type = own_addr_type; | 
 |  | 
 | 	plen = sizeof(*cp); | 
 |  | 
 | 	if (scan_1m(hdev)) { | 
 | 		cp->phys |= LE_SCAN_PHY_1M; | 
 | 		set_ext_conn_params(conn, p); | 
 |  | 
 | 		p++; | 
 | 		plen += sizeof(*p); | 
 | 	} | 
 |  | 
 | 	if (scan_2m(hdev)) { | 
 | 		cp->phys |= LE_SCAN_PHY_2M; | 
 | 		set_ext_conn_params(conn, p); | 
 |  | 
 | 		p++; | 
 | 		plen += sizeof(*p); | 
 | 	} | 
 |  | 
 | 	if (scan_coded(hdev)) { | 
 | 		cp->phys |= LE_SCAN_PHY_CODED; | 
 | 		set_ext_conn_params(conn, p); | 
 |  | 
 | 		plen += sizeof(*p); | 
 | 	} | 
 |  | 
 | 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, | 
 | 					plen, data, | 
 | 					HCI_EV_LE_ENHANCED_CONN_COMPLETE, | 
 | 					conn->conn_timeout, NULL); | 
 | } | 
 |  | 
 | int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) | 
 | { | 
 | 	struct hci_cp_le_create_conn cp; | 
 | 	struct hci_conn_params *params; | 
 | 	u8 own_addr_type; | 
 | 	int err; | 
 |  | 
 | 	/* If requested to connect as peripheral use directed advertising */ | 
 | 	if (conn->role == HCI_ROLE_SLAVE) { | 
 | 		/* If we're active scanning and simultaneous roles is not | 
 | 		 * enabled simply reject the attempt. | 
 | 		 */ | 
 | 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && | 
 | 		    hdev->le_scan_type == LE_SCAN_ACTIVE && | 
 | 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { | 
 | 			hci_conn_del(conn); | 
 | 			return -EBUSY; | 
 | 		} | 
 |  | 
 | 		/* Pause advertising while doing directed advertising. */ | 
 | 		hci_pause_advertising_sync(hdev); | 
 |  | 
 | 		err = hci_le_directed_advertising_sync(hdev, conn); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* Disable advertising if simultaneous roles is not in use. */ | 
 | 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) | 
 | 		hci_pause_advertising_sync(hdev); | 
 |  | 
 | 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); | 
 | 	if (params) { | 
 | 		conn->le_conn_min_interval = params->conn_min_interval; | 
 | 		conn->le_conn_max_interval = params->conn_max_interval; | 
 | 		conn->le_conn_latency = params->conn_latency; | 
 | 		conn->le_supv_timeout = params->supervision_timeout; | 
 | 	} else { | 
 | 		conn->le_conn_min_interval = hdev->le_conn_min_interval; | 
 | 		conn->le_conn_max_interval = hdev->le_conn_max_interval; | 
 | 		conn->le_conn_latency = hdev->le_conn_latency; | 
 | 		conn->le_supv_timeout = hdev->le_supv_timeout; | 
 | 	} | 
 |  | 
 | 	/* If controller is scanning, we stop it since some controllers are | 
 | 	 * not able to scan and connect at the same time. Also set the | 
 | 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete | 
 | 	 * handler for scan disabling knows to set the correct discovery | 
 | 	 * state. | 
 | 	 */ | 
 | 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { | 
 | 		hci_scan_disable_sync(hdev); | 
 | 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); | 
 | 	} | 
 |  | 
 | 	/* Update random address, but set require_privacy to false so | 
 | 	 * that we never connect with an non-resolvable address. | 
 | 	 */ | 
 | 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), | 
 | 					     &own_addr_type); | 
 | 	if (err) | 
 | 		goto done; | 
 |  | 
 | 	if (use_ext_conn(hdev)) { | 
 | 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	memset(&cp, 0, sizeof(cp)); | 
 |  | 
 | 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); | 
 | 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); | 
 |  | 
 | 	bacpy(&cp.peer_addr, &conn->dst); | 
 | 	cp.peer_addr_type = conn->dst_type; | 
 | 	cp.own_address_type = own_addr_type; | 
 | 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); | 
 | 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); | 
 | 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency); | 
 | 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); | 
 | 	cp.min_ce_len = cpu_to_le16(0x0000); | 
 | 	cp.max_ce_len = cpu_to_le16(0x0000); | 
 |  | 
 | 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: | 
 | 	 * | 
 | 	 * If this event is unmasked and the HCI_LE_Connection_Complete event | 
 | 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is | 
 | 	 * sent when a new connection has been created. | 
 | 	 */ | 
 | 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, | 
 | 				       sizeof(cp), &cp, | 
 | 				       use_enhanced_conn_complete(hdev) ? | 
 | 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE : | 
 | 				       HCI_EV_LE_CONN_COMPLETE, | 
 | 				       conn->conn_timeout, NULL); | 
 |  | 
 | done: | 
 | 	/* Re-enable advertising after the connection attempt is finished. */ | 
 | 	hci_resume_advertising_sync(hdev); | 
 | 	return err; | 
 | } |