|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2008, 2009 Intel Corporation | 
|  | * Authors: Andi Kleen, Fengguang Wu | 
|  | * | 
|  | * High level machine check handler. Handles pages reported by the | 
|  | * hardware as being corrupted usually due to a multi-bit ECC memory or cache | 
|  | * failure. | 
|  | * | 
|  | * In addition there is a "soft offline" entry point that allows stop using | 
|  | * not-yet-corrupted-by-suspicious pages without killing anything. | 
|  | * | 
|  | * Handles page cache pages in various states.	The tricky part | 
|  | * here is that we can access any page asynchronously in respect to | 
|  | * other VM users, because memory failures could happen anytime and | 
|  | * anywhere. This could violate some of their assumptions. This is why | 
|  | * this code has to be extremely careful. Generally it tries to use | 
|  | * normal locking rules, as in get the standard locks, even if that means | 
|  | * the error handling takes potentially a long time. | 
|  | * | 
|  | * It can be very tempting to add handling for obscure cases here. | 
|  | * In general any code for handling new cases should only be added iff: | 
|  | * - You know how to test it. | 
|  | * - You have a test that can be added to mce-test | 
|  | *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ | 
|  | * - The case actually shows up as a frequent (top 10) page state in | 
|  | *   tools/mm/page-types when running a real workload. | 
|  | * | 
|  | * There are several operations here with exponential complexity because | 
|  | * of unsuitable VM data structures. For example the operation to map back | 
|  | * from RMAP chains to processes has to walk the complete process list and | 
|  | * has non linear complexity with the number. But since memory corruptions | 
|  | * are rare we hope to get away with this. This avoids impacting the core | 
|  | * VM. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "Memory failure: " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/dax.h> | 
|  | #include <linux/ksm.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/memory_hotplug.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/kfifo.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/pagewalk.h> | 
|  | #include <linux/shmem_fs.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include "swap.h" | 
|  | #include "internal.h" | 
|  | #include "ras/ras_event.h" | 
|  |  | 
|  | static int sysctl_memory_failure_early_kill __read_mostly; | 
|  |  | 
|  | static int sysctl_memory_failure_recovery __read_mostly = 1; | 
|  |  | 
|  | static int sysctl_enable_soft_offline __read_mostly = 1; | 
|  |  | 
|  | atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); | 
|  |  | 
|  | static bool hw_memory_failure __read_mostly = false; | 
|  |  | 
|  | static DEFINE_MUTEX(mf_mutex); | 
|  |  | 
|  | void num_poisoned_pages_inc(unsigned long pfn) | 
|  | { | 
|  | atomic_long_inc(&num_poisoned_pages); | 
|  | memblk_nr_poison_inc(pfn); | 
|  | } | 
|  |  | 
|  | void num_poisoned_pages_sub(unsigned long pfn, long i) | 
|  | { | 
|  | atomic_long_sub(i, &num_poisoned_pages); | 
|  | if (pfn != -1UL) | 
|  | memblk_nr_poison_sub(pfn, i); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. | 
|  | * @_name: name of the file in the per NUMA sysfs directory. | 
|  | */ | 
|  | #define MF_ATTR_RO(_name)					\ | 
|  | static ssize_t _name##_show(struct device *dev,			\ | 
|  | struct device_attribute *attr,	\ | 
|  | char *buf)				\ | 
|  | {								\ | 
|  | struct memory_failure_stats *mf_stats =			\ | 
|  | &NODE_DATA(dev->id)->mf_stats;			\ | 
|  | return sysfs_emit(buf, "%lu\n", mf_stats->_name);	\ | 
|  | }								\ | 
|  | static DEVICE_ATTR_RO(_name) | 
|  |  | 
|  | MF_ATTR_RO(total); | 
|  | MF_ATTR_RO(ignored); | 
|  | MF_ATTR_RO(failed); | 
|  | MF_ATTR_RO(delayed); | 
|  | MF_ATTR_RO(recovered); | 
|  |  | 
|  | static struct attribute *memory_failure_attr[] = { | 
|  | &dev_attr_total.attr, | 
|  | &dev_attr_ignored.attr, | 
|  | &dev_attr_failed.attr, | 
|  | &dev_attr_delayed.attr, | 
|  | &dev_attr_recovered.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | const struct attribute_group memory_failure_attr_group = { | 
|  | .name = "memory_failure", | 
|  | .attrs = memory_failure_attr, | 
|  | }; | 
|  |  | 
|  | static const struct ctl_table memory_failure_table[] = { | 
|  | { | 
|  | .procname	= "memory_failure_early_kill", | 
|  | .data		= &sysctl_memory_failure_early_kill, | 
|  | .maxlen		= sizeof(sysctl_memory_failure_early_kill), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec_minmax, | 
|  | .extra1		= SYSCTL_ZERO, | 
|  | .extra2		= SYSCTL_ONE, | 
|  | }, | 
|  | { | 
|  | .procname	= "memory_failure_recovery", | 
|  | .data		= &sysctl_memory_failure_recovery, | 
|  | .maxlen		= sizeof(sysctl_memory_failure_recovery), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec_minmax, | 
|  | .extra1		= SYSCTL_ZERO, | 
|  | .extra2		= SYSCTL_ONE, | 
|  | }, | 
|  | { | 
|  | .procname	= "enable_soft_offline", | 
|  | .data		= &sysctl_enable_soft_offline, | 
|  | .maxlen		= sizeof(sysctl_enable_soft_offline), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec_minmax, | 
|  | .extra1		= SYSCTL_ZERO, | 
|  | .extra2		= SYSCTL_ONE, | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Return values: | 
|  | *   1:   the page is dissolved (if needed) and taken off from buddy, | 
|  | *   0:   the page is dissolved (if needed) and not taken off from buddy, | 
|  | *   < 0: failed to dissolve. | 
|  | */ | 
|  | static int __page_handle_poison(struct page *page) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * zone_pcp_disable() can't be used here. It will | 
|  | * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold | 
|  | * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap | 
|  | * optimization is enabled. This will break current lock dependency | 
|  | * chain and leads to deadlock. | 
|  | * Disabling pcp before dissolving the page was a deterministic | 
|  | * approach because we made sure that those pages cannot end up in any | 
|  | * PCP list. Draining PCP lists expels those pages to the buddy system, | 
|  | * but nothing guarantees that those pages do not get back to a PCP | 
|  | * queue if we need to refill those. | 
|  | */ | 
|  | ret = dissolve_free_hugetlb_folio(page_folio(page)); | 
|  | if (!ret) { | 
|  | drain_all_pages(page_zone(page)); | 
|  | ret = take_page_off_buddy(page); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) | 
|  | { | 
|  | if (hugepage_or_freepage) { | 
|  | /* | 
|  | * Doing this check for free pages is also fine since | 
|  | * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well. | 
|  | */ | 
|  | if (__page_handle_poison(page) <= 0) | 
|  | /* | 
|  | * We could fail to take off the target page from buddy | 
|  | * for example due to racy page allocation, but that's | 
|  | * acceptable because soft-offlined page is not broken | 
|  | * and if someone really want to use it, they should | 
|  | * take it. | 
|  | */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SetPageHWPoison(page); | 
|  | if (release) | 
|  | put_page(page); | 
|  | page_ref_inc(page); | 
|  | num_poisoned_pages_inc(page_to_pfn(page)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_HWPOISON_INJECT) | 
|  |  | 
|  | u32 hwpoison_filter_enable = 0; | 
|  | u32 hwpoison_filter_dev_major = ~0U; | 
|  | u32 hwpoison_filter_dev_minor = ~0U; | 
|  | u64 hwpoison_filter_flags_mask; | 
|  | u64 hwpoison_filter_flags_value; | 
|  | EXPORT_SYMBOL_GPL(hwpoison_filter_enable); | 
|  | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); | 
|  | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); | 
|  | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); | 
|  | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); | 
|  |  | 
|  | static int hwpoison_filter_dev(struct page *p) | 
|  | { | 
|  | struct folio *folio = page_folio(p); | 
|  | struct address_space *mapping; | 
|  | dev_t dev; | 
|  |  | 
|  | if (hwpoison_filter_dev_major == ~0U && | 
|  | hwpoison_filter_dev_minor == ~0U) | 
|  | return 0; | 
|  |  | 
|  | mapping = folio_mapping(folio); | 
|  | if (mapping == NULL || mapping->host == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | dev = mapping->host->i_sb->s_dev; | 
|  | if (hwpoison_filter_dev_major != ~0U && | 
|  | hwpoison_filter_dev_major != MAJOR(dev)) | 
|  | return -EINVAL; | 
|  | if (hwpoison_filter_dev_minor != ~0U && | 
|  | hwpoison_filter_dev_minor != MINOR(dev)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hwpoison_filter_flags(struct page *p) | 
|  | { | 
|  | if (!hwpoison_filter_flags_mask) | 
|  | return 0; | 
|  |  | 
|  | if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == | 
|  | hwpoison_filter_flags_value) | 
|  | return 0; | 
|  | else | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This allows stress tests to limit test scope to a collection of tasks | 
|  | * by putting them under some memcg. This prevents killing unrelated/important | 
|  | * processes such as /sbin/init. Note that the target task may share clean | 
|  | * pages with init (eg. libc text), which is harmless. If the target task | 
|  | * share _dirty_ pages with another task B, the test scheme must make sure B | 
|  | * is also included in the memcg. At last, due to race conditions this filter | 
|  | * can only guarantee that the page either belongs to the memcg tasks, or is | 
|  | * a freed page. | 
|  | */ | 
|  | #ifdef CONFIG_MEMCG | 
|  | u64 hwpoison_filter_memcg; | 
|  | EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); | 
|  | static int hwpoison_filter_task(struct page *p) | 
|  | { | 
|  | if (!hwpoison_filter_memcg) | 
|  | return 0; | 
|  |  | 
|  | if (page_cgroup_ino(p) != hwpoison_filter_memcg) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static int hwpoison_filter_task(struct page *p) { return 0; } | 
|  | #endif | 
|  |  | 
|  | int hwpoison_filter(struct page *p) | 
|  | { | 
|  | if (!hwpoison_filter_enable) | 
|  | return 0; | 
|  |  | 
|  | if (hwpoison_filter_dev(p)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (hwpoison_filter_flags(p)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (hwpoison_filter_task(p)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hwpoison_filter); | 
|  | #else | 
|  | int hwpoison_filter(struct page *p) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Kill all processes that have a poisoned page mapped and then isolate | 
|  | * the page. | 
|  | * | 
|  | * General strategy: | 
|  | * Find all processes having the page mapped and kill them. | 
|  | * But we keep a page reference around so that the page is not | 
|  | * actually freed yet. | 
|  | * Then stash the page away | 
|  | * | 
|  | * There's no convenient way to get back to mapped processes | 
|  | * from the VMAs. So do a brute-force search over all | 
|  | * running processes. | 
|  | * | 
|  | * Remember that machine checks are not common (or rather | 
|  | * if they are common you have other problems), so this shouldn't | 
|  | * be a performance issue. | 
|  | * | 
|  | * Also there are some races possible while we get from the | 
|  | * error detection to actually handle it. | 
|  | */ | 
|  |  | 
|  | struct to_kill { | 
|  | struct list_head nd; | 
|  | struct task_struct *tsk; | 
|  | unsigned long addr; | 
|  | short size_shift; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Send all the processes who have the page mapped a signal. | 
|  | * ``action optional'' if they are not immediately affected by the error | 
|  | * ``action required'' if error happened in current execution context | 
|  | */ | 
|  | static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) | 
|  | { | 
|  | struct task_struct *t = tk->tsk; | 
|  | short addr_lsb = tk->size_shift; | 
|  | int ret = 0; | 
|  |  | 
|  | pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", | 
|  | pfn, t->comm, task_pid_nr(t)); | 
|  |  | 
|  | if ((flags & MF_ACTION_REQUIRED) && (t == current)) | 
|  | ret = force_sig_mceerr(BUS_MCEERR_AR, | 
|  | (void __user *)tk->addr, addr_lsb); | 
|  | else | 
|  | /* | 
|  | * Signal other processes sharing the page if they have | 
|  | * PF_MCE_EARLY set. | 
|  | * Don't use force here, it's convenient if the signal | 
|  | * can be temporarily blocked. | 
|  | */ | 
|  | ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, | 
|  | addr_lsb, t); | 
|  | if (ret < 0) | 
|  | pr_info("Error sending signal to %s:%d: %d\n", | 
|  | t->comm, task_pid_nr(t), ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unknown page type encountered. Try to check whether it can turn PageLRU by | 
|  | * lru_add_drain_all. | 
|  | */ | 
|  | void shake_folio(struct folio *folio) | 
|  | { | 
|  | if (folio_test_hugetlb(folio)) | 
|  | return; | 
|  | /* | 
|  | * TODO: Could shrink slab caches here if a lightweight range-based | 
|  | * shrinker will be available. | 
|  | */ | 
|  | if (folio_test_slab(folio)) | 
|  | return; | 
|  |  | 
|  | lru_add_drain_all(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(shake_folio); | 
|  |  | 
|  | static void shake_page(struct page *page) | 
|  | { | 
|  | shake_folio(page_folio(page)); | 
|  | } | 
|  |  | 
|  | static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, | 
|  | unsigned long address) | 
|  | { | 
|  | unsigned long ret = 0; | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | pte_t ptent; | 
|  |  | 
|  | VM_BUG_ON_VMA(address == -EFAULT, vma); | 
|  | pgd = pgd_offset(vma->vm_mm, address); | 
|  | if (!pgd_present(*pgd)) | 
|  | return 0; | 
|  | p4d = p4d_offset(pgd, address); | 
|  | if (!p4d_present(*p4d)) | 
|  | return 0; | 
|  | pud = pud_offset(p4d, address); | 
|  | if (!pud_present(*pud)) | 
|  | return 0; | 
|  | if (pud_devmap(*pud)) | 
|  | return PUD_SHIFT; | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (!pmd_present(*pmd)) | 
|  | return 0; | 
|  | if (pmd_devmap(*pmd)) | 
|  | return PMD_SHIFT; | 
|  | pte = pte_offset_map(pmd, address); | 
|  | if (!pte) | 
|  | return 0; | 
|  | ptent = ptep_get(pte); | 
|  | if (pte_present(ptent) && pte_devmap(ptent)) | 
|  | ret = PAGE_SHIFT; | 
|  | pte_unmap(pte); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Failure handling: if we can't find or can't kill a process there's | 
|  | * not much we can do.	We just print a message and ignore otherwise. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Schedule a process for later kill. | 
|  | * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. | 
|  | */ | 
|  | static void __add_to_kill(struct task_struct *tsk, const struct page *p, | 
|  | struct vm_area_struct *vma, struct list_head *to_kill, | 
|  | unsigned long addr) | 
|  | { | 
|  | struct to_kill *tk; | 
|  |  | 
|  | tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); | 
|  | if (!tk) { | 
|  | pr_err("Out of memory while machine check handling\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | tk->addr = addr; | 
|  | if (is_zone_device_page(p)) | 
|  | tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); | 
|  | else | 
|  | tk->size_shift = folio_shift(page_folio(p)); | 
|  |  | 
|  | /* | 
|  | * Send SIGKILL if "tk->addr == -EFAULT". Also, as | 
|  | * "tk->size_shift" is always non-zero for !is_zone_device_page(), | 
|  | * so "tk->size_shift == 0" effectively checks no mapping on | 
|  | * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times | 
|  | * to a process' address space, it's possible not all N VMAs | 
|  | * contain mappings for the page, but at least one VMA does. | 
|  | * Only deliver SIGBUS with payload derived from the VMA that | 
|  | * has a mapping for the page. | 
|  | */ | 
|  | if (tk->addr == -EFAULT) { | 
|  | pr_info("Unable to find user space address %lx in %s\n", | 
|  | page_to_pfn(p), tsk->comm); | 
|  | } else if (tk->size_shift == 0) { | 
|  | kfree(tk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | get_task_struct(tsk); | 
|  | tk->tsk = tsk; | 
|  | list_add_tail(&tk->nd, to_kill); | 
|  | } | 
|  |  | 
|  | static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p, | 
|  | struct vm_area_struct *vma, struct list_head *to_kill, | 
|  | unsigned long addr) | 
|  | { | 
|  | if (addr == -EFAULT) | 
|  | return; | 
|  | __add_to_kill(tsk, p, vma, to_kill, addr); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KSM | 
|  | static bool task_in_to_kill_list(struct list_head *to_kill, | 
|  | struct task_struct *tsk) | 
|  | { | 
|  | struct to_kill *tk, *next; | 
|  |  | 
|  | list_for_each_entry_safe(tk, next, to_kill, nd) { | 
|  | if (tk->tsk == tsk) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void add_to_kill_ksm(struct task_struct *tsk, const struct page *p, | 
|  | struct vm_area_struct *vma, struct list_head *to_kill, | 
|  | unsigned long addr) | 
|  | { | 
|  | if (!task_in_to_kill_list(to_kill, tsk)) | 
|  | __add_to_kill(tsk, p, vma, to_kill, addr); | 
|  | } | 
|  | #endif | 
|  | /* | 
|  | * Kill the processes that have been collected earlier. | 
|  | * | 
|  | * Only do anything when FORCEKILL is set, otherwise just free the | 
|  | * list (this is used for clean pages which do not need killing) | 
|  | */ | 
|  | static void kill_procs(struct list_head *to_kill, int forcekill, | 
|  | unsigned long pfn, int flags) | 
|  | { | 
|  | struct to_kill *tk, *next; | 
|  |  | 
|  | list_for_each_entry_safe(tk, next, to_kill, nd) { | 
|  | if (forcekill) { | 
|  | if (tk->addr == -EFAULT) { | 
|  | pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", | 
|  | pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); | 
|  | do_send_sig_info(SIGKILL, SEND_SIG_PRIV, | 
|  | tk->tsk, PIDTYPE_PID); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In theory the process could have mapped | 
|  | * something else on the address in-between. We could | 
|  | * check for that, but we need to tell the | 
|  | * process anyways. | 
|  | */ | 
|  | else if (kill_proc(tk, pfn, flags) < 0) | 
|  | pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", | 
|  | pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); | 
|  | } | 
|  | list_del(&tk->nd); | 
|  | put_task_struct(tk->tsk); | 
|  | kfree(tk); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) | 
|  | * on behalf of the thread group. Return task_struct of the (first found) | 
|  | * dedicated thread if found, and return NULL otherwise. | 
|  | * | 
|  | * We already hold rcu lock in the caller, so we don't have to call | 
|  | * rcu_read_lock/unlock() in this function. | 
|  | */ | 
|  | static struct task_struct *find_early_kill_thread(struct task_struct *tsk) | 
|  | { | 
|  | struct task_struct *t; | 
|  |  | 
|  | for_each_thread(tsk, t) { | 
|  | if (t->flags & PF_MCE_PROCESS) { | 
|  | if (t->flags & PF_MCE_EARLY) | 
|  | return t; | 
|  | } else { | 
|  | if (sysctl_memory_failure_early_kill) | 
|  | return t; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine whether a given process is "early kill" process which expects | 
|  | * to be signaled when some page under the process is hwpoisoned. | 
|  | * Return task_struct of the dedicated thread (main thread unless explicitly | 
|  | * specified) if the process is "early kill" and otherwise returns NULL. | 
|  | * | 
|  | * Note that the above is true for Action Optional case. For Action Required | 
|  | * case, it's only meaningful to the current thread which need to be signaled | 
|  | * with SIGBUS, this error is Action Optional for other non current | 
|  | * processes sharing the same error page,if the process is "early kill", the | 
|  | * task_struct of the dedicated thread will also be returned. | 
|  | */ | 
|  | struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) | 
|  | { | 
|  | if (!tsk->mm) | 
|  | return NULL; | 
|  | /* | 
|  | * Comparing ->mm here because current task might represent | 
|  | * a subthread, while tsk always points to the main thread. | 
|  | */ | 
|  | if (force_early && tsk->mm == current->mm) | 
|  | return current; | 
|  |  | 
|  | return find_early_kill_thread(tsk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Collect processes when the error hit an anonymous page. | 
|  | */ | 
|  | static void collect_procs_anon(const struct folio *folio, | 
|  | const struct page *page, struct list_head *to_kill, | 
|  | int force_early) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | struct anon_vma *av; | 
|  | pgoff_t pgoff; | 
|  |  | 
|  | av = folio_lock_anon_vma_read(folio, NULL); | 
|  | if (av == NULL)	/* Not actually mapped anymore */ | 
|  | return; | 
|  |  | 
|  | pgoff = page_pgoff(folio, page); | 
|  | rcu_read_lock(); | 
|  | for_each_process(tsk) { | 
|  | struct vm_area_struct *vma; | 
|  | struct anon_vma_chain *vmac; | 
|  | struct task_struct *t = task_early_kill(tsk, force_early); | 
|  | unsigned long addr; | 
|  |  | 
|  | if (!t) | 
|  | continue; | 
|  | anon_vma_interval_tree_foreach(vmac, &av->rb_root, | 
|  | pgoff, pgoff) { | 
|  | vma = vmac->vma; | 
|  | if (vma->vm_mm != t->mm) | 
|  | continue; | 
|  | addr = page_mapped_in_vma(page, vma); | 
|  | add_to_kill_anon_file(t, page, vma, to_kill, addr); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | anon_vma_unlock_read(av); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Collect processes when the error hit a file mapped page. | 
|  | */ | 
|  | static void collect_procs_file(const struct folio *folio, | 
|  | const struct page *page, struct list_head *to_kill, | 
|  | int force_early) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct task_struct *tsk; | 
|  | struct address_space *mapping = folio->mapping; | 
|  | pgoff_t pgoff; | 
|  |  | 
|  | i_mmap_lock_read(mapping); | 
|  | rcu_read_lock(); | 
|  | pgoff = page_pgoff(folio, page); | 
|  | for_each_process(tsk) { | 
|  | struct task_struct *t = task_early_kill(tsk, force_early); | 
|  | unsigned long addr; | 
|  |  | 
|  | if (!t) | 
|  | continue; | 
|  | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, | 
|  | pgoff) { | 
|  | /* | 
|  | * Send early kill signal to tasks where a vma covers | 
|  | * the page but the corrupted page is not necessarily | 
|  | * mapped in its pte. | 
|  | * Assume applications who requested early kill want | 
|  | * to be informed of all such data corruptions. | 
|  | */ | 
|  | if (vma->vm_mm != t->mm) | 
|  | continue; | 
|  | addr = page_address_in_vma(folio, page, vma); | 
|  | add_to_kill_anon_file(t, page, vma, to_kill, addr); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | i_mmap_unlock_read(mapping); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FS_DAX | 
|  | static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p, | 
|  | struct vm_area_struct *vma, | 
|  | struct list_head *to_kill, pgoff_t pgoff) | 
|  | { | 
|  | unsigned long addr = vma_address(vma, pgoff, 1); | 
|  | __add_to_kill(tsk, p, vma, to_kill, addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Collect processes when the error hit a fsdax page. | 
|  | */ | 
|  | static void collect_procs_fsdax(const struct page *page, | 
|  | struct address_space *mapping, pgoff_t pgoff, | 
|  | struct list_head *to_kill, bool pre_remove) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct task_struct *tsk; | 
|  |  | 
|  | i_mmap_lock_read(mapping); | 
|  | rcu_read_lock(); | 
|  | for_each_process(tsk) { | 
|  | struct task_struct *t = tsk; | 
|  |  | 
|  | /* | 
|  | * Search for all tasks while MF_MEM_PRE_REMOVE is set, because | 
|  | * the current may not be the one accessing the fsdax page. | 
|  | * Otherwise, search for the current task. | 
|  | */ | 
|  | if (!pre_remove) | 
|  | t = task_early_kill(tsk, true); | 
|  | if (!t) | 
|  | continue; | 
|  | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { | 
|  | if (vma->vm_mm == t->mm) | 
|  | add_to_kill_fsdax(t, page, vma, to_kill, pgoff); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | i_mmap_unlock_read(mapping); | 
|  | } | 
|  | #endif /* CONFIG_FS_DAX */ | 
|  |  | 
|  | /* | 
|  | * Collect the processes who have the corrupted page mapped to kill. | 
|  | */ | 
|  | static void collect_procs(const struct folio *folio, const struct page *page, | 
|  | struct list_head *tokill, int force_early) | 
|  | { | 
|  | if (!folio->mapping) | 
|  | return; | 
|  | if (unlikely(folio_test_ksm(folio))) | 
|  | collect_procs_ksm(folio, page, tokill, force_early); | 
|  | else if (folio_test_anon(folio)) | 
|  | collect_procs_anon(folio, page, tokill, force_early); | 
|  | else | 
|  | collect_procs_file(folio, page, tokill, force_early); | 
|  | } | 
|  |  | 
|  | struct hwpoison_walk { | 
|  | struct to_kill tk; | 
|  | unsigned long pfn; | 
|  | int flags; | 
|  | }; | 
|  |  | 
|  | static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) | 
|  | { | 
|  | tk->addr = addr; | 
|  | tk->size_shift = shift; | 
|  | } | 
|  |  | 
|  | static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, | 
|  | unsigned long poisoned_pfn, struct to_kill *tk) | 
|  | { | 
|  | unsigned long pfn = 0; | 
|  |  | 
|  | if (pte_present(pte)) { | 
|  | pfn = pte_pfn(pte); | 
|  | } else { | 
|  | swp_entry_t swp = pte_to_swp_entry(pte); | 
|  |  | 
|  | if (is_hwpoison_entry(swp)) | 
|  | pfn = swp_offset_pfn(swp); | 
|  | } | 
|  |  | 
|  | if (!pfn || pfn != poisoned_pfn) | 
|  | return 0; | 
|  |  | 
|  | set_to_kill(tk, addr, shift); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, | 
|  | struct hwpoison_walk *hwp) | 
|  | { | 
|  | pmd_t pmd = *pmdp; | 
|  | unsigned long pfn; | 
|  | unsigned long hwpoison_vaddr; | 
|  |  | 
|  | if (!pmd_present(pmd)) | 
|  | return 0; | 
|  | pfn = pmd_pfn(pmd); | 
|  | if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { | 
|  | hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); | 
|  | set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, | 
|  | struct hwpoison_walk *hwp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, | 
|  | unsigned long end, struct mm_walk *walk) | 
|  | { | 
|  | struct hwpoison_walk *hwp = walk->private; | 
|  | int ret = 0; | 
|  | pte_t *ptep, *mapped_pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | ptl = pmd_trans_huge_lock(pmdp, walk->vma); | 
|  | if (ptl) { | 
|  | ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); | 
|  | spin_unlock(ptl); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, | 
|  | addr, &ptl); | 
|  | if (!ptep) | 
|  | goto out; | 
|  |  | 
|  | for (; addr != end; ptep++, addr += PAGE_SIZE) { | 
|  | ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, | 
|  | hwp->pfn, &hwp->tk); | 
|  | if (ret == 1) | 
|  | break; | 
|  | } | 
|  | pte_unmap_unlock(mapped_pte, ptl); | 
|  | out: | 
|  | cond_resched(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct hwpoison_walk *hwp = walk->private; | 
|  | pte_t pte = huge_ptep_get(walk->mm, addr, ptep); | 
|  | struct hstate *h = hstate_vma(walk->vma); | 
|  |  | 
|  | return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), | 
|  | hwp->pfn, &hwp->tk); | 
|  | } | 
|  | #else | 
|  | #define hwpoison_hugetlb_range	NULL | 
|  | #endif | 
|  |  | 
|  | static const struct mm_walk_ops hwpoison_walk_ops = { | 
|  | .pmd_entry = hwpoison_pte_range, | 
|  | .hugetlb_entry = hwpoison_hugetlb_range, | 
|  | .walk_lock = PGWALK_RDLOCK, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Sends SIGBUS to the current process with error info. | 
|  | * | 
|  | * This function is intended to handle "Action Required" MCEs on already | 
|  | * hardware poisoned pages. They could happen, for example, when | 
|  | * memory_failure() failed to unmap the error page at the first call, or | 
|  | * when multiple local machine checks happened on different CPUs. | 
|  | * | 
|  | * MCE handler currently has no easy access to the error virtual address, | 
|  | * so this function walks page table to find it. The returned virtual address | 
|  | * is proper in most cases, but it could be wrong when the application | 
|  | * process has multiple entries mapping the error page. | 
|  | */ | 
|  | static int kill_accessing_process(struct task_struct *p, unsigned long pfn, | 
|  | int flags) | 
|  | { | 
|  | int ret; | 
|  | struct hwpoison_walk priv = { | 
|  | .pfn = pfn, | 
|  | }; | 
|  | priv.tk.tsk = p; | 
|  |  | 
|  | if (!p->mm) | 
|  | return -EFAULT; | 
|  |  | 
|  | mmap_read_lock(p->mm); | 
|  | ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops, | 
|  | (void *)&priv); | 
|  | if (ret == 1 && priv.tk.addr) | 
|  | kill_proc(&priv.tk, pfn, flags); | 
|  | else | 
|  | ret = 0; | 
|  | mmap_read_unlock(p->mm); | 
|  | return ret > 0 ? -EHWPOISON : -EFAULT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed. | 
|  | * But it could not do more to isolate the page from being accessed again, | 
|  | * nor does it kill the process. This is extremely rare and one of the | 
|  | * potential causes is that the page state has been changed due to | 
|  | * underlying race condition. This is the most severe outcomes. | 
|  | * | 
|  | * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed. | 
|  | * It should have killed the process, but it can't isolate the page, | 
|  | * due to conditions such as extra pin, unmap failure, etc. Accessing | 
|  | * the page again may trigger another MCE and the process will be killed | 
|  | * by the m-f() handler immediately. | 
|  | * | 
|  | * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed. | 
|  | * The page is unmapped, and is removed from the LRU or file mapping. | 
|  | * An attempt to access the page again will trigger page fault and the | 
|  | * PF handler will kill the process. | 
|  | * | 
|  | * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed. | 
|  | * The page has been completely isolated, that is, unmapped, taken out of | 
|  | * the buddy system, or hole-punnched out of the file mapping. | 
|  | */ | 
|  | static const char *action_name[] = { | 
|  | [MF_IGNORED] = "Ignored", | 
|  | [MF_FAILED] = "Failed", | 
|  | [MF_DELAYED] = "Delayed", | 
|  | [MF_RECOVERED] = "Recovered", | 
|  | }; | 
|  |  | 
|  | static const char * const action_page_types[] = { | 
|  | [MF_MSG_KERNEL]			= "reserved kernel page", | 
|  | [MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page", | 
|  | [MF_MSG_HUGE]			= "huge page", | 
|  | [MF_MSG_FREE_HUGE]		= "free huge page", | 
|  | [MF_MSG_GET_HWPOISON]		= "get hwpoison page", | 
|  | [MF_MSG_UNMAP_FAILED]		= "unmapping failed page", | 
|  | [MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page", | 
|  | [MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page", | 
|  | [MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page", | 
|  | [MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page", | 
|  | [MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page", | 
|  | [MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page", | 
|  | [MF_MSG_DIRTY_LRU]		= "dirty LRU page", | 
|  | [MF_MSG_CLEAN_LRU]		= "clean LRU page", | 
|  | [MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page", | 
|  | [MF_MSG_BUDDY]			= "free buddy page", | 
|  | [MF_MSG_DAX]			= "dax page", | 
|  | [MF_MSG_UNSPLIT_THP]		= "unsplit thp", | 
|  | [MF_MSG_ALREADY_POISONED]	= "already poisoned", | 
|  | [MF_MSG_UNKNOWN]		= "unknown page", | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * XXX: It is possible that a page is isolated from LRU cache, | 
|  | * and then kept in swap cache or failed to remove from page cache. | 
|  | * The page count will stop it from being freed by unpoison. | 
|  | * Stress tests should be aware of this memory leak problem. | 
|  | */ | 
|  | static int delete_from_lru_cache(struct folio *folio) | 
|  | { | 
|  | if (folio_isolate_lru(folio)) { | 
|  | /* | 
|  | * Clear sensible page flags, so that the buddy system won't | 
|  | * complain when the folio is unpoison-and-freed. | 
|  | */ | 
|  | folio_clear_active(folio); | 
|  | folio_clear_unevictable(folio); | 
|  |  | 
|  | /* | 
|  | * Poisoned page might never drop its ref count to 0 so we have | 
|  | * to uncharge it manually from its memcg. | 
|  | */ | 
|  | mem_cgroup_uncharge(folio); | 
|  |  | 
|  | /* | 
|  | * drop the refcount elevated by folio_isolate_lru() | 
|  | */ | 
|  | folio_put(folio); | 
|  | return 0; | 
|  | } | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static int truncate_error_folio(struct folio *folio, unsigned long pfn, | 
|  | struct address_space *mapping) | 
|  | { | 
|  | int ret = MF_FAILED; | 
|  |  | 
|  | if (mapping->a_ops->error_remove_folio) { | 
|  | int err = mapping->a_ops->error_remove_folio(mapping, folio); | 
|  |  | 
|  | if (err != 0) | 
|  | pr_info("%#lx: Failed to punch page: %d\n", pfn, err); | 
|  | else if (!filemap_release_folio(folio, GFP_NOIO)) | 
|  | pr_info("%#lx: failed to release buffers\n", pfn); | 
|  | else | 
|  | ret = MF_RECOVERED; | 
|  | } else { | 
|  | /* | 
|  | * If the file system doesn't support it just invalidate | 
|  | * This fails on dirty or anything with private pages | 
|  | */ | 
|  | if (mapping_evict_folio(mapping, folio)) | 
|  | ret = MF_RECOVERED; | 
|  | else | 
|  | pr_info("%#lx: Failed to invalidate\n",	pfn); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct page_state { | 
|  | unsigned long mask; | 
|  | unsigned long res; | 
|  | enum mf_action_page_type type; | 
|  |  | 
|  | /* Callback ->action() has to unlock the relevant page inside it. */ | 
|  | int (*action)(struct page_state *ps, struct page *p); | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Return true if page is still referenced by others, otherwise return | 
|  | * false. | 
|  | * | 
|  | * The extra_pins is true when one extra refcount is expected. | 
|  | */ | 
|  | static bool has_extra_refcount(struct page_state *ps, struct page *p, | 
|  | bool extra_pins) | 
|  | { | 
|  | int count = page_count(p) - 1; | 
|  |  | 
|  | if (extra_pins) | 
|  | count -= folio_nr_pages(page_folio(p)); | 
|  |  | 
|  | if (count > 0) { | 
|  | pr_err("%#lx: %s still referenced by %d users\n", | 
|  | page_to_pfn(p), action_page_types[ps->type], count); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Error hit kernel page. | 
|  | * Do nothing, try to be lucky and not touch this instead. For a few cases we | 
|  | * could be more sophisticated. | 
|  | */ | 
|  | static int me_kernel(struct page_state *ps, struct page *p) | 
|  | { | 
|  | unlock_page(p); | 
|  | return MF_IGNORED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Page in unknown state. Do nothing. | 
|  | * This is a catch-all in case we fail to make sense of the page state. | 
|  | */ | 
|  | static int me_unknown(struct page_state *ps, struct page *p) | 
|  | { | 
|  | pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); | 
|  | unlock_page(p); | 
|  | return MF_IGNORED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean (or cleaned) page cache page. | 
|  | */ | 
|  | static int me_pagecache_clean(struct page_state *ps, struct page *p) | 
|  | { | 
|  | struct folio *folio = page_folio(p); | 
|  | int ret; | 
|  | struct address_space *mapping; | 
|  | bool extra_pins; | 
|  |  | 
|  | delete_from_lru_cache(folio); | 
|  |  | 
|  | /* | 
|  | * For anonymous folios the only reference left | 
|  | * should be the one m_f() holds. | 
|  | */ | 
|  | if (folio_test_anon(folio)) { | 
|  | ret = MF_RECOVERED; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now truncate the page in the page cache. This is really | 
|  | * more like a "temporary hole punch" | 
|  | * Don't do this for block devices when someone else | 
|  | * has a reference, because it could be file system metadata | 
|  | * and that's not safe to truncate. | 
|  | */ | 
|  | mapping = folio_mapping(folio); | 
|  | if (!mapping) { | 
|  | /* Folio has been torn down in the meantime */ | 
|  | ret = MF_FAILED; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The shmem page is kept in page cache instead of truncating | 
|  | * so is expected to have an extra refcount after error-handling. | 
|  | */ | 
|  | extra_pins = shmem_mapping(mapping); | 
|  |  | 
|  | /* | 
|  | * Truncation is a bit tricky. Enable it per file system for now. | 
|  | * | 
|  | * Open: to take i_rwsem or not for this? Right now we don't. | 
|  | */ | 
|  | ret = truncate_error_folio(folio, page_to_pfn(p), mapping); | 
|  | if (has_extra_refcount(ps, p, extra_pins)) | 
|  | ret = MF_FAILED; | 
|  |  | 
|  | out: | 
|  | folio_unlock(folio); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dirty pagecache page | 
|  | * Issues: when the error hit a hole page the error is not properly | 
|  | * propagated. | 
|  | */ | 
|  | static int me_pagecache_dirty(struct page_state *ps, struct page *p) | 
|  | { | 
|  | struct folio *folio = page_folio(p); | 
|  | struct address_space *mapping = folio_mapping(folio); | 
|  |  | 
|  | /* TBD: print more information about the file. */ | 
|  | if (mapping) { | 
|  | /* | 
|  | * IO error will be reported by write(), fsync(), etc. | 
|  | * who check the mapping. | 
|  | * This way the application knows that something went | 
|  | * wrong with its dirty file data. | 
|  | */ | 
|  | mapping_set_error(mapping, -EIO); | 
|  | } | 
|  |  | 
|  | return me_pagecache_clean(ps, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean and dirty swap cache. | 
|  | * | 
|  | * Dirty swap cache page is tricky to handle. The page could live both in page | 
|  | * table and swap cache(ie. page is freshly swapped in). So it could be | 
|  | * referenced concurrently by 2 types of PTEs: | 
|  | * normal PTEs and swap PTEs. We try to handle them consistently by calling | 
|  | * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, | 
|  | * and then | 
|  | *      - clear dirty bit to prevent IO | 
|  | *      - remove from LRU | 
|  | *      - but keep in the swap cache, so that when we return to it on | 
|  | *        a later page fault, we know the application is accessing | 
|  | *        corrupted data and shall be killed (we installed simple | 
|  | *        interception code in do_swap_page to catch it). | 
|  | * | 
|  | * Clean swap cache pages can be directly isolated. A later page fault will | 
|  | * bring in the known good data from disk. | 
|  | */ | 
|  | static int me_swapcache_dirty(struct page_state *ps, struct page *p) | 
|  | { | 
|  | struct folio *folio = page_folio(p); | 
|  | int ret; | 
|  | bool extra_pins = false; | 
|  |  | 
|  | folio_clear_dirty(folio); | 
|  | /* Trigger EIO in shmem: */ | 
|  | folio_clear_uptodate(folio); | 
|  |  | 
|  | ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED; | 
|  | folio_unlock(folio); | 
|  |  | 
|  | if (ret == MF_DELAYED) | 
|  | extra_pins = true; | 
|  |  | 
|  | if (has_extra_refcount(ps, p, extra_pins)) | 
|  | ret = MF_FAILED; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int me_swapcache_clean(struct page_state *ps, struct page *p) | 
|  | { | 
|  | struct folio *folio = page_folio(p); | 
|  | int ret; | 
|  |  | 
|  | delete_from_swap_cache(folio); | 
|  |  | 
|  | ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED; | 
|  | folio_unlock(folio); | 
|  |  | 
|  | if (has_extra_refcount(ps, p, false)) | 
|  | ret = MF_FAILED; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Huge pages. Needs work. | 
|  | * Issues: | 
|  | * - Error on hugepage is contained in hugepage unit (not in raw page unit.) | 
|  | *   To narrow down kill region to one page, we need to break up pmd. | 
|  | */ | 
|  | static int me_huge_page(struct page_state *ps, struct page *p) | 
|  | { | 
|  | struct folio *folio = page_folio(p); | 
|  | int res; | 
|  | struct address_space *mapping; | 
|  | bool extra_pins = false; | 
|  |  | 
|  | mapping = folio_mapping(folio); | 
|  | if (mapping) { | 
|  | res = truncate_error_folio(folio, page_to_pfn(p), mapping); | 
|  | /* The page is kept in page cache. */ | 
|  | extra_pins = true; | 
|  | folio_unlock(folio); | 
|  | } else { | 
|  | folio_unlock(folio); | 
|  | /* | 
|  | * migration entry prevents later access on error hugepage, | 
|  | * so we can free and dissolve it into buddy to save healthy | 
|  | * subpages. | 
|  | */ | 
|  | folio_put(folio); | 
|  | if (__page_handle_poison(p) > 0) { | 
|  | page_ref_inc(p); | 
|  | res = MF_RECOVERED; | 
|  | } else { | 
|  | res = MF_FAILED; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (has_extra_refcount(ps, p, extra_pins)) | 
|  | res = MF_FAILED; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Various page states we can handle. | 
|  | * | 
|  | * A page state is defined by its current page->flags bits. | 
|  | * The table matches them in order and calls the right handler. | 
|  | * | 
|  | * This is quite tricky because we can access page at any time | 
|  | * in its live cycle, so all accesses have to be extremely careful. | 
|  | * | 
|  | * This is not complete. More states could be added. | 
|  | * For any missing state don't attempt recovery. | 
|  | */ | 
|  |  | 
|  | #define dirty		(1UL << PG_dirty) | 
|  | #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked)) | 
|  | #define unevict		(1UL << PG_unevictable) | 
|  | #define mlock		(1UL << PG_mlocked) | 
|  | #define lru		(1UL << PG_lru) | 
|  | #define head		(1UL << PG_head) | 
|  | #define reserved	(1UL << PG_reserved) | 
|  |  | 
|  | static struct page_state error_states[] = { | 
|  | { reserved,	reserved,	MF_MSG_KERNEL,	me_kernel }, | 
|  | /* | 
|  | * free pages are specially detected outside this table: | 
|  | * PG_buddy pages only make a small fraction of all free pages. | 
|  | */ | 
|  |  | 
|  | { head,		head,		MF_MSG_HUGE,		me_huge_page }, | 
|  |  | 
|  | { sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty }, | 
|  | { sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean }, | 
|  |  | 
|  | { mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty }, | 
|  | { mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean }, | 
|  |  | 
|  | { unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty }, | 
|  | { unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean }, | 
|  |  | 
|  | { lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty }, | 
|  | { lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean }, | 
|  |  | 
|  | /* | 
|  | * Catchall entry: must be at end. | 
|  | */ | 
|  | { 0,		0,		MF_MSG_UNKNOWN,	me_unknown }, | 
|  | }; | 
|  |  | 
|  | #undef dirty | 
|  | #undef sc | 
|  | #undef unevict | 
|  | #undef mlock | 
|  | #undef lru | 
|  | #undef head | 
|  | #undef reserved | 
|  |  | 
|  | static void update_per_node_mf_stats(unsigned long pfn, | 
|  | enum mf_result result) | 
|  | { | 
|  | int nid = MAX_NUMNODES; | 
|  | struct memory_failure_stats *mf_stats = NULL; | 
|  |  | 
|  | nid = pfn_to_nid(pfn); | 
|  | if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { | 
|  | WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | mf_stats = &NODE_DATA(nid)->mf_stats; | 
|  | switch (result) { | 
|  | case MF_IGNORED: | 
|  | ++mf_stats->ignored; | 
|  | break; | 
|  | case MF_FAILED: | 
|  | ++mf_stats->failed; | 
|  | break; | 
|  | case MF_DELAYED: | 
|  | ++mf_stats->delayed; | 
|  | break; | 
|  | case MF_RECOVERED: | 
|  | ++mf_stats->recovered; | 
|  | break; | 
|  | default: | 
|  | WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); | 
|  | break; | 
|  | } | 
|  | ++mf_stats->total; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * "Dirty/Clean" indication is not 100% accurate due to the possibility of | 
|  | * setting PG_dirty outside page lock. See also comment above set_page_dirty(). | 
|  | */ | 
|  | static int action_result(unsigned long pfn, enum mf_action_page_type type, | 
|  | enum mf_result result) | 
|  | { | 
|  | trace_memory_failure_event(pfn, type, result); | 
|  |  | 
|  | num_poisoned_pages_inc(pfn); | 
|  |  | 
|  | update_per_node_mf_stats(pfn, result); | 
|  |  | 
|  | pr_err("%#lx: recovery action for %s: %s\n", | 
|  | pfn, action_page_types[type], action_name[result]); | 
|  |  | 
|  | return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; | 
|  | } | 
|  |  | 
|  | static int page_action(struct page_state *ps, struct page *p, | 
|  | unsigned long pfn) | 
|  | { | 
|  | int result; | 
|  |  | 
|  | /* page p should be unlocked after returning from ps->action().  */ | 
|  | result = ps->action(ps, p); | 
|  |  | 
|  | /* Could do more checks here if page looks ok */ | 
|  | /* | 
|  | * Could adjust zone counters here to correct for the missing page. | 
|  | */ | 
|  |  | 
|  | return action_result(pfn, ps->type, result); | 
|  | } | 
|  |  | 
|  | static inline bool PageHWPoisonTakenOff(struct page *page) | 
|  | { | 
|  | return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; | 
|  | } | 
|  |  | 
|  | void SetPageHWPoisonTakenOff(struct page *page) | 
|  | { | 
|  | set_page_private(page, MAGIC_HWPOISON); | 
|  | } | 
|  |  | 
|  | void ClearPageHWPoisonTakenOff(struct page *page) | 
|  | { | 
|  | if (PageHWPoison(page)) | 
|  | set_page_private(page, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if a page type of a given page is supported by hwpoison | 
|  | * mechanism (while handling could fail), otherwise false.  This function | 
|  | * does not return true for hugetlb or device memory pages, so it's assumed | 
|  | * to be called only in the context where we never have such pages. | 
|  | */ | 
|  | static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) | 
|  | { | 
|  | if (PageSlab(page)) | 
|  | return false; | 
|  |  | 
|  | /* Soft offline could migrate non-LRU movable pages */ | 
|  | if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) | 
|  | return true; | 
|  |  | 
|  | return PageLRU(page) || is_free_buddy_page(page); | 
|  | } | 
|  |  | 
|  | static int __get_hwpoison_page(struct page *page, unsigned long flags) | 
|  | { | 
|  | struct folio *folio = page_folio(page); | 
|  | int ret = 0; | 
|  | bool hugetlb = false; | 
|  |  | 
|  | ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); | 
|  | if (hugetlb) { | 
|  | /* Make sure hugetlb demotion did not happen from under us. */ | 
|  | if (folio == page_folio(page)) | 
|  | return ret; | 
|  | if (ret > 0) { | 
|  | folio_put(folio); | 
|  | folio = page_folio(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This check prevents from calling folio_try_get() for any | 
|  | * unsupported type of folio in order to reduce the risk of unexpected | 
|  | * races caused by taking a folio refcount. | 
|  | */ | 
|  | if (!HWPoisonHandlable(&folio->page, flags)) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (folio_try_get(folio)) { | 
|  | if (folio == page_folio(page)) | 
|  | return 1; | 
|  |  | 
|  | pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); | 
|  | folio_put(folio); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define GET_PAGE_MAX_RETRY_NUM 3 | 
|  |  | 
|  | static int get_any_page(struct page *p, unsigned long flags) | 
|  | { | 
|  | int ret = 0, pass = 0; | 
|  | bool count_increased = false; | 
|  |  | 
|  | if (flags & MF_COUNT_INCREASED) | 
|  | count_increased = true; | 
|  |  | 
|  | try_again: | 
|  | if (!count_increased) { | 
|  | ret = __get_hwpoison_page(p, flags); | 
|  | if (!ret) { | 
|  | if (page_count(p)) { | 
|  | /* We raced with an allocation, retry. */ | 
|  | if (pass++ < GET_PAGE_MAX_RETRY_NUM) | 
|  | goto try_again; | 
|  | ret = -EBUSY; | 
|  | } else if (!PageHuge(p) && !is_free_buddy_page(p)) { | 
|  | /* We raced with put_page, retry. */ | 
|  | if (pass++ < GET_PAGE_MAX_RETRY_NUM) | 
|  | goto try_again; | 
|  | ret = -EIO; | 
|  | } | 
|  | goto out; | 
|  | } else if (ret == -EBUSY) { | 
|  | /* | 
|  | * We raced with (possibly temporary) unhandlable | 
|  | * page, retry. | 
|  | */ | 
|  | if (pass++ < 3) { | 
|  | shake_page(p); | 
|  | goto try_again; | 
|  | } | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PageHuge(p) || HWPoisonHandlable(p, flags)) { | 
|  | ret = 1; | 
|  | } else { | 
|  | /* | 
|  | * A page we cannot handle. Check whether we can turn | 
|  | * it into something we can handle. | 
|  | */ | 
|  | if (pass++ < GET_PAGE_MAX_RETRY_NUM) { | 
|  | put_page(p); | 
|  | shake_page(p); | 
|  | count_increased = false; | 
|  | goto try_again; | 
|  | } | 
|  | put_page(p); | 
|  | ret = -EIO; | 
|  | } | 
|  | out: | 
|  | if (ret == -EIO) | 
|  | pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __get_unpoison_page(struct page *page) | 
|  | { | 
|  | struct folio *folio = page_folio(page); | 
|  | int ret = 0; | 
|  | bool hugetlb = false; | 
|  |  | 
|  | ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); | 
|  | if (hugetlb) { | 
|  | /* Make sure hugetlb demotion did not happen from under us. */ | 
|  | if (folio == page_folio(page)) | 
|  | return ret; | 
|  | if (ret > 0) | 
|  | folio_put(folio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, | 
|  | * but also isolated from buddy freelist, so need to identify the | 
|  | * state and have to cancel both operations to unpoison. | 
|  | */ | 
|  | if (PageHWPoisonTakenOff(page)) | 
|  | return -EHWPOISON; | 
|  |  | 
|  | return get_page_unless_zero(page) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_hwpoison_page() - Get refcount for memory error handling | 
|  | * @p:		Raw error page (hit by memory error) | 
|  | * @flags:	Flags controlling behavior of error handling | 
|  | * | 
|  | * get_hwpoison_page() takes a page refcount of an error page to handle memory | 
|  | * error on it, after checking that the error page is in a well-defined state | 
|  | * (defined as a page-type we can successfully handle the memory error on it, | 
|  | * such as LRU page and hugetlb page). | 
|  | * | 
|  | * Memory error handling could be triggered at any time on any type of page, | 
|  | * so it's prone to race with typical memory management lifecycle (like | 
|  | * allocation and free).  So to avoid such races, get_hwpoison_page() takes | 
|  | * extra care for the error page's state (as done in __get_hwpoison_page()), | 
|  | * and has some retry logic in get_any_page(). | 
|  | * | 
|  | * When called from unpoison_memory(), the caller should already ensure that | 
|  | * the given page has PG_hwpoison. So it's never reused for other page | 
|  | * allocations, and __get_unpoison_page() never races with them. | 
|  | * | 
|  | * Return: 0 on failure or free buddy (hugetlb) page, | 
|  | *         1 on success for in-use pages in a well-defined state, | 
|  | *         -EIO for pages on which we can not handle memory errors, | 
|  | *         -EBUSY when get_hwpoison_page() has raced with page lifecycle | 
|  | *         operations like allocation and free, | 
|  | *         -EHWPOISON when the page is hwpoisoned and taken off from buddy. | 
|  | */ | 
|  | static int get_hwpoison_page(struct page *p, unsigned long flags) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | zone_pcp_disable(page_zone(p)); | 
|  | if (flags & MF_UNPOISON) | 
|  | ret = __get_unpoison_page(p); | 
|  | else | 
|  | ret = get_any_page(p, flags); | 
|  | zone_pcp_enable(page_zone(p)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu) | 
|  | { | 
|  | if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { | 
|  | struct address_space *mapping; | 
|  |  | 
|  | /* | 
|  | * For hugetlb folios in shared mappings, try_to_unmap | 
|  | * could potentially call huge_pmd_unshare.  Because of | 
|  | * this, take semaphore in write mode here and set | 
|  | * TTU_RMAP_LOCKED to indicate we have taken the lock | 
|  | * at this higher level. | 
|  | */ | 
|  | mapping = hugetlb_folio_mapping_lock_write(folio); | 
|  | if (!mapping) { | 
|  | pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n", | 
|  | folio_pfn(folio)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); | 
|  | i_mmap_unlock_write(mapping); | 
|  | } else { | 
|  | try_to_unmap(folio, ttu); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do all that is necessary to remove user space mappings. Unmap | 
|  | * the pages and send SIGBUS to the processes if the data was dirty. | 
|  | */ | 
|  | static bool hwpoison_user_mappings(struct folio *folio, struct page *p, | 
|  | unsigned long pfn, int flags) | 
|  | { | 
|  | enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; | 
|  | struct address_space *mapping; | 
|  | LIST_HEAD(tokill); | 
|  | bool unmap_success; | 
|  | int forcekill; | 
|  | bool mlocked = folio_test_mlocked(folio); | 
|  |  | 
|  | /* | 
|  | * Here we are interested only in user-mapped pages, so skip any | 
|  | * other types of pages. | 
|  | */ | 
|  | if (folio_test_reserved(folio) || folio_test_slab(folio) || | 
|  | folio_test_pgtable(folio) || folio_test_offline(folio)) | 
|  | return true; | 
|  | if (!(folio_test_lru(folio) || folio_test_hugetlb(folio))) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * This check implies we don't kill processes if their pages | 
|  | * are in the swap cache early. Those are always late kills. | 
|  | */ | 
|  | if (!folio_mapped(folio)) | 
|  | return true; | 
|  |  | 
|  | if (folio_test_swapcache(folio)) { | 
|  | pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); | 
|  | ttu &= ~TTU_HWPOISON; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Propagate the dirty bit from PTEs to struct page first, because we | 
|  | * need this to decide if we should kill or just drop the page. | 
|  | * XXX: the dirty test could be racy: set_page_dirty() may not always | 
|  | * be called inside page lock (it's recommended but not enforced). | 
|  | */ | 
|  | mapping = folio_mapping(folio); | 
|  | if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping && | 
|  | mapping_can_writeback(mapping)) { | 
|  | if (folio_mkclean(folio)) { | 
|  | folio_set_dirty(folio); | 
|  | } else { | 
|  | ttu &= ~TTU_HWPOISON; | 
|  | pr_info("%#lx: corrupted page was clean: dropped without side effects\n", | 
|  | pfn); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First collect all the processes that have the page | 
|  | * mapped in dirty form.  This has to be done before try_to_unmap, | 
|  | * because ttu takes the rmap data structures down. | 
|  | */ | 
|  | collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); | 
|  |  | 
|  | unmap_poisoned_folio(folio, ttu); | 
|  |  | 
|  | unmap_success = !folio_mapped(folio); | 
|  | if (!unmap_success) | 
|  | pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n", | 
|  | pfn, folio_mapcount(folio)); | 
|  |  | 
|  | /* | 
|  | * try_to_unmap() might put mlocked page in lru cache, so call | 
|  | * shake_page() again to ensure that it's flushed. | 
|  | */ | 
|  | if (mlocked) | 
|  | shake_folio(folio); | 
|  |  | 
|  | /* | 
|  | * Now that the dirty bit has been propagated to the | 
|  | * struct page and all unmaps done we can decide if | 
|  | * killing is needed or not.  Only kill when the page | 
|  | * was dirty or the process is not restartable, | 
|  | * otherwise the tokill list is merely | 
|  | * freed.  When there was a problem unmapping earlier | 
|  | * use a more force-full uncatchable kill to prevent | 
|  | * any accesses to the poisoned memory. | 
|  | */ | 
|  | forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) || | 
|  | !unmap_success; | 
|  | kill_procs(&tokill, forcekill, pfn, flags); | 
|  |  | 
|  | return unmap_success; | 
|  | } | 
|  |  | 
|  | static int identify_page_state(unsigned long pfn, struct page *p, | 
|  | unsigned long page_flags) | 
|  | { | 
|  | struct page_state *ps; | 
|  |  | 
|  | /* | 
|  | * The first check uses the current page flags which may not have any | 
|  | * relevant information. The second check with the saved page flags is | 
|  | * carried out only if the first check can't determine the page status. | 
|  | */ | 
|  | for (ps = error_states;; ps++) | 
|  | if ((p->flags & ps->mask) == ps->res) | 
|  | break; | 
|  |  | 
|  | page_flags |= (p->flags & (1UL << PG_dirty)); | 
|  |  | 
|  | if (!ps->mask) | 
|  | for (ps = error_states;; ps++) | 
|  | if ((page_flags & ps->mask) == ps->res) | 
|  | break; | 
|  | return page_action(ps, p, pfn); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When 'release' is 'false', it means that if thp split has failed, | 
|  | * there is still more to do, hence the page refcount we took earlier | 
|  | * is still needed. | 
|  | */ | 
|  | static int try_to_split_thp_page(struct page *page, bool release) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | lock_page(page); | 
|  | ret = split_huge_page(page); | 
|  | unlock_page(page); | 
|  |  | 
|  | if (ret && release) | 
|  | put_page(page); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, | 
|  | struct address_space *mapping, pgoff_t index, int flags) | 
|  | { | 
|  | struct to_kill *tk; | 
|  | unsigned long size = 0; | 
|  |  | 
|  | list_for_each_entry(tk, to_kill, nd) | 
|  | if (tk->size_shift) | 
|  | size = max(size, 1UL << tk->size_shift); | 
|  |  | 
|  | if (size) { | 
|  | /* | 
|  | * Unmap the largest mapping to avoid breaking up device-dax | 
|  | * mappings which are constant size. The actual size of the | 
|  | * mapping being torn down is communicated in siginfo, see | 
|  | * kill_proc() | 
|  | */ | 
|  | loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1); | 
|  |  | 
|  | unmap_mapping_range(mapping, start, size, 0); | 
|  | } | 
|  |  | 
|  | kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only dev_pagemap pages get here, such as fsdax when the filesystem | 
|  | * either do not claim or fails to claim a hwpoison event, or devdax. | 
|  | * The fsdax pages are initialized per base page, and the devdax pages | 
|  | * could be initialized either as base pages, or as compound pages with | 
|  | * vmemmap optimization enabled. Devdax is simplistic in its dealing with | 
|  | * hwpoison, such that, if a subpage of a compound page is poisoned, | 
|  | * simply mark the compound head page is by far sufficient. | 
|  | */ | 
|  | static int mf_generic_kill_procs(unsigned long long pfn, int flags, | 
|  | struct dev_pagemap *pgmap) | 
|  | { | 
|  | struct folio *folio = pfn_folio(pfn); | 
|  | LIST_HEAD(to_kill); | 
|  | dax_entry_t cookie; | 
|  | int rc = 0; | 
|  |  | 
|  | /* | 
|  | * Prevent the inode from being freed while we are interrogating | 
|  | * the address_space, typically this would be handled by | 
|  | * lock_page(), but dax pages do not use the page lock. This | 
|  | * also prevents changes to the mapping of this pfn until | 
|  | * poison signaling is complete. | 
|  | */ | 
|  | cookie = dax_lock_folio(folio); | 
|  | if (!cookie) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (hwpoison_filter(&folio->page)) { | 
|  | rc = -EOPNOTSUPP; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | switch (pgmap->type) { | 
|  | case MEMORY_DEVICE_PRIVATE: | 
|  | case MEMORY_DEVICE_COHERENT: | 
|  | /* | 
|  | * TODO: Handle device pages which may need coordination | 
|  | * with device-side memory. | 
|  | */ | 
|  | rc = -ENXIO; | 
|  | goto unlock; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use this flag as an indication that the dax page has been | 
|  | * remapped UC to prevent speculative consumption of poison. | 
|  | */ | 
|  | SetPageHWPoison(&folio->page); | 
|  |  | 
|  | /* | 
|  | * Unlike System-RAM there is no possibility to swap in a | 
|  | * different physical page at a given virtual address, so all | 
|  | * userspace consumption of ZONE_DEVICE memory necessitates | 
|  | * SIGBUS (i.e. MF_MUST_KILL) | 
|  | */ | 
|  | flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; | 
|  | collect_procs(folio, &folio->page, &to_kill, true); | 
|  |  | 
|  | unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags); | 
|  | unlock: | 
|  | dax_unlock_folio(folio, cookie); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FS_DAX | 
|  | /** | 
|  | * mf_dax_kill_procs - Collect and kill processes who are using this file range | 
|  | * @mapping:	address_space of the file in use | 
|  | * @index:	start pgoff of the range within the file | 
|  | * @count:	length of the range, in unit of PAGE_SIZE | 
|  | * @mf_flags:	memory failure flags | 
|  | */ | 
|  | int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, | 
|  | unsigned long count, int mf_flags) | 
|  | { | 
|  | LIST_HEAD(to_kill); | 
|  | dax_entry_t cookie; | 
|  | struct page *page; | 
|  | size_t end = index + count; | 
|  | bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE; | 
|  |  | 
|  | mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; | 
|  |  | 
|  | for (; index < end; index++) { | 
|  | page = NULL; | 
|  | cookie = dax_lock_mapping_entry(mapping, index, &page); | 
|  | if (!cookie) | 
|  | return -EBUSY; | 
|  | if (!page) | 
|  | goto unlock; | 
|  |  | 
|  | if (!pre_remove) | 
|  | SetPageHWPoison(page); | 
|  |  | 
|  | /* | 
|  | * The pre_remove case is revoking access, the memory is still | 
|  | * good and could theoretically be put back into service. | 
|  | */ | 
|  | collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove); | 
|  | unmap_and_kill(&to_kill, page_to_pfn(page), mapping, | 
|  | index, mf_flags); | 
|  | unlock: | 
|  | dax_unlock_mapping_entry(mapping, index, cookie); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mf_dax_kill_procs); | 
|  | #endif /* CONFIG_FS_DAX */ | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  |  | 
|  | /* | 
|  | * Struct raw_hwp_page represents information about "raw error page", | 
|  | * constructing singly linked list from ->_hugetlb_hwpoison field of folio. | 
|  | */ | 
|  | struct raw_hwp_page { | 
|  | struct llist_node node; | 
|  | struct page *page; | 
|  | }; | 
|  |  | 
|  | static inline struct llist_head *raw_hwp_list_head(struct folio *folio) | 
|  | { | 
|  | return (struct llist_head *)&folio->_hugetlb_hwpoison; | 
|  | } | 
|  |  | 
|  | bool is_raw_hwpoison_page_in_hugepage(struct page *page) | 
|  | { | 
|  | struct llist_head *raw_hwp_head; | 
|  | struct raw_hwp_page *p; | 
|  | struct folio *folio = page_folio(page); | 
|  | bool ret = false; | 
|  |  | 
|  | if (!folio_test_hwpoison(folio)) | 
|  | return false; | 
|  |  | 
|  | if (!folio_test_hugetlb(folio)) | 
|  | return PageHWPoison(page); | 
|  |  | 
|  | /* | 
|  | * When RawHwpUnreliable is set, kernel lost track of which subpages | 
|  | * are HWPOISON. So return as if ALL subpages are HWPOISONed. | 
|  | */ | 
|  | if (folio_test_hugetlb_raw_hwp_unreliable(folio)) | 
|  | return true; | 
|  |  | 
|  | mutex_lock(&mf_mutex); | 
|  |  | 
|  | raw_hwp_head = raw_hwp_list_head(folio); | 
|  | llist_for_each_entry(p, raw_hwp_head->first, node) { | 
|  | if (page == p->page) { | 
|  | ret = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&mf_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) | 
|  | { | 
|  | struct llist_node *head; | 
|  | struct raw_hwp_page *p, *next; | 
|  | unsigned long count = 0; | 
|  |  | 
|  | head = llist_del_all(raw_hwp_list_head(folio)); | 
|  | llist_for_each_entry_safe(p, next, head, node) { | 
|  | if (move_flag) | 
|  | SetPageHWPoison(p->page); | 
|  | else | 
|  | num_poisoned_pages_sub(page_to_pfn(p->page), 1); | 
|  | kfree(p); | 
|  | count++; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) | 
|  | { | 
|  | struct llist_head *head; | 
|  | struct raw_hwp_page *raw_hwp; | 
|  | struct raw_hwp_page *p; | 
|  | int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; | 
|  |  | 
|  | /* | 
|  | * Once the hwpoison hugepage has lost reliable raw error info, | 
|  | * there is little meaning to keep additional error info precisely, | 
|  | * so skip to add additional raw error info. | 
|  | */ | 
|  | if (folio_test_hugetlb_raw_hwp_unreliable(folio)) | 
|  | return -EHWPOISON; | 
|  | head = raw_hwp_list_head(folio); | 
|  | llist_for_each_entry(p, head->first, node) { | 
|  | if (p->page == page) | 
|  | return -EHWPOISON; | 
|  | } | 
|  |  | 
|  | raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); | 
|  | if (raw_hwp) { | 
|  | raw_hwp->page = page; | 
|  | llist_add(&raw_hwp->node, head); | 
|  | /* the first error event will be counted in action_result(). */ | 
|  | if (ret) | 
|  | num_poisoned_pages_inc(page_to_pfn(page)); | 
|  | } else { | 
|  | /* | 
|  | * Failed to save raw error info.  We no longer trace all | 
|  | * hwpoisoned subpages, and we need refuse to free/dissolve | 
|  | * this hwpoisoned hugepage. | 
|  | */ | 
|  | folio_set_hugetlb_raw_hwp_unreliable(folio); | 
|  | /* | 
|  | * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not | 
|  | * used any more, so free it. | 
|  | */ | 
|  | __folio_free_raw_hwp(folio, false); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) | 
|  | { | 
|  | /* | 
|  | * hugetlb_vmemmap_optimized hugepages can't be freed because struct | 
|  | * pages for tail pages are required but they don't exist. | 
|  | */ | 
|  | if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by | 
|  | * definition. | 
|  | */ | 
|  | if (folio_test_hugetlb_raw_hwp_unreliable(folio)) | 
|  | return 0; | 
|  |  | 
|  | return __folio_free_raw_hwp(folio, move_flag); | 
|  | } | 
|  |  | 
|  | void folio_clear_hugetlb_hwpoison(struct folio *folio) | 
|  | { | 
|  | if (folio_test_hugetlb_raw_hwp_unreliable(folio)) | 
|  | return; | 
|  | if (folio_test_hugetlb_vmemmap_optimized(folio)) | 
|  | return; | 
|  | folio_clear_hwpoison(folio); | 
|  | folio_free_raw_hwp(folio, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from hugetlb code with hugetlb_lock held. | 
|  | * | 
|  | * Return values: | 
|  | *   0             - free hugepage | 
|  | *   1             - in-use hugepage | 
|  | *   2             - not a hugepage | 
|  | *   -EBUSY        - the hugepage is busy (try to retry) | 
|  | *   -EHWPOISON    - the hugepage is already hwpoisoned | 
|  | */ | 
|  | int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, | 
|  | bool *migratable_cleared) | 
|  | { | 
|  | struct page *page = pfn_to_page(pfn); | 
|  | struct folio *folio = page_folio(page); | 
|  | int ret = 2;	/* fallback to normal page handling */ | 
|  | bool count_increased = false; | 
|  |  | 
|  | if (!folio_test_hugetlb(folio)) | 
|  | goto out; | 
|  |  | 
|  | if (flags & MF_COUNT_INCREASED) { | 
|  | ret = 1; | 
|  | count_increased = true; | 
|  | } else if (folio_test_hugetlb_freed(folio)) { | 
|  | ret = 0; | 
|  | } else if (folio_test_hugetlb_migratable(folio)) { | 
|  | ret = folio_try_get(folio); | 
|  | if (ret) | 
|  | count_increased = true; | 
|  | } else { | 
|  | ret = -EBUSY; | 
|  | if (!(flags & MF_NO_RETRY)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (folio_set_hugetlb_hwpoison(folio, page)) { | 
|  | ret = -EHWPOISON; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them | 
|  | * from being migrated by memory hotremove. | 
|  | */ | 
|  | if (count_increased && folio_test_hugetlb_migratable(folio)) { | 
|  | folio_clear_hugetlb_migratable(folio); | 
|  | *migratable_cleared = true; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | out: | 
|  | if (count_increased) | 
|  | folio_put(folio); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Taking refcount of hugetlb pages needs extra care about race conditions | 
|  | * with basic operations like hugepage allocation/free/demotion. | 
|  | * So some of prechecks for hwpoison (pinning, and testing/setting | 
|  | * PageHWPoison) should be done in single hugetlb_lock range. | 
|  | */ | 
|  | static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) | 
|  | { | 
|  | int res; | 
|  | struct page *p = pfn_to_page(pfn); | 
|  | struct folio *folio; | 
|  | unsigned long page_flags; | 
|  | bool migratable_cleared = false; | 
|  |  | 
|  | *hugetlb = 1; | 
|  | retry: | 
|  | res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); | 
|  | if (res == 2) { /* fallback to normal page handling */ | 
|  | *hugetlb = 0; | 
|  | return 0; | 
|  | } else if (res == -EHWPOISON) { | 
|  | pr_err("%#lx: already hardware poisoned\n", pfn); | 
|  | if (flags & MF_ACTION_REQUIRED) { | 
|  | folio = page_folio(p); | 
|  | res = kill_accessing_process(current, folio_pfn(folio), flags); | 
|  | action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); | 
|  | } | 
|  | return res; | 
|  | } else if (res == -EBUSY) { | 
|  | if (!(flags & MF_NO_RETRY)) { | 
|  | flags |= MF_NO_RETRY; | 
|  | goto retry; | 
|  | } | 
|  | return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); | 
|  | } | 
|  |  | 
|  | folio = page_folio(p); | 
|  | folio_lock(folio); | 
|  |  | 
|  | if (hwpoison_filter(p)) { | 
|  | folio_clear_hugetlb_hwpoison(folio); | 
|  | if (migratable_cleared) | 
|  | folio_set_hugetlb_migratable(folio); | 
|  | folio_unlock(folio); | 
|  | if (res == 1) | 
|  | folio_put(folio); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handling free hugepage.  The possible race with hugepage allocation | 
|  | * or demotion can be prevented by PageHWPoison flag. | 
|  | */ | 
|  | if (res == 0) { | 
|  | folio_unlock(folio); | 
|  | if (__page_handle_poison(p) > 0) { | 
|  | page_ref_inc(p); | 
|  | res = MF_RECOVERED; | 
|  | } else { | 
|  | res = MF_FAILED; | 
|  | } | 
|  | return action_result(pfn, MF_MSG_FREE_HUGE, res); | 
|  | } | 
|  |  | 
|  | page_flags = folio->flags; | 
|  |  | 
|  | if (!hwpoison_user_mappings(folio, p, pfn, flags)) { | 
|  | folio_unlock(folio); | 
|  | return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); | 
|  | } | 
|  |  | 
|  | return identify_page_state(pfn, p, page_flags); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif	/* CONFIG_HUGETLB_PAGE */ | 
|  |  | 
|  | /* Drop the extra refcount in case we come from madvise() */ | 
|  | static void put_ref_page(unsigned long pfn, int flags) | 
|  | { | 
|  | if (!(flags & MF_COUNT_INCREASED)) | 
|  | return; | 
|  |  | 
|  | put_page(pfn_to_page(pfn)); | 
|  | } | 
|  |  | 
|  | static int memory_failure_dev_pagemap(unsigned long pfn, int flags, | 
|  | struct dev_pagemap *pgmap) | 
|  | { | 
|  | int rc = -ENXIO; | 
|  |  | 
|  | /* device metadata space is not recoverable */ | 
|  | if (!pgmap_pfn_valid(pgmap, pfn)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Call driver's implementation to handle the memory failure, otherwise | 
|  | * fall back to generic handler. | 
|  | */ | 
|  | if (pgmap_has_memory_failure(pgmap)) { | 
|  | rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); | 
|  | /* | 
|  | * Fall back to generic handler too if operation is not | 
|  | * supported inside the driver/device/filesystem. | 
|  | */ | 
|  | if (rc != -EOPNOTSUPP) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rc = mf_generic_kill_procs(pfn, flags, pgmap); | 
|  | out: | 
|  | /* drop pgmap ref acquired in caller */ | 
|  | put_dev_pagemap(pgmap); | 
|  | if (rc != -EOPNOTSUPP) | 
|  | action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The calling condition is as such: thp split failed, page might have | 
|  | * been RDMA pinned, not much can be done for recovery. | 
|  | * But a SIGBUS should be delivered with vaddr provided so that the user | 
|  | * application has a chance to recover. Also, application processes' | 
|  | * election for MCE early killed will be honored. | 
|  | */ | 
|  | static void kill_procs_now(struct page *p, unsigned long pfn, int flags, | 
|  | struct folio *folio) | 
|  | { | 
|  | LIST_HEAD(tokill); | 
|  |  | 
|  | collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); | 
|  | kill_procs(&tokill, true, pfn, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memory_failure - Handle memory failure of a page. | 
|  | * @pfn: Page Number of the corrupted page | 
|  | * @flags: fine tune action taken | 
|  | * | 
|  | * This function is called by the low level machine check code | 
|  | * of an architecture when it detects hardware memory corruption | 
|  | * of a page. It tries its best to recover, which includes | 
|  | * dropping pages, killing processes etc. | 
|  | * | 
|  | * The function is primarily of use for corruptions that | 
|  | * happen outside the current execution context (e.g. when | 
|  | * detected by a background scrubber) | 
|  | * | 
|  | * Must run in process context (e.g. a work queue) with interrupts | 
|  | * enabled and no spinlocks held. | 
|  | * | 
|  | * Return: 0 for successfully handled the memory error, | 
|  | *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, | 
|  | *         < 0(except -EOPNOTSUPP) on failure. | 
|  | */ | 
|  | int memory_failure(unsigned long pfn, int flags) | 
|  | { | 
|  | struct page *p; | 
|  | struct folio *folio; | 
|  | struct dev_pagemap *pgmap; | 
|  | int res = 0; | 
|  | unsigned long page_flags; | 
|  | bool retry = true; | 
|  | int hugetlb = 0; | 
|  |  | 
|  | if (!sysctl_memory_failure_recovery) | 
|  | panic("Memory failure on page %lx", pfn); | 
|  |  | 
|  | mutex_lock(&mf_mutex); | 
|  |  | 
|  | if (!(flags & MF_SW_SIMULATED)) | 
|  | hw_memory_failure = true; | 
|  |  | 
|  | p = pfn_to_online_page(pfn); | 
|  | if (!p) { | 
|  | res = arch_memory_failure(pfn, flags); | 
|  | if (res == 0) | 
|  | goto unlock_mutex; | 
|  |  | 
|  | if (pfn_valid(pfn)) { | 
|  | pgmap = get_dev_pagemap(pfn, NULL); | 
|  | put_ref_page(pfn, flags); | 
|  | if (pgmap) { | 
|  | res = memory_failure_dev_pagemap(pfn, flags, | 
|  | pgmap); | 
|  | goto unlock_mutex; | 
|  | } | 
|  | } | 
|  | pr_err("%#lx: memory outside kernel control\n", pfn); | 
|  | res = -ENXIO; | 
|  | goto unlock_mutex; | 
|  | } | 
|  |  | 
|  | try_again: | 
|  | res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); | 
|  | if (hugetlb) | 
|  | goto unlock_mutex; | 
|  |  | 
|  | if (TestSetPageHWPoison(p)) { | 
|  | pr_err("%#lx: already hardware poisoned\n", pfn); | 
|  | res = -EHWPOISON; | 
|  | if (flags & MF_ACTION_REQUIRED) | 
|  | res = kill_accessing_process(current, pfn, flags); | 
|  | if (flags & MF_COUNT_INCREASED) | 
|  | put_page(p); | 
|  | action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); | 
|  | goto unlock_mutex; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need/can do nothing about count=0 pages. | 
|  | * 1) it's a free page, and therefore in safe hand: | 
|  | *    check_new_page() will be the gate keeper. | 
|  | * 2) it's part of a non-compound high order page. | 
|  | *    Implies some kernel user: cannot stop them from | 
|  | *    R/W the page; let's pray that the page has been | 
|  | *    used and will be freed some time later. | 
|  | * In fact it's dangerous to directly bump up page count from 0, | 
|  | * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. | 
|  | */ | 
|  | if (!(flags & MF_COUNT_INCREASED)) { | 
|  | res = get_hwpoison_page(p, flags); | 
|  | if (!res) { | 
|  | if (is_free_buddy_page(p)) { | 
|  | if (take_page_off_buddy(p)) { | 
|  | page_ref_inc(p); | 
|  | res = MF_RECOVERED; | 
|  | } else { | 
|  | /* We lost the race, try again */ | 
|  | if (retry) { | 
|  | ClearPageHWPoison(p); | 
|  | retry = false; | 
|  | goto try_again; | 
|  | } | 
|  | res = MF_FAILED; | 
|  | } | 
|  | res = action_result(pfn, MF_MSG_BUDDY, res); | 
|  | } else { | 
|  | res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); | 
|  | } | 
|  | goto unlock_mutex; | 
|  | } else if (res < 0) { | 
|  | res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); | 
|  | goto unlock_mutex; | 
|  | } | 
|  | } | 
|  |  | 
|  | folio = page_folio(p); | 
|  |  | 
|  | /* filter pages that are protected from hwpoison test by users */ | 
|  | folio_lock(folio); | 
|  | if (hwpoison_filter(p)) { | 
|  | ClearPageHWPoison(p); | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | res = -EOPNOTSUPP; | 
|  | goto unlock_mutex; | 
|  | } | 
|  | folio_unlock(folio); | 
|  |  | 
|  | if (folio_test_large(folio)) { | 
|  | /* | 
|  | * The flag must be set after the refcount is bumped | 
|  | * otherwise it may race with THP split. | 
|  | * And the flag can't be set in get_hwpoison_page() since | 
|  | * it is called by soft offline too and it is just called | 
|  | * for !MF_COUNT_INCREASED.  So here seems to be the best | 
|  | * place. | 
|  | * | 
|  | * Don't need care about the above error handling paths for | 
|  | * get_hwpoison_page() since they handle either free page | 
|  | * or unhandlable page.  The refcount is bumped iff the | 
|  | * page is a valid handlable page. | 
|  | */ | 
|  | folio_set_has_hwpoisoned(folio); | 
|  | if (try_to_split_thp_page(p, false) < 0) { | 
|  | res = -EHWPOISON; | 
|  | kill_procs_now(p, pfn, flags, folio); | 
|  | put_page(p); | 
|  | action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED); | 
|  | goto unlock_mutex; | 
|  | } | 
|  | VM_BUG_ON_PAGE(!page_count(p), p); | 
|  | folio = page_folio(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We ignore non-LRU pages for good reasons. | 
|  | * - PG_locked is only well defined for LRU pages and a few others | 
|  | * - to avoid races with __SetPageLocked() | 
|  | * - to avoid races with __SetPageSlab*() (and more non-atomic ops) | 
|  | * The check (unnecessarily) ignores LRU pages being isolated and | 
|  | * walked by the page reclaim code, however that's not a big loss. | 
|  | */ | 
|  | shake_folio(folio); | 
|  |  | 
|  | folio_lock(folio); | 
|  |  | 
|  | /* | 
|  | * We're only intended to deal with the non-Compound page here. | 
|  | * The page cannot become compound pages again as folio has been | 
|  | * splited and extra refcnt is held. | 
|  | */ | 
|  | WARN_ON(folio_test_large(folio)); | 
|  |  | 
|  | /* | 
|  | * We use page flags to determine what action should be taken, but | 
|  | * the flags can be modified by the error containment action.  One | 
|  | * example is an mlocked page, where PG_mlocked is cleared by | 
|  | * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page | 
|  | * status correctly, we save a copy of the page flags at this time. | 
|  | */ | 
|  | page_flags = folio->flags; | 
|  |  | 
|  | /* | 
|  | * __munlock_folio() may clear a writeback folio's LRU flag without | 
|  | * the folio lock. We need to wait for writeback completion for this | 
|  | * folio or it may trigger a vfs BUG while evicting inode. | 
|  | */ | 
|  | if (!folio_test_lru(folio) && !folio_test_writeback(folio)) | 
|  | goto identify_page_state; | 
|  |  | 
|  | /* | 
|  | * It's very difficult to mess with pages currently under IO | 
|  | * and in many cases impossible, so we just avoid it here. | 
|  | */ | 
|  | folio_wait_writeback(folio); | 
|  |  | 
|  | /* | 
|  | * Now take care of user space mappings. | 
|  | * Abort on fail: __filemap_remove_folio() assumes unmapped page. | 
|  | */ | 
|  | if (!hwpoison_user_mappings(folio, p, pfn, flags)) { | 
|  | res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); | 
|  | goto unlock_page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Torn down by someone else? | 
|  | */ | 
|  | if (folio_test_lru(folio) && !folio_test_swapcache(folio) && | 
|  | folio->mapping == NULL) { | 
|  | res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); | 
|  | goto unlock_page; | 
|  | } | 
|  |  | 
|  | identify_page_state: | 
|  | res = identify_page_state(pfn, p, page_flags); | 
|  | mutex_unlock(&mf_mutex); | 
|  | return res; | 
|  | unlock_page: | 
|  | folio_unlock(folio); | 
|  | unlock_mutex: | 
|  | mutex_unlock(&mf_mutex); | 
|  | return res; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(memory_failure); | 
|  |  | 
|  | #define MEMORY_FAILURE_FIFO_ORDER	4 | 
|  | #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER) | 
|  |  | 
|  | struct memory_failure_entry { | 
|  | unsigned long pfn; | 
|  | int flags; | 
|  | }; | 
|  |  | 
|  | struct memory_failure_cpu { | 
|  | DECLARE_KFIFO(fifo, struct memory_failure_entry, | 
|  | MEMORY_FAILURE_FIFO_SIZE); | 
|  | raw_spinlock_t lock; | 
|  | struct work_struct work; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); | 
|  |  | 
|  | /** | 
|  | * memory_failure_queue - Schedule handling memory failure of a page. | 
|  | * @pfn: Page Number of the corrupted page | 
|  | * @flags: Flags for memory failure handling | 
|  | * | 
|  | * This function is called by the low level hardware error handler | 
|  | * when it detects hardware memory corruption of a page. It schedules | 
|  | * the recovering of error page, including dropping pages, killing | 
|  | * processes etc. | 
|  | * | 
|  | * The function is primarily of use for corruptions that | 
|  | * happen outside the current execution context (e.g. when | 
|  | * detected by a background scrubber) | 
|  | * | 
|  | * Can run in IRQ context. | 
|  | */ | 
|  | void memory_failure_queue(unsigned long pfn, int flags) | 
|  | { | 
|  | struct memory_failure_cpu *mf_cpu; | 
|  | unsigned long proc_flags; | 
|  | bool buffer_overflow; | 
|  | struct memory_failure_entry entry = { | 
|  | .pfn =		pfn, | 
|  | .flags =	flags, | 
|  | }; | 
|  |  | 
|  | mf_cpu = &get_cpu_var(memory_failure_cpu); | 
|  | raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); | 
|  | buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry); | 
|  | if (!buffer_overflow) | 
|  | schedule_work_on(smp_processor_id(), &mf_cpu->work); | 
|  | raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); | 
|  | put_cpu_var(memory_failure_cpu); | 
|  | if (buffer_overflow) | 
|  | pr_err("buffer overflow when queuing memory failure at %#lx\n", | 
|  | pfn); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(memory_failure_queue); | 
|  |  | 
|  | static void memory_failure_work_func(struct work_struct *work) | 
|  | { | 
|  | struct memory_failure_cpu *mf_cpu; | 
|  | struct memory_failure_entry entry = { 0, }; | 
|  | unsigned long proc_flags; | 
|  | int gotten; | 
|  |  | 
|  | mf_cpu = container_of(work, struct memory_failure_cpu, work); | 
|  | for (;;) { | 
|  | raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); | 
|  | gotten = kfifo_get(&mf_cpu->fifo, &entry); | 
|  | raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); | 
|  | if (!gotten) | 
|  | break; | 
|  | if (entry.flags & MF_SOFT_OFFLINE) | 
|  | soft_offline_page(entry.pfn, entry.flags); | 
|  | else | 
|  | memory_failure(entry.pfn, entry.flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process memory_failure work queued on the specified CPU. | 
|  | * Used to avoid return-to-userspace racing with the memory_failure workqueue. | 
|  | */ | 
|  | void memory_failure_queue_kick(int cpu) | 
|  | { | 
|  | struct memory_failure_cpu *mf_cpu; | 
|  |  | 
|  | mf_cpu = &per_cpu(memory_failure_cpu, cpu); | 
|  | cancel_work_sync(&mf_cpu->work); | 
|  | memory_failure_work_func(&mf_cpu->work); | 
|  | } | 
|  |  | 
|  | static int __init memory_failure_init(void) | 
|  | { | 
|  | struct memory_failure_cpu *mf_cpu; | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | mf_cpu = &per_cpu(memory_failure_cpu, cpu); | 
|  | raw_spin_lock_init(&mf_cpu->lock); | 
|  | INIT_KFIFO(mf_cpu->fifo); | 
|  | INIT_WORK(&mf_cpu->work, memory_failure_work_func); | 
|  | } | 
|  |  | 
|  | register_sysctl_init("vm", memory_failure_table); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | core_initcall(memory_failure_init); | 
|  |  | 
|  | #undef pr_fmt | 
|  | #define pr_fmt(fmt)	"Unpoison: " fmt | 
|  | #define unpoison_pr_info(fmt, pfn, rs)			\ | 
|  | ({							\ | 
|  | if (__ratelimit(rs))				\ | 
|  | pr_info(fmt, pfn);			\ | 
|  | }) | 
|  |  | 
|  | /** | 
|  | * unpoison_memory - Unpoison a previously poisoned page | 
|  | * @pfn: Page number of the to be unpoisoned page | 
|  | * | 
|  | * Software-unpoison a page that has been poisoned by | 
|  | * memory_failure() earlier. | 
|  | * | 
|  | * This is only done on the software-level, so it only works | 
|  | * for linux injected failures, not real hardware failures | 
|  | * | 
|  | * Returns 0 for success, otherwise -errno. | 
|  | */ | 
|  | int unpoison_memory(unsigned long pfn) | 
|  | { | 
|  | struct folio *folio; | 
|  | struct page *p; | 
|  | int ret = -EBUSY, ghp; | 
|  | unsigned long count; | 
|  | bool huge = false; | 
|  | static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, | 
|  | DEFAULT_RATELIMIT_BURST); | 
|  |  | 
|  | if (!pfn_valid(pfn)) | 
|  | return -ENXIO; | 
|  |  | 
|  | p = pfn_to_page(pfn); | 
|  | folio = page_folio(p); | 
|  |  | 
|  | mutex_lock(&mf_mutex); | 
|  |  | 
|  | if (hw_memory_failure) { | 
|  | unpoison_pr_info("%#lx: disabled after HW memory failure\n", | 
|  | pfn, &unpoison_rs); | 
|  | ret = -EOPNOTSUPP; | 
|  | goto unlock_mutex; | 
|  | } | 
|  |  | 
|  | if (is_huge_zero_folio(folio)) { | 
|  | unpoison_pr_info("%#lx: huge zero page is not supported\n", | 
|  | pfn, &unpoison_rs); | 
|  | ret = -EOPNOTSUPP; | 
|  | goto unlock_mutex; | 
|  | } | 
|  |  | 
|  | if (!PageHWPoison(p)) { | 
|  | unpoison_pr_info("%#lx: page was already unpoisoned\n", | 
|  | pfn, &unpoison_rs); | 
|  | goto unlock_mutex; | 
|  | } | 
|  |  | 
|  | if (folio_ref_count(folio) > 1) { | 
|  | unpoison_pr_info("%#lx: someone grabs the hwpoison page\n", | 
|  | pfn, &unpoison_rs); | 
|  | goto unlock_mutex; | 
|  | } | 
|  |  | 
|  | if (folio_test_slab(folio) || folio_test_pgtable(folio) || | 
|  | folio_test_reserved(folio) || folio_test_offline(folio)) | 
|  | goto unlock_mutex; | 
|  |  | 
|  | if (folio_mapped(folio)) { | 
|  | unpoison_pr_info("%#lx: someone maps the hwpoison page\n", | 
|  | pfn, &unpoison_rs); | 
|  | goto unlock_mutex; | 
|  | } | 
|  |  | 
|  | if (folio_mapping(folio)) { | 
|  | unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n", | 
|  | pfn, &unpoison_rs); | 
|  | goto unlock_mutex; | 
|  | } | 
|  |  | 
|  | ghp = get_hwpoison_page(p, MF_UNPOISON); | 
|  | if (!ghp) { | 
|  | if (folio_test_hugetlb(folio)) { | 
|  | huge = true; | 
|  | count = folio_free_raw_hwp(folio, false); | 
|  | if (count == 0) | 
|  | goto unlock_mutex; | 
|  | } | 
|  | ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; | 
|  | } else if (ghp < 0) { | 
|  | if (ghp == -EHWPOISON) { | 
|  | ret = put_page_back_buddy(p) ? 0 : -EBUSY; | 
|  | } else { | 
|  | ret = ghp; | 
|  | unpoison_pr_info("%#lx: failed to grab page\n", | 
|  | pfn, &unpoison_rs); | 
|  | } | 
|  | } else { | 
|  | if (folio_test_hugetlb(folio)) { | 
|  | huge = true; | 
|  | count = folio_free_raw_hwp(folio, false); | 
|  | if (count == 0) { | 
|  | folio_put(folio); | 
|  | goto unlock_mutex; | 
|  | } | 
|  | } | 
|  |  | 
|  | folio_put(folio); | 
|  | if (TestClearPageHWPoison(p)) { | 
|  | folio_put(folio); | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | unlock_mutex: | 
|  | mutex_unlock(&mf_mutex); | 
|  | if (!ret) { | 
|  | if (!huge) | 
|  | num_poisoned_pages_sub(pfn, 1); | 
|  | unpoison_pr_info("%#lx: software-unpoisoned page\n", | 
|  | page_to_pfn(p), &unpoison_rs); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(unpoison_memory); | 
|  |  | 
|  | #undef pr_fmt | 
|  | #define pr_fmt(fmt) "Soft offline: " fmt | 
|  |  | 
|  | /* | 
|  | * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. | 
|  | * If the page is a non-dirty unmapped page-cache page, it simply invalidates. | 
|  | * If the page is mapped, it migrates the contents over. | 
|  | */ | 
|  | static int soft_offline_in_use_page(struct page *page) | 
|  | { | 
|  | long ret = 0; | 
|  | unsigned long pfn = page_to_pfn(page); | 
|  | struct folio *folio = page_folio(page); | 
|  | char const *msg_page[] = {"page", "hugepage"}; | 
|  | bool huge = folio_test_hugetlb(folio); | 
|  | bool isolated; | 
|  | LIST_HEAD(pagelist); | 
|  | struct migration_target_control mtc = { | 
|  | .nid = NUMA_NO_NODE, | 
|  | .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, | 
|  | .reason = MR_MEMORY_FAILURE, | 
|  | }; | 
|  |  | 
|  | if (!huge && folio_test_large(folio)) { | 
|  | if (try_to_split_thp_page(page, true)) { | 
|  | pr_info("%#lx: thp split failed\n", pfn); | 
|  | return -EBUSY; | 
|  | } | 
|  | folio = page_folio(page); | 
|  | } | 
|  |  | 
|  | folio_lock(folio); | 
|  | if (!huge) | 
|  | folio_wait_writeback(folio); | 
|  | if (PageHWPoison(page)) { | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | pr_info("%#lx: page already poisoned\n", pfn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio)) | 
|  | /* | 
|  | * Try to invalidate first. This should work for | 
|  | * non dirty unmapped page cache pages. | 
|  | */ | 
|  | ret = mapping_evict_folio(folio_mapping(folio), folio); | 
|  | folio_unlock(folio); | 
|  |  | 
|  | if (ret) { | 
|  | pr_info("%#lx: invalidated\n", pfn); | 
|  | page_handle_poison(page, false, true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | isolated = isolate_folio_to_list(folio, &pagelist); | 
|  |  | 
|  | /* | 
|  | * If we succeed to isolate the folio, we grabbed another refcount on | 
|  | * the folio, so we can safely drop the one we got from get_any_page(). | 
|  | * If we failed to isolate the folio, it means that we cannot go further | 
|  | * and we will return an error, so drop the reference we got from | 
|  | * get_any_page() as well. | 
|  | */ | 
|  | folio_put(folio); | 
|  |  | 
|  | if (isolated) { | 
|  | ret = migrate_pages(&pagelist, alloc_migration_target, NULL, | 
|  | (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); | 
|  | if (!ret) { | 
|  | bool release = !huge; | 
|  |  | 
|  | if (!page_handle_poison(page, huge, release)) | 
|  | ret = -EBUSY; | 
|  | } else { | 
|  | if (!list_empty(&pagelist)) | 
|  | putback_movable_pages(&pagelist); | 
|  |  | 
|  | pr_info("%#lx: %s migration failed %ld, type %pGp\n", | 
|  | pfn, msg_page[huge], ret, &page->flags); | 
|  | if (ret > 0) | 
|  | ret = -EBUSY; | 
|  | } | 
|  | } else { | 
|  | pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n", | 
|  | pfn, msg_page[huge], page_count(page), &page->flags); | 
|  | ret = -EBUSY; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * soft_offline_page - Soft offline a page. | 
|  | * @pfn: pfn to soft-offline | 
|  | * @flags: flags. Same as memory_failure(). | 
|  | * | 
|  | * Returns 0 on success, | 
|  | *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or | 
|  | *         disabled by /proc/sys/vm/enable_soft_offline, | 
|  | *         < 0 otherwise negated errno. | 
|  | * | 
|  | * Soft offline a page, by migration or invalidation, | 
|  | * without killing anything. This is for the case when | 
|  | * a page is not corrupted yet (so it's still valid to access), | 
|  | * but has had a number of corrected errors and is better taken | 
|  | * out. | 
|  | * | 
|  | * The actual policy on when to do that is maintained by | 
|  | * user space. | 
|  | * | 
|  | * This should never impact any application or cause data loss, | 
|  | * however it might take some time. | 
|  | * | 
|  | * This is not a 100% solution for all memory, but tries to be | 
|  | * ``good enough'' for the majority of memory. | 
|  | */ | 
|  | int soft_offline_page(unsigned long pfn, int flags) | 
|  | { | 
|  | int ret; | 
|  | bool try_again = true; | 
|  | struct page *page; | 
|  |  | 
|  | if (!pfn_valid(pfn)) { | 
|  | WARN_ON_ONCE(flags & MF_COUNT_INCREASED); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ | 
|  | page = pfn_to_online_page(pfn); | 
|  | if (!page) { | 
|  | put_ref_page(pfn, flags); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (!sysctl_enable_soft_offline) { | 
|  | pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n"); | 
|  | put_ref_page(pfn, flags); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | mutex_lock(&mf_mutex); | 
|  |  | 
|  | if (PageHWPoison(page)) { | 
|  | pr_info("%#lx: page already poisoned\n", pfn); | 
|  | put_ref_page(pfn, flags); | 
|  | mutex_unlock(&mf_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | retry: | 
|  | get_online_mems(); | 
|  | ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); | 
|  | put_online_mems(); | 
|  |  | 
|  | if (hwpoison_filter(page)) { | 
|  | if (ret > 0) | 
|  | put_page(page); | 
|  |  | 
|  | mutex_unlock(&mf_mutex); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | if (ret > 0) { | 
|  | ret = soft_offline_in_use_page(page); | 
|  | } else if (ret == 0) { | 
|  | if (!page_handle_poison(page, true, false)) { | 
|  | if (try_again) { | 
|  | try_again = false; | 
|  | flags &= ~MF_COUNT_INCREASED; | 
|  | goto retry; | 
|  | } | 
|  | ret = -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&mf_mutex); | 
|  |  | 
|  | return ret; | 
|  | } |