| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2016 Thomas Gleixner. | 
 |  * Copyright (C) 2016-2017 Christoph Hellwig. | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/group_cpus.h> | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | static void grp_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk, | 
 | 				unsigned int cpus_per_grp) | 
 | { | 
 | 	const struct cpumask *siblmsk; | 
 | 	int cpu, sibl; | 
 |  | 
 | 	for ( ; cpus_per_grp > 0; ) { | 
 | 		cpu = cpumask_first(nmsk); | 
 |  | 
 | 		/* Should not happen, but I'm too lazy to think about it */ | 
 | 		if (cpu >= nr_cpu_ids) | 
 | 			return; | 
 |  | 
 | 		cpumask_clear_cpu(cpu, nmsk); | 
 | 		cpumask_set_cpu(cpu, irqmsk); | 
 | 		cpus_per_grp--; | 
 |  | 
 | 		/* If the cpu has siblings, use them first */ | 
 | 		siblmsk = topology_sibling_cpumask(cpu); | 
 | 		for (sibl = -1; cpus_per_grp > 0; ) { | 
 | 			sibl = cpumask_next(sibl, siblmsk); | 
 | 			if (sibl >= nr_cpu_ids) | 
 | 				break; | 
 | 			if (!cpumask_test_and_clear_cpu(sibl, nmsk)) | 
 | 				continue; | 
 | 			cpumask_set_cpu(sibl, irqmsk); | 
 | 			cpus_per_grp--; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static cpumask_var_t *alloc_node_to_cpumask(void) | 
 | { | 
 | 	cpumask_var_t *masks; | 
 | 	int node; | 
 |  | 
 | 	masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL); | 
 | 	if (!masks) | 
 | 		return NULL; | 
 |  | 
 | 	for (node = 0; node < nr_node_ids; node++) { | 
 | 		if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL)) | 
 | 			goto out_unwind; | 
 | 	} | 
 |  | 
 | 	return masks; | 
 |  | 
 | out_unwind: | 
 | 	while (--node >= 0) | 
 | 		free_cpumask_var(masks[node]); | 
 | 	kfree(masks); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void free_node_to_cpumask(cpumask_var_t *masks) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	for (node = 0; node < nr_node_ids; node++) | 
 | 		free_cpumask_var(masks[node]); | 
 | 	kfree(masks); | 
 | } | 
 |  | 
 | static void build_node_to_cpumask(cpumask_var_t *masks) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]); | 
 | } | 
 |  | 
 | static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask, | 
 | 				const struct cpumask *mask, nodemask_t *nodemsk) | 
 | { | 
 | 	int n, nodes = 0; | 
 |  | 
 | 	/* Calculate the number of nodes in the supplied affinity mask */ | 
 | 	for_each_node(n) { | 
 | 		if (cpumask_intersects(mask, node_to_cpumask[n])) { | 
 | 			node_set(n, *nodemsk); | 
 | 			nodes++; | 
 | 		} | 
 | 	} | 
 | 	return nodes; | 
 | } | 
 |  | 
 | struct node_groups { | 
 | 	unsigned id; | 
 |  | 
 | 	union { | 
 | 		unsigned ngroups; | 
 | 		unsigned ncpus; | 
 | 	}; | 
 | }; | 
 |  | 
 | static int ncpus_cmp_func(const void *l, const void *r) | 
 | { | 
 | 	const struct node_groups *ln = l; | 
 | 	const struct node_groups *rn = r; | 
 |  | 
 | 	return ln->ncpus - rn->ncpus; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate group number for each node, so that for each node: | 
 |  * | 
 |  * 1) the allocated number is >= 1 | 
 |  * | 
 |  * 2) the allocated number is <= active CPU number of this node | 
 |  * | 
 |  * The actual allocated total groups may be less than @numgrps when | 
 |  * active total CPU number is less than @numgrps. | 
 |  * | 
 |  * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]' | 
 |  * for each node. | 
 |  */ | 
 | static void alloc_nodes_groups(unsigned int numgrps, | 
 | 			       cpumask_var_t *node_to_cpumask, | 
 | 			       const struct cpumask *cpu_mask, | 
 | 			       const nodemask_t nodemsk, | 
 | 			       struct cpumask *nmsk, | 
 | 			       struct node_groups *node_groups) | 
 | { | 
 | 	unsigned n, remaining_ncpus = 0; | 
 |  | 
 | 	for (n = 0; n < nr_node_ids; n++) { | 
 | 		node_groups[n].id = n; | 
 | 		node_groups[n].ncpus = UINT_MAX; | 
 | 	} | 
 |  | 
 | 	for_each_node_mask(n, nodemsk) { | 
 | 		unsigned ncpus; | 
 |  | 
 | 		cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); | 
 | 		ncpus = cpumask_weight(nmsk); | 
 |  | 
 | 		if (!ncpus) | 
 | 			continue; | 
 | 		remaining_ncpus += ncpus; | 
 | 		node_groups[n].ncpus = ncpus; | 
 | 	} | 
 |  | 
 | 	numgrps = min_t(unsigned, remaining_ncpus, numgrps); | 
 |  | 
 | 	sort(node_groups, nr_node_ids, sizeof(node_groups[0]), | 
 | 	     ncpus_cmp_func, NULL); | 
 |  | 
 | 	/* | 
 | 	 * Allocate groups for each node according to the ratio of this | 
 | 	 * node's nr_cpus to remaining un-assigned ncpus. 'numgrps' is | 
 | 	 * bigger than number of active numa nodes. Always start the | 
 | 	 * allocation from the node with minimized nr_cpus. | 
 | 	 * | 
 | 	 * This way guarantees that each active node gets allocated at | 
 | 	 * least one group, and the theory is simple: over-allocation | 
 | 	 * is only done when this node is assigned by one group, so | 
 | 	 * other nodes will be allocated >= 1 groups, since 'numgrps' is | 
 | 	 * bigger than number of numa nodes. | 
 | 	 * | 
 | 	 * One perfect invariant is that number of allocated groups for | 
 | 	 * each node is <= CPU count of this node: | 
 | 	 * | 
 | 	 * 1) suppose there are two nodes: A and B | 
 | 	 * 	ncpu(X) is CPU count of node X | 
 | 	 * 	grps(X) is the group count allocated to node X via this | 
 | 	 * 	algorithm | 
 | 	 * | 
 | 	 * 	ncpu(A) <= ncpu(B) | 
 | 	 * 	ncpu(A) + ncpu(B) = N | 
 | 	 * 	grps(A) + grps(B) = G | 
 | 	 * | 
 | 	 * 	grps(A) = max(1, round_down(G * ncpu(A) / N)) | 
 | 	 * 	grps(B) = G - grps(A) | 
 | 	 * | 
 | 	 * 	both N and G are integer, and 2 <= G <= N, suppose | 
 | 	 * 	G = N - delta, and 0 <= delta <= N - 2 | 
 | 	 * | 
 | 	 * 2) obviously grps(A) <= ncpu(A) because: | 
 | 	 * | 
 | 	 * 	if grps(A) is 1, then grps(A) <= ncpu(A) given | 
 | 	 * 	ncpu(A) >= 1 | 
 | 	 * | 
 | 	 * 	otherwise, | 
 | 	 * 		grps(A) <= G * ncpu(A) / N <= ncpu(A), given G <= N | 
 | 	 * | 
 | 	 * 3) prove how grps(B) <= ncpu(B): | 
 | 	 * | 
 | 	 * 	if round_down(G * ncpu(A) / N) == 0, vecs(B) won't be | 
 | 	 * 	over-allocated, so grps(B) <= ncpu(B), | 
 | 	 * | 
 | 	 * 	otherwise: | 
 | 	 * | 
 | 	 * 	grps(A) = | 
 | 	 * 		round_down(G * ncpu(A) / N) = | 
 | 	 * 		round_down((N - delta) * ncpu(A) / N) = | 
 | 	 * 		round_down((N * ncpu(A) - delta * ncpu(A)) / N)	 >= | 
 | 	 * 		round_down((N * ncpu(A) - delta * N) / N)	 = | 
 | 	 * 		cpu(A) - delta | 
 | 	 * | 
 | 	 * 	then: | 
 | 	 * | 
 | 	 * 	grps(A) - G >= ncpu(A) - delta - G | 
 | 	 * 	=> | 
 | 	 * 	G - grps(A) <= G + delta - ncpu(A) | 
 | 	 * 	=> | 
 | 	 * 	grps(B) <= N - ncpu(A) | 
 | 	 * 	=> | 
 | 	 * 	grps(B) <= cpu(B) | 
 | 	 * | 
 | 	 * For nodes >= 3, it can be thought as one node and another big | 
 | 	 * node given that is exactly what this algorithm is implemented, | 
 | 	 * and we always re-calculate 'remaining_ncpus' & 'numgrps', and | 
 | 	 * finally for each node X: grps(X) <= ncpu(X). | 
 | 	 * | 
 | 	 */ | 
 | 	for (n = 0; n < nr_node_ids; n++) { | 
 | 		unsigned ngroups, ncpus; | 
 |  | 
 | 		if (node_groups[n].ncpus == UINT_MAX) | 
 | 			continue; | 
 |  | 
 | 		WARN_ON_ONCE(numgrps == 0); | 
 |  | 
 | 		ncpus = node_groups[n].ncpus; | 
 | 		ngroups = max_t(unsigned, 1, | 
 | 				 numgrps * ncpus / remaining_ncpus); | 
 | 		WARN_ON_ONCE(ngroups > ncpus); | 
 |  | 
 | 		node_groups[n].ngroups = ngroups; | 
 |  | 
 | 		remaining_ncpus -= ncpus; | 
 | 		numgrps -= ngroups; | 
 | 	} | 
 | } | 
 |  | 
 | static int __group_cpus_evenly(unsigned int startgrp, unsigned int numgrps, | 
 | 			       cpumask_var_t *node_to_cpumask, | 
 | 			       const struct cpumask *cpu_mask, | 
 | 			       struct cpumask *nmsk, struct cpumask *masks) | 
 | { | 
 | 	unsigned int i, n, nodes, cpus_per_grp, extra_grps, done = 0; | 
 | 	unsigned int last_grp = numgrps; | 
 | 	unsigned int curgrp = startgrp; | 
 | 	nodemask_t nodemsk = NODE_MASK_NONE; | 
 | 	struct node_groups *node_groups; | 
 |  | 
 | 	if (cpumask_empty(cpu_mask)) | 
 | 		return 0; | 
 |  | 
 | 	nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk); | 
 |  | 
 | 	/* | 
 | 	 * If the number of nodes in the mask is greater than or equal the | 
 | 	 * number of groups we just spread the groups across the nodes. | 
 | 	 */ | 
 | 	if (numgrps <= nodes) { | 
 | 		for_each_node_mask(n, nodemsk) { | 
 | 			/* Ensure that only CPUs which are in both masks are set */ | 
 | 			cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); | 
 | 			cpumask_or(&masks[curgrp], &masks[curgrp], nmsk); | 
 | 			if (++curgrp == last_grp) | 
 | 				curgrp = 0; | 
 | 		} | 
 | 		return numgrps; | 
 | 	} | 
 |  | 
 | 	node_groups = kcalloc(nr_node_ids, | 
 | 			       sizeof(struct node_groups), | 
 | 			       GFP_KERNEL); | 
 | 	if (!node_groups) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* allocate group number for each node */ | 
 | 	alloc_nodes_groups(numgrps, node_to_cpumask, cpu_mask, | 
 | 			   nodemsk, nmsk, node_groups); | 
 | 	for (i = 0; i < nr_node_ids; i++) { | 
 | 		unsigned int ncpus, v; | 
 | 		struct node_groups *nv = &node_groups[i]; | 
 |  | 
 | 		if (nv->ngroups == UINT_MAX) | 
 | 			continue; | 
 |  | 
 | 		/* Get the cpus on this node which are in the mask */ | 
 | 		cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]); | 
 | 		ncpus = cpumask_weight(nmsk); | 
 | 		if (!ncpus) | 
 | 			continue; | 
 |  | 
 | 		WARN_ON_ONCE(nv->ngroups > ncpus); | 
 |  | 
 | 		/* Account for rounding errors */ | 
 | 		extra_grps = ncpus - nv->ngroups * (ncpus / nv->ngroups); | 
 |  | 
 | 		/* Spread allocated groups on CPUs of the current node */ | 
 | 		for (v = 0; v < nv->ngroups; v++, curgrp++) { | 
 | 			cpus_per_grp = ncpus / nv->ngroups; | 
 |  | 
 | 			/* Account for extra groups to compensate rounding errors */ | 
 | 			if (extra_grps) { | 
 | 				cpus_per_grp++; | 
 | 				--extra_grps; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * wrapping has to be considered given 'startgrp' | 
 | 			 * may start anywhere | 
 | 			 */ | 
 | 			if (curgrp >= last_grp) | 
 | 				curgrp = 0; | 
 | 			grp_spread_init_one(&masks[curgrp], nmsk, | 
 | 						cpus_per_grp); | 
 | 		} | 
 | 		done += nv->ngroups; | 
 | 	} | 
 | 	kfree(node_groups); | 
 | 	return done; | 
 | } | 
 |  | 
 | /** | 
 |  * group_cpus_evenly - Group all CPUs evenly per NUMA/CPU locality | 
 |  * @numgrps: number of groups | 
 |  * @nummasks: number of initialized cpumasks | 
 |  * | 
 |  * Return: cpumask array if successful, NULL otherwise. And each element | 
 |  * includes CPUs assigned to this group. nummasks contains the number | 
 |  * of initialized masks which can be less than numgrps. | 
 |  * | 
 |  * Try to put close CPUs from viewpoint of CPU and NUMA locality into | 
 |  * same group, and run two-stage grouping: | 
 |  *	1) allocate present CPUs on these groups evenly first | 
 |  *	2) allocate other possible CPUs on these groups evenly | 
 |  * | 
 |  * We guarantee in the resulted grouping that all CPUs are covered, and | 
 |  * no same CPU is assigned to multiple groups | 
 |  */ | 
 | struct cpumask *group_cpus_evenly(unsigned int numgrps, unsigned int *nummasks) | 
 | { | 
 | 	unsigned int curgrp = 0, nr_present = 0, nr_others = 0; | 
 | 	cpumask_var_t *node_to_cpumask; | 
 | 	cpumask_var_t nmsk, npresmsk; | 
 | 	int ret = -ENOMEM; | 
 | 	struct cpumask *masks = NULL; | 
 |  | 
 | 	if (numgrps == 0) | 
 | 		return NULL; | 
 |  | 
 | 	if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL)) | 
 | 		return NULL; | 
 |  | 
 | 	if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL)) | 
 | 		goto fail_nmsk; | 
 |  | 
 | 	node_to_cpumask = alloc_node_to_cpumask(); | 
 | 	if (!node_to_cpumask) | 
 | 		goto fail_npresmsk; | 
 |  | 
 | 	masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL); | 
 | 	if (!masks) | 
 | 		goto fail_node_to_cpumask; | 
 |  | 
 | 	build_node_to_cpumask(node_to_cpumask); | 
 |  | 
 | 	/* | 
 | 	 * Make a local cache of 'cpu_present_mask', so the two stages | 
 | 	 * spread can observe consistent 'cpu_present_mask' without holding | 
 | 	 * cpu hotplug lock, then we can reduce deadlock risk with cpu | 
 | 	 * hotplug code. | 
 | 	 * | 
 | 	 * Here CPU hotplug may happen when reading `cpu_present_mask`, and | 
 | 	 * we can live with the case because it only affects that hotplug | 
 | 	 * CPU is handled in the 1st or 2nd stage, and either way is correct | 
 | 	 * from API user viewpoint since 2-stage spread is sort of | 
 | 	 * optimization. | 
 | 	 */ | 
 | 	cpumask_copy(npresmsk, data_race(cpu_present_mask)); | 
 |  | 
 | 	/* grouping present CPUs first */ | 
 | 	ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask, | 
 | 				  npresmsk, nmsk, masks); | 
 | 	if (ret < 0) | 
 | 		goto fail_node_to_cpumask; | 
 | 	nr_present = ret; | 
 |  | 
 | 	/* | 
 | 	 * Allocate non present CPUs starting from the next group to be | 
 | 	 * handled. If the grouping of present CPUs already exhausted the | 
 | 	 * group space, assign the non present CPUs to the already | 
 | 	 * allocated out groups. | 
 | 	 */ | 
 | 	if (nr_present >= numgrps) | 
 | 		curgrp = 0; | 
 | 	else | 
 | 		curgrp = nr_present; | 
 | 	cpumask_andnot(npresmsk, cpu_possible_mask, npresmsk); | 
 | 	ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask, | 
 | 				  npresmsk, nmsk, masks); | 
 | 	if (ret >= 0) | 
 | 		nr_others = ret; | 
 |  | 
 |  fail_node_to_cpumask: | 
 | 	free_node_to_cpumask(node_to_cpumask); | 
 |  | 
 |  fail_npresmsk: | 
 | 	free_cpumask_var(npresmsk); | 
 |  | 
 |  fail_nmsk: | 
 | 	free_cpumask_var(nmsk); | 
 | 	if (ret < 0) { | 
 | 		kfree(masks); | 
 | 		return NULL; | 
 | 	} | 
 | 	*nummasks = min(nr_present + nr_others, numgrps); | 
 | 	return masks; | 
 | } | 
 | #else /* CONFIG_SMP */ | 
 | struct cpumask *group_cpus_evenly(unsigned int numgrps, unsigned int *nummasks) | 
 | { | 
 | 	struct cpumask *masks; | 
 |  | 
 | 	if (numgrps == 0) | 
 | 		return NULL; | 
 |  | 
 | 	masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL); | 
 | 	if (!masks) | 
 | 		return NULL; | 
 |  | 
 | 	/* assign all CPUs(cpu 0) to the 1st group only */ | 
 | 	cpumask_copy(&masks[0], cpu_possible_mask); | 
 | 	*nummasks = 1; | 
 | 	return masks; | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 | EXPORT_SYMBOL_GPL(group_cpus_evenly); |