| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * background writeback - scan btree for dirty data and write it to the backing | 
 |  * device | 
 |  * | 
 |  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> | 
 |  * Copyright 2012 Google, Inc. | 
 |  */ | 
 |  | 
 | #include "bcache.h" | 
 | #include "btree.h" | 
 | #include "debug.h" | 
 | #include "writeback.h" | 
 |  | 
 | #include <linux/delay.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/sched/clock.h> | 
 | #include <trace/events/bcache.h> | 
 |  | 
 | /* Rate limiting */ | 
 | static uint64_t __calc_target_rate(struct cached_dev *dc) | 
 | { | 
 | 	struct cache_set *c = dc->disk.c; | 
 |  | 
 | 	/* | 
 | 	 * This is the size of the cache, minus the amount used for | 
 | 	 * flash-only devices | 
 | 	 */ | 
 | 	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size - | 
 | 				bcache_flash_devs_sectors_dirty(c); | 
 |  | 
 | 	/* | 
 | 	 * Unfortunately there is no control of global dirty data.  If the | 
 | 	 * user states that they want 10% dirty data in the cache, and has, | 
 | 	 * e.g., 5 backing volumes of equal size, we try and ensure each | 
 | 	 * backing volume uses about 2% of the cache for dirty data. | 
 | 	 */ | 
 | 	uint32_t bdev_share = | 
 | 		div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT, | 
 | 				c->cached_dev_sectors); | 
 |  | 
 | 	uint64_t cache_dirty_target = | 
 | 		div_u64(cache_sectors * dc->writeback_percent, 100); | 
 |  | 
 | 	/* Ensure each backing dev gets at least one dirty share */ | 
 | 	if (bdev_share < 1) | 
 | 		bdev_share = 1; | 
 |  | 
 | 	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT; | 
 | } | 
 |  | 
 | static void __update_writeback_rate(struct cached_dev *dc) | 
 | { | 
 | 	/* | 
 | 	 * PI controller: | 
 | 	 * Figures out the amount that should be written per second. | 
 | 	 * | 
 | 	 * First, the error (number of sectors that are dirty beyond our | 
 | 	 * target) is calculated.  The error is accumulated (numerically | 
 | 	 * integrated). | 
 | 	 * | 
 | 	 * Then, the proportional value and integral value are scaled | 
 | 	 * based on configured values.  These are stored as inverses to | 
 | 	 * avoid fixed point math and to make configuration easy-- e.g. | 
 | 	 * the default value of 40 for writeback_rate_p_term_inverse | 
 | 	 * attempts to write at a rate that would retire all the dirty | 
 | 	 * blocks in 40 seconds. | 
 | 	 * | 
 | 	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th | 
 | 	 * of the error is accumulated in the integral term per second. | 
 | 	 * This acts as a slow, long-term average that is not subject to | 
 | 	 * variations in usage like the p term. | 
 | 	 */ | 
 | 	int64_t target = __calc_target_rate(dc); | 
 | 	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk); | 
 | 	int64_t error = dirty - target; | 
 | 	int64_t proportional_scaled = | 
 | 		div_s64(error, dc->writeback_rate_p_term_inverse); | 
 | 	int64_t integral_scaled; | 
 | 	uint32_t new_rate; | 
 |  | 
 | 	if ((error < 0 && dc->writeback_rate_integral > 0) || | 
 | 	    (error > 0 && time_before64(local_clock(), | 
 | 			 dc->writeback_rate.next + NSEC_PER_MSEC))) { | 
 | 		/* | 
 | 		 * Only decrease the integral term if it's more than | 
 | 		 * zero.  Only increase the integral term if the device | 
 | 		 * is keeping up.  (Don't wind up the integral | 
 | 		 * ineffectively in either case). | 
 | 		 * | 
 | 		 * It's necessary to scale this by | 
 | 		 * writeback_rate_update_seconds to keep the integral | 
 | 		 * term dimensioned properly. | 
 | 		 */ | 
 | 		dc->writeback_rate_integral += error * | 
 | 			dc->writeback_rate_update_seconds; | 
 | 	} | 
 |  | 
 | 	integral_scaled = div_s64(dc->writeback_rate_integral, | 
 | 			dc->writeback_rate_i_term_inverse); | 
 |  | 
 | 	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled), | 
 | 			dc->writeback_rate_minimum, NSEC_PER_SEC); | 
 |  | 
 | 	dc->writeback_rate_proportional = proportional_scaled; | 
 | 	dc->writeback_rate_integral_scaled = integral_scaled; | 
 | 	dc->writeback_rate_change = new_rate - dc->writeback_rate.rate; | 
 | 	dc->writeback_rate.rate = new_rate; | 
 | 	dc->writeback_rate_target = target; | 
 | } | 
 |  | 
 | static void update_writeback_rate(struct work_struct *work) | 
 | { | 
 | 	struct cached_dev *dc = container_of(to_delayed_work(work), | 
 | 					     struct cached_dev, | 
 | 					     writeback_rate_update); | 
 | 	struct cache_set *c = dc->disk.c; | 
 |  | 
 | 	/* | 
 | 	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling | 
 | 	 * cancel_delayed_work_sync(). | 
 | 	 */ | 
 | 	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); | 
 | 	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ | 
 | 	smp_mb(); | 
 |  | 
 | 	/* | 
 | 	 * CACHE_SET_IO_DISABLE might be set via sysfs interface, | 
 | 	 * check it here too. | 
 | 	 */ | 
 | 	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) || | 
 | 	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { | 
 | 		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); | 
 | 		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ | 
 | 		smp_mb(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	down_read(&dc->writeback_lock); | 
 |  | 
 | 	if (atomic_read(&dc->has_dirty) && | 
 | 	    dc->writeback_percent) | 
 | 		__update_writeback_rate(dc); | 
 |  | 
 | 	up_read(&dc->writeback_lock); | 
 |  | 
 | 	/* | 
 | 	 * CACHE_SET_IO_DISABLE might be set via sysfs interface, | 
 | 	 * check it here too. | 
 | 	 */ | 
 | 	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) && | 
 | 	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { | 
 | 		schedule_delayed_work(&dc->writeback_rate_update, | 
 | 			      dc->writeback_rate_update_seconds * HZ); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling | 
 | 	 * cancel_delayed_work_sync(). | 
 | 	 */ | 
 | 	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); | 
 | 	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ | 
 | 	smp_mb(); | 
 | } | 
 |  | 
 | static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors) | 
 | { | 
 | 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || | 
 | 	    !dc->writeback_percent) | 
 | 		return 0; | 
 |  | 
 | 	return bch_next_delay(&dc->writeback_rate, sectors); | 
 | } | 
 |  | 
 | struct dirty_io { | 
 | 	struct closure		cl; | 
 | 	struct cached_dev	*dc; | 
 | 	uint16_t		sequence; | 
 | 	struct bio		bio; | 
 | }; | 
 |  | 
 | static void dirty_init(struct keybuf_key *w) | 
 | { | 
 | 	struct dirty_io *io = w->private; | 
 | 	struct bio *bio = &io->bio; | 
 |  | 
 | 	bio_init(bio, bio->bi_inline_vecs, | 
 | 		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)); | 
 | 	if (!io->dc->writeback_percent) | 
 | 		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); | 
 |  | 
 | 	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9; | 
 | 	bio->bi_private		= w; | 
 | 	bch_bio_map(bio, NULL); | 
 | } | 
 |  | 
 | static void dirty_io_destructor(struct closure *cl) | 
 | { | 
 | 	struct dirty_io *io = container_of(cl, struct dirty_io, cl); | 
 | 	kfree(io); | 
 | } | 
 |  | 
 | static void write_dirty_finish(struct closure *cl) | 
 | { | 
 | 	struct dirty_io *io = container_of(cl, struct dirty_io, cl); | 
 | 	struct keybuf_key *w = io->bio.bi_private; | 
 | 	struct cached_dev *dc = io->dc; | 
 |  | 
 | 	bio_free_pages(&io->bio); | 
 |  | 
 | 	/* This is kind of a dumb way of signalling errors. */ | 
 | 	if (KEY_DIRTY(&w->key)) { | 
 | 		int ret; | 
 | 		unsigned i; | 
 | 		struct keylist keys; | 
 |  | 
 | 		bch_keylist_init(&keys); | 
 |  | 
 | 		bkey_copy(keys.top, &w->key); | 
 | 		SET_KEY_DIRTY(keys.top, false); | 
 | 		bch_keylist_push(&keys); | 
 |  | 
 | 		for (i = 0; i < KEY_PTRS(&w->key); i++) | 
 | 			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin); | 
 |  | 
 | 		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key); | 
 |  | 
 | 		if (ret) | 
 | 			trace_bcache_writeback_collision(&w->key); | 
 |  | 
 | 		atomic_long_inc(ret | 
 | 				? &dc->disk.c->writeback_keys_failed | 
 | 				: &dc->disk.c->writeback_keys_done); | 
 | 	} | 
 |  | 
 | 	bch_keybuf_del(&dc->writeback_keys, w); | 
 | 	up(&dc->in_flight); | 
 |  | 
 | 	closure_return_with_destructor(cl, dirty_io_destructor); | 
 | } | 
 |  | 
 | static void dirty_endio(struct bio *bio) | 
 | { | 
 | 	struct keybuf_key *w = bio->bi_private; | 
 | 	struct dirty_io *io = w->private; | 
 |  | 
 | 	if (bio->bi_status) | 
 | 		SET_KEY_DIRTY(&w->key, false); | 
 |  | 
 | 	closure_put(&io->cl); | 
 | } | 
 |  | 
 | static void write_dirty(struct closure *cl) | 
 | { | 
 | 	struct dirty_io *io = container_of(cl, struct dirty_io, cl); | 
 | 	struct keybuf_key *w = io->bio.bi_private; | 
 | 	struct cached_dev *dc = io->dc; | 
 |  | 
 | 	uint16_t next_sequence; | 
 |  | 
 | 	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) { | 
 | 		/* Not our turn to write; wait for a write to complete */ | 
 | 		closure_wait(&dc->writeback_ordering_wait, cl); | 
 |  | 
 | 		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) { | 
 | 			/* | 
 | 			 * Edge case-- it happened in indeterminate order | 
 | 			 * relative to when we were added to wait list.. | 
 | 			 */ | 
 | 			closure_wake_up(&dc->writeback_ordering_wait); | 
 | 		} | 
 |  | 
 | 		continue_at(cl, write_dirty, io->dc->writeback_write_wq); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	next_sequence = io->sequence + 1; | 
 |  | 
 | 	/* | 
 | 	 * IO errors are signalled using the dirty bit on the key. | 
 | 	 * If we failed to read, we should not attempt to write to the | 
 | 	 * backing device.  Instead, immediately go to write_dirty_finish | 
 | 	 * to clean up. | 
 | 	 */ | 
 | 	if (KEY_DIRTY(&w->key)) { | 
 | 		dirty_init(w); | 
 | 		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0); | 
 | 		io->bio.bi_iter.bi_sector = KEY_START(&w->key); | 
 | 		bio_set_dev(&io->bio, io->dc->bdev); | 
 | 		io->bio.bi_end_io	= dirty_endio; | 
 |  | 
 | 		/* I/O request sent to backing device */ | 
 | 		closure_bio_submit(io->dc->disk.c, &io->bio, cl); | 
 | 	} | 
 |  | 
 | 	atomic_set(&dc->writeback_sequence_next, next_sequence); | 
 | 	closure_wake_up(&dc->writeback_ordering_wait); | 
 |  | 
 | 	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq); | 
 | } | 
 |  | 
 | static void read_dirty_endio(struct bio *bio) | 
 | { | 
 | 	struct keybuf_key *w = bio->bi_private; | 
 | 	struct dirty_io *io = w->private; | 
 |  | 
 | 	/* is_read = 1 */ | 
 | 	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0), | 
 | 			    bio->bi_status, 1, | 
 | 			    "reading dirty data from cache"); | 
 |  | 
 | 	dirty_endio(bio); | 
 | } | 
 |  | 
 | static void read_dirty_submit(struct closure *cl) | 
 | { | 
 | 	struct dirty_io *io = container_of(cl, struct dirty_io, cl); | 
 |  | 
 | 	closure_bio_submit(io->dc->disk.c, &io->bio, cl); | 
 |  | 
 | 	continue_at(cl, write_dirty, io->dc->writeback_write_wq); | 
 | } | 
 |  | 
 | static void read_dirty(struct cached_dev *dc) | 
 | { | 
 | 	unsigned delay = 0; | 
 | 	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w; | 
 | 	size_t size; | 
 | 	int nk, i; | 
 | 	struct dirty_io *io; | 
 | 	struct closure cl; | 
 | 	uint16_t sequence = 0; | 
 |  | 
 | 	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list)); | 
 | 	atomic_set(&dc->writeback_sequence_next, sequence); | 
 | 	closure_init_stack(&cl); | 
 |  | 
 | 	/* | 
 | 	 * XXX: if we error, background writeback just spins. Should use some | 
 | 	 * mempools. | 
 | 	 */ | 
 |  | 
 | 	next = bch_keybuf_next(&dc->writeback_keys); | 
 |  | 
 | 	while (!kthread_should_stop() && | 
 | 	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && | 
 | 	       next) { | 
 | 		size = 0; | 
 | 		nk = 0; | 
 |  | 
 | 		do { | 
 | 			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0)); | 
 |  | 
 | 			/* | 
 | 			 * Don't combine too many operations, even if they | 
 | 			 * are all small. | 
 | 			 */ | 
 | 			if (nk >= MAX_WRITEBACKS_IN_PASS) | 
 | 				break; | 
 |  | 
 | 			/* | 
 | 			 * If the current operation is very large, don't | 
 | 			 * further combine operations. | 
 | 			 */ | 
 | 			if (size >= MAX_WRITESIZE_IN_PASS) | 
 | 				break; | 
 |  | 
 | 			/* | 
 | 			 * Operations are only eligible to be combined | 
 | 			 * if they are contiguous. | 
 | 			 * | 
 | 			 * TODO: add a heuristic willing to fire a | 
 | 			 * certain amount of non-contiguous IO per pass, | 
 | 			 * so that we can benefit from backing device | 
 | 			 * command queueing. | 
 | 			 */ | 
 | 			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key, | 
 | 						&START_KEY(&next->key))) | 
 | 				break; | 
 |  | 
 | 			size += KEY_SIZE(&next->key); | 
 | 			keys[nk++] = next; | 
 | 		} while ((next = bch_keybuf_next(&dc->writeback_keys))); | 
 |  | 
 | 		/* Now we have gathered a set of 1..5 keys to write back. */ | 
 | 		for (i = 0; i < nk; i++) { | 
 | 			w = keys[i]; | 
 |  | 
 | 			io = kzalloc(sizeof(struct dirty_io) + | 
 | 				     sizeof(struct bio_vec) * | 
 | 				     DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), | 
 | 				     GFP_KERNEL); | 
 | 			if (!io) | 
 | 				goto err; | 
 |  | 
 | 			w->private	= io; | 
 | 			io->dc		= dc; | 
 | 			io->sequence    = sequence++; | 
 |  | 
 | 			dirty_init(w); | 
 | 			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0); | 
 | 			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0); | 
 | 			bio_set_dev(&io->bio, | 
 | 				    PTR_CACHE(dc->disk.c, &w->key, 0)->bdev); | 
 | 			io->bio.bi_end_io	= read_dirty_endio; | 
 |  | 
 | 			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL)) | 
 | 				goto err_free; | 
 |  | 
 | 			trace_bcache_writeback(&w->key); | 
 |  | 
 | 			down(&dc->in_flight); | 
 |  | 
 | 			/* We've acquired a semaphore for the maximum | 
 | 			 * simultaneous number of writebacks; from here | 
 | 			 * everything happens asynchronously. | 
 | 			 */ | 
 | 			closure_call(&io->cl, read_dirty_submit, NULL, &cl); | 
 | 		} | 
 |  | 
 | 		delay = writeback_delay(dc, size); | 
 |  | 
 | 		/* If the control system would wait for at least half a | 
 | 		 * second, and there's been no reqs hitting the backing disk | 
 | 		 * for awhile: use an alternate mode where we have at most | 
 | 		 * one contiguous set of writebacks in flight at a time.  If | 
 | 		 * someone wants to do IO it will be quick, as it will only | 
 | 		 * have to contend with one operation in flight, and we'll | 
 | 		 * be round-tripping data to the backing disk as quickly as | 
 | 		 * it can accept it. | 
 | 		 */ | 
 | 		if (delay >= HZ / 2) { | 
 | 			/* 3 means at least 1.5 seconds, up to 7.5 if we | 
 | 			 * have slowed way down. | 
 | 			 */ | 
 | 			if (atomic_inc_return(&dc->backing_idle) >= 3) { | 
 | 				/* Wait for current I/Os to finish */ | 
 | 				closure_sync(&cl); | 
 | 				/* And immediately launch a new set. */ | 
 | 				delay = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		while (!kthread_should_stop() && | 
 | 		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && | 
 | 		       delay) { | 
 | 			schedule_timeout_interruptible(delay); | 
 | 			delay = writeback_delay(dc, 0); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (0) { | 
 | err_free: | 
 | 		kfree(w->private); | 
 | err: | 
 | 		bch_keybuf_del(&dc->writeback_keys, w); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be | 
 | 	 * freed) before refilling again | 
 | 	 */ | 
 | 	closure_sync(&cl); | 
 | } | 
 |  | 
 | /* Scan for dirty data */ | 
 |  | 
 | void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode, | 
 | 				  uint64_t offset, int nr_sectors) | 
 | { | 
 | 	struct bcache_device *d = c->devices[inode]; | 
 | 	unsigned stripe_offset, stripe, sectors_dirty; | 
 |  | 
 | 	if (!d) | 
 | 		return; | 
 |  | 
 | 	stripe = offset_to_stripe(d, offset); | 
 | 	stripe_offset = offset & (d->stripe_size - 1); | 
 |  | 
 | 	while (nr_sectors) { | 
 | 		int s = min_t(unsigned, abs(nr_sectors), | 
 | 			      d->stripe_size - stripe_offset); | 
 |  | 
 | 		if (nr_sectors < 0) | 
 | 			s = -s; | 
 |  | 
 | 		if (stripe >= d->nr_stripes) | 
 | 			return; | 
 |  | 
 | 		sectors_dirty = atomic_add_return(s, | 
 | 					d->stripe_sectors_dirty + stripe); | 
 | 		if (sectors_dirty == d->stripe_size) | 
 | 			set_bit(stripe, d->full_dirty_stripes); | 
 | 		else | 
 | 			clear_bit(stripe, d->full_dirty_stripes); | 
 |  | 
 | 		nr_sectors -= s; | 
 | 		stripe_offset = 0; | 
 | 		stripe++; | 
 | 	} | 
 | } | 
 |  | 
 | static bool dirty_pred(struct keybuf *buf, struct bkey *k) | 
 | { | 
 | 	struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys); | 
 |  | 
 | 	BUG_ON(KEY_INODE(k) != dc->disk.id); | 
 |  | 
 | 	return KEY_DIRTY(k); | 
 | } | 
 |  | 
 | static void refill_full_stripes(struct cached_dev *dc) | 
 | { | 
 | 	struct keybuf *buf = &dc->writeback_keys; | 
 | 	unsigned start_stripe, stripe, next_stripe; | 
 | 	bool wrapped = false; | 
 |  | 
 | 	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned)); | 
 |  | 
 | 	if (stripe >= dc->disk.nr_stripes) | 
 | 		stripe = 0; | 
 |  | 
 | 	start_stripe = stripe; | 
 |  | 
 | 	while (1) { | 
 | 		stripe = find_next_bit(dc->disk.full_dirty_stripes, | 
 | 				       dc->disk.nr_stripes, stripe); | 
 |  | 
 | 		if (stripe == dc->disk.nr_stripes) | 
 | 			goto next; | 
 |  | 
 | 		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes, | 
 | 						 dc->disk.nr_stripes, stripe); | 
 |  | 
 | 		buf->last_scanned = KEY(dc->disk.id, | 
 | 					stripe * dc->disk.stripe_size, 0); | 
 |  | 
 | 		bch_refill_keybuf(dc->disk.c, buf, | 
 | 				  &KEY(dc->disk.id, | 
 | 				       next_stripe * dc->disk.stripe_size, 0), | 
 | 				  dirty_pred); | 
 |  | 
 | 		if (array_freelist_empty(&buf->freelist)) | 
 | 			return; | 
 |  | 
 | 		stripe = next_stripe; | 
 | next: | 
 | 		if (wrapped && stripe > start_stripe) | 
 | 			return; | 
 |  | 
 | 		if (stripe == dc->disk.nr_stripes) { | 
 | 			stripe = 0; | 
 | 			wrapped = true; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if we scanned the entire disk | 
 |  */ | 
 | static bool refill_dirty(struct cached_dev *dc) | 
 | { | 
 | 	struct keybuf *buf = &dc->writeback_keys; | 
 | 	struct bkey start = KEY(dc->disk.id, 0, 0); | 
 | 	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0); | 
 | 	struct bkey start_pos; | 
 |  | 
 | 	/* | 
 | 	 * make sure keybuf pos is inside the range for this disk - at bringup | 
 | 	 * we might not be attached yet so this disk's inode nr isn't | 
 | 	 * initialized then | 
 | 	 */ | 
 | 	if (bkey_cmp(&buf->last_scanned, &start) < 0 || | 
 | 	    bkey_cmp(&buf->last_scanned, &end) > 0) | 
 | 		buf->last_scanned = start; | 
 |  | 
 | 	if (dc->partial_stripes_expensive) { | 
 | 		refill_full_stripes(dc); | 
 | 		if (array_freelist_empty(&buf->freelist)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	start_pos = buf->last_scanned; | 
 | 	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred); | 
 |  | 
 | 	if (bkey_cmp(&buf->last_scanned, &end) < 0) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * If we get to the end start scanning again from the beginning, and | 
 | 	 * only scan up to where we initially started scanning from: | 
 | 	 */ | 
 | 	buf->last_scanned = start; | 
 | 	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred); | 
 |  | 
 | 	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0; | 
 | } | 
 |  | 
 | static int bch_writeback_thread(void *arg) | 
 | { | 
 | 	struct cached_dev *dc = arg; | 
 | 	struct cache_set *c = dc->disk.c; | 
 | 	bool searched_full_index; | 
 |  | 
 | 	bch_ratelimit_reset(&dc->writeback_rate); | 
 |  | 
 | 	while (!kthread_should_stop() && | 
 | 	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { | 
 | 		down_write(&dc->writeback_lock); | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 | 		/* | 
 | 		 * If the bache device is detaching, skip here and continue | 
 | 		 * to perform writeback. Otherwise, if no dirty data on cache, | 
 | 		 * or there is dirty data on cache but writeback is disabled, | 
 | 		 * the writeback thread should sleep here and wait for others | 
 | 		 * to wake up it. | 
 | 		 */ | 
 | 		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && | 
 | 		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) { | 
 | 			up_write(&dc->writeback_lock); | 
 |  | 
 | 			if (kthread_should_stop() || | 
 | 			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { | 
 | 				set_current_state(TASK_RUNNING); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			schedule(); | 
 | 			continue; | 
 | 		} | 
 | 		set_current_state(TASK_RUNNING); | 
 |  | 
 | 		searched_full_index = refill_dirty(dc); | 
 |  | 
 | 		if (searched_full_index && | 
 | 		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) { | 
 | 			atomic_set(&dc->has_dirty, 0); | 
 | 			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); | 
 | 			bch_write_bdev_super(dc, NULL); | 
 | 			/* | 
 | 			 * If bcache device is detaching via sysfs interface, | 
 | 			 * writeback thread should stop after there is no dirty | 
 | 			 * data on cache. BCACHE_DEV_DETACHING flag is set in | 
 | 			 * bch_cached_dev_detach(). | 
 | 			 */ | 
 | 			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		up_write(&dc->writeback_lock); | 
 |  | 
 | 		read_dirty(dc); | 
 |  | 
 | 		if (searched_full_index) { | 
 | 			unsigned delay = dc->writeback_delay * HZ; | 
 |  | 
 | 			while (delay && | 
 | 			       !kthread_should_stop() && | 
 | 			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) && | 
 | 			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) | 
 | 				delay = schedule_timeout_interruptible(delay); | 
 |  | 
 | 			bch_ratelimit_reset(&dc->writeback_rate); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cached_dev_put(dc); | 
 | 	wait_for_kthread_stop(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Init */ | 
 |  | 
 | struct sectors_dirty_init { | 
 | 	struct btree_op	op; | 
 | 	unsigned	inode; | 
 | }; | 
 |  | 
 | static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b, | 
 | 				 struct bkey *k) | 
 | { | 
 | 	struct sectors_dirty_init *op = container_of(_op, | 
 | 						struct sectors_dirty_init, op); | 
 | 	if (KEY_INODE(k) > op->inode) | 
 | 		return MAP_DONE; | 
 |  | 
 | 	if (KEY_DIRTY(k)) | 
 | 		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), | 
 | 					     KEY_START(k), KEY_SIZE(k)); | 
 |  | 
 | 	return MAP_CONTINUE; | 
 | } | 
 |  | 
 | void bch_sectors_dirty_init(struct bcache_device *d) | 
 | { | 
 | 	struct sectors_dirty_init op; | 
 |  | 
 | 	bch_btree_op_init(&op.op, -1); | 
 | 	op.inode = d->id; | 
 |  | 
 | 	bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0), | 
 | 			   sectors_dirty_init_fn, 0); | 
 | } | 
 |  | 
 | void bch_cached_dev_writeback_init(struct cached_dev *dc) | 
 | { | 
 | 	sema_init(&dc->in_flight, 64); | 
 | 	init_rwsem(&dc->writeback_lock); | 
 | 	bch_keybuf_init(&dc->writeback_keys); | 
 |  | 
 | 	dc->writeback_metadata		= true; | 
 | 	dc->writeback_running		= true; | 
 | 	dc->writeback_percent		= 10; | 
 | 	dc->writeback_delay		= 30; | 
 | 	dc->writeback_rate.rate		= 1024; | 
 | 	dc->writeback_rate_minimum	= 8; | 
 |  | 
 | 	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT; | 
 | 	dc->writeback_rate_p_term_inverse = 40; | 
 | 	dc->writeback_rate_i_term_inverse = 10000; | 
 |  | 
 | 	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); | 
 | 	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate); | 
 | } | 
 |  | 
 | int bch_cached_dev_writeback_start(struct cached_dev *dc) | 
 | { | 
 | 	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq", | 
 | 						WQ_MEM_RECLAIM, 0); | 
 | 	if (!dc->writeback_write_wq) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cached_dev_get(dc); | 
 | 	dc->writeback_thread = kthread_create(bch_writeback_thread, dc, | 
 | 					      "bcache_writeback"); | 
 | 	if (IS_ERR(dc->writeback_thread)) { | 
 | 		cached_dev_put(dc); | 
 | 		return PTR_ERR(dc->writeback_thread); | 
 | 	} | 
 |  | 
 | 	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); | 
 | 	schedule_delayed_work(&dc->writeback_rate_update, | 
 | 			      dc->writeback_rate_update_seconds * HZ); | 
 |  | 
 | 	bch_writeback_queue(dc); | 
 |  | 
 | 	return 0; | 
 | } |