|  | /* | 
|  | *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver | 
|  | * | 
|  | *   Copyright (C) 2010-2013 Mauro Carvalho Chehab | 
|  | *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com> | 
|  | * | 
|  | *   This program is free software; you can redistribute it and/or | 
|  | *   modify it under the terms of the GNU General Public License as | 
|  | *   published by the Free Software Foundation version 2. | 
|  | * | 
|  | *   This program is distributed in the hope that it will be useful, | 
|  | *   but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | *   General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <asm/div64.h> | 
|  |  | 
|  | #include <media/dvb_frontend.h> | 
|  | #include "mb86a20s.h" | 
|  |  | 
|  | #define NUM_LAYERS 3 | 
|  |  | 
|  | enum mb86a20s_bandwidth { | 
|  | MB86A20S_13SEG = 0, | 
|  | MB86A20S_13SEG_PARTIAL = 1, | 
|  | MB86A20S_1SEG = 2, | 
|  | MB86A20S_3SEG = 3, | 
|  | }; | 
|  |  | 
|  | static u8 mb86a20s_subchannel[] = { | 
|  | 0xb0, 0xc0, 0xd0, 0xe0, | 
|  | 0xf0, 0x00, 0x10, 0x20, | 
|  | }; | 
|  |  | 
|  | struct mb86a20s_state { | 
|  | struct i2c_adapter *i2c; | 
|  | const struct mb86a20s_config *config; | 
|  | u32 last_frequency; | 
|  |  | 
|  | struct dvb_frontend frontend; | 
|  |  | 
|  | u32 if_freq; | 
|  | enum mb86a20s_bandwidth bw; | 
|  | bool inversion; | 
|  | u32 subchannel; | 
|  |  | 
|  | u32 estimated_rate[NUM_LAYERS]; | 
|  | unsigned long get_strength_time; | 
|  |  | 
|  | bool need_init; | 
|  | }; | 
|  |  | 
|  | struct regdata { | 
|  | u8 reg; | 
|  | u8 data; | 
|  | }; | 
|  |  | 
|  | #define BER_SAMPLING_RATE	1	/* Seconds */ | 
|  |  | 
|  | /* | 
|  | * Initialization sequence: Use whatevere default values that PV SBTVD | 
|  | * does on its initialisation, obtained via USB snoop | 
|  | */ | 
|  | static struct regdata mb86a20s_init1[] = { | 
|  | { 0x70, 0x0f }, | 
|  | { 0x70, 0xff }, | 
|  | { 0x08, 0x01 }, | 
|  | { 0x50, 0xd1 }, { 0x51, 0x20 }, | 
|  | }; | 
|  |  | 
|  | static struct regdata mb86a20s_init2[] = { | 
|  | { 0x50, 0xd1 }, { 0x51, 0x22 }, | 
|  | { 0x39, 0x01 }, | 
|  | { 0x71, 0x00 }, | 
|  | { 0x3b, 0x21 }, | 
|  | { 0x3c, 0x3a }, | 
|  | { 0x01, 0x0d }, | 
|  | { 0x04, 0x08 }, { 0x05, 0x05 }, | 
|  | { 0x04, 0x0e }, { 0x05, 0x00 }, | 
|  | { 0x04, 0x0f }, { 0x05, 0x14 }, | 
|  | { 0x04, 0x0b }, { 0x05, 0x8c }, | 
|  | { 0x04, 0x00 }, { 0x05, 0x00 }, | 
|  | { 0x04, 0x01 }, { 0x05, 0x07 }, | 
|  | { 0x04, 0x02 }, { 0x05, 0x0f }, | 
|  | { 0x04, 0x03 }, { 0x05, 0xa0 }, | 
|  | { 0x04, 0x09 }, { 0x05, 0x00 }, | 
|  | { 0x04, 0x0a }, { 0x05, 0xff }, | 
|  | { 0x04, 0x27 }, { 0x05, 0x64 }, | 
|  | { 0x04, 0x28 }, { 0x05, 0x00 }, | 
|  | { 0x04, 0x1e }, { 0x05, 0xff }, | 
|  | { 0x04, 0x29 }, { 0x05, 0x0a }, | 
|  | { 0x04, 0x32 }, { 0x05, 0x0a }, | 
|  | { 0x04, 0x14 }, { 0x05, 0x02 }, | 
|  | { 0x04, 0x04 }, { 0x05, 0x00 }, | 
|  | { 0x04, 0x05 }, { 0x05, 0x22 }, | 
|  | { 0x04, 0x06 }, { 0x05, 0x0e }, | 
|  | { 0x04, 0x07 }, { 0x05, 0xd8 }, | 
|  | { 0x04, 0x12 }, { 0x05, 0x00 }, | 
|  | { 0x04, 0x13 }, { 0x05, 0xff }, | 
|  |  | 
|  | /* | 
|  | * On this demod, when the bit count reaches the count below, | 
|  | * it collects the bit error count. The bit counters are initialized | 
|  | * to 65535 here. This warrants that all of them will be quickly | 
|  | * calculated when device gets locked. As TMCC is parsed, the values | 
|  | * will be adjusted later in the driver's code. | 
|  | */ | 
|  | { 0x52, 0x01 },				/* Turn on BER before Viterbi */ | 
|  | { 0x50, 0xa7 }, { 0x51, 0x00 }, | 
|  | { 0x50, 0xa8 }, { 0x51, 0xff }, | 
|  | { 0x50, 0xa9 }, { 0x51, 0xff }, | 
|  | { 0x50, 0xaa }, { 0x51, 0x00 }, | 
|  | { 0x50, 0xab }, { 0x51, 0xff }, | 
|  | { 0x50, 0xac }, { 0x51, 0xff }, | 
|  | { 0x50, 0xad }, { 0x51, 0x00 }, | 
|  | { 0x50, 0xae }, { 0x51, 0xff }, | 
|  | { 0x50, 0xaf }, { 0x51, 0xff }, | 
|  |  | 
|  | /* | 
|  | * On this demod, post BER counts blocks. When the count reaches the | 
|  | * value below, it collects the block error count. The block counters | 
|  | * are initialized to 127 here. This warrants that all of them will be | 
|  | * quickly calculated when device gets locked. As TMCC is parsed, the | 
|  | * values will be adjusted later in the driver's code. | 
|  | */ | 
|  | { 0x5e, 0x07 },				/* Turn on BER after Viterbi */ | 
|  | { 0x50, 0xdc }, { 0x51, 0x00 }, | 
|  | { 0x50, 0xdd }, { 0x51, 0x7f }, | 
|  | { 0x50, 0xde }, { 0x51, 0x00 }, | 
|  | { 0x50, 0xdf }, { 0x51, 0x7f }, | 
|  | { 0x50, 0xe0 }, { 0x51, 0x00 }, | 
|  | { 0x50, 0xe1 }, { 0x51, 0x7f }, | 
|  |  | 
|  | /* | 
|  | * On this demod, when the block count reaches the count below, | 
|  | * it collects the block error count. The block counters are initialized | 
|  | * to 127 here. This warrants that all of them will be quickly | 
|  | * calculated when device gets locked. As TMCC is parsed, the values | 
|  | * will be adjusted later in the driver's code. | 
|  | */ | 
|  | { 0x50, 0xb0 }, { 0x51, 0x07 },		/* Enable PER */ | 
|  | { 0x50, 0xb2 }, { 0x51, 0x00 }, | 
|  | { 0x50, 0xb3 }, { 0x51, 0x7f }, | 
|  | { 0x50, 0xb4 }, { 0x51, 0x00 }, | 
|  | { 0x50, 0xb5 }, { 0x51, 0x7f }, | 
|  | { 0x50, 0xb6 }, { 0x51, 0x00 }, | 
|  | { 0x50, 0xb7 }, { 0x51, 0x7f }, | 
|  |  | 
|  | { 0x50, 0x50 }, { 0x51, 0x02 },		/* MER manual mode */ | 
|  | { 0x50, 0x51 }, { 0x51, 0x04 },		/* MER symbol 4 */ | 
|  | { 0x45, 0x04 },				/* CN symbol 4 */ | 
|  | { 0x48, 0x04 },				/* CN manual mode */ | 
|  | { 0x50, 0xd5 }, { 0x51, 0x01 }, | 
|  | { 0x50, 0xd6 }, { 0x51, 0x1f }, | 
|  | { 0x50, 0xd2 }, { 0x51, 0x03 }, | 
|  | { 0x50, 0xd7 }, { 0x51, 0x3f }, | 
|  | { 0x1c, 0x01 }, | 
|  | { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 }, | 
|  | { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d }, | 
|  | { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 }, | 
|  | { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 }, | 
|  | { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 }, | 
|  | { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 }, | 
|  | { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 }, | 
|  | { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 }, | 
|  | { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e }, | 
|  | { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e }, | 
|  | { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 }, | 
|  | { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f }, | 
|  | { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 }, | 
|  | { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 }, | 
|  | { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe }, | 
|  | { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 }, | 
|  | { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee }, | 
|  | { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 }, | 
|  | { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f }, | 
|  | { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 }, | 
|  | { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 }, | 
|  | { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a }, | 
|  | { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc }, | 
|  | { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba }, | 
|  | { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 }, | 
|  | { 0x50, 0x1e }, { 0x51, 0x5d }, | 
|  | { 0x50, 0x22 }, { 0x51, 0x00 }, | 
|  | { 0x50, 0x23 }, { 0x51, 0xc8 }, | 
|  | { 0x50, 0x24 }, { 0x51, 0x00 }, | 
|  | { 0x50, 0x25 }, { 0x51, 0xf0 }, | 
|  | { 0x50, 0x26 }, { 0x51, 0x00 }, | 
|  | { 0x50, 0x27 }, { 0x51, 0xc3 }, | 
|  | { 0x50, 0x39 }, { 0x51, 0x02 }, | 
|  | { 0x50, 0xd5 }, { 0x51, 0x01 }, | 
|  | { 0xd0, 0x00 }, | 
|  | }; | 
|  |  | 
|  | static struct regdata mb86a20s_reset_reception[] = { | 
|  | { 0x70, 0xf0 }, | 
|  | { 0x70, 0xff }, | 
|  | { 0x08, 0x01 }, | 
|  | { 0x08, 0x00 }, | 
|  | }; | 
|  |  | 
|  | static struct regdata mb86a20s_per_ber_reset[] = { | 
|  | { 0x53, 0x00 },	/* pre BER Counter reset */ | 
|  | { 0x53, 0x07 }, | 
|  |  | 
|  | { 0x5f, 0x00 },	/* post BER Counter reset */ | 
|  | { 0x5f, 0x07 }, | 
|  |  | 
|  | { 0x50, 0xb1 },	/* PER Counter reset */ | 
|  | { 0x51, 0x07 }, | 
|  | { 0x51, 0x00 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * I2C read/write functions and macros | 
|  | */ | 
|  |  | 
|  | static int mb86a20s_i2c_writereg(struct mb86a20s_state *state, | 
|  | u8 i2c_addr, u8 reg, u8 data) | 
|  | { | 
|  | u8 buf[] = { reg, data }; | 
|  | struct i2c_msg msg = { | 
|  | .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2 | 
|  | }; | 
|  | int rc; | 
|  |  | 
|  | rc = i2c_transfer(state->i2c, &msg, 1); | 
|  | if (rc != 1) { | 
|  | dev_err(&state->i2c->dev, | 
|  | "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n", | 
|  | __func__, rc, reg, data); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state, | 
|  | u8 i2c_addr, struct regdata *rd, int size) | 
|  | { | 
|  | int i, rc; | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg, | 
|  | rd[i].data); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_i2c_readreg(struct mb86a20s_state *state, | 
|  | u8 i2c_addr, u8 reg) | 
|  | { | 
|  | u8 val; | 
|  | int rc; | 
|  | struct i2c_msg msg[] = { | 
|  | { .addr = i2c_addr, .flags = 0, .buf = ®, .len = 1 }, | 
|  | { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 } | 
|  | }; | 
|  |  | 
|  | rc = i2c_transfer(state->i2c, msg, 2); | 
|  |  | 
|  | if (rc != 2) { | 
|  | dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n", | 
|  | __func__, reg, rc); | 
|  | return (rc < 0) ? rc : -EIO; | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | #define mb86a20s_readreg(state, reg) \ | 
|  | mb86a20s_i2c_readreg(state, state->config->demod_address, reg) | 
|  | #define mb86a20s_writereg(state, reg, val) \ | 
|  | mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val) | 
|  | #define mb86a20s_writeregdata(state, regdata) \ | 
|  | mb86a20s_i2c_writeregdata(state, state->config->demod_address, \ | 
|  | regdata, ARRAY_SIZE(regdata)) | 
|  |  | 
|  | /* | 
|  | * Ancillary internal routines (likely compiled inlined) | 
|  | * | 
|  | * The functions below assume that gateway lock has already obtained | 
|  | */ | 
|  |  | 
|  | static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | int val; | 
|  |  | 
|  | *status = 0; | 
|  |  | 
|  | val = mb86a20s_readreg(state, 0x0a); | 
|  | if (val < 0) | 
|  | return val; | 
|  |  | 
|  | val &= 0xf; | 
|  | if (val >= 2) | 
|  | *status |= FE_HAS_SIGNAL; | 
|  |  | 
|  | if (val >= 4) | 
|  | *status |= FE_HAS_CARRIER; | 
|  |  | 
|  | if (val >= 5) | 
|  | *status |= FE_HAS_VITERBI; | 
|  |  | 
|  | if (val >= 7) | 
|  | *status |= FE_HAS_SYNC; | 
|  |  | 
|  | /* | 
|  | * Actually, on state S8, it starts receiving TS, but the TS | 
|  | * output is only on normal state after the transition to S9. | 
|  | */ | 
|  | if (val >= 9) | 
|  | *status |= FE_HAS_LOCK; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n", | 
|  | __func__, *status, val); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_read_signal_strength(struct dvb_frontend *fe) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | struct dtv_frontend_properties *c = &fe->dtv_property_cache; | 
|  | int rc; | 
|  | unsigned rf_max, rf_min, rf; | 
|  |  | 
|  | if (state->get_strength_time && | 
|  | (!time_after(jiffies, state->get_strength_time))) | 
|  | return c->strength.stat[0].uvalue; | 
|  |  | 
|  | /* Reset its value if an error happen */ | 
|  | c->strength.stat[0].uvalue = 0; | 
|  |  | 
|  | /* Does a binary search to get RF strength */ | 
|  | rf_max = 0xfff; | 
|  | rf_min = 0; | 
|  | do { | 
|  | rf = (rf_max + rf_min) / 2; | 
|  | rc = mb86a20s_writereg(state, 0x04, 0x1f); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x05, rf >> 8); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x04, 0x20); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x05, rf); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  |  | 
|  | rc = mb86a20s_readreg(state, 0x02); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | if (rc & 0x08) | 
|  | rf_min = (rf_max + rf_min) / 2; | 
|  | else | 
|  | rf_max = (rf_max + rf_min) / 2; | 
|  | if (rf_max - rf_min < 4) { | 
|  | rf = (rf_max + rf_min) / 2; | 
|  |  | 
|  | /* Rescale it from 2^12 (4096) to 2^16 */ | 
|  | rf = rf << (16 - 12); | 
|  | if (rf) | 
|  | rf |= (1 << 12) - 1; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: signal strength = %d (%d < RF=%d < %d)\n", | 
|  | __func__, rf, rf_min, rf >> 4, rf_max); | 
|  | c->strength.stat[0].uvalue = rf; | 
|  | state->get_strength_time = jiffies + | 
|  | msecs_to_jiffies(1000); | 
|  | return 0; | 
|  | } | 
|  | } while (1); | 
|  | } | 
|  |  | 
|  | static int mb86a20s_get_modulation(struct mb86a20s_state *state, | 
|  | unsigned layer) | 
|  | { | 
|  | int rc; | 
|  | static unsigned char reg[] = { | 
|  | [0] = 0x86,	/* Layer A */ | 
|  | [1] = 0x8a,	/* Layer B */ | 
|  | [2] = 0x8e,	/* Layer C */ | 
|  | }; | 
|  |  | 
|  | if (layer >= ARRAY_SIZE(reg)) | 
|  | return -EINVAL; | 
|  | rc = mb86a20s_writereg(state, 0x6d, reg[layer]); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x6e); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | switch ((rc >> 4) & 0x07) { | 
|  | case 0: | 
|  | return DQPSK; | 
|  | case 1: | 
|  | return QPSK; | 
|  | case 2: | 
|  | return QAM_16; | 
|  | case 3: | 
|  | return QAM_64; | 
|  | default: | 
|  | return QAM_AUTO; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int mb86a20s_get_fec(struct mb86a20s_state *state, | 
|  | unsigned layer) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | static unsigned char reg[] = { | 
|  | [0] = 0x87,	/* Layer A */ | 
|  | [1] = 0x8b,	/* Layer B */ | 
|  | [2] = 0x8f,	/* Layer C */ | 
|  | }; | 
|  |  | 
|  | if (layer >= ARRAY_SIZE(reg)) | 
|  | return -EINVAL; | 
|  | rc = mb86a20s_writereg(state, 0x6d, reg[layer]); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x6e); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | switch ((rc >> 4) & 0x07) { | 
|  | case 0: | 
|  | return FEC_1_2; | 
|  | case 1: | 
|  | return FEC_2_3; | 
|  | case 2: | 
|  | return FEC_3_4; | 
|  | case 3: | 
|  | return FEC_5_6; | 
|  | case 4: | 
|  | return FEC_7_8; | 
|  | default: | 
|  | return FEC_AUTO; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int mb86a20s_get_interleaving(struct mb86a20s_state *state, | 
|  | unsigned layer) | 
|  | { | 
|  | int rc; | 
|  | int interleaving[] = { | 
|  | 0, 1, 2, 4, 8 | 
|  | }; | 
|  |  | 
|  | static unsigned char reg[] = { | 
|  | [0] = 0x88,	/* Layer A */ | 
|  | [1] = 0x8c,	/* Layer B */ | 
|  | [2] = 0x90,	/* Layer C */ | 
|  | }; | 
|  |  | 
|  | if (layer >= ARRAY_SIZE(reg)) | 
|  | return -EINVAL; | 
|  | rc = mb86a20s_writereg(state, 0x6d, reg[layer]); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x6e); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  |  | 
|  | return interleaving[(rc >> 4) & 0x07]; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_get_segment_count(struct mb86a20s_state *state, | 
|  | unsigned layer) | 
|  | { | 
|  | int rc, count; | 
|  | static unsigned char reg[] = { | 
|  | [0] = 0x89,	/* Layer A */ | 
|  | [1] = 0x8d,	/* Layer B */ | 
|  | [2] = 0x91,	/* Layer C */ | 
|  | }; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | if (layer >= ARRAY_SIZE(reg)) | 
|  | return -EINVAL; | 
|  |  | 
|  | rc = mb86a20s_writereg(state, 0x6d, reg[layer]); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x6e); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | count = (rc >> 4) & 0x0f; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | struct dtv_frontend_properties *c = &fe->dtv_property_cache; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | /* Fixed parameters */ | 
|  | c->delivery_system = SYS_ISDBT; | 
|  | c->bandwidth_hz = 6000000; | 
|  |  | 
|  | /* Initialize values that will be later autodetected */ | 
|  | c->isdbt_layer_enabled = 0; | 
|  | c->transmission_mode = TRANSMISSION_MODE_AUTO; | 
|  | c->guard_interval = GUARD_INTERVAL_AUTO; | 
|  | c->isdbt_sb_mode = 0; | 
|  | c->isdbt_sb_segment_count = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Estimates the bit rate using the per-segment bit rate given by | 
|  | * ABNT/NBR 15601 spec (table 4). | 
|  | */ | 
|  | static u32 isdbt_rate[3][5][4] = { | 
|  | {	/* DQPSK/QPSK */ | 
|  | {  280850,  312060,  330420,  340430 },	/* 1/2 */ | 
|  | {  374470,  416080,  440560,  453910 },	/* 2/3 */ | 
|  | {  421280,  468090,  495630,  510650 },	/* 3/4 */ | 
|  | {  468090,  520100,  550700,  567390 },	/* 5/6 */ | 
|  | {  491500,  546110,  578230,  595760 },	/* 7/8 */ | 
|  | }, {	/* QAM16 */ | 
|  | {  561710,  624130,  660840,  680870 },	/* 1/2 */ | 
|  | {  748950,  832170,  881120,  907820 },	/* 2/3 */ | 
|  | {  842570,  936190,  991260, 1021300 },	/* 3/4 */ | 
|  | {  936190, 1040210, 1101400, 1134780 },	/* 5/6 */ | 
|  | {  983000, 1092220, 1156470, 1191520 },	/* 7/8 */ | 
|  | }, {	/* QAM64 */ | 
|  | {  842570,  936190,  991260, 1021300 },	/* 1/2 */ | 
|  | { 1123430, 1248260, 1321680, 1361740 },	/* 2/3 */ | 
|  | { 1263860, 1404290, 1486900, 1531950 },	/* 3/4 */ | 
|  | { 1404290, 1560320, 1652110, 1702170 },	/* 5/6 */ | 
|  | { 1474500, 1638340, 1734710, 1787280 },	/* 7/8 */ | 
|  | } | 
|  | }; | 
|  |  | 
|  | static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer, | 
|  | u32 modulation, u32 forward_error_correction, | 
|  | u32 guard_interval, | 
|  | u32 segment) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | u32 rate; | 
|  | int mod, fec, guard; | 
|  |  | 
|  | /* | 
|  | * If modulation/fec/guard is not detected, the default is | 
|  | * to consider the lowest bit rate, to avoid taking too long time | 
|  | * to get BER. | 
|  | */ | 
|  | switch (modulation) { | 
|  | case DQPSK: | 
|  | case QPSK: | 
|  | default: | 
|  | mod = 0; | 
|  | break; | 
|  | case QAM_16: | 
|  | mod = 1; | 
|  | break; | 
|  | case QAM_64: | 
|  | mod = 2; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (forward_error_correction) { | 
|  | default: | 
|  | case FEC_1_2: | 
|  | case FEC_AUTO: | 
|  | fec = 0; | 
|  | break; | 
|  | case FEC_2_3: | 
|  | fec = 1; | 
|  | break; | 
|  | case FEC_3_4: | 
|  | fec = 2; | 
|  | break; | 
|  | case FEC_5_6: | 
|  | fec = 3; | 
|  | break; | 
|  | case FEC_7_8: | 
|  | fec = 4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (guard_interval) { | 
|  | default: | 
|  | case GUARD_INTERVAL_1_4: | 
|  | guard = 0; | 
|  | break; | 
|  | case GUARD_INTERVAL_1_8: | 
|  | guard = 1; | 
|  | break; | 
|  | case GUARD_INTERVAL_1_16: | 
|  | guard = 2; | 
|  | break; | 
|  | case GUARD_INTERVAL_1_32: | 
|  | guard = 3; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Samples BER at BER_SAMPLING_RATE seconds */ | 
|  | rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE; | 
|  |  | 
|  | /* Avoids sampling too quickly or to overflow the register */ | 
|  | if (rate < 256) | 
|  | rate = 256; | 
|  | else if (rate > (1 << 24) - 1) | 
|  | rate = (1 << 24) - 1; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n", | 
|  | __func__, 'A' + layer, | 
|  | segment * isdbt_rate[mod][fec][guard]/1000, | 
|  | rate, rate); | 
|  |  | 
|  | state->estimated_rate[layer] = rate; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_get_frontend(struct dvb_frontend *fe) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | struct dtv_frontend_properties *c = &fe->dtv_property_cache; | 
|  | int layer, rc; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | /* Reset frontend cache to default values */ | 
|  | mb86a20s_reset_frontend_cache(fe); | 
|  |  | 
|  | /* Check for partial reception */ | 
|  | rc = mb86a20s_writereg(state, 0x6d, 0x85); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x6e); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0; | 
|  |  | 
|  | /* Get per-layer data */ | 
|  |  | 
|  | for (layer = 0; layer < NUM_LAYERS; layer++) { | 
|  | dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n", | 
|  | __func__, 'A' + layer); | 
|  |  | 
|  | rc = mb86a20s_get_segment_count(state, layer); | 
|  | if (rc < 0) | 
|  | goto noperlayer_error; | 
|  | if (rc >= 0 && rc < 14) { | 
|  | c->layer[layer].segment_count = rc; | 
|  | } else { | 
|  | c->layer[layer].segment_count = 0; | 
|  | state->estimated_rate[layer] = 0; | 
|  | continue; | 
|  | } | 
|  | c->isdbt_layer_enabled |= 1 << layer; | 
|  | rc = mb86a20s_get_modulation(state, layer); | 
|  | if (rc < 0) | 
|  | goto noperlayer_error; | 
|  | dev_dbg(&state->i2c->dev, "%s: modulation %d.\n", | 
|  | __func__, rc); | 
|  | c->layer[layer].modulation = rc; | 
|  | rc = mb86a20s_get_fec(state, layer); | 
|  | if (rc < 0) | 
|  | goto noperlayer_error; | 
|  | dev_dbg(&state->i2c->dev, "%s: FEC %d.\n", | 
|  | __func__, rc); | 
|  | c->layer[layer].fec = rc; | 
|  | rc = mb86a20s_get_interleaving(state, layer); | 
|  | if (rc < 0) | 
|  | goto noperlayer_error; | 
|  | dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n", | 
|  | __func__, rc); | 
|  | c->layer[layer].interleaving = rc; | 
|  | mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation, | 
|  | c->layer[layer].fec, | 
|  | c->guard_interval, | 
|  | c->layer[layer].segment_count); | 
|  | } | 
|  |  | 
|  | rc = mb86a20s_writereg(state, 0x6d, 0x84); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | if ((rc & 0x60) == 0x20) { | 
|  | c->isdbt_sb_mode = 1; | 
|  | /* At least, one segment should exist */ | 
|  | if (!c->isdbt_sb_segment_count) | 
|  | c->isdbt_sb_segment_count = 1; | 
|  | } | 
|  |  | 
|  | /* Get transmission mode and guard interval */ | 
|  | rc = mb86a20s_readreg(state, 0x07); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | c->transmission_mode = TRANSMISSION_MODE_AUTO; | 
|  | if ((rc & 0x60) == 0x20) { | 
|  | /* Only modes 2 and 3 are supported */ | 
|  | switch ((rc >> 2) & 0x03) { | 
|  | case 1: | 
|  | c->transmission_mode = TRANSMISSION_MODE_4K; | 
|  | break; | 
|  | case 2: | 
|  | c->transmission_mode = TRANSMISSION_MODE_8K; | 
|  | break; | 
|  | } | 
|  | } | 
|  | c->guard_interval = GUARD_INTERVAL_AUTO; | 
|  | if (!(rc & 0x10)) { | 
|  | /* Guard interval 1/32 is not supported */ | 
|  | switch (rc & 0x3) { | 
|  | case 0: | 
|  | c->guard_interval = GUARD_INTERVAL_1_4; | 
|  | break; | 
|  | case 1: | 
|  | c->guard_interval = GUARD_INTERVAL_1_8; | 
|  | break; | 
|  | case 2: | 
|  | c->guard_interval = GUARD_INTERVAL_1_16; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | noperlayer_error: | 
|  |  | 
|  | /* per-layer info is incomplete; discard all per-layer */ | 
|  | c->isdbt_layer_enabled = 0; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_reset_counters(struct dvb_frontend *fe) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | struct dtv_frontend_properties *c = &fe->dtv_property_cache; | 
|  | int rc, val; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | /* Reset the counters, if the channel changed */ | 
|  | if (state->last_frequency != c->frequency) { | 
|  | memset(&c->cnr, 0, sizeof(c->cnr)); | 
|  | memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error)); | 
|  | memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count)); | 
|  | memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); | 
|  | memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); | 
|  | memset(&c->block_error, 0, sizeof(c->block_error)); | 
|  | memset(&c->block_count, 0, sizeof(c->block_count)); | 
|  |  | 
|  | state->last_frequency = c->frequency; | 
|  | } | 
|  |  | 
|  | /* Clear status for most stats */ | 
|  |  | 
|  | /* BER/PER counter reset */ | 
|  | rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  |  | 
|  | /* CNR counter reset */ | 
|  | rc = mb86a20s_readreg(state, 0x45); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | val = rc; | 
|  | rc = mb86a20s_writereg(state, 0x45, val | 0x10); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | rc = mb86a20s_writereg(state, 0x45, val & 0x6f); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  |  | 
|  | /* MER counter reset */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0x50); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | val = rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, val | 0x01); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | rc = mb86a20s_writereg(state, 0x51, val & 0x06); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  |  | 
|  | goto ok; | 
|  | err: | 
|  | dev_err(&state->i2c->dev, | 
|  | "%s: Can't reset FE statistics (error %d).\n", | 
|  | __func__, rc); | 
|  | ok: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_get_pre_ber(struct dvb_frontend *fe, | 
|  | unsigned layer, | 
|  | u32 *error, u32 *count) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | int rc, val; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | if (layer >= NUM_LAYERS) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Check if the BER measures are already available */ | 
|  | rc = mb86a20s_readreg(state, 0x54); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  |  | 
|  | /* Check if data is available for that layer */ | 
|  | if (!(rc & (1 << layer))) { | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: preBER for layer %c is not available yet.\n", | 
|  | __func__, 'A' + layer); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* Read Bit Error Count */ | 
|  | rc = mb86a20s_readreg(state, 0x55 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | *error = rc << 16; | 
|  | rc = mb86a20s_readreg(state, 0x56 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | *error |= rc << 8; | 
|  | rc = mb86a20s_readreg(state, 0x57 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | *error |= rc; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: bit error before Viterbi for layer %c: %d.\n", | 
|  | __func__, 'A' + layer, *error); | 
|  |  | 
|  | /* Read Bit Count */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | *count = rc << 16; | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | *count |= rc << 8; | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | *count |= rc; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: bit count before Viterbi for layer %c: %d.\n", | 
|  | __func__, 'A' + layer, *count); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * As we get TMCC data from the frontend, we can better estimate the | 
|  | * BER bit counters, in order to do the BER measure during a longer | 
|  | * time. Use those data, if available, to update the bit count | 
|  | * measure. | 
|  | */ | 
|  |  | 
|  | if (state->estimated_rate[layer] | 
|  | && state->estimated_rate[layer] != *count) { | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: updating layer %c preBER counter to %d.\n", | 
|  | __func__, 'A' + layer, state->estimated_rate[layer]); | 
|  |  | 
|  | /* Turn off BER before Viterbi */ | 
|  | rc = mb86a20s_writereg(state, 0x52, 0x00); | 
|  |  | 
|  | /* Update counter for this layer */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, | 
|  | state->estimated_rate[layer] >> 16); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, | 
|  | state->estimated_rate[layer] >> 8); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, | 
|  | state->estimated_rate[layer]); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  |  | 
|  | /* Turn on BER before Viterbi */ | 
|  | rc = mb86a20s_writereg(state, 0x52, 0x01); | 
|  |  | 
|  | /* Reset all preBER counters */ | 
|  | rc = mb86a20s_writereg(state, 0x53, 0x00); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x53, 0x07); | 
|  | } else { | 
|  | /* Reset counter to collect new data */ | 
|  | rc = mb86a20s_readreg(state, 0x53); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | val = rc; | 
|  | rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer)); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x53, val | (1 << layer)); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_get_post_ber(struct dvb_frontend *fe, | 
|  | unsigned layer, | 
|  | u32 *error, u32 *count) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | u32 counter, collect_rate; | 
|  | int rc, val; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | if (layer >= NUM_LAYERS) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Check if the BER measures are already available */ | 
|  | rc = mb86a20s_readreg(state, 0x60); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  |  | 
|  | /* Check if data is available for that layer */ | 
|  | if (!(rc & (1 << layer))) { | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: post BER for layer %c is not available yet.\n", | 
|  | __func__, 'A' + layer); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* Read Bit Error Count */ | 
|  | rc = mb86a20s_readreg(state, 0x64 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | *error = rc << 16; | 
|  | rc = mb86a20s_readreg(state, 0x65 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | *error |= rc << 8; | 
|  | rc = mb86a20s_readreg(state, 0x66 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | *error |= rc; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: post bit error for layer %c: %d.\n", | 
|  | __func__, 'A' + layer, *error); | 
|  |  | 
|  | /* Read Bit Count */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | counter = rc << 8; | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | counter |= rc; | 
|  | *count = counter * 204 * 8; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: post bit count for layer %c: %d.\n", | 
|  | __func__, 'A' + layer, *count); | 
|  |  | 
|  | /* | 
|  | * As we get TMCC data from the frontend, we can better estimate the | 
|  | * BER bit counters, in order to do the BER measure during a longer | 
|  | * time. Use those data, if available, to update the bit count | 
|  | * measure. | 
|  | */ | 
|  |  | 
|  | if (!state->estimated_rate[layer]) | 
|  | goto reset_measurement; | 
|  |  | 
|  | collect_rate = state->estimated_rate[layer] / 204 / 8; | 
|  | if (collect_rate < 32) | 
|  | collect_rate = 32; | 
|  | if (collect_rate > 65535) | 
|  | collect_rate = 65535; | 
|  | if (collect_rate != counter) { | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: updating postBER counter on layer %c to %d.\n", | 
|  | __func__, 'A' + layer, collect_rate); | 
|  |  | 
|  | /* Turn off BER after Viterbi */ | 
|  | rc = mb86a20s_writereg(state, 0x5e, 0x00); | 
|  |  | 
|  | /* Update counter for this layer */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  |  | 
|  | /* Turn on BER after Viterbi */ | 
|  | rc = mb86a20s_writereg(state, 0x5e, 0x07); | 
|  |  | 
|  | /* Reset all preBER counters */ | 
|  | rc = mb86a20s_writereg(state, 0x5f, 0x00); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x5f, 0x07); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | reset_measurement: | 
|  | /* Reset counter to collect new data */ | 
|  | rc = mb86a20s_readreg(state, 0x5f); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | val = rc; | 
|  | rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer)); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer)); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_get_blk_error(struct dvb_frontend *fe, | 
|  | unsigned layer, | 
|  | u32 *error, u32 *count) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | int rc, val; | 
|  | u32 collect_rate; | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | if (layer >= NUM_LAYERS) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Check if the PER measures are already available */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xb8); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  |  | 
|  | /* Check if data is available for that layer */ | 
|  |  | 
|  | if (!(rc & (1 << layer))) { | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: block counts for layer %c aren't available yet.\n", | 
|  | __func__, 'A' + layer); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* Read Packet error Count */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | *error = rc << 8; | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | *error |= rc; | 
|  | dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n", | 
|  | __func__, 'A' + layer, *error); | 
|  |  | 
|  | /* Read Bit Count */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | *count = rc << 8; | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | *count |= rc; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: block count for layer %c: %d.\n", | 
|  | __func__, 'A' + layer, *count); | 
|  |  | 
|  | /* | 
|  | * As we get TMCC data from the frontend, we can better estimate the | 
|  | * BER bit counters, in order to do the BER measure during a longer | 
|  | * time. Use those data, if available, to update the bit count | 
|  | * measure. | 
|  | */ | 
|  |  | 
|  | if (!state->estimated_rate[layer]) | 
|  | goto reset_measurement; | 
|  |  | 
|  | collect_rate = state->estimated_rate[layer] / 204 / 8; | 
|  | if (collect_rate < 32) | 
|  | collect_rate = 32; | 
|  | if (collect_rate > 65535) | 
|  | collect_rate = 65535; | 
|  |  | 
|  | if (collect_rate != *count) { | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: updating PER counter on layer %c to %d.\n", | 
|  | __func__, 'A' + layer, collect_rate); | 
|  |  | 
|  | /* Stop PER measurement */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xb0); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, 0x00); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  |  | 
|  | /* Update this layer's counter */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  |  | 
|  | /* start PER measurement */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xb0); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, 0x07); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  |  | 
|  | /* Reset all counters to collect new data */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xb1); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, 0x07); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, 0x00); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | reset_measurement: | 
|  | /* Reset counter to collect new data */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xb1); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | val = rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, val | (1 << layer)); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer)); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | struct linear_segments { | 
|  | unsigned x, y; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * All tables below return a dB/1000 measurement | 
|  | */ | 
|  |  | 
|  | static const struct linear_segments cnr_to_db_table[] = { | 
|  | { 19648,     0}, | 
|  | { 18187,  1000}, | 
|  | { 16534,  2000}, | 
|  | { 14823,  3000}, | 
|  | { 13161,  4000}, | 
|  | { 11622,  5000}, | 
|  | { 10279,  6000}, | 
|  | {  9089,  7000}, | 
|  | {  8042,  8000}, | 
|  | {  7137,  9000}, | 
|  | {  6342, 10000}, | 
|  | {  5641, 11000}, | 
|  | {  5030, 12000}, | 
|  | {  4474, 13000}, | 
|  | {  3988, 14000}, | 
|  | {  3556, 15000}, | 
|  | {  3180, 16000}, | 
|  | {  2841, 17000}, | 
|  | {  2541, 18000}, | 
|  | {  2276, 19000}, | 
|  | {  2038, 20000}, | 
|  | {  1800, 21000}, | 
|  | {  1625, 22000}, | 
|  | {  1462, 23000}, | 
|  | {  1324, 24000}, | 
|  | {  1175, 25000}, | 
|  | {  1063, 26000}, | 
|  | {   980, 27000}, | 
|  | {   907, 28000}, | 
|  | {   840, 29000}, | 
|  | {   788, 30000}, | 
|  | }; | 
|  |  | 
|  | static const struct linear_segments cnr_64qam_table[] = { | 
|  | { 3922688,     0}, | 
|  | { 3920384,  1000}, | 
|  | { 3902720,  2000}, | 
|  | { 3894784,  3000}, | 
|  | { 3882496,  4000}, | 
|  | { 3872768,  5000}, | 
|  | { 3858944,  6000}, | 
|  | { 3851520,  7000}, | 
|  | { 3838976,  8000}, | 
|  | { 3829248,  9000}, | 
|  | { 3818240, 10000}, | 
|  | { 3806976, 11000}, | 
|  | { 3791872, 12000}, | 
|  | { 3767040, 13000}, | 
|  | { 3720960, 14000}, | 
|  | { 3637504, 15000}, | 
|  | { 3498496, 16000}, | 
|  | { 3296000, 17000}, | 
|  | { 3031040, 18000}, | 
|  | { 2715392, 19000}, | 
|  | { 2362624, 20000}, | 
|  | { 1963264, 21000}, | 
|  | { 1649664, 22000}, | 
|  | { 1366784, 23000}, | 
|  | { 1120768, 24000}, | 
|  | {  890880, 25000}, | 
|  | {  723456, 26000}, | 
|  | {  612096, 27000}, | 
|  | {  518912, 28000}, | 
|  | {  448256, 29000}, | 
|  | {  388864, 30000}, | 
|  | }; | 
|  |  | 
|  | static const struct linear_segments cnr_16qam_table[] = { | 
|  | { 5314816,     0}, | 
|  | { 5219072,  1000}, | 
|  | { 5118720,  2000}, | 
|  | { 4998912,  3000}, | 
|  | { 4875520,  4000}, | 
|  | { 4736000,  5000}, | 
|  | { 4604160,  6000}, | 
|  | { 4458752,  7000}, | 
|  | { 4300288,  8000}, | 
|  | { 4092928,  9000}, | 
|  | { 3836160, 10000}, | 
|  | { 3521024, 11000}, | 
|  | { 3155968, 12000}, | 
|  | { 2756864, 13000}, | 
|  | { 2347008, 14000}, | 
|  | { 1955072, 15000}, | 
|  | { 1593600, 16000}, | 
|  | { 1297920, 17000}, | 
|  | { 1043968, 18000}, | 
|  | {  839680, 19000}, | 
|  | {  672256, 20000}, | 
|  | {  523008, 21000}, | 
|  | {  424704, 22000}, | 
|  | {  345088, 23000}, | 
|  | {  280064, 24000}, | 
|  | {  221440, 25000}, | 
|  | {  179712, 26000}, | 
|  | {  151040, 27000}, | 
|  | {  128512, 28000}, | 
|  | {  110080, 29000}, | 
|  | {   95744, 30000}, | 
|  | }; | 
|  |  | 
|  | static const struct linear_segments cnr_qpsk_table[] = { | 
|  | { 2834176,     0}, | 
|  | { 2683648,  1000}, | 
|  | { 2536960,  2000}, | 
|  | { 2391808,  3000}, | 
|  | { 2133248,  4000}, | 
|  | { 1906176,  5000}, | 
|  | { 1666560,  6000}, | 
|  | { 1422080,  7000}, | 
|  | { 1189632,  8000}, | 
|  | {  976384,  9000}, | 
|  | {  790272, 10000}, | 
|  | {  633344, 11000}, | 
|  | {  505600, 12000}, | 
|  | {  402944, 13000}, | 
|  | {  320768, 14000}, | 
|  | {  255488, 15000}, | 
|  | {  204032, 16000}, | 
|  | {  163072, 17000}, | 
|  | {  130304, 18000}, | 
|  | {  105216, 19000}, | 
|  | {   83456, 20000}, | 
|  | {   65024, 21000}, | 
|  | {   52480, 22000}, | 
|  | {   42752, 23000}, | 
|  | {   34560, 24000}, | 
|  | {   27136, 25000}, | 
|  | {   22016, 26000}, | 
|  | {   18432, 27000}, | 
|  | {   15616, 28000}, | 
|  | {   13312, 29000}, | 
|  | {   11520, 30000}, | 
|  | }; | 
|  |  | 
|  | static u32 interpolate_value(u32 value, const struct linear_segments *segments, | 
|  | unsigned len) | 
|  | { | 
|  | u64 tmp64; | 
|  | u32 dx, dy; | 
|  | int i, ret; | 
|  |  | 
|  | if (value >= segments[0].x) | 
|  | return segments[0].y; | 
|  | if (value < segments[len-1].x) | 
|  | return segments[len-1].y; | 
|  |  | 
|  | for (i = 1; i < len - 1; i++) { | 
|  | /* If value is identical, no need to interpolate */ | 
|  | if (value == segments[i].x) | 
|  | return segments[i].y; | 
|  | if (value > segments[i].x) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Linear interpolation between the two (x,y) points */ | 
|  | dy = segments[i].y - segments[i - 1].y; | 
|  | dx = segments[i - 1].x - segments[i].x; | 
|  | tmp64 = value - segments[i].x; | 
|  | tmp64 *= dy; | 
|  | do_div(tmp64, dx); | 
|  | ret = segments[i].y - tmp64; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_get_main_CNR(struct dvb_frontend *fe) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | struct dtv_frontend_properties *c = &fe->dtv_property_cache; | 
|  | u32 cnr_linear, cnr; | 
|  | int rc, val; | 
|  |  | 
|  | /* Check if CNR is available */ | 
|  | rc = mb86a20s_readreg(state, 0x45); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  |  | 
|  | if (!(rc & 0x40)) { | 
|  | dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n", | 
|  | __func__); | 
|  | return -EBUSY; | 
|  | } | 
|  | val = rc; | 
|  |  | 
|  | rc = mb86a20s_readreg(state, 0x46); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | cnr_linear = rc << 8; | 
|  |  | 
|  | rc = mb86a20s_readreg(state, 0x46); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | cnr_linear |= rc; | 
|  |  | 
|  | cnr = interpolate_value(cnr_linear, | 
|  | cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table)); | 
|  |  | 
|  | c->cnr.stat[0].scale = FE_SCALE_DECIBEL; | 
|  | c->cnr.stat[0].svalue = cnr; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n", | 
|  | __func__, cnr / 1000, cnr % 1000, cnr_linear); | 
|  |  | 
|  | /* CNR counter reset */ | 
|  | rc = mb86a20s_writereg(state, 0x45, val | 0x10); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x45, val & 0x6f); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | struct dtv_frontend_properties *c = &fe->dtv_property_cache; | 
|  | u32 mer, cnr; | 
|  | int rc, val, layer; | 
|  | const struct linear_segments *segs; | 
|  | unsigned segs_len; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | /* Check if the measures are already available */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0x5b); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  |  | 
|  | /* Check if data is available */ | 
|  | if (!(rc & 0x01)) { | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: MER measures aren't available yet.\n", __func__); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* Read all layers */ | 
|  | for (layer = 0; layer < NUM_LAYERS; layer++) { | 
|  | if (!(c->isdbt_layer_enabled & (1 << layer))) { | 
|  | c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | mer = rc << 16; | 
|  | rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | mer |= rc << 8; | 
|  | rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | mer |= rc; | 
|  |  | 
|  | switch (c->layer[layer].modulation) { | 
|  | case DQPSK: | 
|  | case QPSK: | 
|  | segs = cnr_qpsk_table; | 
|  | segs_len = ARRAY_SIZE(cnr_qpsk_table); | 
|  | break; | 
|  | case QAM_16: | 
|  | segs = cnr_16qam_table; | 
|  | segs_len = ARRAY_SIZE(cnr_16qam_table); | 
|  | break; | 
|  | default: | 
|  | case QAM_64: | 
|  | segs = cnr_64qam_table; | 
|  | segs_len = ARRAY_SIZE(cnr_64qam_table); | 
|  | break; | 
|  | } | 
|  | cnr = interpolate_value(mer, segs, segs_len); | 
|  |  | 
|  | c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL; | 
|  | c->cnr.stat[1 + layer].svalue = cnr; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, | 
|  | "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n", | 
|  | __func__, 'A' + layer, cnr / 1000, cnr % 1000, mer); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Start a new MER measurement */ | 
|  | /* MER counter reset */ | 
|  | rc = mb86a20s_writereg(state, 0x50, 0x50); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_readreg(state, 0x51); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | val = rc; | 
|  |  | 
|  | rc = mb86a20s_writereg(state, 0x51, val | 0x01); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | rc = mb86a20s_writereg(state, 0x51, val & 0x06); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mb86a20s_stats_not_ready(struct dvb_frontend *fe) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | struct dtv_frontend_properties *c = &fe->dtv_property_cache; | 
|  | int layer; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | /* Fill the length of each status counter */ | 
|  |  | 
|  | /* Only global stats */ | 
|  | c->strength.len = 1; | 
|  |  | 
|  | /* Per-layer stats - 3 layers + global */ | 
|  | c->cnr.len = NUM_LAYERS + 1; | 
|  | c->pre_bit_error.len = NUM_LAYERS + 1; | 
|  | c->pre_bit_count.len = NUM_LAYERS + 1; | 
|  | c->post_bit_error.len = NUM_LAYERS + 1; | 
|  | c->post_bit_count.len = NUM_LAYERS + 1; | 
|  | c->block_error.len = NUM_LAYERS + 1; | 
|  | c->block_count.len = NUM_LAYERS + 1; | 
|  |  | 
|  | /* Signal is always available */ | 
|  | c->strength.stat[0].scale = FE_SCALE_RELATIVE; | 
|  | c->strength.stat[0].uvalue = 0; | 
|  |  | 
|  | /* Put all of them at FE_SCALE_NOT_AVAILABLE */ | 
|  | for (layer = 0; layer < NUM_LAYERS + 1; layer++) { | 
|  | c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | struct dtv_frontend_properties *c = &fe->dtv_property_cache; | 
|  | int rc = 0, layer; | 
|  | u32 bit_error = 0, bit_count = 0; | 
|  | u32 t_pre_bit_error = 0, t_pre_bit_count = 0; | 
|  | u32 t_post_bit_error = 0, t_post_bit_count = 0; | 
|  | u32 block_error = 0, block_count = 0; | 
|  | u32 t_block_error = 0, t_block_count = 0; | 
|  | int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0; | 
|  | int per_layers = 0; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | mb86a20s_get_main_CNR(fe); | 
|  |  | 
|  | /* Get per-layer stats */ | 
|  | mb86a20s_get_blk_error_layer_CNR(fe); | 
|  |  | 
|  | /* | 
|  | * At state 7, only CNR is available | 
|  | * For BER measures, state=9 is required | 
|  | * FIXME: we may get MER measures with state=8 | 
|  | */ | 
|  | if (status_nr < 9) | 
|  | return 0; | 
|  |  | 
|  | for (layer = 0; layer < NUM_LAYERS; layer++) { | 
|  | if (c->isdbt_layer_enabled & (1 << layer)) { | 
|  | /* Layer is active and has rc segments */ | 
|  | active_layers++; | 
|  |  | 
|  | /* Handle BER before vterbi */ | 
|  | rc = mb86a20s_get_pre_ber(fe, layer, | 
|  | &bit_error, &bit_count); | 
|  | if (rc >= 0) { | 
|  | c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER; | 
|  | c->pre_bit_error.stat[1 + layer].uvalue += bit_error; | 
|  | c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER; | 
|  | c->pre_bit_count.stat[1 + layer].uvalue += bit_count; | 
|  | } else if (rc != -EBUSY) { | 
|  | /* | 
|  | * If an I/O error happened, | 
|  | * measures are now unavailable | 
|  | */ | 
|  | c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | dev_err(&state->i2c->dev, | 
|  | "%s: Can't get BER for layer %c (error %d).\n", | 
|  | __func__, 'A' + layer, rc); | 
|  | } | 
|  | if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE) | 
|  | pre_ber_layers++; | 
|  |  | 
|  | /* Handle BER post vterbi */ | 
|  | rc = mb86a20s_get_post_ber(fe, layer, | 
|  | &bit_error, &bit_count); | 
|  | if (rc >= 0) { | 
|  | c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER; | 
|  | c->post_bit_error.stat[1 + layer].uvalue += bit_error; | 
|  | c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER; | 
|  | c->post_bit_count.stat[1 + layer].uvalue += bit_count; | 
|  | } else if (rc != -EBUSY) { | 
|  | /* | 
|  | * If an I/O error happened, | 
|  | * measures are now unavailable | 
|  | */ | 
|  | c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | dev_err(&state->i2c->dev, | 
|  | "%s: Can't get BER for layer %c (error %d).\n", | 
|  | __func__, 'A' + layer, rc); | 
|  | } | 
|  | if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE) | 
|  | post_ber_layers++; | 
|  |  | 
|  | /* Handle Block errors for PER/UCB reports */ | 
|  | rc = mb86a20s_get_blk_error(fe, layer, | 
|  | &block_error, | 
|  | &block_count); | 
|  | if (rc >= 0) { | 
|  | c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER; | 
|  | c->block_error.stat[1 + layer].uvalue += block_error; | 
|  | c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER; | 
|  | c->block_count.stat[1 + layer].uvalue += block_count; | 
|  | } else if (rc != -EBUSY) { | 
|  | /* | 
|  | * If an I/O error happened, | 
|  | * measures are now unavailable | 
|  | */ | 
|  | c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | dev_err(&state->i2c->dev, | 
|  | "%s: Can't get PER for layer %c (error %d).\n", | 
|  | __func__, 'A' + layer, rc); | 
|  |  | 
|  | } | 
|  | if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE) | 
|  | per_layers++; | 
|  |  | 
|  | /* Update total preBER */ | 
|  | t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue; | 
|  | t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue; | 
|  |  | 
|  | /* Update total postBER */ | 
|  | t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue; | 
|  | t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue; | 
|  |  | 
|  | /* Update total PER */ | 
|  | t_block_error += c->block_error.stat[1 + layer].uvalue; | 
|  | t_block_count += c->block_count.stat[1 + layer].uvalue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start showing global count if at least one error count is | 
|  | * available. | 
|  | */ | 
|  | if (pre_ber_layers) { | 
|  | /* | 
|  | * At least one per-layer BER measure was read. We can now | 
|  | * calculate the total BER | 
|  | * | 
|  | * Total Bit Error/Count is calculated as the sum of the | 
|  | * bit errors on all active layers. | 
|  | */ | 
|  | c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER; | 
|  | c->pre_bit_error.stat[0].uvalue = t_pre_bit_error; | 
|  | c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; | 
|  | c->pre_bit_count.stat[0].uvalue = t_pre_bit_count; | 
|  | } else { | 
|  | c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start showing global count if at least one error count is | 
|  | * available. | 
|  | */ | 
|  | if (post_ber_layers) { | 
|  | /* | 
|  | * At least one per-layer BER measure was read. We can now | 
|  | * calculate the total BER | 
|  | * | 
|  | * Total Bit Error/Count is calculated as the sum of the | 
|  | * bit errors on all active layers. | 
|  | */ | 
|  | c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; | 
|  | c->post_bit_error.stat[0].uvalue = t_post_bit_error; | 
|  | c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; | 
|  | c->post_bit_count.stat[0].uvalue = t_post_bit_count; | 
|  | } else { | 
|  | c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; | 
|  | } | 
|  |  | 
|  | if (per_layers) { | 
|  | /* | 
|  | * At least one per-layer UCB measure was read. We can now | 
|  | * calculate the total UCB | 
|  | * | 
|  | * Total block Error/Count is calculated as the sum of the | 
|  | * block errors on all active layers. | 
|  | */ | 
|  | c->block_error.stat[0].scale = FE_SCALE_COUNTER; | 
|  | c->block_error.stat[0].uvalue = t_block_error; | 
|  | c->block_count.stat[0].scale = FE_SCALE_COUNTER; | 
|  | c->block_count.stat[0].uvalue = t_block_count; | 
|  | } else { | 
|  | c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; | 
|  | c->block_count.stat[0].scale = FE_SCALE_COUNTER; | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The functions below are called via DVB callbacks, so they need to | 
|  | * properly use the I2C gate control | 
|  | */ | 
|  |  | 
|  | static int mb86a20s_initfe(struct dvb_frontend *fe) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | u64 pll; | 
|  | u32 fclk; | 
|  | int rc; | 
|  | u8  regD5 = 1, reg71, reg09 = 0x3a; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | if (fe->ops.i2c_gate_ctrl) | 
|  | fe->ops.i2c_gate_ctrl(fe, 0); | 
|  |  | 
|  | /* Initialize the frontend */ | 
|  | rc = mb86a20s_writeregdata(state, mb86a20s_init1); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  |  | 
|  | if (!state->inversion) | 
|  | reg09 |= 0x04; | 
|  | rc = mb86a20s_writereg(state, 0x09, reg09); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | if (!state->bw) | 
|  | reg71 = 1; | 
|  | else | 
|  | reg71 = 0; | 
|  | rc = mb86a20s_writereg(state, 0x39, reg71); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | rc = mb86a20s_writereg(state, 0x71, state->bw); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | if (state->subchannel) { | 
|  | rc = mb86a20s_writereg(state, 0x44, state->subchannel); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | fclk = state->config->fclk; | 
|  | if (!fclk) | 
|  | fclk = 32571428; | 
|  |  | 
|  | /* Adjust IF frequency to match tuner */ | 
|  | if (fe->ops.tuner_ops.get_if_frequency) | 
|  | fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq); | 
|  |  | 
|  | if (!state->if_freq) | 
|  | state->if_freq = 3300000; | 
|  |  | 
|  | pll = (((u64)1) << 34) * state->if_freq; | 
|  | do_div(pll, 63 * fclk); | 
|  | pll = (1 << 25) - pll; | 
|  | rc = mb86a20s_writereg(state, 0x28, 0x2a); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | rc = mb86a20s_writereg(state, 0x2b, pll & 0xff); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n", | 
|  | __func__, fclk, state->if_freq, (long long)pll); | 
|  |  | 
|  | /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */ | 
|  | pll = state->if_freq * 1677721600L; | 
|  | do_div(pll, 1628571429L); | 
|  | rc = mb86a20s_writereg(state, 0x28, 0x20); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | rc = mb86a20s_writereg(state, 0x2b, pll & 0xff); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n", | 
|  | __func__, state->if_freq, (long long)pll); | 
|  |  | 
|  | if (!state->config->is_serial) | 
|  | regD5 &= ~1; | 
|  |  | 
|  | rc = mb86a20s_writereg(state, 0x50, 0xd5); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  | rc = mb86a20s_writereg(state, 0x51, regD5); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  |  | 
|  | rc = mb86a20s_writeregdata(state, mb86a20s_init2); | 
|  | if (rc < 0) | 
|  | goto err; | 
|  |  | 
|  |  | 
|  | err: | 
|  | if (fe->ops.i2c_gate_ctrl) | 
|  | fe->ops.i2c_gate_ctrl(fe, 1); | 
|  |  | 
|  | if (rc < 0) { | 
|  | state->need_init = true; | 
|  | dev_info(&state->i2c->dev, | 
|  | "mb86a20s: Init failed. Will try again later\n"); | 
|  | } else { | 
|  | state->need_init = false; | 
|  | dev_dbg(&state->i2c->dev, "Initialization succeeded.\n"); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_set_frontend(struct dvb_frontend *fe) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | struct dtv_frontend_properties *c = &fe->dtv_property_cache; | 
|  | int rc, if_freq; | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | if (!c->isdbt_layer_enabled) | 
|  | c->isdbt_layer_enabled = 7; | 
|  |  | 
|  | if (c->isdbt_layer_enabled == 1) | 
|  | state->bw = MB86A20S_1SEG; | 
|  | else if (c->isdbt_partial_reception) | 
|  | state->bw = MB86A20S_13SEG_PARTIAL; | 
|  | else | 
|  | state->bw = MB86A20S_13SEG; | 
|  |  | 
|  | if (c->inversion == INVERSION_ON) | 
|  | state->inversion = true; | 
|  | else | 
|  | state->inversion = false; | 
|  |  | 
|  | if (!c->isdbt_sb_mode) { | 
|  | state->subchannel = 0; | 
|  | } else { | 
|  | if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel)) | 
|  | c->isdbt_sb_subchannel = 0; | 
|  |  | 
|  | state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Gate should already be opened, but it doesn't hurt to | 
|  | * double-check | 
|  | */ | 
|  | if (fe->ops.i2c_gate_ctrl) | 
|  | fe->ops.i2c_gate_ctrl(fe, 1); | 
|  | fe->ops.tuner_ops.set_params(fe); | 
|  |  | 
|  | if (fe->ops.tuner_ops.get_if_frequency) | 
|  | fe->ops.tuner_ops.get_if_frequency(fe, &if_freq); | 
|  |  | 
|  | /* | 
|  | * Make it more reliable: if, for some reason, the initial | 
|  | * device initialization doesn't happen, initialize it when | 
|  | * a SBTVD parameters are adjusted. | 
|  | * | 
|  | * Unfortunately, due to a hard to track bug at tda829x/tda18271, | 
|  | * the agc callback logic is not called during DVB attach time, | 
|  | * causing mb86a20s to not be initialized with Kworld SBTVD. | 
|  | * So, this hack is needed, in order to make Kworld SBTVD to work. | 
|  | * | 
|  | * It is also needed to change the IF after the initial init. | 
|  | * | 
|  | * HACK: Always init the frontend when set_frontend is called: | 
|  | * it was noticed that, on some devices, it fails to lock on a | 
|  | * different channel. So, it is better to reset everything, even | 
|  | * wasting some time, than to loose channel lock. | 
|  | */ | 
|  | mb86a20s_initfe(fe); | 
|  |  | 
|  | if (fe->ops.i2c_gate_ctrl) | 
|  | fe->ops.i2c_gate_ctrl(fe, 0); | 
|  |  | 
|  | rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception); | 
|  | mb86a20s_reset_counters(fe); | 
|  | mb86a20s_stats_not_ready(fe); | 
|  |  | 
|  | if (fe->ops.i2c_gate_ctrl) | 
|  | fe->ops.i2c_gate_ctrl(fe, 1); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe, | 
|  | enum fe_status *status) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | int rc, status_nr; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | if (fe->ops.i2c_gate_ctrl) | 
|  | fe->ops.i2c_gate_ctrl(fe, 0); | 
|  |  | 
|  | /* Get lock */ | 
|  | status_nr = mb86a20s_read_status(fe, status); | 
|  | if (status_nr < 7) { | 
|  | mb86a20s_stats_not_ready(fe); | 
|  | mb86a20s_reset_frontend_cache(fe); | 
|  | } | 
|  | if (status_nr < 0) { | 
|  | dev_err(&state->i2c->dev, | 
|  | "%s: Can't read frontend lock status\n", __func__); | 
|  | rc = status_nr; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* Get signal strength */ | 
|  | rc = mb86a20s_read_signal_strength(fe); | 
|  | if (rc < 0) { | 
|  | dev_err(&state->i2c->dev, | 
|  | "%s: Can't reset VBER registers.\n", __func__); | 
|  | mb86a20s_stats_not_ready(fe); | 
|  | mb86a20s_reset_frontend_cache(fe); | 
|  |  | 
|  | rc = 0;		/* Status is OK */ | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (status_nr >= 7) { | 
|  | /* Get TMCC info*/ | 
|  | rc = mb86a20s_get_frontend(fe); | 
|  | if (rc < 0) { | 
|  | dev_err(&state->i2c->dev, | 
|  | "%s: Can't get FE TMCC data.\n", __func__); | 
|  | rc = 0;		/* Status is OK */ | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* Get statistics */ | 
|  | rc = mb86a20s_get_stats(fe, status_nr); | 
|  | if (rc < 0 && rc != -EBUSY) { | 
|  | dev_err(&state->i2c->dev, | 
|  | "%s: Can't get FE statistics.\n", __func__); | 
|  | rc = 0; | 
|  | goto error; | 
|  | } | 
|  | rc = 0;	/* Don't return EBUSY to userspace */ | 
|  | } | 
|  | goto ok; | 
|  |  | 
|  | error: | 
|  | mb86a20s_stats_not_ready(fe); | 
|  |  | 
|  | ok: | 
|  | if (fe->ops.i2c_gate_ctrl) | 
|  | fe->ops.i2c_gate_ctrl(fe, 1); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe, | 
|  | u16 *strength) | 
|  | { | 
|  | struct dtv_frontend_properties *c = &fe->dtv_property_cache; | 
|  |  | 
|  |  | 
|  | *strength = c->strength.stat[0].uvalue; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mb86a20s_tune(struct dvb_frontend *fe, | 
|  | bool re_tune, | 
|  | unsigned int mode_flags, | 
|  | unsigned int *delay, | 
|  | enum fe_status *status) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  | int rc = 0; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | if (re_tune) | 
|  | rc = mb86a20s_set_frontend(fe); | 
|  |  | 
|  | if (!(mode_flags & FE_TUNE_MODE_ONESHOT)) | 
|  | mb86a20s_read_status_and_stats(fe, status); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void mb86a20s_release(struct dvb_frontend *fe) | 
|  | { | 
|  | struct mb86a20s_state *state = fe->demodulator_priv; | 
|  |  | 
|  | dev_dbg(&state->i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | kfree(state); | 
|  | } | 
|  |  | 
|  | static int mb86a20s_get_frontend_algo(struct dvb_frontend *fe) | 
|  | { | 
|  | return DVBFE_ALGO_HW; | 
|  | } | 
|  |  | 
|  | static const struct dvb_frontend_ops mb86a20s_ops; | 
|  |  | 
|  | struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config, | 
|  | struct i2c_adapter *i2c) | 
|  | { | 
|  | struct mb86a20s_state *state; | 
|  | u8	rev; | 
|  |  | 
|  | dev_dbg(&i2c->dev, "%s called.\n", __func__); | 
|  |  | 
|  | /* allocate memory for the internal state */ | 
|  | state = kzalloc(sizeof(*state), GFP_KERNEL); | 
|  | if (!state) | 
|  | return NULL; | 
|  |  | 
|  | /* setup the state */ | 
|  | state->config = config; | 
|  | state->i2c = i2c; | 
|  |  | 
|  | /* create dvb_frontend */ | 
|  | memcpy(&state->frontend.ops, &mb86a20s_ops, | 
|  | sizeof(struct dvb_frontend_ops)); | 
|  | state->frontend.demodulator_priv = state; | 
|  |  | 
|  | /* Check if it is a mb86a20s frontend */ | 
|  | rev = mb86a20s_readreg(state, 0); | 
|  | if (rev != 0x13) { | 
|  | kfree(state); | 
|  | dev_dbg(&i2c->dev, | 
|  | "Frontend revision %d is unknown - aborting.\n", | 
|  | rev); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n"); | 
|  | return &state->frontend; | 
|  | } | 
|  | EXPORT_SYMBOL(mb86a20s_attach); | 
|  |  | 
|  | static const struct dvb_frontend_ops mb86a20s_ops = { | 
|  | .delsys = { SYS_ISDBT }, | 
|  | /* Use dib8000 values per default */ | 
|  | .info = { | 
|  | .name = "Fujitsu mb86A20s", | 
|  | .caps = FE_CAN_RECOVER  | | 
|  | FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | | 
|  | FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | | 
|  | FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 | | 
|  | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO | | 
|  | FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO, | 
|  | /* Actually, those values depend on the used tuner */ | 
|  | .frequency_min = 45000000, | 
|  | .frequency_max = 864000000, | 
|  | .frequency_stepsize = 62500, | 
|  | }, | 
|  |  | 
|  | .release = mb86a20s_release, | 
|  |  | 
|  | .init = mb86a20s_initfe, | 
|  | .set_frontend = mb86a20s_set_frontend, | 
|  | .read_status = mb86a20s_read_status_and_stats, | 
|  | .read_signal_strength = mb86a20s_read_signal_strength_from_cache, | 
|  | .tune = mb86a20s_tune, | 
|  | .get_frontend_algo = mb86a20s_get_frontend_algo, | 
|  | }; | 
|  |  | 
|  | MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware"); | 
|  | MODULE_AUTHOR("Mauro Carvalho Chehab"); | 
|  | MODULE_LICENSE("GPL"); |