|  | /* | 
|  | * Driver for Atmel AT32 and AT91 SPI Controllers | 
|  | * | 
|  | * Copyright (C) 2006 Atmel Corporation | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/platform_data/dma-atmel.h> | 
|  | #include <linux/of.h> | 
|  |  | 
|  | #include <linux/io.h> | 
|  | #include <linux/gpio.h> | 
|  | #include <linux/pinctrl/consumer.h> | 
|  | #include <linux/pm_runtime.h> | 
|  |  | 
|  | /* SPI register offsets */ | 
|  | #define SPI_CR					0x0000 | 
|  | #define SPI_MR					0x0004 | 
|  | #define SPI_RDR					0x0008 | 
|  | #define SPI_TDR					0x000c | 
|  | #define SPI_SR					0x0010 | 
|  | #define SPI_IER					0x0014 | 
|  | #define SPI_IDR					0x0018 | 
|  | #define SPI_IMR					0x001c | 
|  | #define SPI_CSR0				0x0030 | 
|  | #define SPI_CSR1				0x0034 | 
|  | #define SPI_CSR2				0x0038 | 
|  | #define SPI_CSR3				0x003c | 
|  | #define SPI_FMR					0x0040 | 
|  | #define SPI_FLR					0x0044 | 
|  | #define SPI_VERSION				0x00fc | 
|  | #define SPI_RPR					0x0100 | 
|  | #define SPI_RCR					0x0104 | 
|  | #define SPI_TPR					0x0108 | 
|  | #define SPI_TCR					0x010c | 
|  | #define SPI_RNPR				0x0110 | 
|  | #define SPI_RNCR				0x0114 | 
|  | #define SPI_TNPR				0x0118 | 
|  | #define SPI_TNCR				0x011c | 
|  | #define SPI_PTCR				0x0120 | 
|  | #define SPI_PTSR				0x0124 | 
|  |  | 
|  | /* Bitfields in CR */ | 
|  | #define SPI_SPIEN_OFFSET			0 | 
|  | #define SPI_SPIEN_SIZE				1 | 
|  | #define SPI_SPIDIS_OFFSET			1 | 
|  | #define SPI_SPIDIS_SIZE				1 | 
|  | #define SPI_SWRST_OFFSET			7 | 
|  | #define SPI_SWRST_SIZE				1 | 
|  | #define SPI_LASTXFER_OFFSET			24 | 
|  | #define SPI_LASTXFER_SIZE			1 | 
|  | #define SPI_TXFCLR_OFFSET			16 | 
|  | #define SPI_TXFCLR_SIZE				1 | 
|  | #define SPI_RXFCLR_OFFSET			17 | 
|  | #define SPI_RXFCLR_SIZE				1 | 
|  | #define SPI_FIFOEN_OFFSET			30 | 
|  | #define SPI_FIFOEN_SIZE				1 | 
|  | #define SPI_FIFODIS_OFFSET			31 | 
|  | #define SPI_FIFODIS_SIZE			1 | 
|  |  | 
|  | /* Bitfields in MR */ | 
|  | #define SPI_MSTR_OFFSET				0 | 
|  | #define SPI_MSTR_SIZE				1 | 
|  | #define SPI_PS_OFFSET				1 | 
|  | #define SPI_PS_SIZE				1 | 
|  | #define SPI_PCSDEC_OFFSET			2 | 
|  | #define SPI_PCSDEC_SIZE				1 | 
|  | #define SPI_FDIV_OFFSET				3 | 
|  | #define SPI_FDIV_SIZE				1 | 
|  | #define SPI_MODFDIS_OFFSET			4 | 
|  | #define SPI_MODFDIS_SIZE			1 | 
|  | #define SPI_WDRBT_OFFSET			5 | 
|  | #define SPI_WDRBT_SIZE				1 | 
|  | #define SPI_LLB_OFFSET				7 | 
|  | #define SPI_LLB_SIZE				1 | 
|  | #define SPI_PCS_OFFSET				16 | 
|  | #define SPI_PCS_SIZE				4 | 
|  | #define SPI_DLYBCS_OFFSET			24 | 
|  | #define SPI_DLYBCS_SIZE				8 | 
|  |  | 
|  | /* Bitfields in RDR */ | 
|  | #define SPI_RD_OFFSET				0 | 
|  | #define SPI_RD_SIZE				16 | 
|  |  | 
|  | /* Bitfields in TDR */ | 
|  | #define SPI_TD_OFFSET				0 | 
|  | #define SPI_TD_SIZE				16 | 
|  |  | 
|  | /* Bitfields in SR */ | 
|  | #define SPI_RDRF_OFFSET				0 | 
|  | #define SPI_RDRF_SIZE				1 | 
|  | #define SPI_TDRE_OFFSET				1 | 
|  | #define SPI_TDRE_SIZE				1 | 
|  | #define SPI_MODF_OFFSET				2 | 
|  | #define SPI_MODF_SIZE				1 | 
|  | #define SPI_OVRES_OFFSET			3 | 
|  | #define SPI_OVRES_SIZE				1 | 
|  | #define SPI_ENDRX_OFFSET			4 | 
|  | #define SPI_ENDRX_SIZE				1 | 
|  | #define SPI_ENDTX_OFFSET			5 | 
|  | #define SPI_ENDTX_SIZE				1 | 
|  | #define SPI_RXBUFF_OFFSET			6 | 
|  | #define SPI_RXBUFF_SIZE				1 | 
|  | #define SPI_TXBUFE_OFFSET			7 | 
|  | #define SPI_TXBUFE_SIZE				1 | 
|  | #define SPI_NSSR_OFFSET				8 | 
|  | #define SPI_NSSR_SIZE				1 | 
|  | #define SPI_TXEMPTY_OFFSET			9 | 
|  | #define SPI_TXEMPTY_SIZE			1 | 
|  | #define SPI_SPIENS_OFFSET			16 | 
|  | #define SPI_SPIENS_SIZE				1 | 
|  | #define SPI_TXFEF_OFFSET			24 | 
|  | #define SPI_TXFEF_SIZE				1 | 
|  | #define SPI_TXFFF_OFFSET			25 | 
|  | #define SPI_TXFFF_SIZE				1 | 
|  | #define SPI_TXFTHF_OFFSET			26 | 
|  | #define SPI_TXFTHF_SIZE				1 | 
|  | #define SPI_RXFEF_OFFSET			27 | 
|  | #define SPI_RXFEF_SIZE				1 | 
|  | #define SPI_RXFFF_OFFSET			28 | 
|  | #define SPI_RXFFF_SIZE				1 | 
|  | #define SPI_RXFTHF_OFFSET			29 | 
|  | #define SPI_RXFTHF_SIZE				1 | 
|  | #define SPI_TXFPTEF_OFFSET			30 | 
|  | #define SPI_TXFPTEF_SIZE			1 | 
|  | #define SPI_RXFPTEF_OFFSET			31 | 
|  | #define SPI_RXFPTEF_SIZE			1 | 
|  |  | 
|  | /* Bitfields in CSR0 */ | 
|  | #define SPI_CPOL_OFFSET				0 | 
|  | #define SPI_CPOL_SIZE				1 | 
|  | #define SPI_NCPHA_OFFSET			1 | 
|  | #define SPI_NCPHA_SIZE				1 | 
|  | #define SPI_CSAAT_OFFSET			3 | 
|  | #define SPI_CSAAT_SIZE				1 | 
|  | #define SPI_BITS_OFFSET				4 | 
|  | #define SPI_BITS_SIZE				4 | 
|  | #define SPI_SCBR_OFFSET				8 | 
|  | #define SPI_SCBR_SIZE				8 | 
|  | #define SPI_DLYBS_OFFSET			16 | 
|  | #define SPI_DLYBS_SIZE				8 | 
|  | #define SPI_DLYBCT_OFFSET			24 | 
|  | #define SPI_DLYBCT_SIZE				8 | 
|  |  | 
|  | /* Bitfields in RCR */ | 
|  | #define SPI_RXCTR_OFFSET			0 | 
|  | #define SPI_RXCTR_SIZE				16 | 
|  |  | 
|  | /* Bitfields in TCR */ | 
|  | #define SPI_TXCTR_OFFSET			0 | 
|  | #define SPI_TXCTR_SIZE				16 | 
|  |  | 
|  | /* Bitfields in RNCR */ | 
|  | #define SPI_RXNCR_OFFSET			0 | 
|  | #define SPI_RXNCR_SIZE				16 | 
|  |  | 
|  | /* Bitfields in TNCR */ | 
|  | #define SPI_TXNCR_OFFSET			0 | 
|  | #define SPI_TXNCR_SIZE				16 | 
|  |  | 
|  | /* Bitfields in PTCR */ | 
|  | #define SPI_RXTEN_OFFSET			0 | 
|  | #define SPI_RXTEN_SIZE				1 | 
|  | #define SPI_RXTDIS_OFFSET			1 | 
|  | #define SPI_RXTDIS_SIZE				1 | 
|  | #define SPI_TXTEN_OFFSET			8 | 
|  | #define SPI_TXTEN_SIZE				1 | 
|  | #define SPI_TXTDIS_OFFSET			9 | 
|  | #define SPI_TXTDIS_SIZE				1 | 
|  |  | 
|  | /* Bitfields in FMR */ | 
|  | #define SPI_TXRDYM_OFFSET			0 | 
|  | #define SPI_TXRDYM_SIZE				2 | 
|  | #define SPI_RXRDYM_OFFSET			4 | 
|  | #define SPI_RXRDYM_SIZE				2 | 
|  | #define SPI_TXFTHRES_OFFSET			16 | 
|  | #define SPI_TXFTHRES_SIZE			6 | 
|  | #define SPI_RXFTHRES_OFFSET			24 | 
|  | #define SPI_RXFTHRES_SIZE			6 | 
|  |  | 
|  | /* Bitfields in FLR */ | 
|  | #define SPI_TXFL_OFFSET				0 | 
|  | #define SPI_TXFL_SIZE				6 | 
|  | #define SPI_RXFL_OFFSET				16 | 
|  | #define SPI_RXFL_SIZE				6 | 
|  |  | 
|  | /* Constants for BITS */ | 
|  | #define SPI_BITS_8_BPT				0 | 
|  | #define SPI_BITS_9_BPT				1 | 
|  | #define SPI_BITS_10_BPT				2 | 
|  | #define SPI_BITS_11_BPT				3 | 
|  | #define SPI_BITS_12_BPT				4 | 
|  | #define SPI_BITS_13_BPT				5 | 
|  | #define SPI_BITS_14_BPT				6 | 
|  | #define SPI_BITS_15_BPT				7 | 
|  | #define SPI_BITS_16_BPT				8 | 
|  | #define SPI_ONE_DATA				0 | 
|  | #define SPI_TWO_DATA				1 | 
|  | #define SPI_FOUR_DATA				2 | 
|  |  | 
|  | /* Bit manipulation macros */ | 
|  | #define SPI_BIT(name) \ | 
|  | (1 << SPI_##name##_OFFSET) | 
|  | #define SPI_BF(name, value) \ | 
|  | (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) | 
|  | #define SPI_BFEXT(name, value) \ | 
|  | (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) | 
|  | #define SPI_BFINS(name, value, old) \ | 
|  | (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ | 
|  | | SPI_BF(name, value)) | 
|  |  | 
|  | /* Register access macros */ | 
|  | #ifdef CONFIG_AVR32 | 
|  | #define spi_readl(port, reg) \ | 
|  | __raw_readl((port)->regs + SPI_##reg) | 
|  | #define spi_writel(port, reg, value) \ | 
|  | __raw_writel((value), (port)->regs + SPI_##reg) | 
|  |  | 
|  | #define spi_readw(port, reg) \ | 
|  | __raw_readw((port)->regs + SPI_##reg) | 
|  | #define spi_writew(port, reg, value) \ | 
|  | __raw_writew((value), (port)->regs + SPI_##reg) | 
|  |  | 
|  | #define spi_readb(port, reg) \ | 
|  | __raw_readb((port)->regs + SPI_##reg) | 
|  | #define spi_writeb(port, reg, value) \ | 
|  | __raw_writeb((value), (port)->regs + SPI_##reg) | 
|  | #else | 
|  | #define spi_readl(port, reg) \ | 
|  | readl_relaxed((port)->regs + SPI_##reg) | 
|  | #define spi_writel(port, reg, value) \ | 
|  | writel_relaxed((value), (port)->regs + SPI_##reg) | 
|  |  | 
|  | #define spi_readw(port, reg) \ | 
|  | readw_relaxed((port)->regs + SPI_##reg) | 
|  | #define spi_writew(port, reg, value) \ | 
|  | writew_relaxed((value), (port)->regs + SPI_##reg) | 
|  |  | 
|  | #define spi_readb(port, reg) \ | 
|  | readb_relaxed((port)->regs + SPI_##reg) | 
|  | #define spi_writeb(port, reg, value) \ | 
|  | writeb_relaxed((value), (port)->regs + SPI_##reg) | 
|  | #endif | 
|  | /* use PIO for small transfers, avoiding DMA setup/teardown overhead and | 
|  | * cache operations; better heuristics consider wordsize and bitrate. | 
|  | */ | 
|  | #define DMA_MIN_BYTES	16 | 
|  |  | 
|  | #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000)) | 
|  |  | 
|  | #define AUTOSUSPEND_TIMEOUT	2000 | 
|  |  | 
|  | struct atmel_spi_dma { | 
|  | struct dma_chan			*chan_rx; | 
|  | struct dma_chan			*chan_tx; | 
|  | struct scatterlist		sgrx; | 
|  | struct scatterlist		sgtx; | 
|  | struct dma_async_tx_descriptor	*data_desc_rx; | 
|  | struct dma_async_tx_descriptor	*data_desc_tx; | 
|  |  | 
|  | struct at_dma_slave	dma_slave; | 
|  | }; | 
|  |  | 
|  | struct atmel_spi_caps { | 
|  | bool	is_spi2; | 
|  | bool	has_wdrbt; | 
|  | bool	has_dma_support; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The core SPI transfer engine just talks to a register bank to set up | 
|  | * DMA transfers; transfer queue progress is driven by IRQs.  The clock | 
|  | * framework provides the base clock, subdivided for each spi_device. | 
|  | */ | 
|  | struct atmel_spi { | 
|  | spinlock_t		lock; | 
|  | unsigned long		flags; | 
|  |  | 
|  | phys_addr_t		phybase; | 
|  | void __iomem		*regs; | 
|  | int			irq; | 
|  | struct clk		*clk; | 
|  | struct platform_device	*pdev; | 
|  |  | 
|  | struct spi_transfer	*current_transfer; | 
|  | int			current_remaining_bytes; | 
|  | int			done_status; | 
|  |  | 
|  | struct completion	xfer_completion; | 
|  |  | 
|  | /* scratch buffer */ | 
|  | void			*buffer; | 
|  | dma_addr_t		buffer_dma; | 
|  |  | 
|  | struct atmel_spi_caps	caps; | 
|  |  | 
|  | bool			use_dma; | 
|  | bool			use_pdc; | 
|  | bool			use_cs_gpios; | 
|  | /* dmaengine data */ | 
|  | struct atmel_spi_dma	dma; | 
|  |  | 
|  | bool			keep_cs; | 
|  | bool			cs_active; | 
|  |  | 
|  | u32			fifo_size; | 
|  | }; | 
|  |  | 
|  | /* Controller-specific per-slave state */ | 
|  | struct atmel_spi_device { | 
|  | unsigned int		npcs_pin; | 
|  | u32			csr; | 
|  | }; | 
|  |  | 
|  | #define BUFFER_SIZE		PAGE_SIZE | 
|  | #define INVALID_DMA_ADDRESS	0xffffffff | 
|  |  | 
|  | /* | 
|  | * Version 2 of the SPI controller has | 
|  | *  - CR.LASTXFER | 
|  | *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) | 
|  | *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) | 
|  | *  - SPI_CSRx.CSAAT | 
|  | *  - SPI_CSRx.SBCR allows faster clocking | 
|  | */ | 
|  | static bool atmel_spi_is_v2(struct atmel_spi *as) | 
|  | { | 
|  | return as->caps.is_spi2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby | 
|  | * they assume that spi slave device state will not change on deselect, so | 
|  | * that automagic deselection is OK.  ("NPCSx rises if no data is to be | 
|  | * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer | 
|  | * controllers have CSAAT and friends. | 
|  | * | 
|  | * Since the CSAAT functionality is a bit weird on newer controllers as | 
|  | * well, we use GPIO to control nCSx pins on all controllers, updating | 
|  | * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us | 
|  | * support active-high chipselects despite the controller's belief that | 
|  | * only active-low devices/systems exists. | 
|  | * | 
|  | * However, at91rm9200 has a second erratum whereby nCS0 doesn't work | 
|  | * right when driven with GPIO.  ("Mode Fault does not allow more than one | 
|  | * Master on Chip Select 0.")  No workaround exists for that ... so for | 
|  | * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, | 
|  | * and (c) will trigger that first erratum in some cases. | 
|  | */ | 
|  |  | 
|  | static void cs_activate(struct atmel_spi *as, struct spi_device *spi) | 
|  | { | 
|  | struct atmel_spi_device *asd = spi->controller_state; | 
|  | unsigned active = spi->mode & SPI_CS_HIGH; | 
|  | u32 mr; | 
|  |  | 
|  | if (atmel_spi_is_v2(as)) { | 
|  | spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr); | 
|  | /* For the low SPI version, there is a issue that PDC transfer | 
|  | * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS | 
|  | */ | 
|  | spi_writel(as, CSR0, asd->csr); | 
|  | if (as->caps.has_wdrbt) { | 
|  | spi_writel(as, MR, | 
|  | SPI_BF(PCS, ~(0x01 << spi->chip_select)) | 
|  | | SPI_BIT(WDRBT) | 
|  | | SPI_BIT(MODFDIS) | 
|  | | SPI_BIT(MSTR)); | 
|  | } else { | 
|  | spi_writel(as, MR, | 
|  | SPI_BF(PCS, ~(0x01 << spi->chip_select)) | 
|  | | SPI_BIT(MODFDIS) | 
|  | | SPI_BIT(MSTR)); | 
|  | } | 
|  |  | 
|  | mr = spi_readl(as, MR); | 
|  | if (as->use_cs_gpios) | 
|  | gpio_set_value(asd->npcs_pin, active); | 
|  | } else { | 
|  | u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; | 
|  | int i; | 
|  | u32 csr; | 
|  |  | 
|  | /* Make sure clock polarity is correct */ | 
|  | for (i = 0; i < spi->master->num_chipselect; i++) { | 
|  | csr = spi_readl(as, CSR0 + 4 * i); | 
|  | if ((csr ^ cpol) & SPI_BIT(CPOL)) | 
|  | spi_writel(as, CSR0 + 4 * i, | 
|  | csr ^ SPI_BIT(CPOL)); | 
|  | } | 
|  |  | 
|  | mr = spi_readl(as, MR); | 
|  | mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr); | 
|  | if (as->use_cs_gpios && spi->chip_select != 0) | 
|  | gpio_set_value(asd->npcs_pin, active); | 
|  | spi_writel(as, MR, mr); | 
|  | } | 
|  |  | 
|  | dev_dbg(&spi->dev, "activate %u%s, mr %08x\n", | 
|  | asd->npcs_pin, active ? " (high)" : "", | 
|  | mr); | 
|  | } | 
|  |  | 
|  | static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) | 
|  | { | 
|  | struct atmel_spi_device *asd = spi->controller_state; | 
|  | unsigned active = spi->mode & SPI_CS_HIGH; | 
|  | u32 mr; | 
|  |  | 
|  | /* only deactivate *this* device; sometimes transfers to | 
|  | * another device may be active when this routine is called. | 
|  | */ | 
|  | mr = spi_readl(as, MR); | 
|  | if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) { | 
|  | mr = SPI_BFINS(PCS, 0xf, mr); | 
|  | spi_writel(as, MR, mr); | 
|  | } | 
|  |  | 
|  | dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n", | 
|  | asd->npcs_pin, active ? " (low)" : "", | 
|  | mr); | 
|  |  | 
|  | if (!as->use_cs_gpios) | 
|  | spi_writel(as, CR, SPI_BIT(LASTXFER)); | 
|  | else if (atmel_spi_is_v2(as) || spi->chip_select != 0) | 
|  | gpio_set_value(asd->npcs_pin, !active); | 
|  | } | 
|  |  | 
|  | static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock) | 
|  | { | 
|  | spin_lock_irqsave(&as->lock, as->flags); | 
|  | } | 
|  |  | 
|  | static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock) | 
|  | { | 
|  | spin_unlock_irqrestore(&as->lock, as->flags); | 
|  | } | 
|  |  | 
|  | static inline bool atmel_spi_use_dma(struct atmel_spi *as, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | return as->use_dma && xfer->len >= DMA_MIN_BYTES; | 
|  | } | 
|  |  | 
|  | static int atmel_spi_dma_slave_config(struct atmel_spi *as, | 
|  | struct dma_slave_config *slave_config, | 
|  | u8 bits_per_word) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (bits_per_word > 8) { | 
|  | slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; | 
|  | slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; | 
|  | } else { | 
|  | slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; | 
|  | slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; | 
|  | } | 
|  |  | 
|  | slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR; | 
|  | slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR; | 
|  | slave_config->src_maxburst = 1; | 
|  | slave_config->dst_maxburst = 1; | 
|  | slave_config->device_fc = false; | 
|  |  | 
|  | /* | 
|  | * This driver uses fixed peripheral select mode (PS bit set to '0' in | 
|  | * the Mode Register). | 
|  | * So according to the datasheet, when FIFOs are available (and | 
|  | * enabled), the Transmit FIFO operates in Multiple Data Mode. | 
|  | * In this mode, up to 2 data, not 4, can be written into the Transmit | 
|  | * Data Register in a single access. | 
|  | * However, the first data has to be written into the lowest 16 bits and | 
|  | * the second data into the highest 16 bits of the Transmit | 
|  | * Data Register. For 8bit data (the most frequent case), it would | 
|  | * require to rework tx_buf so each data would actualy fit 16 bits. | 
|  | * So we'd rather write only one data at the time. Hence the transmit | 
|  | * path works the same whether FIFOs are available (and enabled) or not. | 
|  | */ | 
|  | slave_config->direction = DMA_MEM_TO_DEV; | 
|  | if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) { | 
|  | dev_err(&as->pdev->dev, | 
|  | "failed to configure tx dma channel\n"); | 
|  | err = -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This driver configures the spi controller for master mode (MSTR bit | 
|  | * set to '1' in the Mode Register). | 
|  | * So according to the datasheet, when FIFOs are available (and | 
|  | * enabled), the Receive FIFO operates in Single Data Mode. | 
|  | * So the receive path works the same whether FIFOs are available (and | 
|  | * enabled) or not. | 
|  | */ | 
|  | slave_config->direction = DMA_DEV_TO_MEM; | 
|  | if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) { | 
|  | dev_err(&as->pdev->dev, | 
|  | "failed to configure rx dma channel\n"); | 
|  | err = -EINVAL; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int atmel_spi_configure_dma(struct atmel_spi *as) | 
|  | { | 
|  | struct dma_slave_config	slave_config; | 
|  | struct device *dev = &as->pdev->dev; | 
|  | int err; | 
|  |  | 
|  | dma_cap_mask_t mask; | 
|  | dma_cap_zero(mask); | 
|  | dma_cap_set(DMA_SLAVE, mask); | 
|  |  | 
|  | as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx"); | 
|  | if (IS_ERR(as->dma.chan_tx)) { | 
|  | err = PTR_ERR(as->dma.chan_tx); | 
|  | if (err == -EPROBE_DEFER) { | 
|  | dev_warn(dev, "no DMA channel available at the moment\n"); | 
|  | return err; | 
|  | } | 
|  | dev_err(dev, | 
|  | "DMA TX channel not available, SPI unable to use DMA\n"); | 
|  | err = -EBUSY; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No reason to check EPROBE_DEFER here since we have already requested | 
|  | * tx channel. If it fails here, it's for another reason. | 
|  | */ | 
|  | as->dma.chan_rx = dma_request_slave_channel(dev, "rx"); | 
|  |  | 
|  | if (!as->dma.chan_rx) { | 
|  | dev_err(dev, | 
|  | "DMA RX channel not available, SPI unable to use DMA\n"); | 
|  | err = -EBUSY; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | err = atmel_spi_dma_slave_config(as, &slave_config, 8); | 
|  | if (err) | 
|  | goto error; | 
|  |  | 
|  | dev_info(&as->pdev->dev, | 
|  | "Using %s (tx) and %s (rx) for DMA transfers\n", | 
|  | dma_chan_name(as->dma.chan_tx), | 
|  | dma_chan_name(as->dma.chan_rx)); | 
|  | return 0; | 
|  | error: | 
|  | if (as->dma.chan_rx) | 
|  | dma_release_channel(as->dma.chan_rx); | 
|  | if (!IS_ERR(as->dma.chan_tx)) | 
|  | dma_release_channel(as->dma.chan_tx); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void atmel_spi_stop_dma(struct atmel_spi *as) | 
|  | { | 
|  | if (as->dma.chan_rx) | 
|  | dmaengine_terminate_all(as->dma.chan_rx); | 
|  | if (as->dma.chan_tx) | 
|  | dmaengine_terminate_all(as->dma.chan_tx); | 
|  | } | 
|  |  | 
|  | static void atmel_spi_release_dma(struct atmel_spi *as) | 
|  | { | 
|  | if (as->dma.chan_rx) | 
|  | dma_release_channel(as->dma.chan_rx); | 
|  | if (as->dma.chan_tx) | 
|  | dma_release_channel(as->dma.chan_tx); | 
|  | } | 
|  |  | 
|  | /* This function is called by the DMA driver from tasklet context */ | 
|  | static void dma_callback(void *data) | 
|  | { | 
|  | struct spi_master	*master = data; | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  |  | 
|  | complete(&as->xfer_completion); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Next transfer using PIO without FIFO. | 
|  | */ | 
|  | static void atmel_spi_next_xfer_single(struct spi_master *master, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  | unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; | 
|  |  | 
|  | dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n"); | 
|  |  | 
|  | /* Make sure data is not remaining in RDR */ | 
|  | spi_readl(as, RDR); | 
|  | while (spi_readl(as, SR) & SPI_BIT(RDRF)) { | 
|  | spi_readl(as, RDR); | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | if (xfer->tx_buf) { | 
|  | if (xfer->bits_per_word > 8) | 
|  | spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos)); | 
|  | else | 
|  | spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos)); | 
|  | } else { | 
|  | spi_writel(as, TDR, 0); | 
|  | } | 
|  |  | 
|  | dev_dbg(master->dev.parent, | 
|  | "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n", | 
|  | xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, | 
|  | xfer->bits_per_word); | 
|  |  | 
|  | /* Enable relevant interrupts */ | 
|  | spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Next transfer using PIO with FIFO. | 
|  | */ | 
|  | static void atmel_spi_next_xfer_fifo(struct spi_master *master, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct atmel_spi *as = spi_master_get_devdata(master); | 
|  | u32 current_remaining_data, num_data; | 
|  | u32 offset = xfer->len - as->current_remaining_bytes; | 
|  | const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset); | 
|  | const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset); | 
|  | u16 td0, td1; | 
|  | u32 fifomr; | 
|  |  | 
|  | dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n"); | 
|  |  | 
|  | /* Compute the number of data to transfer in the current iteration */ | 
|  | current_remaining_data = ((xfer->bits_per_word > 8) ? | 
|  | ((u32)as->current_remaining_bytes >> 1) : | 
|  | (u32)as->current_remaining_bytes); | 
|  | num_data = min(current_remaining_data, as->fifo_size); | 
|  |  | 
|  | /* Flush RX and TX FIFOs */ | 
|  | spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR)); | 
|  | while (spi_readl(as, FLR)) | 
|  | cpu_relax(); | 
|  |  | 
|  | /* Set RX FIFO Threshold to the number of data to transfer */ | 
|  | fifomr = spi_readl(as, FMR); | 
|  | spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr)); | 
|  |  | 
|  | /* Clear FIFO flags in the Status Register, especially RXFTHF */ | 
|  | (void)spi_readl(as, SR); | 
|  |  | 
|  | /* Fill TX FIFO */ | 
|  | while (num_data >= 2) { | 
|  | if (xfer->tx_buf) { | 
|  | if (xfer->bits_per_word > 8) { | 
|  | td0 = *words++; | 
|  | td1 = *words++; | 
|  | } else { | 
|  | td0 = *bytes++; | 
|  | td1 = *bytes++; | 
|  | } | 
|  | } else { | 
|  | td0 = 0; | 
|  | td1 = 0; | 
|  | } | 
|  |  | 
|  | spi_writel(as, TDR, (td1 << 16) | td0); | 
|  | num_data -= 2; | 
|  | } | 
|  |  | 
|  | if (num_data) { | 
|  | if (xfer->tx_buf) { | 
|  | if (xfer->bits_per_word > 8) | 
|  | td0 = *words++; | 
|  | else | 
|  | td0 = *bytes++; | 
|  | } else { | 
|  | td0 = 0; | 
|  | } | 
|  |  | 
|  | spi_writew(as, TDR, td0); | 
|  | num_data--; | 
|  | } | 
|  |  | 
|  | dev_dbg(master->dev.parent, | 
|  | "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n", | 
|  | xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, | 
|  | xfer->bits_per_word); | 
|  |  | 
|  | /* | 
|  | * Enable RX FIFO Threshold Flag interrupt to be notified about | 
|  | * transfer completion. | 
|  | */ | 
|  | spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Next transfer using PIO. | 
|  | */ | 
|  | static void atmel_spi_next_xfer_pio(struct spi_master *master, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct atmel_spi *as = spi_master_get_devdata(master); | 
|  |  | 
|  | if (as->fifo_size) | 
|  | atmel_spi_next_xfer_fifo(master, xfer); | 
|  | else | 
|  | atmel_spi_next_xfer_single(master, xfer); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit next transfer for DMA. | 
|  | */ | 
|  | static int atmel_spi_next_xfer_dma_submit(struct spi_master *master, | 
|  | struct spi_transfer *xfer, | 
|  | u32 *plen) | 
|  | { | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  | struct dma_chan		*rxchan = as->dma.chan_rx; | 
|  | struct dma_chan		*txchan = as->dma.chan_tx; | 
|  | struct dma_async_tx_descriptor *rxdesc; | 
|  | struct dma_async_tx_descriptor *txdesc; | 
|  | struct dma_slave_config	slave_config; | 
|  | dma_cookie_t		cookie; | 
|  | u32	len = *plen; | 
|  |  | 
|  | dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n"); | 
|  |  | 
|  | /* Check that the channels are available */ | 
|  | if (!rxchan || !txchan) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* release lock for DMA operations */ | 
|  | atmel_spi_unlock(as); | 
|  |  | 
|  | /* prepare the RX dma transfer */ | 
|  | sg_init_table(&as->dma.sgrx, 1); | 
|  | if (xfer->rx_buf) { | 
|  | as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen; | 
|  | } else { | 
|  | as->dma.sgrx.dma_address = as->buffer_dma; | 
|  | if (len > BUFFER_SIZE) | 
|  | len = BUFFER_SIZE; | 
|  | } | 
|  |  | 
|  | /* prepare the TX dma transfer */ | 
|  | sg_init_table(&as->dma.sgtx, 1); | 
|  | if (xfer->tx_buf) { | 
|  | as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen; | 
|  | } else { | 
|  | as->dma.sgtx.dma_address = as->buffer_dma; | 
|  | if (len > BUFFER_SIZE) | 
|  | len = BUFFER_SIZE; | 
|  | memset(as->buffer, 0, len); | 
|  | } | 
|  |  | 
|  | sg_dma_len(&as->dma.sgtx) = len; | 
|  | sg_dma_len(&as->dma.sgrx) = len; | 
|  |  | 
|  | *plen = len; | 
|  |  | 
|  | if (atmel_spi_dma_slave_config(as, &slave_config, 8)) | 
|  | goto err_exit; | 
|  |  | 
|  | /* Send both scatterlists */ | 
|  | rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1, | 
|  | DMA_FROM_DEVICE, | 
|  | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
|  | if (!rxdesc) | 
|  | goto err_dma; | 
|  |  | 
|  | txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1, | 
|  | DMA_TO_DEVICE, | 
|  | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
|  | if (!txdesc) | 
|  | goto err_dma; | 
|  |  | 
|  | dev_dbg(master->dev.parent, | 
|  | "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", | 
|  | xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma, | 
|  | xfer->rx_buf, (unsigned long long)xfer->rx_dma); | 
|  |  | 
|  | /* Enable relevant interrupts */ | 
|  | spi_writel(as, IER, SPI_BIT(OVRES)); | 
|  |  | 
|  | /* Put the callback on the RX transfer only, that should finish last */ | 
|  | rxdesc->callback = dma_callback; | 
|  | rxdesc->callback_param = master; | 
|  |  | 
|  | /* Submit and fire RX and TX with TX last so we're ready to read! */ | 
|  | cookie = rxdesc->tx_submit(rxdesc); | 
|  | if (dma_submit_error(cookie)) | 
|  | goto err_dma; | 
|  | cookie = txdesc->tx_submit(txdesc); | 
|  | if (dma_submit_error(cookie)) | 
|  | goto err_dma; | 
|  | rxchan->device->device_issue_pending(rxchan); | 
|  | txchan->device->device_issue_pending(txchan); | 
|  |  | 
|  | /* take back lock */ | 
|  | atmel_spi_lock(as); | 
|  | return 0; | 
|  |  | 
|  | err_dma: | 
|  | spi_writel(as, IDR, SPI_BIT(OVRES)); | 
|  | atmel_spi_stop_dma(as); | 
|  | err_exit: | 
|  | atmel_spi_lock(as); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void atmel_spi_next_xfer_data(struct spi_master *master, | 
|  | struct spi_transfer *xfer, | 
|  | dma_addr_t *tx_dma, | 
|  | dma_addr_t *rx_dma, | 
|  | u32 *plen) | 
|  | { | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  | u32			len = *plen; | 
|  |  | 
|  | /* use scratch buffer only when rx or tx data is unspecified */ | 
|  | if (xfer->rx_buf) | 
|  | *rx_dma = xfer->rx_dma + xfer->len - *plen; | 
|  | else { | 
|  | *rx_dma = as->buffer_dma; | 
|  | if (len > BUFFER_SIZE) | 
|  | len = BUFFER_SIZE; | 
|  | } | 
|  |  | 
|  | if (xfer->tx_buf) | 
|  | *tx_dma = xfer->tx_dma + xfer->len - *plen; | 
|  | else { | 
|  | *tx_dma = as->buffer_dma; | 
|  | if (len > BUFFER_SIZE) | 
|  | len = BUFFER_SIZE; | 
|  | memset(as->buffer, 0, len); | 
|  | dma_sync_single_for_device(&as->pdev->dev, | 
|  | as->buffer_dma, len, DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | *plen = len; | 
|  | } | 
|  |  | 
|  | static int atmel_spi_set_xfer_speed(struct atmel_spi *as, | 
|  | struct spi_device *spi, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | u32			scbr, csr; | 
|  | unsigned long		bus_hz; | 
|  |  | 
|  | /* v1 chips start out at half the peripheral bus speed. */ | 
|  | bus_hz = clk_get_rate(as->clk); | 
|  | if (!atmel_spi_is_v2(as)) | 
|  | bus_hz /= 2; | 
|  |  | 
|  | /* | 
|  | * Calculate the lowest divider that satisfies the | 
|  | * constraint, assuming div32/fdiv/mbz == 0. | 
|  | */ | 
|  | if (xfer->speed_hz) | 
|  | scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz); | 
|  | else | 
|  | /* | 
|  | * This can happend if max_speed is null. | 
|  | * In this case, we set the lowest possible speed | 
|  | */ | 
|  | scbr = 0xff; | 
|  |  | 
|  | /* | 
|  | * If the resulting divider doesn't fit into the | 
|  | * register bitfield, we can't satisfy the constraint. | 
|  | */ | 
|  | if (scbr >= (1 << SPI_SCBR_SIZE)) { | 
|  | dev_err(&spi->dev, | 
|  | "setup: %d Hz too slow, scbr %u; min %ld Hz\n", | 
|  | xfer->speed_hz, scbr, bus_hz/255); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (scbr == 0) { | 
|  | dev_err(&spi->dev, | 
|  | "setup: %d Hz too high, scbr %u; max %ld Hz\n", | 
|  | xfer->speed_hz, scbr, bus_hz); | 
|  | return -EINVAL; | 
|  | } | 
|  | csr = spi_readl(as, CSR0 + 4 * spi->chip_select); | 
|  | csr = SPI_BFINS(SCBR, scbr, csr); | 
|  | spi_writel(as, CSR0 + 4 * spi->chip_select, csr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit next transfer for PDC. | 
|  | * lock is held, spi irq is blocked | 
|  | */ | 
|  | static void atmel_spi_pdc_next_xfer(struct spi_master *master, | 
|  | struct spi_message *msg, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  | u32			len; | 
|  | dma_addr_t		tx_dma, rx_dma; | 
|  |  | 
|  | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); | 
|  |  | 
|  | len = as->current_remaining_bytes; | 
|  | atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); | 
|  | as->current_remaining_bytes -= len; | 
|  |  | 
|  | spi_writel(as, RPR, rx_dma); | 
|  | spi_writel(as, TPR, tx_dma); | 
|  |  | 
|  | if (msg->spi->bits_per_word > 8) | 
|  | len >>= 1; | 
|  | spi_writel(as, RCR, len); | 
|  | spi_writel(as, TCR, len); | 
|  |  | 
|  | dev_dbg(&msg->spi->dev, | 
|  | "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", | 
|  | xfer, xfer->len, xfer->tx_buf, | 
|  | (unsigned long long)xfer->tx_dma, xfer->rx_buf, | 
|  | (unsigned long long)xfer->rx_dma); | 
|  |  | 
|  | if (as->current_remaining_bytes) { | 
|  | len = as->current_remaining_bytes; | 
|  | atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); | 
|  | as->current_remaining_bytes -= len; | 
|  |  | 
|  | spi_writel(as, RNPR, rx_dma); | 
|  | spi_writel(as, TNPR, tx_dma); | 
|  |  | 
|  | if (msg->spi->bits_per_word > 8) | 
|  | len >>= 1; | 
|  | spi_writel(as, RNCR, len); | 
|  | spi_writel(as, TNCR, len); | 
|  |  | 
|  | dev_dbg(&msg->spi->dev, | 
|  | "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", | 
|  | xfer, xfer->len, xfer->tx_buf, | 
|  | (unsigned long long)xfer->tx_dma, xfer->rx_buf, | 
|  | (unsigned long long)xfer->rx_dma); | 
|  | } | 
|  |  | 
|  | /* REVISIT: We're waiting for RXBUFF before we start the next | 
|  | * transfer because we need to handle some difficult timing | 
|  | * issues otherwise. If we wait for TXBUFE in one transfer and | 
|  | * then starts waiting for RXBUFF in the next, it's difficult | 
|  | * to tell the difference between the RXBUFF interrupt we're | 
|  | * actually waiting for and the RXBUFF interrupt of the | 
|  | * previous transfer. | 
|  | * | 
|  | * It should be doable, though. Just not now... | 
|  | */ | 
|  | spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES)); | 
|  | spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: | 
|  | *  - The buffer is either valid for CPU access, else NULL | 
|  | *  - If the buffer is valid, so is its DMA address | 
|  | * | 
|  | * This driver manages the dma address unless message->is_dma_mapped. | 
|  | */ | 
|  | static int | 
|  | atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) | 
|  | { | 
|  | struct device	*dev = &as->pdev->dev; | 
|  |  | 
|  | xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; | 
|  | if (xfer->tx_buf) { | 
|  | /* tx_buf is a const void* where we need a void * for the dma | 
|  | * mapping */ | 
|  | void *nonconst_tx = (void *)xfer->tx_buf; | 
|  |  | 
|  | xfer->tx_dma = dma_map_single(dev, | 
|  | nonconst_tx, xfer->len, | 
|  | DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(dev, xfer->tx_dma)) | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (xfer->rx_buf) { | 
|  | xfer->rx_dma = dma_map_single(dev, | 
|  | xfer->rx_buf, xfer->len, | 
|  | DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(dev, xfer->rx_dma)) { | 
|  | if (xfer->tx_buf) | 
|  | dma_unmap_single(dev, | 
|  | xfer->tx_dma, xfer->len, | 
|  | DMA_TO_DEVICE); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void atmel_spi_dma_unmap_xfer(struct spi_master *master, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | if (xfer->tx_dma != INVALID_DMA_ADDRESS) | 
|  | dma_unmap_single(master->dev.parent, xfer->tx_dma, | 
|  | xfer->len, DMA_TO_DEVICE); | 
|  | if (xfer->rx_dma != INVALID_DMA_ADDRESS) | 
|  | dma_unmap_single(master->dev.parent, xfer->rx_dma, | 
|  | xfer->len, DMA_FROM_DEVICE); | 
|  | } | 
|  |  | 
|  | static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as) | 
|  | { | 
|  | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer) | 
|  | { | 
|  | u8		*rxp; | 
|  | u16		*rxp16; | 
|  | unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes; | 
|  |  | 
|  | if (xfer->rx_buf) { | 
|  | if (xfer->bits_per_word > 8) { | 
|  | rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos); | 
|  | *rxp16 = spi_readl(as, RDR); | 
|  | } else { | 
|  | rxp = ((u8 *)xfer->rx_buf) + xfer_pos; | 
|  | *rxp = spi_readl(as, RDR); | 
|  | } | 
|  | } else { | 
|  | spi_readl(as, RDR); | 
|  | } | 
|  | if (xfer->bits_per_word > 8) { | 
|  | if (as->current_remaining_bytes > 2) | 
|  | as->current_remaining_bytes -= 2; | 
|  | else | 
|  | as->current_remaining_bytes = 0; | 
|  | } else { | 
|  | as->current_remaining_bytes--; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer) | 
|  | { | 
|  | u32 fifolr = spi_readl(as, FLR); | 
|  | u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr); | 
|  | u32 offset = xfer->len - as->current_remaining_bytes; | 
|  | u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset); | 
|  | u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset); | 
|  | u16 rd; /* RD field is the lowest 16 bits of RDR */ | 
|  |  | 
|  | /* Update the number of remaining bytes to transfer */ | 
|  | num_bytes = ((xfer->bits_per_word > 8) ? | 
|  | (num_data << 1) : | 
|  | num_data); | 
|  |  | 
|  | if (as->current_remaining_bytes > num_bytes) | 
|  | as->current_remaining_bytes -= num_bytes; | 
|  | else | 
|  | as->current_remaining_bytes = 0; | 
|  |  | 
|  | /* Handle odd number of bytes when data are more than 8bit width */ | 
|  | if (xfer->bits_per_word > 8) | 
|  | as->current_remaining_bytes &= ~0x1; | 
|  |  | 
|  | /* Read data */ | 
|  | while (num_data) { | 
|  | rd = spi_readl(as, RDR); | 
|  | if (xfer->rx_buf) { | 
|  | if (xfer->bits_per_word > 8) | 
|  | *words++ = rd; | 
|  | else | 
|  | *bytes++ = rd; | 
|  | } | 
|  | num_data--; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Called from IRQ | 
|  | * | 
|  | * Must update "current_remaining_bytes" to keep track of data | 
|  | * to transfer. | 
|  | */ | 
|  | static void | 
|  | atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer) | 
|  | { | 
|  | if (as->fifo_size) | 
|  | atmel_spi_pump_fifo_data(as, xfer); | 
|  | else | 
|  | atmel_spi_pump_single_data(as, xfer); | 
|  | } | 
|  |  | 
|  | /* Interrupt | 
|  | * | 
|  | * No need for locking in this Interrupt handler: done_status is the | 
|  | * only information modified. | 
|  | */ | 
|  | static irqreturn_t | 
|  | atmel_spi_pio_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct spi_master	*master = dev_id; | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  | u32			status, pending, imr; | 
|  | struct spi_transfer	*xfer; | 
|  | int			ret = IRQ_NONE; | 
|  |  | 
|  | imr = spi_readl(as, IMR); | 
|  | status = spi_readl(as, SR); | 
|  | pending = status & imr; | 
|  |  | 
|  | if (pending & SPI_BIT(OVRES)) { | 
|  | ret = IRQ_HANDLED; | 
|  | spi_writel(as, IDR, SPI_BIT(OVRES)); | 
|  | dev_warn(master->dev.parent, "overrun\n"); | 
|  |  | 
|  | /* | 
|  | * When we get an overrun, we disregard the current | 
|  | * transfer. Data will not be copied back from any | 
|  | * bounce buffer and msg->actual_len will not be | 
|  | * updated with the last xfer. | 
|  | * | 
|  | * We will also not process any remaning transfers in | 
|  | * the message. | 
|  | */ | 
|  | as->done_status = -EIO; | 
|  | smp_wmb(); | 
|  |  | 
|  | /* Clear any overrun happening while cleaning up */ | 
|  | spi_readl(as, SR); | 
|  |  | 
|  | complete(&as->xfer_completion); | 
|  |  | 
|  | } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) { | 
|  | atmel_spi_lock(as); | 
|  |  | 
|  | if (as->current_remaining_bytes) { | 
|  | ret = IRQ_HANDLED; | 
|  | xfer = as->current_transfer; | 
|  | atmel_spi_pump_pio_data(as, xfer); | 
|  | if (!as->current_remaining_bytes) | 
|  | spi_writel(as, IDR, pending); | 
|  |  | 
|  | complete(&as->xfer_completion); | 
|  | } | 
|  |  | 
|  | atmel_spi_unlock(as); | 
|  | } else { | 
|  | WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending); | 
|  | ret = IRQ_HANDLED; | 
|  | spi_writel(as, IDR, pending); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static irqreturn_t | 
|  | atmel_spi_pdc_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct spi_master	*master = dev_id; | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  | u32			status, pending, imr; | 
|  | int			ret = IRQ_NONE; | 
|  |  | 
|  | imr = spi_readl(as, IMR); | 
|  | status = spi_readl(as, SR); | 
|  | pending = status & imr; | 
|  |  | 
|  | if (pending & SPI_BIT(OVRES)) { | 
|  |  | 
|  | ret = IRQ_HANDLED; | 
|  |  | 
|  | spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | 
|  | | SPI_BIT(OVRES))); | 
|  |  | 
|  | /* Clear any overrun happening while cleaning up */ | 
|  | spi_readl(as, SR); | 
|  |  | 
|  | as->done_status = -EIO; | 
|  |  | 
|  | complete(&as->xfer_completion); | 
|  |  | 
|  | } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { | 
|  | ret = IRQ_HANDLED; | 
|  |  | 
|  | spi_writel(as, IDR, pending); | 
|  |  | 
|  | complete(&as->xfer_completion); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int atmel_spi_setup(struct spi_device *spi) | 
|  | { | 
|  | struct atmel_spi	*as; | 
|  | struct atmel_spi_device	*asd; | 
|  | u32			csr; | 
|  | unsigned int		bits = spi->bits_per_word; | 
|  | unsigned int		npcs_pin; | 
|  | int			ret; | 
|  |  | 
|  | as = spi_master_get_devdata(spi->master); | 
|  |  | 
|  | /* see notes above re chipselect */ | 
|  | if (!atmel_spi_is_v2(as) | 
|  | && spi->chip_select == 0 | 
|  | && (spi->mode & SPI_CS_HIGH)) { | 
|  | dev_dbg(&spi->dev, "setup: can't be active-high\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | csr = SPI_BF(BITS, bits - 8); | 
|  | if (spi->mode & SPI_CPOL) | 
|  | csr |= SPI_BIT(CPOL); | 
|  | if (!(spi->mode & SPI_CPHA)) | 
|  | csr |= SPI_BIT(NCPHA); | 
|  | if (!as->use_cs_gpios) | 
|  | csr |= SPI_BIT(CSAAT); | 
|  |  | 
|  | /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs. | 
|  | * | 
|  | * DLYBCT would add delays between words, slowing down transfers. | 
|  | * It could potentially be useful to cope with DMA bottlenecks, but | 
|  | * in those cases it's probably best to just use a lower bitrate. | 
|  | */ | 
|  | csr |= SPI_BF(DLYBS, 0); | 
|  | csr |= SPI_BF(DLYBCT, 0); | 
|  |  | 
|  | /* chipselect must have been muxed as GPIO (e.g. in board setup) */ | 
|  | npcs_pin = (unsigned long)spi->controller_data; | 
|  |  | 
|  | if (!as->use_cs_gpios) | 
|  | npcs_pin = spi->chip_select; | 
|  | else if (gpio_is_valid(spi->cs_gpio)) | 
|  | npcs_pin = spi->cs_gpio; | 
|  |  | 
|  | asd = spi->controller_state; | 
|  | if (!asd) { | 
|  | asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); | 
|  | if (!asd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (as->use_cs_gpios) { | 
|  | ret = gpio_request(npcs_pin, dev_name(&spi->dev)); | 
|  | if (ret) { | 
|  | kfree(asd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | gpio_direction_output(npcs_pin, | 
|  | !(spi->mode & SPI_CS_HIGH)); | 
|  | } | 
|  |  | 
|  | asd->npcs_pin = npcs_pin; | 
|  | spi->controller_state = asd; | 
|  | } | 
|  |  | 
|  | asd->csr = csr; | 
|  |  | 
|  | dev_dbg(&spi->dev, | 
|  | "setup: bpw %u mode 0x%x -> csr%d %08x\n", | 
|  | bits, spi->mode, spi->chip_select, csr); | 
|  |  | 
|  | if (!atmel_spi_is_v2(as)) | 
|  | spi_writel(as, CSR0 + 4 * spi->chip_select, csr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int atmel_spi_one_transfer(struct spi_master *master, | 
|  | struct spi_message *msg, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct atmel_spi	*as; | 
|  | struct spi_device	*spi = msg->spi; | 
|  | u8			bits; | 
|  | u32			len; | 
|  | struct atmel_spi_device	*asd; | 
|  | int			timeout; | 
|  | int			ret; | 
|  | unsigned long		dma_timeout; | 
|  |  | 
|  | as = spi_master_get_devdata(master); | 
|  |  | 
|  | if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { | 
|  | dev_dbg(&spi->dev, "missing rx or tx buf\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (xfer->bits_per_word) { | 
|  | asd = spi->controller_state; | 
|  | bits = (asd->csr >> 4) & 0xf; | 
|  | if (bits != xfer->bits_per_word - 8) { | 
|  | dev_dbg(&spi->dev, | 
|  | "you can't yet change bits_per_word in transfers\n"); | 
|  | return -ENOPROTOOPT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DMA map early, for performance (empties dcache ASAP) and | 
|  | * better fault reporting. | 
|  | */ | 
|  | if ((!msg->is_dma_mapped) | 
|  | && (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) { | 
|  | if (atmel_spi_dma_map_xfer(as, xfer) < 0) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | atmel_spi_set_xfer_speed(as, msg->spi, xfer); | 
|  |  | 
|  | as->done_status = 0; | 
|  | as->current_transfer = xfer; | 
|  | as->current_remaining_bytes = xfer->len; | 
|  | while (as->current_remaining_bytes) { | 
|  | reinit_completion(&as->xfer_completion); | 
|  |  | 
|  | if (as->use_pdc) { | 
|  | atmel_spi_pdc_next_xfer(master, msg, xfer); | 
|  | } else if (atmel_spi_use_dma(as, xfer)) { | 
|  | len = as->current_remaining_bytes; | 
|  | ret = atmel_spi_next_xfer_dma_submit(master, | 
|  | xfer, &len); | 
|  | if (ret) { | 
|  | dev_err(&spi->dev, | 
|  | "unable to use DMA, fallback to PIO\n"); | 
|  | atmel_spi_next_xfer_pio(master, xfer); | 
|  | } else { | 
|  | as->current_remaining_bytes -= len; | 
|  | if (as->current_remaining_bytes < 0) | 
|  | as->current_remaining_bytes = 0; | 
|  | } | 
|  | } else { | 
|  | atmel_spi_next_xfer_pio(master, xfer); | 
|  | } | 
|  |  | 
|  | /* interrupts are disabled, so free the lock for schedule */ | 
|  | atmel_spi_unlock(as); | 
|  | dma_timeout = wait_for_completion_timeout(&as->xfer_completion, | 
|  | SPI_DMA_TIMEOUT); | 
|  | atmel_spi_lock(as); | 
|  | if (WARN_ON(dma_timeout == 0)) { | 
|  | dev_err(&spi->dev, "spi transfer timeout\n"); | 
|  | as->done_status = -EIO; | 
|  | } | 
|  |  | 
|  | if (as->done_status) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (as->done_status) { | 
|  | if (as->use_pdc) { | 
|  | dev_warn(master->dev.parent, | 
|  | "overrun (%u/%u remaining)\n", | 
|  | spi_readl(as, TCR), spi_readl(as, RCR)); | 
|  |  | 
|  | /* | 
|  | * Clean up DMA registers and make sure the data | 
|  | * registers are empty. | 
|  | */ | 
|  | spi_writel(as, RNCR, 0); | 
|  | spi_writel(as, TNCR, 0); | 
|  | spi_writel(as, RCR, 0); | 
|  | spi_writel(as, TCR, 0); | 
|  | for (timeout = 1000; timeout; timeout--) | 
|  | if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) | 
|  | break; | 
|  | if (!timeout) | 
|  | dev_warn(master->dev.parent, | 
|  | "timeout waiting for TXEMPTY"); | 
|  | while (spi_readl(as, SR) & SPI_BIT(RDRF)) | 
|  | spi_readl(as, RDR); | 
|  |  | 
|  | /* Clear any overrun happening while cleaning up */ | 
|  | spi_readl(as, SR); | 
|  |  | 
|  | } else if (atmel_spi_use_dma(as, xfer)) { | 
|  | atmel_spi_stop_dma(as); | 
|  | } | 
|  |  | 
|  | if (!msg->is_dma_mapped | 
|  | && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) | 
|  | atmel_spi_dma_unmap_xfer(master, xfer); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | } else { | 
|  | /* only update length if no error */ | 
|  | msg->actual_length += xfer->len; | 
|  | } | 
|  |  | 
|  | if (!msg->is_dma_mapped | 
|  | && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) | 
|  | atmel_spi_dma_unmap_xfer(master, xfer); | 
|  |  | 
|  | if (xfer->delay_usecs) | 
|  | udelay(xfer->delay_usecs); | 
|  |  | 
|  | if (xfer->cs_change) { | 
|  | if (list_is_last(&xfer->transfer_list, | 
|  | &msg->transfers)) { | 
|  | as->keep_cs = true; | 
|  | } else { | 
|  | as->cs_active = !as->cs_active; | 
|  | if (as->cs_active) | 
|  | cs_activate(as, msg->spi); | 
|  | else | 
|  | cs_deactivate(as, msg->spi); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int atmel_spi_transfer_one_message(struct spi_master *master, | 
|  | struct spi_message *msg) | 
|  | { | 
|  | struct atmel_spi *as; | 
|  | struct spi_transfer *xfer; | 
|  | struct spi_device *spi = msg->spi; | 
|  | int ret = 0; | 
|  |  | 
|  | as = spi_master_get_devdata(master); | 
|  |  | 
|  | dev_dbg(&spi->dev, "new message %p submitted for %s\n", | 
|  | msg, dev_name(&spi->dev)); | 
|  |  | 
|  | atmel_spi_lock(as); | 
|  | cs_activate(as, spi); | 
|  |  | 
|  | as->cs_active = true; | 
|  | as->keep_cs = false; | 
|  |  | 
|  | msg->status = 0; | 
|  | msg->actual_length = 0; | 
|  |  | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | ret = atmel_spi_one_transfer(master, msg, xfer); | 
|  | if (ret) | 
|  | goto msg_done; | 
|  | } | 
|  |  | 
|  | if (as->use_pdc) | 
|  | atmel_spi_disable_pdc_transfer(as); | 
|  |  | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | dev_dbg(&spi->dev, | 
|  | "  xfer %p: len %u tx %p/%pad rx %p/%pad\n", | 
|  | xfer, xfer->len, | 
|  | xfer->tx_buf, &xfer->tx_dma, | 
|  | xfer->rx_buf, &xfer->rx_dma); | 
|  | } | 
|  |  | 
|  | msg_done: | 
|  | if (!as->keep_cs) | 
|  | cs_deactivate(as, msg->spi); | 
|  |  | 
|  | atmel_spi_unlock(as); | 
|  |  | 
|  | msg->status = as->done_status; | 
|  | spi_finalize_current_message(spi->master); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void atmel_spi_cleanup(struct spi_device *spi) | 
|  | { | 
|  | struct atmel_spi_device	*asd = spi->controller_state; | 
|  | unsigned		gpio = (unsigned long) spi->controller_data; | 
|  |  | 
|  | if (!asd) | 
|  | return; | 
|  |  | 
|  | spi->controller_state = NULL; | 
|  | gpio_free(gpio); | 
|  | kfree(asd); | 
|  | } | 
|  |  | 
|  | static inline unsigned int atmel_get_version(struct atmel_spi *as) | 
|  | { | 
|  | return spi_readl(as, VERSION) & 0x00000fff; | 
|  | } | 
|  |  | 
|  | static void atmel_get_caps(struct atmel_spi *as) | 
|  | { | 
|  | unsigned int version; | 
|  |  | 
|  | version = atmel_get_version(as); | 
|  | dev_info(&as->pdev->dev, "version: 0x%x\n", version); | 
|  |  | 
|  | as->caps.is_spi2 = version > 0x121; | 
|  | as->caps.has_wdrbt = version >= 0x210; | 
|  | as->caps.has_dma_support = version >= 0x212; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | static int atmel_spi_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct resource		*regs; | 
|  | int			irq; | 
|  | struct clk		*clk; | 
|  | int			ret; | 
|  | struct spi_master	*master; | 
|  | struct atmel_spi	*as; | 
|  |  | 
|  | /* Select default pin state */ | 
|  | pinctrl_pm_select_default_state(&pdev->dev); | 
|  |  | 
|  | regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (!regs) | 
|  | return -ENXIO; | 
|  |  | 
|  | irq = platform_get_irq(pdev, 0); | 
|  | if (irq < 0) | 
|  | return irq; | 
|  |  | 
|  | clk = devm_clk_get(&pdev->dev, "spi_clk"); | 
|  | if (IS_ERR(clk)) | 
|  | return PTR_ERR(clk); | 
|  |  | 
|  | /* setup spi core then atmel-specific driver state */ | 
|  | ret = -ENOMEM; | 
|  | master = spi_alloc_master(&pdev->dev, sizeof(*as)); | 
|  | if (!master) | 
|  | goto out_free; | 
|  |  | 
|  | /* the spi->mode bits understood by this driver: */ | 
|  | master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; | 
|  | master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16); | 
|  | master->dev.of_node = pdev->dev.of_node; | 
|  | master->bus_num = pdev->id; | 
|  | master->num_chipselect = master->dev.of_node ? 0 : 4; | 
|  | master->setup = atmel_spi_setup; | 
|  | master->transfer_one_message = atmel_spi_transfer_one_message; | 
|  | master->cleanup = atmel_spi_cleanup; | 
|  | master->auto_runtime_pm = true; | 
|  | platform_set_drvdata(pdev, master); | 
|  |  | 
|  | as = spi_master_get_devdata(master); | 
|  |  | 
|  | /* | 
|  | * Scratch buffer is used for throwaway rx and tx data. | 
|  | * It's coherent to minimize dcache pollution. | 
|  | */ | 
|  | as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE, | 
|  | &as->buffer_dma, GFP_KERNEL); | 
|  | if (!as->buffer) | 
|  | goto out_free; | 
|  |  | 
|  | spin_lock_init(&as->lock); | 
|  |  | 
|  | as->pdev = pdev; | 
|  | as->regs = devm_ioremap_resource(&pdev->dev, regs); | 
|  | if (IS_ERR(as->regs)) { | 
|  | ret = PTR_ERR(as->regs); | 
|  | goto out_free_buffer; | 
|  | } | 
|  | as->phybase = regs->start; | 
|  | as->irq = irq; | 
|  | as->clk = clk; | 
|  |  | 
|  | init_completion(&as->xfer_completion); | 
|  |  | 
|  | atmel_get_caps(as); | 
|  |  | 
|  | as->use_cs_gpios = true; | 
|  | if (atmel_spi_is_v2(as) && | 
|  | !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) { | 
|  | as->use_cs_gpios = false; | 
|  | master->num_chipselect = 4; | 
|  | } | 
|  |  | 
|  | as->use_dma = false; | 
|  | as->use_pdc = false; | 
|  | if (as->caps.has_dma_support) { | 
|  | ret = atmel_spi_configure_dma(as); | 
|  | if (ret == 0) | 
|  | as->use_dma = true; | 
|  | else if (ret == -EPROBE_DEFER) | 
|  | return ret; | 
|  | } else { | 
|  | as->use_pdc = true; | 
|  | } | 
|  |  | 
|  | if (as->caps.has_dma_support && !as->use_dma) | 
|  | dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n"); | 
|  |  | 
|  | if (as->use_pdc) { | 
|  | ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt, | 
|  | 0, dev_name(&pdev->dev), master); | 
|  | } else { | 
|  | ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt, | 
|  | 0, dev_name(&pdev->dev), master); | 
|  | } | 
|  | if (ret) | 
|  | goto out_unmap_regs; | 
|  |  | 
|  | /* Initialize the hardware */ | 
|  | ret = clk_prepare_enable(clk); | 
|  | if (ret) | 
|  | goto out_free_irq; | 
|  | spi_writel(as, CR, SPI_BIT(SWRST)); | 
|  | spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ | 
|  | if (as->caps.has_wdrbt) { | 
|  | spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS) | 
|  | | SPI_BIT(MSTR)); | 
|  | } else { | 
|  | spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); | 
|  | } | 
|  |  | 
|  | if (as->use_pdc) | 
|  | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); | 
|  | spi_writel(as, CR, SPI_BIT(SPIEN)); | 
|  |  | 
|  | as->fifo_size = 0; | 
|  | if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", | 
|  | &as->fifo_size)) { | 
|  | dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size); | 
|  | spi_writel(as, CR, SPI_BIT(FIFOEN)); | 
|  | } | 
|  |  | 
|  | /* go! */ | 
|  | dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n", | 
|  | (unsigned long)regs->start, irq); | 
|  |  | 
|  | pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT); | 
|  | pm_runtime_use_autosuspend(&pdev->dev); | 
|  | pm_runtime_set_active(&pdev->dev); | 
|  | pm_runtime_enable(&pdev->dev); | 
|  |  | 
|  | ret = devm_spi_register_master(&pdev->dev, master); | 
|  | if (ret) | 
|  | goto out_free_dma; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_dma: | 
|  | pm_runtime_disable(&pdev->dev); | 
|  | pm_runtime_set_suspended(&pdev->dev); | 
|  |  | 
|  | if (as->use_dma) | 
|  | atmel_spi_release_dma(as); | 
|  |  | 
|  | spi_writel(as, CR, SPI_BIT(SWRST)); | 
|  | spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ | 
|  | clk_disable_unprepare(clk); | 
|  | out_free_irq: | 
|  | out_unmap_regs: | 
|  | out_free_buffer: | 
|  | dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, | 
|  | as->buffer_dma); | 
|  | out_free: | 
|  | spi_master_put(master); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int atmel_spi_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct spi_master	*master = platform_get_drvdata(pdev); | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  |  | 
|  | pm_runtime_get_sync(&pdev->dev); | 
|  |  | 
|  | /* reset the hardware and block queue progress */ | 
|  | spin_lock_irq(&as->lock); | 
|  | if (as->use_dma) { | 
|  | atmel_spi_stop_dma(as); | 
|  | atmel_spi_release_dma(as); | 
|  | } | 
|  |  | 
|  | spi_writel(as, CR, SPI_BIT(SWRST)); | 
|  | spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ | 
|  | spi_readl(as, SR); | 
|  | spin_unlock_irq(&as->lock); | 
|  |  | 
|  | dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, | 
|  | as->buffer_dma); | 
|  |  | 
|  | clk_disable_unprepare(as->clk); | 
|  |  | 
|  | pm_runtime_put_noidle(&pdev->dev); | 
|  | pm_runtime_disable(&pdev->dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int atmel_spi_runtime_suspend(struct device *dev) | 
|  | { | 
|  | struct spi_master *master = dev_get_drvdata(dev); | 
|  | struct atmel_spi *as = spi_master_get_devdata(master); | 
|  |  | 
|  | clk_disable_unprepare(as->clk); | 
|  | pinctrl_pm_select_sleep_state(dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int atmel_spi_runtime_resume(struct device *dev) | 
|  | { | 
|  | struct spi_master *master = dev_get_drvdata(dev); | 
|  | struct atmel_spi *as = spi_master_get_devdata(master); | 
|  |  | 
|  | pinctrl_pm_select_default_state(dev); | 
|  |  | 
|  | return clk_prepare_enable(as->clk); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | static int atmel_spi_suspend(struct device *dev) | 
|  | { | 
|  | struct spi_master *master = dev_get_drvdata(dev); | 
|  | int ret; | 
|  |  | 
|  | /* Stop the queue running */ | 
|  | ret = spi_master_suspend(master); | 
|  | if (ret) { | 
|  | dev_warn(dev, "cannot suspend master\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!pm_runtime_suspended(dev)) | 
|  | atmel_spi_runtime_suspend(dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int atmel_spi_resume(struct device *dev) | 
|  | { | 
|  | struct spi_master *master = dev_get_drvdata(dev); | 
|  | int ret; | 
|  |  | 
|  | if (!pm_runtime_suspended(dev)) { | 
|  | ret = atmel_spi_runtime_resume(dev); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Start the queue running */ | 
|  | ret = spi_master_resume(master); | 
|  | if (ret) | 
|  | dev_err(dev, "problem starting queue (%d)\n", ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct dev_pm_ops atmel_spi_pm_ops = { | 
|  | SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume) | 
|  | SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend, | 
|  | atmel_spi_runtime_resume, NULL) | 
|  | }; | 
|  | #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops) | 
|  | #else | 
|  | #define ATMEL_SPI_PM_OPS	NULL | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_OF) | 
|  | static const struct of_device_id atmel_spi_dt_ids[] = { | 
|  | { .compatible = "atmel,at91rm9200-spi" }, | 
|  | { /* sentinel */ } | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); | 
|  | #endif | 
|  |  | 
|  | static struct platform_driver atmel_spi_driver = { | 
|  | .driver		= { | 
|  | .name	= "atmel_spi", | 
|  | .pm	= ATMEL_SPI_PM_OPS, | 
|  | .of_match_table	= of_match_ptr(atmel_spi_dt_ids), | 
|  | }, | 
|  | .probe		= atmel_spi_probe, | 
|  | .remove		= atmel_spi_remove, | 
|  | }; | 
|  | module_platform_driver(atmel_spi_driver); | 
|  |  | 
|  | MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); | 
|  | MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_ALIAS("platform:atmel_spi"); |