| /* | 
 |  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. | 
 |  * Author: Marc Zyngier <marc.zyngier@arm.com> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program.  If not, see <http://www.gnu.org/licenses/>. | 
 |  */ | 
 |  | 
 | #include <linux/acpi.h> | 
 | #include <linux/acpi_iort.h> | 
 | #include <linux/bitmap.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/dma-iommu.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/irqdomain.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/msi.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/of_irq.h> | 
 | #include <linux/of_pci.h> | 
 | #include <linux/of_platform.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <linux/irqchip.h> | 
 | #include <linux/irqchip/arm-gic-v3.h> | 
 | #include <linux/irqchip/arm-gic-v4.h> | 
 |  | 
 | #include <asm/cputype.h> | 
 | #include <asm/exception.h> | 
 |  | 
 | #include "irq-gic-common.h" | 
 |  | 
 | #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0) | 
 | #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1) | 
 | #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2) | 
 |  | 
 | #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0) | 
 |  | 
 | static u32 lpi_id_bits; | 
 |  | 
 | /* | 
 |  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to | 
 |  * deal with (one configuration byte per interrupt). PENDBASE has to | 
 |  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). | 
 |  */ | 
 | #define LPI_NRBITS		lpi_id_bits | 
 | #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K) | 
 | #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) | 
 |  | 
 | #define LPI_PROP_DEFAULT_PRIO	0xa0 | 
 |  | 
 | /* | 
 |  * Collection structure - just an ID, and a redistributor address to | 
 |  * ping. We use one per CPU as a bag of interrupts assigned to this | 
 |  * CPU. | 
 |  */ | 
 | struct its_collection { | 
 | 	u64			target_address; | 
 | 	u16			col_id; | 
 | }; | 
 |  | 
 | /* | 
 |  * The ITS_BASER structure - contains memory information, cached | 
 |  * value of BASER register configuration and ITS page size. | 
 |  */ | 
 | struct its_baser { | 
 | 	void		*base; | 
 | 	u64		val; | 
 | 	u32		order; | 
 | 	u32		psz; | 
 | }; | 
 |  | 
 | struct its_device; | 
 |  | 
 | /* | 
 |  * The ITS structure - contains most of the infrastructure, with the | 
 |  * top-level MSI domain, the command queue, the collections, and the | 
 |  * list of devices writing to it. | 
 |  */ | 
 | struct its_node { | 
 | 	raw_spinlock_t		lock; | 
 | 	struct list_head	entry; | 
 | 	void __iomem		*base; | 
 | 	phys_addr_t		phys_base; | 
 | 	struct its_cmd_block	*cmd_base; | 
 | 	struct its_cmd_block	*cmd_write; | 
 | 	struct its_baser	tables[GITS_BASER_NR_REGS]; | 
 | 	struct its_collection	*collections; | 
 | 	struct fwnode_handle	*fwnode_handle; | 
 | 	u64			(*get_msi_base)(struct its_device *its_dev); | 
 | 	struct list_head	its_device_list; | 
 | 	u64			flags; | 
 | 	unsigned long		list_nr; | 
 | 	u32			ite_size; | 
 | 	u32			device_ids; | 
 | 	int			numa_node; | 
 | 	unsigned int		msi_domain_flags; | 
 | 	u32			pre_its_base; /* for Socionext Synquacer */ | 
 | 	bool			is_v4; | 
 | 	int			vlpi_redist_offset; | 
 | }; | 
 |  | 
 | #define ITS_ITT_ALIGN		SZ_256 | 
 |  | 
 | /* The maximum number of VPEID bits supported by VLPI commands */ | 
 | #define ITS_MAX_VPEID_BITS	(16) | 
 | #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS)) | 
 |  | 
 | /* Convert page order to size in bytes */ | 
 | #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o)) | 
 |  | 
 | struct event_lpi_map { | 
 | 	unsigned long		*lpi_map; | 
 | 	u16			*col_map; | 
 | 	irq_hw_number_t		lpi_base; | 
 | 	int			nr_lpis; | 
 | 	struct mutex		vlpi_lock; | 
 | 	struct its_vm		*vm; | 
 | 	struct its_vlpi_map	*vlpi_maps; | 
 | 	int			nr_vlpis; | 
 | }; | 
 |  | 
 | /* | 
 |  * The ITS view of a device - belongs to an ITS, owns an interrupt | 
 |  * translation table, and a list of interrupts.  If it some of its | 
 |  * LPIs are injected into a guest (GICv4), the event_map.vm field | 
 |  * indicates which one. | 
 |  */ | 
 | struct its_device { | 
 | 	struct list_head	entry; | 
 | 	struct its_node		*its; | 
 | 	struct event_lpi_map	event_map; | 
 | 	void			*itt; | 
 | 	u32			nr_ites; | 
 | 	u32			device_id; | 
 | }; | 
 |  | 
 | static struct { | 
 | 	raw_spinlock_t		lock; | 
 | 	struct its_device	*dev; | 
 | 	struct its_vpe		**vpes; | 
 | 	int			next_victim; | 
 | } vpe_proxy; | 
 |  | 
 | static LIST_HEAD(its_nodes); | 
 | static DEFINE_SPINLOCK(its_lock); | 
 | static struct rdists *gic_rdists; | 
 | static struct irq_domain *its_parent; | 
 |  | 
 | static unsigned long its_list_map; | 
 | static u16 vmovp_seq_num; | 
 | static DEFINE_RAW_SPINLOCK(vmovp_lock); | 
 |  | 
 | static DEFINE_IDA(its_vpeid_ida); | 
 |  | 
 | #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist)) | 
 | #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base) | 
 | #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K) | 
 |  | 
 | static struct its_collection *dev_event_to_col(struct its_device *its_dev, | 
 | 					       u32 event) | 
 | { | 
 | 	struct its_node *its = its_dev->its; | 
 |  | 
 | 	return its->collections + its_dev->event_map.col_map[event]; | 
 | } | 
 |  | 
 | /* | 
 |  * ITS command descriptors - parameters to be encoded in a command | 
 |  * block. | 
 |  */ | 
 | struct its_cmd_desc { | 
 | 	union { | 
 | 		struct { | 
 | 			struct its_device *dev; | 
 | 			u32 event_id; | 
 | 		} its_inv_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_device *dev; | 
 | 			u32 event_id; | 
 | 		} its_clear_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_device *dev; | 
 | 			u32 event_id; | 
 | 		} its_int_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_device *dev; | 
 | 			int valid; | 
 | 		} its_mapd_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_collection *col; | 
 | 			int valid; | 
 | 		} its_mapc_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_device *dev; | 
 | 			u32 phys_id; | 
 | 			u32 event_id; | 
 | 		} its_mapti_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_device *dev; | 
 | 			struct its_collection *col; | 
 | 			u32 event_id; | 
 | 		} its_movi_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_device *dev; | 
 | 			u32 event_id; | 
 | 		} its_discard_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_collection *col; | 
 | 		} its_invall_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_vpe *vpe; | 
 | 		} its_vinvall_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_vpe *vpe; | 
 | 			struct its_collection *col; | 
 | 			bool valid; | 
 | 		} its_vmapp_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_vpe *vpe; | 
 | 			struct its_device *dev; | 
 | 			u32 virt_id; | 
 | 			u32 event_id; | 
 | 			bool db_enabled; | 
 | 		} its_vmapti_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_vpe *vpe; | 
 | 			struct its_device *dev; | 
 | 			u32 event_id; | 
 | 			bool db_enabled; | 
 | 		} its_vmovi_cmd; | 
 |  | 
 | 		struct { | 
 | 			struct its_vpe *vpe; | 
 | 			struct its_collection *col; | 
 | 			u16 seq_num; | 
 | 			u16 its_list; | 
 | 		} its_vmovp_cmd; | 
 | 	}; | 
 | }; | 
 |  | 
 | /* | 
 |  * The ITS command block, which is what the ITS actually parses. | 
 |  */ | 
 | struct its_cmd_block { | 
 | 	u64	raw_cmd[4]; | 
 | }; | 
 |  | 
 | #define ITS_CMD_QUEUE_SZ		SZ_64K | 
 | #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) | 
 |  | 
 | typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, | 
 | 						    struct its_cmd_block *, | 
 | 						    struct its_cmd_desc *); | 
 |  | 
 | typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, | 
 | 					      struct its_cmd_block *, | 
 | 					      struct its_cmd_desc *); | 
 |  | 
 | static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) | 
 | { | 
 | 	u64 mask = GENMASK_ULL(h, l); | 
 | 	*raw_cmd &= ~mask; | 
 | 	*raw_cmd |= (val << l) & mask; | 
 | } | 
 |  | 
 | static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); | 
 | } | 
 |  | 
 | static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); | 
 | } | 
 |  | 
 | static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); | 
 | } | 
 |  | 
 | static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); | 
 | } | 
 |  | 
 | static void its_encode_size(struct its_cmd_block *cmd, u8 size) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); | 
 | } | 
 |  | 
 | static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); | 
 | } | 
 |  | 
 | static void its_encode_valid(struct its_cmd_block *cmd, int valid) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); | 
 | } | 
 |  | 
 | static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); | 
 | } | 
 |  | 
 | static void its_encode_collection(struct its_cmd_block *cmd, u16 col) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); | 
 | } | 
 |  | 
 | static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); | 
 | } | 
 |  | 
 | static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); | 
 | } | 
 |  | 
 | static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); | 
 | } | 
 |  | 
 | static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); | 
 | } | 
 |  | 
 | static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); | 
 | } | 
 |  | 
 | static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); | 
 | } | 
 |  | 
 | static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); | 
 | } | 
 |  | 
 | static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) | 
 | { | 
 | 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); | 
 | } | 
 |  | 
 | static inline void its_fixup_cmd(struct its_cmd_block *cmd) | 
 | { | 
 | 	/* Let's fixup BE commands */ | 
 | 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); | 
 | 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); | 
 | 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); | 
 | 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); | 
 | } | 
 |  | 
 | static struct its_collection *its_build_mapd_cmd(struct its_node *its, | 
 | 						 struct its_cmd_block *cmd, | 
 | 						 struct its_cmd_desc *desc) | 
 | { | 
 | 	unsigned long itt_addr; | 
 | 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); | 
 |  | 
 | 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); | 
 | 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_MAPD); | 
 | 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); | 
 | 	its_encode_size(cmd, size - 1); | 
 | 	its_encode_itt(cmd, itt_addr); | 
 | 	its_encode_valid(cmd, desc->its_mapd_cmd.valid); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct its_collection *its_build_mapc_cmd(struct its_node *its, | 
 | 						 struct its_cmd_block *cmd, | 
 | 						 struct its_cmd_desc *desc) | 
 | { | 
 | 	its_encode_cmd(cmd, GITS_CMD_MAPC); | 
 | 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); | 
 | 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); | 
 | 	its_encode_valid(cmd, desc->its_mapc_cmd.valid); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return desc->its_mapc_cmd.col; | 
 | } | 
 |  | 
 | static struct its_collection *its_build_mapti_cmd(struct its_node *its, | 
 | 						  struct its_cmd_block *cmd, | 
 | 						  struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_collection *col; | 
 |  | 
 | 	col = dev_event_to_col(desc->its_mapti_cmd.dev, | 
 | 			       desc->its_mapti_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_MAPTI); | 
 | 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); | 
 | 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); | 
 | 	its_encode_collection(cmd, col->col_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return col; | 
 | } | 
 |  | 
 | static struct its_collection *its_build_movi_cmd(struct its_node *its, | 
 | 						 struct its_cmd_block *cmd, | 
 | 						 struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_collection *col; | 
 |  | 
 | 	col = dev_event_to_col(desc->its_movi_cmd.dev, | 
 | 			       desc->its_movi_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_MOVI); | 
 | 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id); | 
 | 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return col; | 
 | } | 
 |  | 
 | static struct its_collection *its_build_discard_cmd(struct its_node *its, | 
 | 						    struct its_cmd_block *cmd, | 
 | 						    struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_collection *col; | 
 |  | 
 | 	col = dev_event_to_col(desc->its_discard_cmd.dev, | 
 | 			       desc->its_discard_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_DISCARD); | 
 | 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return col; | 
 | } | 
 |  | 
 | static struct its_collection *its_build_inv_cmd(struct its_node *its, | 
 | 						struct its_cmd_block *cmd, | 
 | 						struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_collection *col; | 
 |  | 
 | 	col = dev_event_to_col(desc->its_inv_cmd.dev, | 
 | 			       desc->its_inv_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_INV); | 
 | 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return col; | 
 | } | 
 |  | 
 | static struct its_collection *its_build_int_cmd(struct its_node *its, | 
 | 						struct its_cmd_block *cmd, | 
 | 						struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_collection *col; | 
 |  | 
 | 	col = dev_event_to_col(desc->its_int_cmd.dev, | 
 | 			       desc->its_int_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_INT); | 
 | 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_int_cmd.event_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return col; | 
 | } | 
 |  | 
 | static struct its_collection *its_build_clear_cmd(struct its_node *its, | 
 | 						  struct its_cmd_block *cmd, | 
 | 						  struct its_cmd_desc *desc) | 
 | { | 
 | 	struct its_collection *col; | 
 |  | 
 | 	col = dev_event_to_col(desc->its_clear_cmd.dev, | 
 | 			       desc->its_clear_cmd.event_id); | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_CLEAR); | 
 | 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); | 
 | 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return col; | 
 | } | 
 |  | 
 | static struct its_collection *its_build_invall_cmd(struct its_node *its, | 
 | 						   struct its_cmd_block *cmd, | 
 | 						   struct its_cmd_desc *desc) | 
 | { | 
 | 	its_encode_cmd(cmd, GITS_CMD_INVALL); | 
 | 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, | 
 | 					     struct its_cmd_block *cmd, | 
 | 					     struct its_cmd_desc *desc) | 
 | { | 
 | 	its_encode_cmd(cmd, GITS_CMD_VINVALL); | 
 | 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return desc->its_vinvall_cmd.vpe; | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, | 
 | 					   struct its_cmd_block *cmd, | 
 | 					   struct its_cmd_desc *desc) | 
 | { | 
 | 	unsigned long vpt_addr; | 
 | 	u64 target; | 
 |  | 
 | 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); | 
 | 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_VMAPP); | 
 | 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); | 
 | 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid); | 
 | 	its_encode_target(cmd, target); | 
 | 	its_encode_vpt_addr(cmd, vpt_addr); | 
 | 	its_encode_vpt_size(cmd, LPI_NRBITS - 1); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return desc->its_vmapp_cmd.vpe; | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, | 
 | 					    struct its_cmd_block *cmd, | 
 | 					    struct its_cmd_desc *desc) | 
 | { | 
 | 	u32 db; | 
 |  | 
 | 	if (desc->its_vmapti_cmd.db_enabled) | 
 | 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; | 
 | 	else | 
 | 		db = 1023; | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_VMAPTI); | 
 | 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); | 
 | 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); | 
 | 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); | 
 | 	its_encode_db_phys_id(cmd, db); | 
 | 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return desc->its_vmapti_cmd.vpe; | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, | 
 | 					   struct its_cmd_block *cmd, | 
 | 					   struct its_cmd_desc *desc) | 
 | { | 
 | 	u32 db; | 
 |  | 
 | 	if (desc->its_vmovi_cmd.db_enabled) | 
 | 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; | 
 | 	else | 
 | 		db = 1023; | 
 |  | 
 | 	its_encode_cmd(cmd, GITS_CMD_VMOVI); | 
 | 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); | 
 | 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); | 
 | 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); | 
 | 	its_encode_db_phys_id(cmd, db); | 
 | 	its_encode_db_valid(cmd, true); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return desc->its_vmovi_cmd.vpe; | 
 | } | 
 |  | 
 | static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, | 
 | 					   struct its_cmd_block *cmd, | 
 | 					   struct its_cmd_desc *desc) | 
 | { | 
 | 	u64 target; | 
 |  | 
 | 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; | 
 | 	its_encode_cmd(cmd, GITS_CMD_VMOVP); | 
 | 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); | 
 | 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); | 
 | 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); | 
 | 	its_encode_target(cmd, target); | 
 |  | 
 | 	its_fixup_cmd(cmd); | 
 |  | 
 | 	return desc->its_vmovp_cmd.vpe; | 
 | } | 
 |  | 
 | static u64 its_cmd_ptr_to_offset(struct its_node *its, | 
 | 				 struct its_cmd_block *ptr) | 
 | { | 
 | 	return (ptr - its->cmd_base) * sizeof(*ptr); | 
 | } | 
 |  | 
 | static int its_queue_full(struct its_node *its) | 
 | { | 
 | 	int widx; | 
 | 	int ridx; | 
 |  | 
 | 	widx = its->cmd_write - its->cmd_base; | 
 | 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); | 
 |  | 
 | 	/* This is incredibly unlikely to happen, unless the ITS locks up. */ | 
 | 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct its_cmd_block *its_allocate_entry(struct its_node *its) | 
 | { | 
 | 	struct its_cmd_block *cmd; | 
 | 	u32 count = 1000000;	/* 1s! */ | 
 |  | 
 | 	while (its_queue_full(its)) { | 
 | 		count--; | 
 | 		if (!count) { | 
 | 			pr_err_ratelimited("ITS queue not draining\n"); | 
 | 			return NULL; | 
 | 		} | 
 | 		cpu_relax(); | 
 | 		udelay(1); | 
 | 	} | 
 |  | 
 | 	cmd = its->cmd_write++; | 
 |  | 
 | 	/* Handle queue wrapping */ | 
 | 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) | 
 | 		its->cmd_write = its->cmd_base; | 
 |  | 
 | 	/* Clear command  */ | 
 | 	cmd->raw_cmd[0] = 0; | 
 | 	cmd->raw_cmd[1] = 0; | 
 | 	cmd->raw_cmd[2] = 0; | 
 | 	cmd->raw_cmd[3] = 0; | 
 |  | 
 | 	return cmd; | 
 | } | 
 |  | 
 | static struct its_cmd_block *its_post_commands(struct its_node *its) | 
 | { | 
 | 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); | 
 |  | 
 | 	writel_relaxed(wr, its->base + GITS_CWRITER); | 
 |  | 
 | 	return its->cmd_write; | 
 | } | 
 |  | 
 | static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) | 
 | { | 
 | 	/* | 
 | 	 * Make sure the commands written to memory are observable by | 
 | 	 * the ITS. | 
 | 	 */ | 
 | 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) | 
 | 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); | 
 | 	else | 
 | 		dsb(ishst); | 
 | } | 
 |  | 
 | static int its_wait_for_range_completion(struct its_node *its, | 
 | 					 struct its_cmd_block *from, | 
 | 					 struct its_cmd_block *to) | 
 | { | 
 | 	u64 rd_idx, from_idx, to_idx; | 
 | 	u32 count = 1000000;	/* 1s! */ | 
 |  | 
 | 	from_idx = its_cmd_ptr_to_offset(its, from); | 
 | 	to_idx = its_cmd_ptr_to_offset(its, to); | 
 |  | 
 | 	while (1) { | 
 | 		rd_idx = readl_relaxed(its->base + GITS_CREADR); | 
 |  | 
 | 		/* Direct case */ | 
 | 		if (from_idx < to_idx && rd_idx >= to_idx) | 
 | 			break; | 
 |  | 
 | 		/* Wrapped case */ | 
 | 		if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx) | 
 | 			break; | 
 |  | 
 | 		count--; | 
 | 		if (!count) { | 
 | 			pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n", | 
 | 					   from_idx, to_idx, rd_idx); | 
 | 			return -1; | 
 | 		} | 
 | 		cpu_relax(); | 
 | 		udelay(1); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Warning, macro hell follows */ | 
 | #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\ | 
 | void name(struct its_node *its,						\ | 
 | 	  buildtype builder,						\ | 
 | 	  struct its_cmd_desc *desc)					\ | 
 | {									\ | 
 | 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\ | 
 | 	synctype *sync_obj;						\ | 
 | 	unsigned long flags;						\ | 
 | 									\ | 
 | 	raw_spin_lock_irqsave(&its->lock, flags);			\ | 
 | 									\ | 
 | 	cmd = its_allocate_entry(its);					\ | 
 | 	if (!cmd) {		/* We're soooooo screewed... */		\ | 
 | 		raw_spin_unlock_irqrestore(&its->lock, flags);		\ | 
 | 		return;							\ | 
 | 	}								\ | 
 | 	sync_obj = builder(its, cmd, desc);				\ | 
 | 	its_flush_cmd(its, cmd);					\ | 
 | 									\ | 
 | 	if (sync_obj) {							\ | 
 | 		sync_cmd = its_allocate_entry(its);			\ | 
 | 		if (!sync_cmd)						\ | 
 | 			goto post;					\ | 
 | 									\ | 
 | 		buildfn(its, sync_cmd, sync_obj);			\ | 
 | 		its_flush_cmd(its, sync_cmd);				\ | 
 | 	}								\ | 
 | 									\ | 
 | post:									\ | 
 | 	next_cmd = its_post_commands(its);				\ | 
 | 	raw_spin_unlock_irqrestore(&its->lock, flags);			\ | 
 | 									\ | 
 | 	if (its_wait_for_range_completion(its, cmd, next_cmd))		\ | 
 | 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\ | 
 | } | 
 |  | 
 | static void its_build_sync_cmd(struct its_node *its, | 
 | 			       struct its_cmd_block *sync_cmd, | 
 | 			       struct its_collection *sync_col) | 
 | { | 
 | 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC); | 
 | 	its_encode_target(sync_cmd, sync_col->target_address); | 
 |  | 
 | 	its_fixup_cmd(sync_cmd); | 
 | } | 
 |  | 
 | static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, | 
 | 			     struct its_collection, its_build_sync_cmd) | 
 |  | 
 | static void its_build_vsync_cmd(struct its_node *its, | 
 | 				struct its_cmd_block *sync_cmd, | 
 | 				struct its_vpe *sync_vpe) | 
 | { | 
 | 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); | 
 | 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); | 
 |  | 
 | 	its_fixup_cmd(sync_cmd); | 
 | } | 
 |  | 
 | static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, | 
 | 			     struct its_vpe, its_build_vsync_cmd) | 
 |  | 
 | static void its_send_int(struct its_device *dev, u32 event_id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_int_cmd.dev = dev; | 
 | 	desc.its_int_cmd.event_id = event_id; | 
 |  | 
 | 	its_send_single_command(dev->its, its_build_int_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_clear(struct its_device *dev, u32 event_id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_clear_cmd.dev = dev; | 
 | 	desc.its_clear_cmd.event_id = event_id; | 
 |  | 
 | 	its_send_single_command(dev->its, its_build_clear_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_inv(struct its_device *dev, u32 event_id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_inv_cmd.dev = dev; | 
 | 	desc.its_inv_cmd.event_id = event_id; | 
 |  | 
 | 	its_send_single_command(dev->its, its_build_inv_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_mapd(struct its_device *dev, int valid) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_mapd_cmd.dev = dev; | 
 | 	desc.its_mapd_cmd.valid = !!valid; | 
 |  | 
 | 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_mapc(struct its_node *its, struct its_collection *col, | 
 | 			  int valid) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_mapc_cmd.col = col; | 
 | 	desc.its_mapc_cmd.valid = !!valid; | 
 |  | 
 | 	its_send_single_command(its, its_build_mapc_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_mapti_cmd.dev = dev; | 
 | 	desc.its_mapti_cmd.phys_id = irq_id; | 
 | 	desc.its_mapti_cmd.event_id = id; | 
 |  | 
 | 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_movi(struct its_device *dev, | 
 | 			  struct its_collection *col, u32 id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_movi_cmd.dev = dev; | 
 | 	desc.its_movi_cmd.col = col; | 
 | 	desc.its_movi_cmd.event_id = id; | 
 |  | 
 | 	its_send_single_command(dev->its, its_build_movi_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_discard(struct its_device *dev, u32 id) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_discard_cmd.dev = dev; | 
 | 	desc.its_discard_cmd.event_id = id; | 
 |  | 
 | 	its_send_single_command(dev->its, its_build_discard_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_invall(struct its_node *its, struct its_collection *col) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_invall_cmd.col = col; | 
 |  | 
 | 	its_send_single_command(its, its_build_invall_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_vmapti(struct its_device *dev, u32 id) | 
 | { | 
 | 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_vmapti_cmd.vpe = map->vpe; | 
 | 	desc.its_vmapti_cmd.dev = dev; | 
 | 	desc.its_vmapti_cmd.virt_id = map->vintid; | 
 | 	desc.its_vmapti_cmd.event_id = id; | 
 | 	desc.its_vmapti_cmd.db_enabled = map->db_enabled; | 
 |  | 
 | 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_vmovi(struct its_device *dev, u32 id) | 
 | { | 
 | 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id]; | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_vmovi_cmd.vpe = map->vpe; | 
 | 	desc.its_vmovi_cmd.dev = dev; | 
 | 	desc.its_vmovi_cmd.event_id = id; | 
 | 	desc.its_vmovi_cmd.db_enabled = map->db_enabled; | 
 |  | 
 | 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_vmapp(struct its_node *its, | 
 | 			   struct its_vpe *vpe, bool valid) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_vmapp_cmd.vpe = vpe; | 
 | 	desc.its_vmapp_cmd.valid = valid; | 
 | 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; | 
 |  | 
 | 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); | 
 | } | 
 |  | 
 | static void its_send_vmovp(struct its_vpe *vpe) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 | 	struct its_node *its; | 
 | 	unsigned long flags; | 
 | 	int col_id = vpe->col_idx; | 
 |  | 
 | 	desc.its_vmovp_cmd.vpe = vpe; | 
 | 	desc.its_vmovp_cmd.its_list = (u16)its_list_map; | 
 |  | 
 | 	if (!its_list_map) { | 
 | 		its = list_first_entry(&its_nodes, struct its_node, entry); | 
 | 		desc.its_vmovp_cmd.seq_num = 0; | 
 | 		desc.its_vmovp_cmd.col = &its->collections[col_id]; | 
 | 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Yet another marvel of the architecture. If using the | 
 | 	 * its_list "feature", we need to make sure that all ITSs | 
 | 	 * receive all VMOVP commands in the same order. The only way | 
 | 	 * to guarantee this is to make vmovp a serialization point. | 
 | 	 * | 
 | 	 * Wall <-- Head. | 
 | 	 */ | 
 | 	raw_spin_lock_irqsave(&vmovp_lock, flags); | 
 |  | 
 | 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; | 
 |  | 
 | 	/* Emit VMOVPs */ | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		if (!its->is_v4) | 
 | 			continue; | 
 |  | 
 | 		if (!vpe->its_vm->vlpi_count[its->list_nr]) | 
 | 			continue; | 
 |  | 
 | 		desc.its_vmovp_cmd.col = &its->collections[col_id]; | 
 | 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&vmovp_lock, flags); | 
 | } | 
 |  | 
 | static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) | 
 | { | 
 | 	struct its_cmd_desc desc; | 
 |  | 
 | 	desc.its_vinvall_cmd.vpe = vpe; | 
 | 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); | 
 | } | 
 |  | 
 | /* | 
 |  * irqchip functions - assumes MSI, mostly. | 
 |  */ | 
 |  | 
 | static inline u32 its_get_event_id(struct irq_data *d) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	return d->hwirq - its_dev->event_map.lpi_base; | 
 | } | 
 |  | 
 | static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) | 
 | { | 
 | 	irq_hw_number_t hwirq; | 
 | 	struct page *prop_page; | 
 | 	u8 *cfg; | 
 |  | 
 | 	if (irqd_is_forwarded_to_vcpu(d)) { | 
 | 		struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 		u32 event = its_get_event_id(d); | 
 | 		struct its_vlpi_map *map; | 
 |  | 
 | 		prop_page = its_dev->event_map.vm->vprop_page; | 
 | 		map = &its_dev->event_map.vlpi_maps[event]; | 
 | 		hwirq = map->vintid; | 
 |  | 
 | 		/* Remember the updated property */ | 
 | 		map->properties &= ~clr; | 
 | 		map->properties |= set | LPI_PROP_GROUP1; | 
 | 	} else { | 
 | 		prop_page = gic_rdists->prop_page; | 
 | 		hwirq = d->hwirq; | 
 | 	} | 
 |  | 
 | 	cfg = page_address(prop_page) + hwirq - 8192; | 
 | 	*cfg &= ~clr; | 
 | 	*cfg |= set | LPI_PROP_GROUP1; | 
 |  | 
 | 	/* | 
 | 	 * Make the above write visible to the redistributors. | 
 | 	 * And yes, we're flushing exactly: One. Single. Byte. | 
 | 	 * Humpf... | 
 | 	 */ | 
 | 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) | 
 | 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); | 
 | 	else | 
 | 		dsb(ishst); | 
 | } | 
 |  | 
 | static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	lpi_write_config(d, clr, set); | 
 | 	its_send_inv(its_dev, its_get_event_id(d)); | 
 | } | 
 |  | 
 | static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	u32 event = its_get_event_id(d); | 
 |  | 
 | 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable) | 
 | 		return; | 
 |  | 
 | 	its_dev->event_map.vlpi_maps[event].db_enabled = enable; | 
 |  | 
 | 	/* | 
 | 	 * More fun with the architecture: | 
 | 	 * | 
 | 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI | 
 | 	 * value or to 1023, depending on the enable bit. But that | 
 | 	 * would be issueing a mapping for an /existing/ DevID+EventID | 
 | 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI | 
 | 	 * to the /same/ vPE, using this opportunity to adjust the | 
 | 	 * doorbell. Mouahahahaha. We loves it, Precious. | 
 | 	 */ | 
 | 	its_send_vmovi(its_dev, event); | 
 | } | 
 |  | 
 | static void its_mask_irq(struct irq_data *d) | 
 | { | 
 | 	if (irqd_is_forwarded_to_vcpu(d)) | 
 | 		its_vlpi_set_doorbell(d, false); | 
 |  | 
 | 	lpi_update_config(d, LPI_PROP_ENABLED, 0); | 
 | } | 
 |  | 
 | static void its_unmask_irq(struct irq_data *d) | 
 | { | 
 | 	if (irqd_is_forwarded_to_vcpu(d)) | 
 | 		its_vlpi_set_doorbell(d, true); | 
 |  | 
 | 	lpi_update_config(d, 0, LPI_PROP_ENABLED); | 
 | } | 
 |  | 
 | static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, | 
 | 			    bool force) | 
 | { | 
 | 	unsigned int cpu; | 
 | 	const struct cpumask *cpu_mask = cpu_online_mask; | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	struct its_collection *target_col; | 
 | 	u32 id = its_get_event_id(d); | 
 |  | 
 | 	/* A forwarded interrupt should use irq_set_vcpu_affinity */ | 
 | 	if (irqd_is_forwarded_to_vcpu(d)) | 
 | 		return -EINVAL; | 
 |  | 
 |        /* lpi cannot be routed to a redistributor that is on a foreign node */ | 
 | 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { | 
 | 		if (its_dev->its->numa_node >= 0) { | 
 | 			cpu_mask = cpumask_of_node(its_dev->its->numa_node); | 
 | 			if (!cpumask_intersects(mask_val, cpu_mask)) | 
 | 				return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cpu = cpumask_any_and(mask_val, cpu_mask); | 
 |  | 
 | 	if (cpu >= nr_cpu_ids) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* don't set the affinity when the target cpu is same as current one */ | 
 | 	if (cpu != its_dev->event_map.col_map[id]) { | 
 | 		target_col = &its_dev->its->collections[cpu]; | 
 | 		its_send_movi(its_dev, target_col, id); | 
 | 		its_dev->event_map.col_map[id] = cpu; | 
 | 		irq_data_update_effective_affinity(d, cpumask_of(cpu)); | 
 | 	} | 
 |  | 
 | 	return IRQ_SET_MASK_OK_DONE; | 
 | } | 
 |  | 
 | static u64 its_irq_get_msi_base(struct its_device *its_dev) | 
 | { | 
 | 	struct its_node *its = its_dev->its; | 
 |  | 
 | 	return its->phys_base + GITS_TRANSLATER; | 
 | } | 
 |  | 
 | static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	struct its_node *its; | 
 | 	u64 addr; | 
 |  | 
 | 	its = its_dev->its; | 
 | 	addr = its->get_msi_base(its_dev); | 
 |  | 
 | 	msg->address_lo		= lower_32_bits(addr); | 
 | 	msg->address_hi		= upper_32_bits(addr); | 
 | 	msg->data		= its_get_event_id(d); | 
 |  | 
 | 	iommu_dma_map_msi_msg(d->irq, msg); | 
 | } | 
 |  | 
 | static int its_irq_set_irqchip_state(struct irq_data *d, | 
 | 				     enum irqchip_irq_state which, | 
 | 				     bool state) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	u32 event = its_get_event_id(d); | 
 |  | 
 | 	if (which != IRQCHIP_STATE_PENDING) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (state) | 
 | 		its_send_int(its_dev, event); | 
 | 	else | 
 | 		its_send_clear(its_dev, event); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void its_map_vm(struct its_node *its, struct its_vm *vm) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Not using the ITS list? Everything is always mapped. */ | 
 | 	if (!its_list_map) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irqsave(&vmovp_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * If the VM wasn't mapped yet, iterate over the vpes and get | 
 | 	 * them mapped now. | 
 | 	 */ | 
 | 	vm->vlpi_count[its->list_nr]++; | 
 |  | 
 | 	if (vm->vlpi_count[its->list_nr] == 1) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < vm->nr_vpes; i++) { | 
 | 			struct its_vpe *vpe = vm->vpes[i]; | 
 | 			struct irq_data *d = irq_get_irq_data(vpe->irq); | 
 |  | 
 | 			/* Map the VPE to the first possible CPU */ | 
 | 			vpe->col_idx = cpumask_first(cpu_online_mask); | 
 | 			its_send_vmapp(its, vpe, true); | 
 | 			its_send_vinvall(its, vpe); | 
 | 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&vmovp_lock, flags); | 
 | } | 
 |  | 
 | static void its_unmap_vm(struct its_node *its, struct its_vm *vm) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Not using the ITS list? Everything is always mapped. */ | 
 | 	if (!its_list_map) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irqsave(&vmovp_lock, flags); | 
 |  | 
 | 	if (!--vm->vlpi_count[its->list_nr]) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < vm->nr_vpes; i++) | 
 | 			its_send_vmapp(its, vm->vpes[i], false); | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&vmovp_lock, flags); | 
 | } | 
 |  | 
 | static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	u32 event = its_get_event_id(d); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!info->map) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&its_dev->event_map.vlpi_lock); | 
 |  | 
 | 	if (!its_dev->event_map.vm) { | 
 | 		struct its_vlpi_map *maps; | 
 |  | 
 | 		maps = kzalloc(sizeof(*maps) * its_dev->event_map.nr_lpis, | 
 | 			       GFP_KERNEL); | 
 | 		if (!maps) { | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		its_dev->event_map.vm = info->map->vm; | 
 | 		its_dev->event_map.vlpi_maps = maps; | 
 | 	} else if (its_dev->event_map.vm != info->map->vm) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Get our private copy of the mapping information */ | 
 | 	its_dev->event_map.vlpi_maps[event] = *info->map; | 
 |  | 
 | 	if (irqd_is_forwarded_to_vcpu(d)) { | 
 | 		/* Already mapped, move it around */ | 
 | 		its_send_vmovi(its_dev, event); | 
 | 	} else { | 
 | 		/* Ensure all the VPEs are mapped on this ITS */ | 
 | 		its_map_vm(its_dev->its, info->map->vm); | 
 |  | 
 | 		/* | 
 | 		 * Flag the interrupt as forwarded so that we can | 
 | 		 * start poking the virtual property table. | 
 | 		 */ | 
 | 		irqd_set_forwarded_to_vcpu(d); | 
 |  | 
 | 		/* Write out the property to the prop table */ | 
 | 		lpi_write_config(d, 0xff, info->map->properties); | 
 |  | 
 | 		/* Drop the physical mapping */ | 
 | 		its_send_discard(its_dev, event); | 
 |  | 
 | 		/* and install the virtual one */ | 
 | 		its_send_vmapti(its_dev, event); | 
 |  | 
 | 		/* Increment the number of VLPIs */ | 
 | 		its_dev->event_map.nr_vlpis++; | 
 | 	} | 
 |  | 
 | out: | 
 | 	mutex_unlock(&its_dev->event_map.vlpi_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	u32 event = its_get_event_id(d); | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&its_dev->event_map.vlpi_lock); | 
 |  | 
 | 	if (!its_dev->event_map.vm || | 
 | 	    !its_dev->event_map.vlpi_maps[event].vm) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Copy our mapping information to the incoming request */ | 
 | 	*info->map = its_dev->event_map.vlpi_maps[event]; | 
 |  | 
 | out: | 
 | 	mutex_unlock(&its_dev->event_map.vlpi_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int its_vlpi_unmap(struct irq_data *d) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	u32 event = its_get_event_id(d); | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&its_dev->event_map.vlpi_lock); | 
 |  | 
 | 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Drop the virtual mapping */ | 
 | 	its_send_discard(its_dev, event); | 
 |  | 
 | 	/* and restore the physical one */ | 
 | 	irqd_clr_forwarded_to_vcpu(d); | 
 | 	its_send_mapti(its_dev, d->hwirq, event); | 
 | 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | | 
 | 				    LPI_PROP_ENABLED | | 
 | 				    LPI_PROP_GROUP1)); | 
 |  | 
 | 	/* Potentially unmap the VM from this ITS */ | 
 | 	its_unmap_vm(its_dev->its, its_dev->event_map.vm); | 
 |  | 
 | 	/* | 
 | 	 * Drop the refcount and make the device available again if | 
 | 	 * this was the last VLPI. | 
 | 	 */ | 
 | 	if (!--its_dev->event_map.nr_vlpis) { | 
 | 		its_dev->event_map.vm = NULL; | 
 | 		kfree(its_dev->event_map.vlpi_maps); | 
 | 	} | 
 |  | 
 | out: | 
 | 	mutex_unlock(&its_dev->event_map.vlpi_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) | 
 | 		lpi_update_config(d, 0xff, info->config); | 
 | 	else | 
 | 		lpi_write_config(d, 0xff, info->config); | 
 | 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	struct its_cmd_info *info = vcpu_info; | 
 |  | 
 | 	/* Need a v4 ITS */ | 
 | 	if (!its_dev->its->is_v4) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Unmap request? */ | 
 | 	if (!info) | 
 | 		return its_vlpi_unmap(d); | 
 |  | 
 | 	switch (info->cmd_type) { | 
 | 	case MAP_VLPI: | 
 | 		return its_vlpi_map(d, info); | 
 |  | 
 | 	case GET_VLPI: | 
 | 		return its_vlpi_get(d, info); | 
 |  | 
 | 	case PROP_UPDATE_VLPI: | 
 | 	case PROP_UPDATE_AND_INV_VLPI: | 
 | 		return its_vlpi_prop_update(d, info); | 
 |  | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | } | 
 |  | 
 | static struct irq_chip its_irq_chip = { | 
 | 	.name			= "ITS", | 
 | 	.irq_mask		= its_mask_irq, | 
 | 	.irq_unmask		= its_unmask_irq, | 
 | 	.irq_eoi		= irq_chip_eoi_parent, | 
 | 	.irq_set_affinity	= its_set_affinity, | 
 | 	.irq_compose_msi_msg	= its_irq_compose_msi_msg, | 
 | 	.irq_set_irqchip_state	= its_irq_set_irqchip_state, | 
 | 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity, | 
 | }; | 
 |  | 
 | /* | 
 |  * How we allocate LPIs: | 
 |  * | 
 |  * The GIC has id_bits bits for interrupt identifiers. From there, we | 
 |  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as | 
 |  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5 | 
 |  * bits to the right. | 
 |  * | 
 |  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations. | 
 |  */ | 
 | #define IRQS_PER_CHUNK_SHIFT	5 | 
 | #define IRQS_PER_CHUNK		(1UL << IRQS_PER_CHUNK_SHIFT) | 
 | #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */ | 
 |  | 
 | static unsigned long *lpi_bitmap; | 
 | static u32 lpi_chunks; | 
 | static DEFINE_SPINLOCK(lpi_lock); | 
 |  | 
 | static int its_lpi_to_chunk(int lpi) | 
 | { | 
 | 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT; | 
 | } | 
 |  | 
 | static int its_chunk_to_lpi(int chunk) | 
 | { | 
 | 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192; | 
 | } | 
 |  | 
 | static int __init its_lpi_init(u32 id_bits) | 
 | { | 
 | 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits); | 
 |  | 
 | 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long), | 
 | 			     GFP_KERNEL); | 
 | 	if (!lpi_bitmap) { | 
 | 		lpi_chunks = 0; | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids) | 
 | { | 
 | 	unsigned long *bitmap = NULL; | 
 | 	int chunk_id; | 
 | 	int nr_chunks; | 
 | 	int i; | 
 |  | 
 | 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK); | 
 |  | 
 | 	spin_lock(&lpi_lock); | 
 |  | 
 | 	do { | 
 | 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks, | 
 | 						      0, nr_chunks, 0); | 
 | 		if (chunk_id < lpi_chunks) | 
 | 			break; | 
 |  | 
 | 		nr_chunks--; | 
 | 	} while (nr_chunks > 0); | 
 |  | 
 | 	if (!nr_chunks) | 
 | 		goto out; | 
 |  | 
 | 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long), | 
 | 			 GFP_ATOMIC); | 
 | 	if (!bitmap) | 
 | 		goto out; | 
 |  | 
 | 	for (i = 0; i < nr_chunks; i++) | 
 | 		set_bit(chunk_id + i, lpi_bitmap); | 
 |  | 
 | 	*base = its_chunk_to_lpi(chunk_id); | 
 | 	*nr_ids = nr_chunks * IRQS_PER_CHUNK; | 
 |  | 
 | out: | 
 | 	spin_unlock(&lpi_lock); | 
 |  | 
 | 	if (!bitmap) | 
 | 		*base = *nr_ids = 0; | 
 |  | 
 | 	return bitmap; | 
 | } | 
 |  | 
 | static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids) | 
 | { | 
 | 	int lpi; | 
 |  | 
 | 	spin_lock(&lpi_lock); | 
 |  | 
 | 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) { | 
 | 		int chunk = its_lpi_to_chunk(lpi); | 
 |  | 
 | 		BUG_ON(chunk > lpi_chunks); | 
 | 		if (test_bit(chunk, lpi_bitmap)) { | 
 | 			clear_bit(chunk, lpi_bitmap); | 
 | 		} else { | 
 | 			pr_err("Bad LPI chunk %d\n", chunk); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock(&lpi_lock); | 
 |  | 
 | 	kfree(bitmap); | 
 | } | 
 |  | 
 | static struct page *its_allocate_prop_table(gfp_t gfp_flags) | 
 | { | 
 | 	struct page *prop_page; | 
 |  | 
 | 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); | 
 | 	if (!prop_page) | 
 | 		return NULL; | 
 |  | 
 | 	/* Priority 0xa0, Group-1, disabled */ | 
 | 	memset(page_address(prop_page), | 
 | 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, | 
 | 	       LPI_PROPBASE_SZ); | 
 |  | 
 | 	/* Make sure the GIC will observe the written configuration */ | 
 | 	gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ); | 
 |  | 
 | 	return prop_page; | 
 | } | 
 |  | 
 | static void its_free_prop_table(struct page *prop_page) | 
 | { | 
 | 	free_pages((unsigned long)page_address(prop_page), | 
 | 		   get_order(LPI_PROPBASE_SZ)); | 
 | } | 
 |  | 
 | static int __init its_alloc_lpi_tables(void) | 
 | { | 
 | 	phys_addr_t paddr; | 
 |  | 
 | 	lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS); | 
 | 	gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT); | 
 | 	if (!gic_rdists->prop_page) { | 
 | 		pr_err("Failed to allocate PROPBASE\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	paddr = page_to_phys(gic_rdists->prop_page); | 
 | 	pr_info("GIC: using LPI property table @%pa\n", &paddr); | 
 |  | 
 | 	return its_lpi_init(lpi_id_bits); | 
 | } | 
 |  | 
 | static const char *its_base_type_string[] = { | 
 | 	[GITS_BASER_TYPE_DEVICE]	= "Devices", | 
 | 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs", | 
 | 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)", | 
 | 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections", | 
 | 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)", | 
 | 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)", | 
 | 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)", | 
 | }; | 
 |  | 
 | static u64 its_read_baser(struct its_node *its, struct its_baser *baser) | 
 | { | 
 | 	u32 idx = baser - its->tables; | 
 |  | 
 | 	return gits_read_baser(its->base + GITS_BASER + (idx << 3)); | 
 | } | 
 |  | 
 | static void its_write_baser(struct its_node *its, struct its_baser *baser, | 
 | 			    u64 val) | 
 | { | 
 | 	u32 idx = baser - its->tables; | 
 |  | 
 | 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); | 
 | 	baser->val = its_read_baser(its, baser); | 
 | } | 
 |  | 
 | static int its_setup_baser(struct its_node *its, struct its_baser *baser, | 
 | 			   u64 cache, u64 shr, u32 psz, u32 order, | 
 | 			   bool indirect) | 
 | { | 
 | 	u64 val = its_read_baser(its, baser); | 
 | 	u64 esz = GITS_BASER_ENTRY_SIZE(val); | 
 | 	u64 type = GITS_BASER_TYPE(val); | 
 | 	u64 baser_phys, tmp; | 
 | 	u32 alloc_pages; | 
 | 	void *base; | 
 |  | 
 | retry_alloc_baser: | 
 | 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); | 
 | 	if (alloc_pages > GITS_BASER_PAGES_MAX) { | 
 | 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", | 
 | 			&its->phys_base, its_base_type_string[type], | 
 | 			alloc_pages, GITS_BASER_PAGES_MAX); | 
 | 		alloc_pages = GITS_BASER_PAGES_MAX; | 
 | 		order = get_order(GITS_BASER_PAGES_MAX * psz); | 
 | 	} | 
 |  | 
 | 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); | 
 | 	if (!base) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	baser_phys = virt_to_phys(base); | 
 |  | 
 | 	/* Check if the physical address of the memory is above 48bits */ | 
 | 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { | 
 |  | 
 | 		/* 52bit PA is supported only when PageSize=64K */ | 
 | 		if (psz != SZ_64K) { | 
 | 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz); | 
 | 			free_pages((unsigned long)base, order); | 
 | 			return -ENXIO; | 
 | 		} | 
 |  | 
 | 		/* Convert 52bit PA to 48bit field */ | 
 | 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); | 
 | 	} | 
 |  | 
 | retry_baser: | 
 | 	val = (baser_phys					 | | 
 | 		(type << GITS_BASER_TYPE_SHIFT)			 | | 
 | 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 | | 
 | 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 | | 
 | 		cache						 | | 
 | 		shr						 | | 
 | 		GITS_BASER_VALID); | 
 |  | 
 | 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0; | 
 |  | 
 | 	switch (psz) { | 
 | 	case SZ_4K: | 
 | 		val |= GITS_BASER_PAGE_SIZE_4K; | 
 | 		break; | 
 | 	case SZ_16K: | 
 | 		val |= GITS_BASER_PAGE_SIZE_16K; | 
 | 		break; | 
 | 	case SZ_64K: | 
 | 		val |= GITS_BASER_PAGE_SIZE_64K; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	its_write_baser(its, baser, val); | 
 | 	tmp = baser->val; | 
 |  | 
 | 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { | 
 | 		/* | 
 | 		 * Shareability didn't stick. Just use | 
 | 		 * whatever the read reported, which is likely | 
 | 		 * to be the only thing this redistributor | 
 | 		 * supports. If that's zero, make it | 
 | 		 * non-cacheable as well. | 
 | 		 */ | 
 | 		shr = tmp & GITS_BASER_SHAREABILITY_MASK; | 
 | 		if (!shr) { | 
 | 			cache = GITS_BASER_nC; | 
 | 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); | 
 | 		} | 
 | 		goto retry_baser; | 
 | 	} | 
 |  | 
 | 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { | 
 | 		/* | 
 | 		 * Page size didn't stick. Let's try a smaller | 
 | 		 * size and retry. If we reach 4K, then | 
 | 		 * something is horribly wrong... | 
 | 		 */ | 
 | 		free_pages((unsigned long)base, order); | 
 | 		baser->base = NULL; | 
 |  | 
 | 		switch (psz) { | 
 | 		case SZ_16K: | 
 | 			psz = SZ_4K; | 
 | 			goto retry_alloc_baser; | 
 | 		case SZ_64K: | 
 | 			psz = SZ_16K; | 
 | 			goto retry_alloc_baser; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (val != tmp) { | 
 | 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", | 
 | 		       &its->phys_base, its_base_type_string[type], | 
 | 		       val, tmp); | 
 | 		free_pages((unsigned long)base, order); | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	baser->order = order; | 
 | 	baser->base = base; | 
 | 	baser->psz = psz; | 
 | 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; | 
 |  | 
 | 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", | 
 | 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), | 
 | 		its_base_type_string[type], | 
 | 		(unsigned long)virt_to_phys(base), | 
 | 		indirect ? "indirect" : "flat", (int)esz, | 
 | 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool its_parse_indirect_baser(struct its_node *its, | 
 | 				     struct its_baser *baser, | 
 | 				     u32 psz, u32 *order, u32 ids) | 
 | { | 
 | 	u64 tmp = its_read_baser(its, baser); | 
 | 	u64 type = GITS_BASER_TYPE(tmp); | 
 | 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp); | 
 | 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; | 
 | 	u32 new_order = *order; | 
 | 	bool indirect = false; | 
 |  | 
 | 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */ | 
 | 	if ((esz << ids) > (psz * 2)) { | 
 | 		/* | 
 | 		 * Find out whether hw supports a single or two-level table by | 
 | 		 * table by reading bit at offset '62' after writing '1' to it. | 
 | 		 */ | 
 | 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT); | 
 | 		indirect = !!(baser->val & GITS_BASER_INDIRECT); | 
 |  | 
 | 		if (indirect) { | 
 | 			/* | 
 | 			 * The size of the lvl2 table is equal to ITS page size | 
 | 			 * which is 'psz'. For computing lvl1 table size, | 
 | 			 * subtract ID bits that sparse lvl2 table from 'ids' | 
 | 			 * which is reported by ITS hardware times lvl1 table | 
 | 			 * entry size. | 
 | 			 */ | 
 | 			ids -= ilog2(psz / (int)esz); | 
 | 			esz = GITS_LVL1_ENTRY_SIZE; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Allocate as many entries as required to fit the | 
 | 	 * range of device IDs that the ITS can grok... The ID | 
 | 	 * space being incredibly sparse, this results in a | 
 | 	 * massive waste of memory if two-level device table | 
 | 	 * feature is not supported by hardware. | 
 | 	 */ | 
 | 	new_order = max_t(u32, get_order(esz << ids), new_order); | 
 | 	if (new_order >= MAX_ORDER) { | 
 | 		new_order = MAX_ORDER - 1; | 
 | 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); | 
 | 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n", | 
 | 			&its->phys_base, its_base_type_string[type], | 
 | 			its->device_ids, ids); | 
 | 	} | 
 |  | 
 | 	*order = new_order; | 
 |  | 
 | 	return indirect; | 
 | } | 
 |  | 
 | static void its_free_tables(struct its_node *its) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
 | 		if (its->tables[i].base) { | 
 | 			free_pages((unsigned long)its->tables[i].base, | 
 | 				   its->tables[i].order); | 
 | 			its->tables[i].base = NULL; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int its_alloc_tables(struct its_node *its) | 
 | { | 
 | 	u64 shr = GITS_BASER_InnerShareable; | 
 | 	u64 cache = GITS_BASER_RaWaWb; | 
 | 	u32 psz = SZ_64K; | 
 | 	int err, i; | 
 |  | 
 | 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) | 
 | 		/* erratum 24313: ignore memory access type */ | 
 | 		cache = GITS_BASER_nCnB; | 
 |  | 
 | 	for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
 | 		struct its_baser *baser = its->tables + i; | 
 | 		u64 val = its_read_baser(its, baser); | 
 | 		u64 type = GITS_BASER_TYPE(val); | 
 | 		u32 order = get_order(psz); | 
 | 		bool indirect = false; | 
 |  | 
 | 		switch (type) { | 
 | 		case GITS_BASER_TYPE_NONE: | 
 | 			continue; | 
 |  | 
 | 		case GITS_BASER_TYPE_DEVICE: | 
 | 			indirect = its_parse_indirect_baser(its, baser, | 
 | 							    psz, &order, | 
 | 							    its->device_ids); | 
 | 		case GITS_BASER_TYPE_VCPU: | 
 | 			indirect = its_parse_indirect_baser(its, baser, | 
 | 							    psz, &order, | 
 | 							    ITS_MAX_VPEID_BITS); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); | 
 | 		if (err < 0) { | 
 | 			its_free_tables(its); | 
 | 			return err; | 
 | 		} | 
 |  | 
 | 		/* Update settings which will be used for next BASERn */ | 
 | 		psz = baser->psz; | 
 | 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK; | 
 | 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_alloc_collections(struct its_node *its) | 
 | { | 
 | 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections), | 
 | 				   GFP_KERNEL); | 
 | 	if (!its->collections) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct page *its_allocate_pending_table(gfp_t gfp_flags) | 
 | { | 
 | 	struct page *pend_page; | 
 | 	/* | 
 | 	 * The pending pages have to be at least 64kB aligned, | 
 | 	 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below. | 
 | 	 */ | 
 | 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO, | 
 | 				get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); | 
 | 	if (!pend_page) | 
 | 		return NULL; | 
 |  | 
 | 	/* Make sure the GIC will observe the zero-ed page */ | 
 | 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); | 
 |  | 
 | 	return pend_page; | 
 | } | 
 |  | 
 | static void its_free_pending_table(struct page *pt) | 
 | { | 
 | 	free_pages((unsigned long)page_address(pt), | 
 | 		   get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K))); | 
 | } | 
 |  | 
 | static void its_cpu_init_lpis(void) | 
 | { | 
 | 	void __iomem *rbase = gic_data_rdist_rd_base(); | 
 | 	struct page *pend_page; | 
 | 	u64 val, tmp; | 
 |  | 
 | 	/* If we didn't allocate the pending table yet, do it now */ | 
 | 	pend_page = gic_data_rdist()->pend_page; | 
 | 	if (!pend_page) { | 
 | 		phys_addr_t paddr; | 
 |  | 
 | 		pend_page = its_allocate_pending_table(GFP_NOWAIT); | 
 | 		if (!pend_page) { | 
 | 			pr_err("Failed to allocate PENDBASE for CPU%d\n", | 
 | 			       smp_processor_id()); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		paddr = page_to_phys(pend_page); | 
 | 		pr_info("CPU%d: using LPI pending table @%pa\n", | 
 | 			smp_processor_id(), &paddr); | 
 | 		gic_data_rdist()->pend_page = pend_page; | 
 | 	} | 
 |  | 
 | 	/* Disable LPIs */ | 
 | 	val = readl_relaxed(rbase + GICR_CTLR); | 
 | 	val &= ~GICR_CTLR_ENABLE_LPIS; | 
 | 	writel_relaxed(val, rbase + GICR_CTLR); | 
 |  | 
 | 	/* | 
 | 	 * Make sure any change to the table is observable by the GIC. | 
 | 	 */ | 
 | 	dsb(sy); | 
 |  | 
 | 	/* set PROPBASE */ | 
 | 	val = (page_to_phys(gic_rdists->prop_page) | | 
 | 	       GICR_PROPBASER_InnerShareable | | 
 | 	       GICR_PROPBASER_RaWaWb | | 
 | 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); | 
 |  | 
 | 	gicr_write_propbaser(val, rbase + GICR_PROPBASER); | 
 | 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); | 
 |  | 
 | 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { | 
 | 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { | 
 | 			/* | 
 | 			 * The HW reports non-shareable, we must | 
 | 			 * remove the cacheability attributes as | 
 | 			 * well. | 
 | 			 */ | 
 | 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | | 
 | 				 GICR_PROPBASER_CACHEABILITY_MASK); | 
 | 			val |= GICR_PROPBASER_nC; | 
 | 			gicr_write_propbaser(val, rbase + GICR_PROPBASER); | 
 | 		} | 
 | 		pr_info_once("GIC: using cache flushing for LPI property table\n"); | 
 | 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; | 
 | 	} | 
 |  | 
 | 	/* set PENDBASE */ | 
 | 	val = (page_to_phys(pend_page) | | 
 | 	       GICR_PENDBASER_InnerShareable | | 
 | 	       GICR_PENDBASER_RaWaWb); | 
 |  | 
 | 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER); | 
 | 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); | 
 |  | 
 | 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { | 
 | 		/* | 
 | 		 * The HW reports non-shareable, we must remove the | 
 | 		 * cacheability attributes as well. | 
 | 		 */ | 
 | 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | | 
 | 			 GICR_PENDBASER_CACHEABILITY_MASK); | 
 | 		val |= GICR_PENDBASER_nC; | 
 | 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER); | 
 | 	} | 
 |  | 
 | 	/* Enable LPIs */ | 
 | 	val = readl_relaxed(rbase + GICR_CTLR); | 
 | 	val |= GICR_CTLR_ENABLE_LPIS; | 
 | 	writel_relaxed(val, rbase + GICR_CTLR); | 
 |  | 
 | 	/* Make sure the GIC has seen the above */ | 
 | 	dsb(sy); | 
 | } | 
 |  | 
 | static void its_cpu_init_collection(void) | 
 | { | 
 | 	struct its_node *its; | 
 | 	int cpu; | 
 |  | 
 | 	spin_lock(&its_lock); | 
 | 	cpu = smp_processor_id(); | 
 |  | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		u64 target; | 
 |  | 
 | 		/* avoid cross node collections and its mapping */ | 
 | 		if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { | 
 | 			struct device_node *cpu_node; | 
 |  | 
 | 			cpu_node = of_get_cpu_node(cpu, NULL); | 
 | 			if (its->numa_node != NUMA_NO_NODE && | 
 | 				its->numa_node != of_node_to_nid(cpu_node)) | 
 | 				continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We now have to bind each collection to its target | 
 | 		 * redistributor. | 
 | 		 */ | 
 | 		if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { | 
 | 			/* | 
 | 			 * This ITS wants the physical address of the | 
 | 			 * redistributor. | 
 | 			 */ | 
 | 			target = gic_data_rdist()->phys_base; | 
 | 		} else { | 
 | 			/* | 
 | 			 * This ITS wants a linear CPU number. | 
 | 			 */ | 
 | 			target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); | 
 | 			target = GICR_TYPER_CPU_NUMBER(target) << 16; | 
 | 		} | 
 |  | 
 | 		/* Perform collection mapping */ | 
 | 		its->collections[cpu].target_address = target; | 
 | 		its->collections[cpu].col_id = cpu; | 
 |  | 
 | 		its_send_mapc(its, &its->collections[cpu], 1); | 
 | 		its_send_invall(its, &its->collections[cpu]); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&its_lock); | 
 | } | 
 |  | 
 | static struct its_device *its_find_device(struct its_node *its, u32 dev_id) | 
 | { | 
 | 	struct its_device *its_dev = NULL, *tmp; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&its->lock, flags); | 
 |  | 
 | 	list_for_each_entry(tmp, &its->its_device_list, entry) { | 
 | 		if (tmp->device_id == dev_id) { | 
 | 			its_dev = tmp; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&its->lock, flags); | 
 |  | 
 | 	return its_dev; | 
 | } | 
 |  | 
 | static struct its_baser *its_get_baser(struct its_node *its, u32 type) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < GITS_BASER_NR_REGS; i++) { | 
 | 		if (GITS_BASER_TYPE(its->tables[i].val) == type) | 
 | 			return &its->tables[i]; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static bool its_alloc_table_entry(struct its_baser *baser, u32 id) | 
 | { | 
 | 	struct page *page; | 
 | 	u32 esz, idx; | 
 | 	__le64 *table; | 
 |  | 
 | 	/* Don't allow device id that exceeds single, flat table limit */ | 
 | 	esz = GITS_BASER_ENTRY_SIZE(baser->val); | 
 | 	if (!(baser->val & GITS_BASER_INDIRECT)) | 
 | 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); | 
 |  | 
 | 	/* Compute 1st level table index & check if that exceeds table limit */ | 
 | 	idx = id >> ilog2(baser->psz / esz); | 
 | 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) | 
 | 		return false; | 
 |  | 
 | 	table = baser->base; | 
 |  | 
 | 	/* Allocate memory for 2nd level table */ | 
 | 	if (!table[idx]) { | 
 | 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz)); | 
 | 		if (!page) | 
 | 			return false; | 
 |  | 
 | 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */ | 
 | 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) | 
 | 			gic_flush_dcache_to_poc(page_address(page), baser->psz); | 
 |  | 
 | 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); | 
 |  | 
 | 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */ | 
 | 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) | 
 | 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); | 
 |  | 
 | 		/* Ensure updated table contents are visible to ITS hardware */ | 
 | 		dsb(sy); | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool its_alloc_device_table(struct its_node *its, u32 dev_id) | 
 | { | 
 | 	struct its_baser *baser; | 
 |  | 
 | 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); | 
 |  | 
 | 	/* Don't allow device id that exceeds ITS hardware limit */ | 
 | 	if (!baser) | 
 | 		return (ilog2(dev_id) < its->device_ids); | 
 |  | 
 | 	return its_alloc_table_entry(baser, dev_id); | 
 | } | 
 |  | 
 | static bool its_alloc_vpe_table(u32 vpe_id) | 
 | { | 
 | 	struct its_node *its; | 
 |  | 
 | 	/* | 
 | 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We | 
 | 	 * could try and only do it on ITSs corresponding to devices | 
 | 	 * that have interrupts targeted at this VPE, but the | 
 | 	 * complexity becomes crazy (and you have tons of memory | 
 | 	 * anyway, right?). | 
 | 	 */ | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		struct its_baser *baser; | 
 |  | 
 | 		if (!its->is_v4) | 
 | 			continue; | 
 |  | 
 | 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); | 
 | 		if (!baser) | 
 | 			return false; | 
 |  | 
 | 		if (!its_alloc_table_entry(baser, vpe_id)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static struct its_device *its_create_device(struct its_node *its, u32 dev_id, | 
 | 					    int nvecs, bool alloc_lpis) | 
 | { | 
 | 	struct its_device *dev; | 
 | 	unsigned long *lpi_map = NULL; | 
 | 	unsigned long flags; | 
 | 	u16 *col_map = NULL; | 
 | 	void *itt; | 
 | 	int lpi_base; | 
 | 	int nr_lpis; | 
 | 	int nr_ites; | 
 | 	int sz; | 
 |  | 
 | 	if (!its_alloc_device_table(its, dev_id)) | 
 | 		return NULL; | 
 |  | 
 | 	dev = kzalloc(sizeof(*dev), GFP_KERNEL); | 
 | 	/* | 
 | 	 * We allocate at least one chunk worth of LPIs bet device, | 
 | 	 * and thus that many ITEs. The device may require less though. | 
 | 	 */ | 
 | 	nr_ites = max(IRQS_PER_CHUNK, roundup_pow_of_two(nvecs)); | 
 | 	sz = nr_ites * its->ite_size; | 
 | 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; | 
 | 	itt = kzalloc(sz, GFP_KERNEL); | 
 | 	if (alloc_lpis) { | 
 | 		lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis); | 
 | 		if (lpi_map) | 
 | 			col_map = kzalloc(sizeof(*col_map) * nr_lpis, | 
 | 					  GFP_KERNEL); | 
 | 	} else { | 
 | 		col_map = kzalloc(sizeof(*col_map) * nr_ites, GFP_KERNEL); | 
 | 		nr_lpis = 0; | 
 | 		lpi_base = 0; | 
 | 	} | 
 |  | 
 | 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) { | 
 | 		kfree(dev); | 
 | 		kfree(itt); | 
 | 		kfree(lpi_map); | 
 | 		kfree(col_map); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	gic_flush_dcache_to_poc(itt, sz); | 
 |  | 
 | 	dev->its = its; | 
 | 	dev->itt = itt; | 
 | 	dev->nr_ites = nr_ites; | 
 | 	dev->event_map.lpi_map = lpi_map; | 
 | 	dev->event_map.col_map = col_map; | 
 | 	dev->event_map.lpi_base = lpi_base; | 
 | 	dev->event_map.nr_lpis = nr_lpis; | 
 | 	mutex_init(&dev->event_map.vlpi_lock); | 
 | 	dev->device_id = dev_id; | 
 | 	INIT_LIST_HEAD(&dev->entry); | 
 |  | 
 | 	raw_spin_lock_irqsave(&its->lock, flags); | 
 | 	list_add(&dev->entry, &its->its_device_list); | 
 | 	raw_spin_unlock_irqrestore(&its->lock, flags); | 
 |  | 
 | 	/* Map device to its ITT */ | 
 | 	its_send_mapd(dev, 1); | 
 |  | 
 | 	return dev; | 
 | } | 
 |  | 
 | static void its_free_device(struct its_device *its_dev) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&its_dev->its->lock, flags); | 
 | 	list_del(&its_dev->entry); | 
 | 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); | 
 | 	kfree(its_dev->itt); | 
 | 	kfree(its_dev); | 
 | } | 
 |  | 
 | static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq) | 
 | { | 
 | 	int idx; | 
 |  | 
 | 	idx = find_first_zero_bit(dev->event_map.lpi_map, | 
 | 				  dev->event_map.nr_lpis); | 
 | 	if (idx == dev->event_map.nr_lpis) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	*hwirq = dev->event_map.lpi_base + idx; | 
 | 	set_bit(idx, dev->event_map.lpi_map); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_msi_prepare(struct irq_domain *domain, struct device *dev, | 
 | 			   int nvec, msi_alloc_info_t *info) | 
 | { | 
 | 	struct its_node *its; | 
 | 	struct its_device *its_dev; | 
 | 	struct msi_domain_info *msi_info; | 
 | 	u32 dev_id; | 
 |  | 
 | 	/* | 
 | 	 * We ignore "dev" entierely, and rely on the dev_id that has | 
 | 	 * been passed via the scratchpad. This limits this domain's | 
 | 	 * usefulness to upper layers that definitely know that they | 
 | 	 * are built on top of the ITS. | 
 | 	 */ | 
 | 	dev_id = info->scratchpad[0].ul; | 
 |  | 
 | 	msi_info = msi_get_domain_info(domain); | 
 | 	its = msi_info->data; | 
 |  | 
 | 	if (!gic_rdists->has_direct_lpi && | 
 | 	    vpe_proxy.dev && | 
 | 	    vpe_proxy.dev->its == its && | 
 | 	    dev_id == vpe_proxy.dev->device_id) { | 
 | 		/* Bad luck. Get yourself a better implementation */ | 
 | 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", | 
 | 			  dev_id); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	its_dev = its_find_device(its, dev_id); | 
 | 	if (its_dev) { | 
 | 		/* | 
 | 		 * We already have seen this ID, probably through | 
 | 		 * another alias (PCI bridge of some sort). No need to | 
 | 		 * create the device. | 
 | 		 */ | 
 | 		pr_debug("Reusing ITT for devID %x\n", dev_id); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	its_dev = its_create_device(its, dev_id, nvec, true); | 
 | 	if (!its_dev) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); | 
 | out: | 
 | 	info->scratchpad[0].ptr = its_dev; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct msi_domain_ops its_msi_domain_ops = { | 
 | 	.msi_prepare	= its_msi_prepare, | 
 | }; | 
 |  | 
 | static int its_irq_gic_domain_alloc(struct irq_domain *domain, | 
 | 				    unsigned int virq, | 
 | 				    irq_hw_number_t hwirq) | 
 | { | 
 | 	struct irq_fwspec fwspec; | 
 |  | 
 | 	if (irq_domain_get_of_node(domain->parent)) { | 
 | 		fwspec.fwnode = domain->parent->fwnode; | 
 | 		fwspec.param_count = 3; | 
 | 		fwspec.param[0] = GIC_IRQ_TYPE_LPI; | 
 | 		fwspec.param[1] = hwirq; | 
 | 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING; | 
 | 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) { | 
 | 		fwspec.fwnode = domain->parent->fwnode; | 
 | 		fwspec.param_count = 2; | 
 | 		fwspec.param[0] = hwirq; | 
 | 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING; | 
 | 	} else { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); | 
 | } | 
 |  | 
 | static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, | 
 | 				unsigned int nr_irqs, void *args) | 
 | { | 
 | 	msi_alloc_info_t *info = args; | 
 | 	struct its_device *its_dev = info->scratchpad[0].ptr; | 
 | 	irq_hw_number_t hwirq; | 
 | 	int err; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		err = its_alloc_device_irq(its_dev, &hwirq); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		irq_domain_set_hwirq_and_chip(domain, virq + i, | 
 | 					      hwirq, &its_irq_chip, its_dev); | 
 | 		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); | 
 | 		pr_debug("ID:%d pID:%d vID:%d\n", | 
 | 			 (int)(hwirq - its_dev->event_map.lpi_base), | 
 | 			 (int) hwirq, virq + i); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_irq_domain_activate(struct irq_domain *domain, | 
 | 				   struct irq_data *d, bool reserve) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	u32 event = its_get_event_id(d); | 
 | 	const struct cpumask *cpu_mask = cpu_online_mask; | 
 | 	int cpu; | 
 |  | 
 | 	/* get the cpu_mask of local node */ | 
 | 	if (its_dev->its->numa_node >= 0) | 
 | 		cpu_mask = cpumask_of_node(its_dev->its->numa_node); | 
 |  | 
 | 	/* Bind the LPI to the first possible CPU */ | 
 | 	cpu = cpumask_first(cpu_mask); | 
 | 	its_dev->event_map.col_map[event] = cpu; | 
 | 	irq_data_update_effective_affinity(d, cpumask_of(cpu)); | 
 |  | 
 | 	/* Map the GIC IRQ and event to the device */ | 
 | 	its_send_mapti(its_dev, d->hwirq, event); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void its_irq_domain_deactivate(struct irq_domain *domain, | 
 | 				      struct irq_data *d) | 
 | { | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	u32 event = its_get_event_id(d); | 
 |  | 
 | 	/* Stop the delivery of interrupts */ | 
 | 	its_send_discard(its_dev, event); | 
 | } | 
 |  | 
 | static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, | 
 | 				unsigned int nr_irqs) | 
 | { | 
 | 	struct irq_data *d = irq_domain_get_irq_data(domain, virq); | 
 | 	struct its_device *its_dev = irq_data_get_irq_chip_data(d); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		struct irq_data *data = irq_domain_get_irq_data(domain, | 
 | 								virq + i); | 
 | 		u32 event = its_get_event_id(data); | 
 |  | 
 | 		/* Mark interrupt index as unused */ | 
 | 		clear_bit(event, its_dev->event_map.lpi_map); | 
 |  | 
 | 		/* Nuke the entry in the domain */ | 
 | 		irq_domain_reset_irq_data(data); | 
 | 	} | 
 |  | 
 | 	/* If all interrupts have been freed, start mopping the floor */ | 
 | 	if (bitmap_empty(its_dev->event_map.lpi_map, | 
 | 			 its_dev->event_map.nr_lpis)) { | 
 | 		its_lpi_free_chunks(its_dev->event_map.lpi_map, | 
 | 				    its_dev->event_map.lpi_base, | 
 | 				    its_dev->event_map.nr_lpis); | 
 | 		kfree(its_dev->event_map.col_map); | 
 |  | 
 | 		/* Unmap device/itt */ | 
 | 		its_send_mapd(its_dev, 0); | 
 | 		its_free_device(its_dev); | 
 | 	} | 
 |  | 
 | 	irq_domain_free_irqs_parent(domain, virq, nr_irqs); | 
 | } | 
 |  | 
 | static const struct irq_domain_ops its_domain_ops = { | 
 | 	.alloc			= its_irq_domain_alloc, | 
 | 	.free			= its_irq_domain_free, | 
 | 	.activate		= its_irq_domain_activate, | 
 | 	.deactivate		= its_irq_domain_deactivate, | 
 | }; | 
 |  | 
 | /* | 
 |  * This is insane. | 
 |  * | 
 |  * If a GICv4 doesn't implement Direct LPIs (which is extremely | 
 |  * likely), the only way to perform an invalidate is to use a fake | 
 |  * device to issue an INV command, implying that the LPI has first | 
 |  * been mapped to some event on that device. Since this is not exactly | 
 |  * cheap, we try to keep that mapping around as long as possible, and | 
 |  * only issue an UNMAP if we're short on available slots. | 
 |  * | 
 |  * Broken by design(tm). | 
 |  */ | 
 | static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) | 
 | { | 
 | 	/* Already unmapped? */ | 
 | 	if (vpe->vpe_proxy_event == -1) | 
 | 		return; | 
 |  | 
 | 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); | 
 | 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; | 
 |  | 
 | 	/* | 
 | 	 * We don't track empty slots at all, so let's move the | 
 | 	 * next_victim pointer if we can quickly reuse that slot | 
 | 	 * instead of nuking an existing entry. Not clear that this is | 
 | 	 * always a win though, and this might just generate a ripple | 
 | 	 * effect... Let's just hope VPEs don't migrate too often. | 
 | 	 */ | 
 | 	if (vpe_proxy.vpes[vpe_proxy.next_victim]) | 
 | 		vpe_proxy.next_victim = vpe->vpe_proxy_event; | 
 |  | 
 | 	vpe->vpe_proxy_event = -1; | 
 | } | 
 |  | 
 | static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) | 
 | { | 
 | 	if (!gic_rdists->has_direct_lpi) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags); | 
 | 		its_vpe_db_proxy_unmap_locked(vpe); | 
 | 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); | 
 | 	} | 
 | } | 
 |  | 
 | static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) | 
 | { | 
 | 	/* Already mapped? */ | 
 | 	if (vpe->vpe_proxy_event != -1) | 
 | 		return; | 
 |  | 
 | 	/* This slot was already allocated. Kick the other VPE out. */ | 
 | 	if (vpe_proxy.vpes[vpe_proxy.next_victim]) | 
 | 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); | 
 |  | 
 | 	/* Map the new VPE instead */ | 
 | 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; | 
 | 	vpe->vpe_proxy_event = vpe_proxy.next_victim; | 
 | 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; | 
 |  | 
 | 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; | 
 | 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); | 
 | } | 
 |  | 
 | static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct its_collection *target_col; | 
 |  | 
 | 	if (gic_rdists->has_direct_lpi) { | 
 | 		void __iomem *rdbase; | 
 |  | 
 | 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; | 
 | 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); | 
 | 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) | 
 | 			cpu_relax(); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags); | 
 |  | 
 | 	its_vpe_db_proxy_map_locked(vpe); | 
 |  | 
 | 	target_col = &vpe_proxy.dev->its->collections[to]; | 
 | 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); | 
 | 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); | 
 | } | 
 |  | 
 | static int its_vpe_set_affinity(struct irq_data *d, | 
 | 				const struct cpumask *mask_val, | 
 | 				bool force) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 	int cpu = cpumask_first(mask_val); | 
 |  | 
 | 	/* | 
 | 	 * Changing affinity is mega expensive, so let's be as lazy as | 
 | 	 * we can and only do it if we really have to. Also, if mapped | 
 | 	 * into the proxy device, we need to move the doorbell | 
 | 	 * interrupt to its new location. | 
 | 	 */ | 
 | 	if (vpe->col_idx != cpu) { | 
 | 		int from = vpe->col_idx; | 
 |  | 
 | 		vpe->col_idx = cpu; | 
 | 		its_send_vmovp(vpe); | 
 | 		its_vpe_db_proxy_move(vpe, from, cpu); | 
 | 	} | 
 |  | 
 | 	irq_data_update_effective_affinity(d, cpumask_of(cpu)); | 
 |  | 
 | 	return IRQ_SET_MASK_OK_DONE; | 
 | } | 
 |  | 
 | static void its_vpe_schedule(struct its_vpe *vpe) | 
 | { | 
 | 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
 | 	u64 val; | 
 |  | 
 | 	/* Schedule the VPE */ | 
 | 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & | 
 | 		GENMASK_ULL(51, 12); | 
 | 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; | 
 | 	val |= GICR_VPROPBASER_RaWb; | 
 | 	val |= GICR_VPROPBASER_InnerShareable; | 
 | 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); | 
 |  | 
 | 	val  = virt_to_phys(page_address(vpe->vpt_page)) & | 
 | 		GENMASK_ULL(51, 16); | 
 | 	val |= GICR_VPENDBASER_RaWaWb; | 
 | 	val |= GICR_VPENDBASER_NonShareable; | 
 | 	/* | 
 | 	 * There is no good way of finding out if the pending table is | 
 | 	 * empty as we can race against the doorbell interrupt very | 
 | 	 * easily. So in the end, vpe->pending_last is only an | 
 | 	 * indication that the vcpu has something pending, not one | 
 | 	 * that the pending table is empty. A good implementation | 
 | 	 * would be able to read its coarse map pretty quickly anyway, | 
 | 	 * making this a tolerable issue. | 
 | 	 */ | 
 | 	val |= GICR_VPENDBASER_PendingLast; | 
 | 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; | 
 | 	val |= GICR_VPENDBASER_Valid; | 
 | 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); | 
 | } | 
 |  | 
 | static void its_vpe_deschedule(struct its_vpe *vpe) | 
 | { | 
 | 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); | 
 | 	u32 count = 1000000;	/* 1s! */ | 
 | 	bool clean; | 
 | 	u64 val; | 
 |  | 
 | 	/* We're being scheduled out */ | 
 | 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); | 
 | 	val &= ~GICR_VPENDBASER_Valid; | 
 | 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); | 
 |  | 
 | 	do { | 
 | 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER); | 
 | 		clean = !(val & GICR_VPENDBASER_Dirty); | 
 | 		if (!clean) { | 
 | 			count--; | 
 | 			cpu_relax(); | 
 | 			udelay(1); | 
 | 		} | 
 | 	} while (!clean && count); | 
 |  | 
 | 	if (unlikely(!clean && !count)) { | 
 | 		pr_err_ratelimited("ITS virtual pending table not cleaning\n"); | 
 | 		vpe->idai = false; | 
 | 		vpe->pending_last = true; | 
 | 	} else { | 
 | 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI); | 
 | 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); | 
 | 	} | 
 | } | 
 |  | 
 | static void its_vpe_invall(struct its_vpe *vpe) | 
 | { | 
 | 	struct its_node *its; | 
 |  | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		if (!its->is_v4) | 
 | 			continue; | 
 |  | 
 | 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Sending a VINVALL to a single ITS is enough, as all | 
 | 		 * we need is to reach the redistributors. | 
 | 		 */ | 
 | 		its_send_vinvall(its, vpe); | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 	struct its_cmd_info *info = vcpu_info; | 
 |  | 
 | 	switch (info->cmd_type) { | 
 | 	case SCHEDULE_VPE: | 
 | 		its_vpe_schedule(vpe); | 
 | 		return 0; | 
 |  | 
 | 	case DESCHEDULE_VPE: | 
 | 		its_vpe_deschedule(vpe); | 
 | 		return 0; | 
 |  | 
 | 	case INVALL_VPE: | 
 | 		its_vpe_invall(vpe); | 
 | 		return 0; | 
 |  | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | } | 
 |  | 
 | static void its_vpe_send_cmd(struct its_vpe *vpe, | 
 | 			     void (*cmd)(struct its_device *, u32)) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags); | 
 |  | 
 | 	its_vpe_db_proxy_map_locked(vpe); | 
 | 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); | 
 | } | 
 |  | 
 | static void its_vpe_send_inv(struct irq_data *d) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	if (gic_rdists->has_direct_lpi) { | 
 | 		void __iomem *rdbase; | 
 |  | 
 | 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; | 
 | 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR); | 
 | 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) | 
 | 			cpu_relax(); | 
 | 	} else { | 
 | 		its_vpe_send_cmd(vpe, its_send_inv); | 
 | 	} | 
 | } | 
 |  | 
 | static void its_vpe_mask_irq(struct irq_data *d) | 
 | { | 
 | 	/* | 
 | 	 * We need to unmask the LPI, which is described by the parent | 
 | 	 * irq_data. Instead of calling into the parent (which won't | 
 | 	 * exactly do the right thing, let's simply use the | 
 | 	 * parent_data pointer. Yes, I'm naughty. | 
 | 	 */ | 
 | 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); | 
 | 	its_vpe_send_inv(d); | 
 | } | 
 |  | 
 | static void its_vpe_unmask_irq(struct irq_data *d) | 
 | { | 
 | 	/* Same hack as above... */ | 
 | 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); | 
 | 	its_vpe_send_inv(d); | 
 | } | 
 |  | 
 | static int its_vpe_set_irqchip_state(struct irq_data *d, | 
 | 				     enum irqchip_irq_state which, | 
 | 				     bool state) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	if (which != IRQCHIP_STATE_PENDING) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (gic_rdists->has_direct_lpi) { | 
 | 		void __iomem *rdbase; | 
 |  | 
 | 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; | 
 | 		if (state) { | 
 | 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); | 
 | 		} else { | 
 | 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); | 
 | 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) | 
 | 				cpu_relax(); | 
 | 		} | 
 | 	} else { | 
 | 		if (state) | 
 | 			its_vpe_send_cmd(vpe, its_send_int); | 
 | 		else | 
 | 			its_vpe_send_cmd(vpe, its_send_clear); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct irq_chip its_vpe_irq_chip = { | 
 | 	.name			= "GICv4-vpe", | 
 | 	.irq_mask		= its_vpe_mask_irq, | 
 | 	.irq_unmask		= its_vpe_unmask_irq, | 
 | 	.irq_eoi		= irq_chip_eoi_parent, | 
 | 	.irq_set_affinity	= its_vpe_set_affinity, | 
 | 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state, | 
 | 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity, | 
 | }; | 
 |  | 
 | static int its_vpe_id_alloc(void) | 
 | { | 
 | 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); | 
 | } | 
 |  | 
 | static void its_vpe_id_free(u16 id) | 
 | { | 
 | 	ida_simple_remove(&its_vpeid_ida, id); | 
 | } | 
 |  | 
 | static int its_vpe_init(struct its_vpe *vpe) | 
 | { | 
 | 	struct page *vpt_page; | 
 | 	int vpe_id; | 
 |  | 
 | 	/* Allocate vpe_id */ | 
 | 	vpe_id = its_vpe_id_alloc(); | 
 | 	if (vpe_id < 0) | 
 | 		return vpe_id; | 
 |  | 
 | 	/* Allocate VPT */ | 
 | 	vpt_page = its_allocate_pending_table(GFP_KERNEL); | 
 | 	if (!vpt_page) { | 
 | 		its_vpe_id_free(vpe_id); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (!its_alloc_vpe_table(vpe_id)) { | 
 | 		its_vpe_id_free(vpe_id); | 
 | 		its_free_pending_table(vpe->vpt_page); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	vpe->vpe_id = vpe_id; | 
 | 	vpe->vpt_page = vpt_page; | 
 | 	vpe->vpe_proxy_event = -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void its_vpe_teardown(struct its_vpe *vpe) | 
 | { | 
 | 	its_vpe_db_proxy_unmap(vpe); | 
 | 	its_vpe_id_free(vpe->vpe_id); | 
 | 	its_free_pending_table(vpe->vpt_page); | 
 | } | 
 |  | 
 | static void its_vpe_irq_domain_free(struct irq_domain *domain, | 
 | 				    unsigned int virq, | 
 | 				    unsigned int nr_irqs) | 
 | { | 
 | 	struct its_vm *vm = domain->host_data; | 
 | 	int i; | 
 |  | 
 | 	irq_domain_free_irqs_parent(domain, virq, nr_irqs); | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		struct irq_data *data = irq_domain_get_irq_data(domain, | 
 | 								virq + i); | 
 | 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data); | 
 |  | 
 | 		BUG_ON(vm != vpe->its_vm); | 
 |  | 
 | 		clear_bit(data->hwirq, vm->db_bitmap); | 
 | 		its_vpe_teardown(vpe); | 
 | 		irq_domain_reset_irq_data(data); | 
 | 	} | 
 |  | 
 | 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { | 
 | 		its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); | 
 | 		its_free_prop_table(vm->vprop_page); | 
 | 	} | 
 | } | 
 |  | 
 | static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, | 
 | 				    unsigned int nr_irqs, void *args) | 
 | { | 
 | 	struct its_vm *vm = args; | 
 | 	unsigned long *bitmap; | 
 | 	struct page *vprop_page; | 
 | 	int base, nr_ids, i, err = 0; | 
 |  | 
 | 	BUG_ON(!vm); | 
 |  | 
 | 	bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids); | 
 | 	if (!bitmap) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (nr_ids < nr_irqs) { | 
 | 		its_lpi_free_chunks(bitmap, base, nr_ids); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	vprop_page = its_allocate_prop_table(GFP_KERNEL); | 
 | 	if (!vprop_page) { | 
 | 		its_lpi_free_chunks(bitmap, base, nr_ids); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	vm->db_bitmap = bitmap; | 
 | 	vm->db_lpi_base = base; | 
 | 	vm->nr_db_lpis = nr_ids; | 
 | 	vm->vprop_page = vprop_page; | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		vm->vpes[i]->vpe_db_lpi = base + i; | 
 | 		err = its_vpe_init(vm->vpes[i]); | 
 | 		if (err) | 
 | 			break; | 
 | 		err = its_irq_gic_domain_alloc(domain, virq + i, | 
 | 					       vm->vpes[i]->vpe_db_lpi); | 
 | 		if (err) | 
 | 			break; | 
 | 		irq_domain_set_hwirq_and_chip(domain, virq + i, i, | 
 | 					      &its_vpe_irq_chip, vm->vpes[i]); | 
 | 		set_bit(i, bitmap); | 
 | 	} | 
 |  | 
 | 	if (err) { | 
 | 		if (i > 0) | 
 | 			its_vpe_irq_domain_free(domain, virq, i - 1); | 
 |  | 
 | 		its_lpi_free_chunks(bitmap, base, nr_ids); | 
 | 		its_free_prop_table(vprop_page); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int its_vpe_irq_domain_activate(struct irq_domain *domain, | 
 | 				       struct irq_data *d, bool reserve) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 	struct its_node *its; | 
 |  | 
 | 	/* If we use the list map, we issue VMAPP on demand... */ | 
 | 	if (its_list_map) | 
 | 		return 0; | 
 |  | 
 | 	/* Map the VPE to the first possible CPU */ | 
 | 	vpe->col_idx = cpumask_first(cpu_online_mask); | 
 |  | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		if (!its->is_v4) | 
 | 			continue; | 
 |  | 
 | 		its_send_vmapp(its, vpe, true); | 
 | 		its_send_vinvall(its, vpe); | 
 | 	} | 
 |  | 
 | 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, | 
 | 					  struct irq_data *d) | 
 | { | 
 | 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d); | 
 | 	struct its_node *its; | 
 |  | 
 | 	/* | 
 | 	 * If we use the list map, we unmap the VPE once no VLPIs are | 
 | 	 * associated with the VM. | 
 | 	 */ | 
 | 	if (its_list_map) | 
 | 		return; | 
 |  | 
 | 	list_for_each_entry(its, &its_nodes, entry) { | 
 | 		if (!its->is_v4) | 
 | 			continue; | 
 |  | 
 | 		its_send_vmapp(its, vpe, false); | 
 | 	} | 
 | } | 
 |  | 
 | static const struct irq_domain_ops its_vpe_domain_ops = { | 
 | 	.alloc			= its_vpe_irq_domain_alloc, | 
 | 	.free			= its_vpe_irq_domain_free, | 
 | 	.activate		= its_vpe_irq_domain_activate, | 
 | 	.deactivate		= its_vpe_irq_domain_deactivate, | 
 | }; | 
 |  | 
 | static int its_force_quiescent(void __iomem *base) | 
 | { | 
 | 	u32 count = 1000000;	/* 1s */ | 
 | 	u32 val; | 
 |  | 
 | 	val = readl_relaxed(base + GITS_CTLR); | 
 | 	/* | 
 | 	 * GIC architecture specification requires the ITS to be both | 
 | 	 * disabled and quiescent for writes to GITS_BASER<n> or | 
 | 	 * GITS_CBASER to not have UNPREDICTABLE results. | 
 | 	 */ | 
 | 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) | 
 | 		return 0; | 
 |  | 
 | 	/* Disable the generation of all interrupts to this ITS */ | 
 | 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); | 
 | 	writel_relaxed(val, base + GITS_CTLR); | 
 |  | 
 | 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */ | 
 | 	while (1) { | 
 | 		val = readl_relaxed(base + GITS_CTLR); | 
 | 		if (val & GITS_CTLR_QUIESCENT) | 
 | 			return 0; | 
 |  | 
 | 		count--; | 
 | 		if (!count) | 
 | 			return -EBUSY; | 
 |  | 
 | 		cpu_relax(); | 
 | 		udelay(1); | 
 | 	} | 
 | } | 
 |  | 
 | static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) | 
 | { | 
 | 	struct its_node *its = data; | 
 |  | 
 | 	/* erratum 22375: only alloc 8MB table size */ | 
 | 	its->device_ids = 0x14;		/* 20 bits, 8MB */ | 
 | 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) | 
 | { | 
 | 	struct its_node *its = data; | 
 |  | 
 | 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) | 
 | { | 
 | 	struct its_node *its = data; | 
 |  | 
 | 	/* On QDF2400, the size of the ITE is 16Bytes */ | 
 | 	its->ite_size = 16; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) | 
 | { | 
 | 	struct its_node *its = its_dev->its; | 
 |  | 
 | 	/* | 
 | 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS', | 
 | 	 * which maps 32-bit writes targeted at a separate window of | 
 | 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER | 
 | 	 * with device ID taken from bits [device_id_bits + 1:2] of | 
 | 	 * the window offset. | 
 | 	 */ | 
 | 	return its->pre_its_base + (its_dev->device_id << 2); | 
 | } | 
 |  | 
 | static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) | 
 | { | 
 | 	struct its_node *its = data; | 
 | 	u32 pre_its_window[2]; | 
 | 	u32 ids; | 
 |  | 
 | 	if (!fwnode_property_read_u32_array(its->fwnode_handle, | 
 | 					   "socionext,synquacer-pre-its", | 
 | 					   pre_its_window, | 
 | 					   ARRAY_SIZE(pre_its_window))) { | 
 |  | 
 | 		its->pre_its_base = pre_its_window[0]; | 
 | 		its->get_msi_base = its_irq_get_msi_base_pre_its; | 
 |  | 
 | 		ids = ilog2(pre_its_window[1]) - 2; | 
 | 		if (its->device_ids > ids) | 
 | 			its->device_ids = ids; | 
 |  | 
 | 		/* the pre-ITS breaks isolation, so disable MSI remapping */ | 
 | 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) | 
 | { | 
 | 	struct its_node *its = data; | 
 |  | 
 | 	/* | 
 | 	 * Hip07 insists on using the wrong address for the VLPI | 
 | 	 * page. Trick it into doing the right thing... | 
 | 	 */ | 
 | 	its->vlpi_redist_offset = SZ_128K; | 
 | 	return true; | 
 | } | 
 |  | 
 | static const struct gic_quirk its_quirks[] = { | 
 | #ifdef CONFIG_CAVIUM_ERRATUM_22375 | 
 | 	{ | 
 | 		.desc	= "ITS: Cavium errata 22375, 24313", | 
 | 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */ | 
 | 		.mask	= 0xffff0fff, | 
 | 		.init	= its_enable_quirk_cavium_22375, | 
 | 	}, | 
 | #endif | 
 | #ifdef CONFIG_CAVIUM_ERRATUM_23144 | 
 | 	{ | 
 | 		.desc	= "ITS: Cavium erratum 23144", | 
 | 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */ | 
 | 		.mask	= 0xffff0fff, | 
 | 		.init	= its_enable_quirk_cavium_23144, | 
 | 	}, | 
 | #endif | 
 | #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 | 
 | 	{ | 
 | 		.desc	= "ITS: QDF2400 erratum 0065", | 
 | 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */ | 
 | 		.mask	= 0xffffffff, | 
 | 		.init	= its_enable_quirk_qdf2400_e0065, | 
 | 	}, | 
 | #endif | 
 | #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS | 
 | 	{ | 
 | 		/* | 
 | 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 | 
 | 		 * implementation, but with a 'pre-ITS' added that requires | 
 | 		 * special handling in software. | 
 | 		 */ | 
 | 		.desc	= "ITS: Socionext Synquacer pre-ITS", | 
 | 		.iidr	= 0x0001143b, | 
 | 		.mask	= 0xffffffff, | 
 | 		.init	= its_enable_quirk_socionext_synquacer, | 
 | 	}, | 
 | #endif | 
 | #ifdef CONFIG_HISILICON_ERRATUM_161600802 | 
 | 	{ | 
 | 		.desc	= "ITS: Hip07 erratum 161600802", | 
 | 		.iidr	= 0x00000004, | 
 | 		.mask	= 0xffffffff, | 
 | 		.init	= its_enable_quirk_hip07_161600802, | 
 | 	}, | 
 | #endif | 
 | 	{ | 
 | 	} | 
 | }; | 
 |  | 
 | static void its_enable_quirks(struct its_node *its) | 
 | { | 
 | 	u32 iidr = readl_relaxed(its->base + GITS_IIDR); | 
 |  | 
 | 	gic_enable_quirks(iidr, its_quirks, its); | 
 | } | 
 |  | 
 | static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) | 
 | { | 
 | 	struct irq_domain *inner_domain; | 
 | 	struct msi_domain_info *info; | 
 |  | 
 | 	info = kzalloc(sizeof(*info), GFP_KERNEL); | 
 | 	if (!info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); | 
 | 	if (!inner_domain) { | 
 | 		kfree(info); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	inner_domain->parent = its_parent; | 
 | 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); | 
 | 	inner_domain->flags |= its->msi_domain_flags; | 
 | 	info->ops = &its_msi_domain_ops; | 
 | 	info->data = its; | 
 | 	inner_domain->host_data = info; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int its_init_vpe_domain(void) | 
 | { | 
 | 	struct its_node *its; | 
 | 	u32 devid; | 
 | 	int entries; | 
 |  | 
 | 	if (gic_rdists->has_direct_lpi) { | 
 | 		pr_info("ITS: Using DirectLPI for VPE invalidation\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Any ITS will do, even if not v4 */ | 
 | 	its = list_first_entry(&its_nodes, struct its_node, entry); | 
 |  | 
 | 	entries = roundup_pow_of_two(nr_cpu_ids); | 
 | 	vpe_proxy.vpes = kzalloc(sizeof(*vpe_proxy.vpes) * entries, | 
 | 				 GFP_KERNEL); | 
 | 	if (!vpe_proxy.vpes) { | 
 | 		pr_err("ITS: Can't allocate GICv4 proxy device array\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Use the last possible DevID */ | 
 | 	devid = GENMASK(its->device_ids - 1, 0); | 
 | 	vpe_proxy.dev = its_create_device(its, devid, entries, false); | 
 | 	if (!vpe_proxy.dev) { | 
 | 		kfree(vpe_proxy.vpes); | 
 | 		pr_err("ITS: Can't allocate GICv4 proxy device\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	BUG_ON(entries > vpe_proxy.dev->nr_ites); | 
 |  | 
 | 	raw_spin_lock_init(&vpe_proxy.lock); | 
 | 	vpe_proxy.next_victim = 0; | 
 | 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", | 
 | 		devid, vpe_proxy.dev->nr_ites); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init its_compute_its_list_map(struct resource *res, | 
 | 					   void __iomem *its_base) | 
 | { | 
 | 	int its_number; | 
 | 	u32 ctlr; | 
 |  | 
 | 	/* | 
 | 	 * This is assumed to be done early enough that we're | 
 | 	 * guaranteed to be single-threaded, hence no | 
 | 	 * locking. Should this change, we should address | 
 | 	 * this. | 
 | 	 */ | 
 | 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); | 
 | 	if (its_number >= GICv4_ITS_LIST_MAX) { | 
 | 		pr_err("ITS@%pa: No ITSList entry available!\n", | 
 | 		       &res->start); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ctlr = readl_relaxed(its_base + GITS_CTLR); | 
 | 	ctlr &= ~GITS_CTLR_ITS_NUMBER; | 
 | 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; | 
 | 	writel_relaxed(ctlr, its_base + GITS_CTLR); | 
 | 	ctlr = readl_relaxed(its_base + GITS_CTLR); | 
 | 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { | 
 | 		its_number = ctlr & GITS_CTLR_ITS_NUMBER; | 
 | 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; | 
 | 	} | 
 |  | 
 | 	if (test_and_set_bit(its_number, &its_list_map)) { | 
 | 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n", | 
 | 		       &res->start, its_number); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return its_number; | 
 | } | 
 |  | 
 | static int __init its_probe_one(struct resource *res, | 
 | 				struct fwnode_handle *handle, int numa_node) | 
 | { | 
 | 	struct its_node *its; | 
 | 	void __iomem *its_base; | 
 | 	u32 val, ctlr; | 
 | 	u64 baser, tmp, typer; | 
 | 	int err; | 
 |  | 
 | 	its_base = ioremap(res->start, resource_size(res)); | 
 | 	if (!its_base) { | 
 | 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; | 
 | 	if (val != 0x30 && val != 0x40) { | 
 | 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); | 
 | 		err = -ENODEV; | 
 | 		goto out_unmap; | 
 | 	} | 
 |  | 
 | 	err = its_force_quiescent(its_base); | 
 | 	if (err) { | 
 | 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); | 
 | 		goto out_unmap; | 
 | 	} | 
 |  | 
 | 	pr_info("ITS %pR\n", res); | 
 |  | 
 | 	its = kzalloc(sizeof(*its), GFP_KERNEL); | 
 | 	if (!its) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_unmap; | 
 | 	} | 
 |  | 
 | 	raw_spin_lock_init(&its->lock); | 
 | 	INIT_LIST_HEAD(&its->entry); | 
 | 	INIT_LIST_HEAD(&its->its_device_list); | 
 | 	typer = gic_read_typer(its_base + GITS_TYPER); | 
 | 	its->base = its_base; | 
 | 	its->phys_base = res->start; | 
 | 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer); | 
 | 	its->device_ids = GITS_TYPER_DEVBITS(typer); | 
 | 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS); | 
 | 	if (its->is_v4) { | 
 | 		if (!(typer & GITS_TYPER_VMOVP)) { | 
 | 			err = its_compute_its_list_map(res, its_base); | 
 | 			if (err < 0) | 
 | 				goto out_free_its; | 
 |  | 
 | 			its->list_nr = err; | 
 |  | 
 | 			pr_info("ITS@%pa: Using ITS number %d\n", | 
 | 				&res->start, err); | 
 | 		} else { | 
 | 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	its->numa_node = numa_node; | 
 |  | 
 | 	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, | 
 | 						get_order(ITS_CMD_QUEUE_SZ)); | 
 | 	if (!its->cmd_base) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_free_its; | 
 | 	} | 
 | 	its->cmd_write = its->cmd_base; | 
 | 	its->fwnode_handle = handle; | 
 | 	its->get_msi_base = its_irq_get_msi_base; | 
 | 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; | 
 |  | 
 | 	its_enable_quirks(its); | 
 |  | 
 | 	err = its_alloc_tables(its); | 
 | 	if (err) | 
 | 		goto out_free_cmd; | 
 |  | 
 | 	err = its_alloc_collections(its); | 
 | 	if (err) | 
 | 		goto out_free_tables; | 
 |  | 
 | 	baser = (virt_to_phys(its->cmd_base)	| | 
 | 		 GITS_CBASER_RaWaWb		| | 
 | 		 GITS_CBASER_InnerShareable	| | 
 | 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	| | 
 | 		 GITS_CBASER_VALID); | 
 |  | 
 | 	gits_write_cbaser(baser, its->base + GITS_CBASER); | 
 | 	tmp = gits_read_cbaser(its->base + GITS_CBASER); | 
 |  | 
 | 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { | 
 | 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { | 
 | 			/* | 
 | 			 * The HW reports non-shareable, we must | 
 | 			 * remove the cacheability attributes as | 
 | 			 * well. | 
 | 			 */ | 
 | 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK | | 
 | 				   GITS_CBASER_CACHEABILITY_MASK); | 
 | 			baser |= GITS_CBASER_nC; | 
 | 			gits_write_cbaser(baser, its->base + GITS_CBASER); | 
 | 		} | 
 | 		pr_info("ITS: using cache flushing for cmd queue\n"); | 
 | 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; | 
 | 	} | 
 |  | 
 | 	gits_write_cwriter(0, its->base + GITS_CWRITER); | 
 | 	ctlr = readl_relaxed(its->base + GITS_CTLR); | 
 | 	ctlr |= GITS_CTLR_ENABLE; | 
 | 	if (its->is_v4) | 
 | 		ctlr |= GITS_CTLR_ImDe; | 
 | 	writel_relaxed(ctlr, its->base + GITS_CTLR); | 
 |  | 
 | 	err = its_init_domain(handle, its); | 
 | 	if (err) | 
 | 		goto out_free_tables; | 
 |  | 
 | 	spin_lock(&its_lock); | 
 | 	list_add(&its->entry, &its_nodes); | 
 | 	spin_unlock(&its_lock); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_tables: | 
 | 	its_free_tables(its); | 
 | out_free_cmd: | 
 | 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); | 
 | out_free_its: | 
 | 	kfree(its); | 
 | out_unmap: | 
 | 	iounmap(its_base); | 
 | 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); | 
 | 	return err; | 
 | } | 
 |  | 
 | static bool gic_rdists_supports_plpis(void) | 
 | { | 
 | 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); | 
 | } | 
 |  | 
 | int its_cpu_init(void) | 
 | { | 
 | 	if (!list_empty(&its_nodes)) { | 
 | 		if (!gic_rdists_supports_plpis()) { | 
 | 			pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); | 
 | 			return -ENXIO; | 
 | 		} | 
 | 		its_cpu_init_lpis(); | 
 | 		its_cpu_init_collection(); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct of_device_id its_device_id[] = { | 
 | 	{	.compatible	= "arm,gic-v3-its",	}, | 
 | 	{}, | 
 | }; | 
 |  | 
 | static int __init its_of_probe(struct device_node *node) | 
 | { | 
 | 	struct device_node *np; | 
 | 	struct resource res; | 
 |  | 
 | 	for (np = of_find_matching_node(node, its_device_id); np; | 
 | 	     np = of_find_matching_node(np, its_device_id)) { | 
 | 		if (!of_device_is_available(np)) | 
 | 			continue; | 
 | 		if (!of_property_read_bool(np, "msi-controller")) { | 
 | 			pr_warn("%pOF: no msi-controller property, ITS ignored\n", | 
 | 				np); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (of_address_to_resource(np, 0, &res)) { | 
 | 			pr_warn("%pOF: no regs?\n", np); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 |  | 
 | #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) | 
 |  | 
 | #ifdef CONFIG_ACPI_NUMA | 
 | struct its_srat_map { | 
 | 	/* numa node id */ | 
 | 	u32	numa_node; | 
 | 	/* GIC ITS ID */ | 
 | 	u32	its_id; | 
 | }; | 
 |  | 
 | static struct its_srat_map *its_srat_maps __initdata; | 
 | static int its_in_srat __initdata; | 
 |  | 
 | static int __init acpi_get_its_numa_node(u32 its_id) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < its_in_srat; i++) { | 
 | 		if (its_id == its_srat_maps[i].its_id) | 
 | 			return its_srat_maps[i].numa_node; | 
 | 	} | 
 | 	return NUMA_NO_NODE; | 
 | } | 
 |  | 
 | static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header, | 
 | 					  const unsigned long end) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header, | 
 | 			 const unsigned long end) | 
 | { | 
 | 	int node; | 
 | 	struct acpi_srat_gic_its_affinity *its_affinity; | 
 |  | 
 | 	its_affinity = (struct acpi_srat_gic_its_affinity *)header; | 
 | 	if (!its_affinity) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (its_affinity->header.length < sizeof(*its_affinity)) { | 
 | 		pr_err("SRAT: Invalid header length %d in ITS affinity\n", | 
 | 			its_affinity->header.length); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain); | 
 |  | 
 | 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { | 
 | 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	its_srat_maps[its_in_srat].numa_node = node; | 
 | 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id; | 
 | 	its_in_srat++; | 
 | 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", | 
 | 		its_affinity->proximity_domain, its_affinity->its_id, node); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init acpi_table_parse_srat_its(void) | 
 | { | 
 | 	int count; | 
 |  | 
 | 	count = acpi_table_parse_entries(ACPI_SIG_SRAT, | 
 | 			sizeof(struct acpi_table_srat), | 
 | 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, | 
 | 			gic_acpi_match_srat_its, 0); | 
 | 	if (count <= 0) | 
 | 		return; | 
 |  | 
 | 	its_srat_maps = kmalloc(count * sizeof(struct its_srat_map), | 
 | 				GFP_KERNEL); | 
 | 	if (!its_srat_maps) { | 
 | 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	acpi_table_parse_entries(ACPI_SIG_SRAT, | 
 | 			sizeof(struct acpi_table_srat), | 
 | 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, | 
 | 			gic_acpi_parse_srat_its, 0); | 
 | } | 
 |  | 
 | /* free the its_srat_maps after ITS probing */ | 
 | static void __init acpi_its_srat_maps_free(void) | 
 | { | 
 | 	kfree(its_srat_maps); | 
 | } | 
 | #else | 
 | static void __init acpi_table_parse_srat_its(void)	{ } | 
 | static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } | 
 | static void __init acpi_its_srat_maps_free(void) { } | 
 | #endif | 
 |  | 
 | static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header, | 
 | 					  const unsigned long end) | 
 | { | 
 | 	struct acpi_madt_generic_translator *its_entry; | 
 | 	struct fwnode_handle *dom_handle; | 
 | 	struct resource res; | 
 | 	int err; | 
 |  | 
 | 	its_entry = (struct acpi_madt_generic_translator *)header; | 
 | 	memset(&res, 0, sizeof(res)); | 
 | 	res.start = its_entry->base_address; | 
 | 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; | 
 | 	res.flags = IORESOURCE_MEM; | 
 |  | 
 | 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address); | 
 | 	if (!dom_handle) { | 
 | 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", | 
 | 		       &res.start); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	err = iort_register_domain_token(its_entry->translation_id, dom_handle); | 
 | 	if (err) { | 
 | 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", | 
 | 		       &res.start, its_entry->translation_id); | 
 | 		goto dom_err; | 
 | 	} | 
 |  | 
 | 	err = its_probe_one(&res, dom_handle, | 
 | 			acpi_get_its_numa_node(its_entry->translation_id)); | 
 | 	if (!err) | 
 | 		return 0; | 
 |  | 
 | 	iort_deregister_domain_token(its_entry->translation_id); | 
 | dom_err: | 
 | 	irq_domain_free_fwnode(dom_handle); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __init its_acpi_probe(void) | 
 | { | 
 | 	acpi_table_parse_srat_its(); | 
 | 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, | 
 | 			      gic_acpi_parse_madt_its, 0); | 
 | 	acpi_its_srat_maps_free(); | 
 | } | 
 | #else | 
 | static void __init its_acpi_probe(void) { } | 
 | #endif | 
 |  | 
 | int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, | 
 | 		    struct irq_domain *parent_domain) | 
 | { | 
 | 	struct device_node *of_node; | 
 | 	struct its_node *its; | 
 | 	bool has_v4 = false; | 
 | 	int err; | 
 |  | 
 | 	its_parent = parent_domain; | 
 | 	of_node = to_of_node(handle); | 
 | 	if (of_node) | 
 | 		its_of_probe(of_node); | 
 | 	else | 
 | 		its_acpi_probe(); | 
 |  | 
 | 	if (list_empty(&its_nodes)) { | 
 | 		pr_warn("ITS: No ITS available, not enabling LPIs\n"); | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	gic_rdists = rdists; | 
 | 	err = its_alloc_lpi_tables(); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	list_for_each_entry(its, &its_nodes, entry) | 
 | 		has_v4 |= its->is_v4; | 
 |  | 
 | 	if (has_v4 & rdists->has_vlpis) { | 
 | 		if (its_init_vpe_domain() || | 
 | 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) { | 
 | 			rdists->has_vlpis = false; | 
 | 			pr_err("ITS: Disabling GICv4 support\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } |