|  | /* | 
|  | *	An async IO implementation for Linux | 
|  | *	Written by Benjamin LaHaise <bcrl@kvack.org> | 
|  | * | 
|  | *	Implements an efficient asynchronous io interface. | 
|  | * | 
|  | *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved. | 
|  | * | 
|  | *	See ../COPYING for licensing terms. | 
|  | */ | 
|  | #define pr_fmt(fmt) "%s: " fmt, __func__ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/aio_abi.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/uio.h> | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/mmu_context.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/aio.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/eventfd.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/ramfs.h> | 
|  | #include <linux/percpu-refcount.h> | 
|  | #include <linux/mount.h> | 
|  |  | 
|  | #include <asm/kmap_types.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | #define AIO_RING_MAGIC			0xa10a10a1 | 
|  | #define AIO_RING_COMPAT_FEATURES	1 | 
|  | #define AIO_RING_INCOMPAT_FEATURES	0 | 
|  | struct aio_ring { | 
|  | unsigned	id;	/* kernel internal index number */ | 
|  | unsigned	nr;	/* number of io_events */ | 
|  | unsigned	head;	/* Written to by userland or under ring_lock | 
|  | * mutex by aio_read_events_ring(). */ | 
|  | unsigned	tail; | 
|  |  | 
|  | unsigned	magic; | 
|  | unsigned	compat_features; | 
|  | unsigned	incompat_features; | 
|  | unsigned	header_length;	/* size of aio_ring */ | 
|  |  | 
|  |  | 
|  | struct io_event		io_events[0]; | 
|  | }; /* 128 bytes + ring size */ | 
|  |  | 
|  | #define AIO_RING_PAGES	8 | 
|  |  | 
|  | struct kioctx_table { | 
|  | struct rcu_head	rcu; | 
|  | unsigned	nr; | 
|  | struct kioctx	*table[]; | 
|  | }; | 
|  |  | 
|  | struct kioctx_cpu { | 
|  | unsigned		reqs_available; | 
|  | }; | 
|  |  | 
|  | struct ctx_rq_wait { | 
|  | struct completion comp; | 
|  | atomic_t count; | 
|  | }; | 
|  |  | 
|  | struct kioctx { | 
|  | struct percpu_ref	users; | 
|  | atomic_t		dead; | 
|  |  | 
|  | struct percpu_ref	reqs; | 
|  |  | 
|  | unsigned long		user_id; | 
|  |  | 
|  | struct __percpu kioctx_cpu *cpu; | 
|  |  | 
|  | /* | 
|  | * For percpu reqs_available, number of slots we move to/from global | 
|  | * counter at a time: | 
|  | */ | 
|  | unsigned		req_batch; | 
|  | /* | 
|  | * This is what userspace passed to io_setup(), it's not used for | 
|  | * anything but counting against the global max_reqs quota. | 
|  | * | 
|  | * The real limit is nr_events - 1, which will be larger (see | 
|  | * aio_setup_ring()) | 
|  | */ | 
|  | unsigned		max_reqs; | 
|  |  | 
|  | /* Size of ringbuffer, in units of struct io_event */ | 
|  | unsigned		nr_events; | 
|  |  | 
|  | unsigned long		mmap_base; | 
|  | unsigned long		mmap_size; | 
|  |  | 
|  | struct page		**ring_pages; | 
|  | long			nr_pages; | 
|  |  | 
|  | struct work_struct	free_work; | 
|  |  | 
|  | /* | 
|  | * signals when all in-flight requests are done | 
|  | */ | 
|  | struct ctx_rq_wait	*rq_wait; | 
|  |  | 
|  | struct { | 
|  | /* | 
|  | * This counts the number of available slots in the ringbuffer, | 
|  | * so we avoid overflowing it: it's decremented (if positive) | 
|  | * when allocating a kiocb and incremented when the resulting | 
|  | * io_event is pulled off the ringbuffer. | 
|  | * | 
|  | * We batch accesses to it with a percpu version. | 
|  | */ | 
|  | atomic_t	reqs_available; | 
|  | } ____cacheline_aligned_in_smp; | 
|  |  | 
|  | struct { | 
|  | spinlock_t	ctx_lock; | 
|  | struct list_head active_reqs;	/* used for cancellation */ | 
|  | } ____cacheline_aligned_in_smp; | 
|  |  | 
|  | struct { | 
|  | struct mutex	ring_lock; | 
|  | wait_queue_head_t wait; | 
|  | } ____cacheline_aligned_in_smp; | 
|  |  | 
|  | struct { | 
|  | unsigned	tail; | 
|  | unsigned	completed_events; | 
|  | spinlock_t	completion_lock; | 
|  | } ____cacheline_aligned_in_smp; | 
|  |  | 
|  | struct page		*internal_pages[AIO_RING_PAGES]; | 
|  | struct file		*aio_ring_file; | 
|  |  | 
|  | unsigned		id; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either | 
|  | * cancelled or completed (this makes a certain amount of sense because | 
|  | * successful cancellation - io_cancel() - does deliver the completion to | 
|  | * userspace). | 
|  | * | 
|  | * And since most things don't implement kiocb cancellation and we'd really like | 
|  | * kiocb completion to be lockless when possible, we use ki_cancel to | 
|  | * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED | 
|  | * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel(). | 
|  | */ | 
|  | #define KIOCB_CANCELLED		((void *) (~0ULL)) | 
|  |  | 
|  | struct aio_kiocb { | 
|  | struct kiocb		common; | 
|  |  | 
|  | struct kioctx		*ki_ctx; | 
|  | kiocb_cancel_fn		*ki_cancel; | 
|  |  | 
|  | struct iocb __user	*ki_user_iocb;	/* user's aiocb */ | 
|  | __u64			ki_user_data;	/* user's data for completion */ | 
|  |  | 
|  | struct list_head	ki_list;	/* the aio core uses this | 
|  | * for cancellation */ | 
|  |  | 
|  | /* | 
|  | * If the aio_resfd field of the userspace iocb is not zero, | 
|  | * this is the underlying eventfd context to deliver events to. | 
|  | */ | 
|  | struct eventfd_ctx	*ki_eventfd; | 
|  | }; | 
|  |  | 
|  | /*------ sysctl variables----*/ | 
|  | static DEFINE_SPINLOCK(aio_nr_lock); | 
|  | unsigned long aio_nr;		/* current system wide number of aio requests */ | 
|  | unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ | 
|  | /*----end sysctl variables---*/ | 
|  |  | 
|  | static struct kmem_cache	*kiocb_cachep; | 
|  | static struct kmem_cache	*kioctx_cachep; | 
|  |  | 
|  | static struct vfsmount *aio_mnt; | 
|  |  | 
|  | static const struct file_operations aio_ring_fops; | 
|  | static const struct address_space_operations aio_ctx_aops; | 
|  |  | 
|  | static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) | 
|  | { | 
|  | struct qstr this = QSTR_INIT("[aio]", 5); | 
|  | struct file *file; | 
|  | struct path path; | 
|  | struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); | 
|  | if (IS_ERR(inode)) | 
|  | return ERR_CAST(inode); | 
|  |  | 
|  | inode->i_mapping->a_ops = &aio_ctx_aops; | 
|  | inode->i_mapping->private_data = ctx; | 
|  | inode->i_size = PAGE_SIZE * nr_pages; | 
|  |  | 
|  | path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); | 
|  | if (!path.dentry) { | 
|  | iput(inode); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | path.mnt = mntget(aio_mnt); | 
|  |  | 
|  | d_instantiate(path.dentry, inode); | 
|  | file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); | 
|  | if (IS_ERR(file)) { | 
|  | path_put(&path); | 
|  | return file; | 
|  | } | 
|  |  | 
|  | file->f_flags = O_RDWR; | 
|  | return file; | 
|  | } | 
|  |  | 
|  | static struct dentry *aio_mount(struct file_system_type *fs_type, | 
|  | int flags, const char *dev_name, void *data) | 
|  | { | 
|  | static const struct dentry_operations ops = { | 
|  | .d_dname	= simple_dname, | 
|  | }; | 
|  | return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC); | 
|  | } | 
|  |  | 
|  | /* aio_setup | 
|  | *	Creates the slab caches used by the aio routines, panic on | 
|  | *	failure as this is done early during the boot sequence. | 
|  | */ | 
|  | static int __init aio_setup(void) | 
|  | { | 
|  | static struct file_system_type aio_fs = { | 
|  | .name		= "aio", | 
|  | .mount		= aio_mount, | 
|  | .kill_sb	= kill_anon_super, | 
|  | }; | 
|  | aio_mnt = kern_mount(&aio_fs); | 
|  | if (IS_ERR(aio_mnt)) | 
|  | panic("Failed to create aio fs mount."); | 
|  |  | 
|  | kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); | 
|  | kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); | 
|  |  | 
|  | pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | __initcall(aio_setup); | 
|  |  | 
|  | static void put_aio_ring_file(struct kioctx *ctx) | 
|  | { | 
|  | struct file *aio_ring_file = ctx->aio_ring_file; | 
|  | if (aio_ring_file) { | 
|  | truncate_setsize(aio_ring_file->f_inode, 0); | 
|  |  | 
|  | /* Prevent further access to the kioctx from migratepages */ | 
|  | spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); | 
|  | aio_ring_file->f_inode->i_mapping->private_data = NULL; | 
|  | ctx->aio_ring_file = NULL; | 
|  | spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); | 
|  |  | 
|  | fput(aio_ring_file); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void aio_free_ring(struct kioctx *ctx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Disconnect the kiotx from the ring file.  This prevents future | 
|  | * accesses to the kioctx from page migration. | 
|  | */ | 
|  | put_aio_ring_file(ctx); | 
|  |  | 
|  | for (i = 0; i < ctx->nr_pages; i++) { | 
|  | struct page *page; | 
|  | pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, | 
|  | page_count(ctx->ring_pages[i])); | 
|  | page = ctx->ring_pages[i]; | 
|  | if (!page) | 
|  | continue; | 
|  | ctx->ring_pages[i] = NULL; | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { | 
|  | kfree(ctx->ring_pages); | 
|  | ctx->ring_pages = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int aio_ring_mremap(struct vm_area_struct *vma) | 
|  | { | 
|  | struct file *file = vma->vm_file; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct kioctx_table *table; | 
|  | int i, res = -EINVAL; | 
|  |  | 
|  | spin_lock(&mm->ioctx_lock); | 
|  | rcu_read_lock(); | 
|  | table = rcu_dereference(mm->ioctx_table); | 
|  | for (i = 0; i < table->nr; i++) { | 
|  | struct kioctx *ctx; | 
|  |  | 
|  | ctx = table->table[i]; | 
|  | if (ctx && ctx->aio_ring_file == file) { | 
|  | if (!atomic_read(&ctx->dead)) { | 
|  | ctx->user_id = ctx->mmap_base = vma->vm_start; | 
|  | res = 0; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | spin_unlock(&mm->ioctx_lock); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static const struct vm_operations_struct aio_ring_vm_ops = { | 
|  | .mremap		= aio_ring_mremap, | 
|  | #if IS_ENABLED(CONFIG_MMU) | 
|  | .fault		= filemap_fault, | 
|  | .map_pages	= filemap_map_pages, | 
|  | .page_mkwrite	= filemap_page_mkwrite, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | vma->vm_flags |= VM_DONTEXPAND; | 
|  | vma->vm_ops = &aio_ring_vm_ops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct file_operations aio_ring_fops = { | 
|  | .mmap = aio_ring_mmap, | 
|  | }; | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_MIGRATION) | 
|  | static int aio_migratepage(struct address_space *mapping, struct page *new, | 
|  | struct page *old, enum migrate_mode mode) | 
|  | { | 
|  | struct kioctx *ctx; | 
|  | unsigned long flags; | 
|  | pgoff_t idx; | 
|  | int rc; | 
|  |  | 
|  | rc = 0; | 
|  |  | 
|  | /* mapping->private_lock here protects against the kioctx teardown.  */ | 
|  | spin_lock(&mapping->private_lock); | 
|  | ctx = mapping->private_data; | 
|  | if (!ctx) { | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* The ring_lock mutex.  The prevents aio_read_events() from writing | 
|  | * to the ring's head, and prevents page migration from mucking in | 
|  | * a partially initialized kiotx. | 
|  | */ | 
|  | if (!mutex_trylock(&ctx->ring_lock)) { | 
|  | rc = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | idx = old->index; | 
|  | if (idx < (pgoff_t)ctx->nr_pages) { | 
|  | /* Make sure the old page hasn't already been changed */ | 
|  | if (ctx->ring_pages[idx] != old) | 
|  | rc = -EAGAIN; | 
|  | } else | 
|  | rc = -EINVAL; | 
|  |  | 
|  | if (rc != 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Writeback must be complete */ | 
|  | BUG_ON(PageWriteback(old)); | 
|  | get_page(new); | 
|  |  | 
|  | rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); | 
|  | if (rc != MIGRATEPAGE_SUCCESS) { | 
|  | put_page(new); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Take completion_lock to prevent other writes to the ring buffer | 
|  | * while the old page is copied to the new.  This prevents new | 
|  | * events from being lost. | 
|  | */ | 
|  | spin_lock_irqsave(&ctx->completion_lock, flags); | 
|  | migrate_page_copy(new, old); | 
|  | BUG_ON(ctx->ring_pages[idx] != old); | 
|  | ctx->ring_pages[idx] = new; | 
|  | spin_unlock_irqrestore(&ctx->completion_lock, flags); | 
|  |  | 
|  | /* The old page is no longer accessible. */ | 
|  | put_page(old); | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&ctx->ring_lock); | 
|  | out: | 
|  | spin_unlock(&mapping->private_lock); | 
|  | return rc; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct address_space_operations aio_ctx_aops = { | 
|  | .set_page_dirty = __set_page_dirty_no_writeback, | 
|  | #if IS_ENABLED(CONFIG_MIGRATION) | 
|  | .migratepage	= aio_migratepage, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static int aio_setup_ring(struct kioctx *ctx) | 
|  | { | 
|  | struct aio_ring *ring; | 
|  | unsigned nr_events = ctx->max_reqs; | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long size, unused; | 
|  | int nr_pages; | 
|  | int i; | 
|  | struct file *file; | 
|  |  | 
|  | /* Compensate for the ring buffer's head/tail overlap entry */ | 
|  | nr_events += 2;	/* 1 is required, 2 for good luck */ | 
|  |  | 
|  | size = sizeof(struct aio_ring); | 
|  | size += sizeof(struct io_event) * nr_events; | 
|  |  | 
|  | nr_pages = PFN_UP(size); | 
|  | if (nr_pages < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | file = aio_private_file(ctx, nr_pages); | 
|  | if (IS_ERR(file)) { | 
|  | ctx->aio_ring_file = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ctx->aio_ring_file = file; | 
|  | nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) | 
|  | / sizeof(struct io_event); | 
|  |  | 
|  | ctx->ring_pages = ctx->internal_pages; | 
|  | if (nr_pages > AIO_RING_PAGES) { | 
|  | ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), | 
|  | GFP_KERNEL); | 
|  | if (!ctx->ring_pages) { | 
|  | put_aio_ring_file(ctx); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | struct page *page; | 
|  | page = find_or_create_page(file->f_inode->i_mapping, | 
|  | i, GFP_HIGHUSER | __GFP_ZERO); | 
|  | if (!page) | 
|  | break; | 
|  | pr_debug("pid(%d) page[%d]->count=%d\n", | 
|  | current->pid, i, page_count(page)); | 
|  | SetPageUptodate(page); | 
|  | unlock_page(page); | 
|  |  | 
|  | ctx->ring_pages[i] = page; | 
|  | } | 
|  | ctx->nr_pages = i; | 
|  |  | 
|  | if (unlikely(i != nr_pages)) { | 
|  | aio_free_ring(ctx); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ctx->mmap_size = nr_pages * PAGE_SIZE; | 
|  | pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  | ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, | 
|  | PROT_READ | PROT_WRITE, | 
|  | MAP_SHARED, 0, &unused); | 
|  | up_write(&mm->mmap_sem); | 
|  | if (IS_ERR((void *)ctx->mmap_base)) { | 
|  | ctx->mmap_size = 0; | 
|  | aio_free_ring(ctx); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); | 
|  |  | 
|  | ctx->user_id = ctx->mmap_base; | 
|  | ctx->nr_events = nr_events; /* trusted copy */ | 
|  |  | 
|  | ring = kmap_atomic(ctx->ring_pages[0]); | 
|  | ring->nr = nr_events;	/* user copy */ | 
|  | ring->id = ~0U; | 
|  | ring->head = ring->tail = 0; | 
|  | ring->magic = AIO_RING_MAGIC; | 
|  | ring->compat_features = AIO_RING_COMPAT_FEATURES; | 
|  | ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; | 
|  | ring->header_length = sizeof(struct aio_ring); | 
|  | kunmap_atomic(ring); | 
|  | flush_dcache_page(ctx->ring_pages[0]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event)) | 
|  | #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) | 
|  | #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) | 
|  |  | 
|  | void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) | 
|  | { | 
|  | struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common); | 
|  | struct kioctx *ctx = req->ki_ctx; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&ctx->ctx_lock, flags); | 
|  |  | 
|  | if (!req->ki_list.next) | 
|  | list_add(&req->ki_list, &ctx->active_reqs); | 
|  |  | 
|  | req->ki_cancel = cancel; | 
|  |  | 
|  | spin_unlock_irqrestore(&ctx->ctx_lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(kiocb_set_cancel_fn); | 
|  |  | 
|  | static int kiocb_cancel(struct aio_kiocb *kiocb) | 
|  | { | 
|  | kiocb_cancel_fn *old, *cancel; | 
|  |  | 
|  | /* | 
|  | * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it | 
|  | * actually has a cancel function, hence the cmpxchg() | 
|  | */ | 
|  |  | 
|  | cancel = ACCESS_ONCE(kiocb->ki_cancel); | 
|  | do { | 
|  | if (!cancel || cancel == KIOCB_CANCELLED) | 
|  | return -EINVAL; | 
|  |  | 
|  | old = cancel; | 
|  | cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); | 
|  | } while (cancel != old); | 
|  |  | 
|  | return cancel(&kiocb->common); | 
|  | } | 
|  |  | 
|  | static void free_ioctx(struct work_struct *work) | 
|  | { | 
|  | struct kioctx *ctx = container_of(work, struct kioctx, free_work); | 
|  |  | 
|  | pr_debug("freeing %p\n", ctx); | 
|  |  | 
|  | aio_free_ring(ctx); | 
|  | free_percpu(ctx->cpu); | 
|  | percpu_ref_exit(&ctx->reqs); | 
|  | percpu_ref_exit(&ctx->users); | 
|  | kmem_cache_free(kioctx_cachep, ctx); | 
|  | } | 
|  |  | 
|  | static void free_ioctx_reqs(struct percpu_ref *ref) | 
|  | { | 
|  | struct kioctx *ctx = container_of(ref, struct kioctx, reqs); | 
|  |  | 
|  | /* At this point we know that there are no any in-flight requests */ | 
|  | if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) | 
|  | complete(&ctx->rq_wait->comp); | 
|  |  | 
|  | INIT_WORK(&ctx->free_work, free_ioctx); | 
|  | schedule_work(&ctx->free_work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When this function runs, the kioctx has been removed from the "hash table" | 
|  | * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - | 
|  | * now it's safe to cancel any that need to be. | 
|  | */ | 
|  | static void free_ioctx_users(struct percpu_ref *ref) | 
|  | { | 
|  | struct kioctx *ctx = container_of(ref, struct kioctx, users); | 
|  | struct aio_kiocb *req; | 
|  |  | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  |  | 
|  | while (!list_empty(&ctx->active_reqs)) { | 
|  | req = list_first_entry(&ctx->active_reqs, | 
|  | struct aio_kiocb, ki_list); | 
|  |  | 
|  | list_del_init(&req->ki_list); | 
|  | kiocb_cancel(req); | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  |  | 
|  | percpu_ref_kill(&ctx->reqs); | 
|  | percpu_ref_put(&ctx->reqs); | 
|  | } | 
|  |  | 
|  | static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) | 
|  | { | 
|  | unsigned i, new_nr; | 
|  | struct kioctx_table *table, *old; | 
|  | struct aio_ring *ring; | 
|  |  | 
|  | spin_lock(&mm->ioctx_lock); | 
|  | table = rcu_dereference_raw(mm->ioctx_table); | 
|  |  | 
|  | while (1) { | 
|  | if (table) | 
|  | for (i = 0; i < table->nr; i++) | 
|  | if (!table->table[i]) { | 
|  | ctx->id = i; | 
|  | table->table[i] = ctx; | 
|  | spin_unlock(&mm->ioctx_lock); | 
|  |  | 
|  | /* While kioctx setup is in progress, | 
|  | * we are protected from page migration | 
|  | * changes ring_pages by ->ring_lock. | 
|  | */ | 
|  | ring = kmap_atomic(ctx->ring_pages[0]); | 
|  | ring->id = ctx->id; | 
|  | kunmap_atomic(ring); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | new_nr = (table ? table->nr : 1) * 4; | 
|  | spin_unlock(&mm->ioctx_lock); | 
|  |  | 
|  | table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * | 
|  | new_nr, GFP_KERNEL); | 
|  | if (!table) | 
|  | return -ENOMEM; | 
|  |  | 
|  | table->nr = new_nr; | 
|  |  | 
|  | spin_lock(&mm->ioctx_lock); | 
|  | old = rcu_dereference_raw(mm->ioctx_table); | 
|  |  | 
|  | if (!old) { | 
|  | rcu_assign_pointer(mm->ioctx_table, table); | 
|  | } else if (table->nr > old->nr) { | 
|  | memcpy(table->table, old->table, | 
|  | old->nr * sizeof(struct kioctx *)); | 
|  |  | 
|  | rcu_assign_pointer(mm->ioctx_table, table); | 
|  | kfree_rcu(old, rcu); | 
|  | } else { | 
|  | kfree(table); | 
|  | table = old; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void aio_nr_sub(unsigned nr) | 
|  | { | 
|  | spin_lock(&aio_nr_lock); | 
|  | if (WARN_ON(aio_nr - nr > aio_nr)) | 
|  | aio_nr = 0; | 
|  | else | 
|  | aio_nr -= nr; | 
|  | spin_unlock(&aio_nr_lock); | 
|  | } | 
|  |  | 
|  | /* ioctx_alloc | 
|  | *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed. | 
|  | */ | 
|  | static struct kioctx *ioctx_alloc(unsigned nr_events) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct kioctx *ctx; | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * We keep track of the number of available ringbuffer slots, to prevent | 
|  | * overflow (reqs_available), and we also use percpu counters for this. | 
|  | * | 
|  | * So since up to half the slots might be on other cpu's percpu counters | 
|  | * and unavailable, double nr_events so userspace sees what they | 
|  | * expected: additionally, we move req_batch slots to/from percpu | 
|  | * counters at a time, so make sure that isn't 0: | 
|  | */ | 
|  | nr_events = max(nr_events, num_possible_cpus() * 4); | 
|  | nr_events *= 2; | 
|  |  | 
|  | /* Prevent overflows */ | 
|  | if (nr_events > (0x10000000U / sizeof(struct io_event))) { | 
|  | pr_debug("ENOMEM: nr_events too high\n"); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) | 
|  | return ERR_PTR(-EAGAIN); | 
|  |  | 
|  | ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | ctx->max_reqs = nr_events; | 
|  |  | 
|  | spin_lock_init(&ctx->ctx_lock); | 
|  | spin_lock_init(&ctx->completion_lock); | 
|  | mutex_init(&ctx->ring_lock); | 
|  | /* Protect against page migration throughout kiotx setup by keeping | 
|  | * the ring_lock mutex held until setup is complete. */ | 
|  | mutex_lock(&ctx->ring_lock); | 
|  | init_waitqueue_head(&ctx->wait); | 
|  |  | 
|  | INIT_LIST_HEAD(&ctx->active_reqs); | 
|  |  | 
|  | if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) | 
|  | goto err; | 
|  |  | 
|  | if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) | 
|  | goto err; | 
|  |  | 
|  | ctx->cpu = alloc_percpu(struct kioctx_cpu); | 
|  | if (!ctx->cpu) | 
|  | goto err; | 
|  |  | 
|  | err = aio_setup_ring(ctx); | 
|  | if (err < 0) | 
|  | goto err; | 
|  |  | 
|  | atomic_set(&ctx->reqs_available, ctx->nr_events - 1); | 
|  | ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); | 
|  | if (ctx->req_batch < 1) | 
|  | ctx->req_batch = 1; | 
|  |  | 
|  | /* limit the number of system wide aios */ | 
|  | spin_lock(&aio_nr_lock); | 
|  | if (aio_nr + nr_events > (aio_max_nr * 2UL) || | 
|  | aio_nr + nr_events < aio_nr) { | 
|  | spin_unlock(&aio_nr_lock); | 
|  | err = -EAGAIN; | 
|  | goto err_ctx; | 
|  | } | 
|  | aio_nr += ctx->max_reqs; | 
|  | spin_unlock(&aio_nr_lock); | 
|  |  | 
|  | percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */ | 
|  | percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */ | 
|  |  | 
|  | err = ioctx_add_table(ctx, mm); | 
|  | if (err) | 
|  | goto err_cleanup; | 
|  |  | 
|  | /* Release the ring_lock mutex now that all setup is complete. */ | 
|  | mutex_unlock(&ctx->ring_lock); | 
|  |  | 
|  | pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", | 
|  | ctx, ctx->user_id, mm, ctx->nr_events); | 
|  | return ctx; | 
|  |  | 
|  | err_cleanup: | 
|  | aio_nr_sub(ctx->max_reqs); | 
|  | err_ctx: | 
|  | atomic_set(&ctx->dead, 1); | 
|  | if (ctx->mmap_size) | 
|  | vm_munmap(ctx->mmap_base, ctx->mmap_size); | 
|  | aio_free_ring(ctx); | 
|  | err: | 
|  | mutex_unlock(&ctx->ring_lock); | 
|  | free_percpu(ctx->cpu); | 
|  | percpu_ref_exit(&ctx->reqs); | 
|  | percpu_ref_exit(&ctx->users); | 
|  | kmem_cache_free(kioctx_cachep, ctx); | 
|  | pr_debug("error allocating ioctx %d\n", err); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /* kill_ioctx | 
|  | *	Cancels all outstanding aio requests on an aio context.  Used | 
|  | *	when the processes owning a context have all exited to encourage | 
|  | *	the rapid destruction of the kioctx. | 
|  | */ | 
|  | static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, | 
|  | struct ctx_rq_wait *wait) | 
|  | { | 
|  | struct kioctx_table *table; | 
|  |  | 
|  | spin_lock(&mm->ioctx_lock); | 
|  | if (atomic_xchg(&ctx->dead, 1)) { | 
|  | spin_unlock(&mm->ioctx_lock); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | table = rcu_dereference_raw(mm->ioctx_table); | 
|  | WARN_ON(ctx != table->table[ctx->id]); | 
|  | table->table[ctx->id] = NULL; | 
|  | spin_unlock(&mm->ioctx_lock); | 
|  |  | 
|  | /* percpu_ref_kill() will do the necessary call_rcu() */ | 
|  | wake_up_all(&ctx->wait); | 
|  |  | 
|  | /* | 
|  | * It'd be more correct to do this in free_ioctx(), after all | 
|  | * the outstanding kiocbs have finished - but by then io_destroy | 
|  | * has already returned, so io_setup() could potentially return | 
|  | * -EAGAIN with no ioctxs actually in use (as far as userspace | 
|  | *  could tell). | 
|  | */ | 
|  | aio_nr_sub(ctx->max_reqs); | 
|  |  | 
|  | if (ctx->mmap_size) | 
|  | vm_munmap(ctx->mmap_base, ctx->mmap_size); | 
|  |  | 
|  | ctx->rq_wait = wait; | 
|  | percpu_ref_kill(&ctx->users); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * exit_aio: called when the last user of mm goes away.  At this point, there is | 
|  | * no way for any new requests to be submited or any of the io_* syscalls to be | 
|  | * called on the context. | 
|  | * | 
|  | * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on | 
|  | * them. | 
|  | */ | 
|  | void exit_aio(struct mm_struct *mm) | 
|  | { | 
|  | struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); | 
|  | struct ctx_rq_wait wait; | 
|  | int i, skipped; | 
|  |  | 
|  | if (!table) | 
|  | return; | 
|  |  | 
|  | atomic_set(&wait.count, table->nr); | 
|  | init_completion(&wait.comp); | 
|  |  | 
|  | skipped = 0; | 
|  | for (i = 0; i < table->nr; ++i) { | 
|  | struct kioctx *ctx = table->table[i]; | 
|  |  | 
|  | if (!ctx) { | 
|  | skipped++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't need to bother with munmap() here - exit_mmap(mm) | 
|  | * is coming and it'll unmap everything. And we simply can't, | 
|  | * this is not necessarily our ->mm. | 
|  | * Since kill_ioctx() uses non-zero ->mmap_size as indicator | 
|  | * that it needs to unmap the area, just set it to 0. | 
|  | */ | 
|  | ctx->mmap_size = 0; | 
|  | kill_ioctx(mm, ctx, &wait); | 
|  | } | 
|  |  | 
|  | if (!atomic_sub_and_test(skipped, &wait.count)) { | 
|  | /* Wait until all IO for the context are done. */ | 
|  | wait_for_completion(&wait.comp); | 
|  | } | 
|  |  | 
|  | RCU_INIT_POINTER(mm->ioctx_table, NULL); | 
|  | kfree(table); | 
|  | } | 
|  |  | 
|  | static void put_reqs_available(struct kioctx *ctx, unsigned nr) | 
|  | { | 
|  | struct kioctx_cpu *kcpu; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | kcpu = this_cpu_ptr(ctx->cpu); | 
|  | kcpu->reqs_available += nr; | 
|  |  | 
|  | while (kcpu->reqs_available >= ctx->req_batch * 2) { | 
|  | kcpu->reqs_available -= ctx->req_batch; | 
|  | atomic_add(ctx->req_batch, &ctx->reqs_available); | 
|  | } | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static bool get_reqs_available(struct kioctx *ctx) | 
|  | { | 
|  | struct kioctx_cpu *kcpu; | 
|  | bool ret = false; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | kcpu = this_cpu_ptr(ctx->cpu); | 
|  | if (!kcpu->reqs_available) { | 
|  | int old, avail = atomic_read(&ctx->reqs_available); | 
|  |  | 
|  | do { | 
|  | if (avail < ctx->req_batch) | 
|  | goto out; | 
|  |  | 
|  | old = avail; | 
|  | avail = atomic_cmpxchg(&ctx->reqs_available, | 
|  | avail, avail - ctx->req_batch); | 
|  | } while (avail != old); | 
|  |  | 
|  | kcpu->reqs_available += ctx->req_batch; | 
|  | } | 
|  |  | 
|  | ret = true; | 
|  | kcpu->reqs_available--; | 
|  | out: | 
|  | local_irq_restore(flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* refill_reqs_available | 
|  | *	Updates the reqs_available reference counts used for tracking the | 
|  | *	number of free slots in the completion ring.  This can be called | 
|  | *	from aio_complete() (to optimistically update reqs_available) or | 
|  | *	from aio_get_req() (the we're out of events case).  It must be | 
|  | *	called holding ctx->completion_lock. | 
|  | */ | 
|  | static void refill_reqs_available(struct kioctx *ctx, unsigned head, | 
|  | unsigned tail) | 
|  | { | 
|  | unsigned events_in_ring, completed; | 
|  |  | 
|  | /* Clamp head since userland can write to it. */ | 
|  | head %= ctx->nr_events; | 
|  | if (head <= tail) | 
|  | events_in_ring = tail - head; | 
|  | else | 
|  | events_in_ring = ctx->nr_events - (head - tail); | 
|  |  | 
|  | completed = ctx->completed_events; | 
|  | if (events_in_ring < completed) | 
|  | completed -= events_in_ring; | 
|  | else | 
|  | completed = 0; | 
|  |  | 
|  | if (!completed) | 
|  | return; | 
|  |  | 
|  | ctx->completed_events -= completed; | 
|  | put_reqs_available(ctx, completed); | 
|  | } | 
|  |  | 
|  | /* user_refill_reqs_available | 
|  | *	Called to refill reqs_available when aio_get_req() encounters an | 
|  | *	out of space in the completion ring. | 
|  | */ | 
|  | static void user_refill_reqs_available(struct kioctx *ctx) | 
|  | { | 
|  | spin_lock_irq(&ctx->completion_lock); | 
|  | if (ctx->completed_events) { | 
|  | struct aio_ring *ring; | 
|  | unsigned head; | 
|  |  | 
|  | /* Access of ring->head may race with aio_read_events_ring() | 
|  | * here, but that's okay since whether we read the old version | 
|  | * or the new version, and either will be valid.  The important | 
|  | * part is that head cannot pass tail since we prevent | 
|  | * aio_complete() from updating tail by holding | 
|  | * ctx->completion_lock.  Even if head is invalid, the check | 
|  | * against ctx->completed_events below will make sure we do the | 
|  | * safe/right thing. | 
|  | */ | 
|  | ring = kmap_atomic(ctx->ring_pages[0]); | 
|  | head = ring->head; | 
|  | kunmap_atomic(ring); | 
|  |  | 
|  | refill_reqs_available(ctx, head, ctx->tail); | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&ctx->completion_lock); | 
|  | } | 
|  |  | 
|  | /* aio_get_req | 
|  | *	Allocate a slot for an aio request. | 
|  | * Returns NULL if no requests are free. | 
|  | */ | 
|  | static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) | 
|  | { | 
|  | struct aio_kiocb *req; | 
|  |  | 
|  | if (!get_reqs_available(ctx)) { | 
|  | user_refill_reqs_available(ctx); | 
|  | if (!get_reqs_available(ctx)) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); | 
|  | if (unlikely(!req)) | 
|  | goto out_put; | 
|  |  | 
|  | percpu_ref_get(&ctx->reqs); | 
|  |  | 
|  | req->ki_ctx = ctx; | 
|  | return req; | 
|  | out_put: | 
|  | put_reqs_available(ctx, 1); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void kiocb_free(struct aio_kiocb *req) | 
|  | { | 
|  | if (req->common.ki_filp) | 
|  | fput(req->common.ki_filp); | 
|  | if (req->ki_eventfd != NULL) | 
|  | eventfd_ctx_put(req->ki_eventfd); | 
|  | kmem_cache_free(kiocb_cachep, req); | 
|  | } | 
|  |  | 
|  | static struct kioctx *lookup_ioctx(unsigned long ctx_id) | 
|  | { | 
|  | struct aio_ring __user *ring  = (void __user *)ctx_id; | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct kioctx *ctx, *ret = NULL; | 
|  | struct kioctx_table *table; | 
|  | unsigned id; | 
|  |  | 
|  | if (get_user(id, &ring->id)) | 
|  | return NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | table = rcu_dereference(mm->ioctx_table); | 
|  |  | 
|  | if (!table || id >= table->nr) | 
|  | goto out; | 
|  |  | 
|  | ctx = table->table[id]; | 
|  | if (ctx && ctx->user_id == ctx_id) { | 
|  | percpu_ref_get(&ctx->users); | 
|  | ret = ctx; | 
|  | } | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* aio_complete | 
|  | *	Called when the io request on the given iocb is complete. | 
|  | */ | 
|  | static void aio_complete(struct kiocb *kiocb, long res, long res2) | 
|  | { | 
|  | struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common); | 
|  | struct kioctx	*ctx = iocb->ki_ctx; | 
|  | struct aio_ring	*ring; | 
|  | struct io_event	*ev_page, *event; | 
|  | unsigned tail, pos, head; | 
|  | unsigned long	flags; | 
|  |  | 
|  | /* | 
|  | * Special case handling for sync iocbs: | 
|  | *  - events go directly into the iocb for fast handling | 
|  | *  - the sync task with the iocb in its stack holds the single iocb | 
|  | *    ref, no other paths have a way to get another ref | 
|  | *  - the sync task helpfully left a reference to itself in the iocb | 
|  | */ | 
|  | BUG_ON(is_sync_kiocb(kiocb)); | 
|  |  | 
|  | if (iocb->ki_list.next) { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&ctx->ctx_lock, flags); | 
|  | list_del(&iocb->ki_list); | 
|  | spin_unlock_irqrestore(&ctx->ctx_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a completion event to the ring buffer. Must be done holding | 
|  | * ctx->completion_lock to prevent other code from messing with the tail | 
|  | * pointer since we might be called from irq context. | 
|  | */ | 
|  | spin_lock_irqsave(&ctx->completion_lock, flags); | 
|  |  | 
|  | tail = ctx->tail; | 
|  | pos = tail + AIO_EVENTS_OFFSET; | 
|  |  | 
|  | if (++tail >= ctx->nr_events) | 
|  | tail = 0; | 
|  |  | 
|  | ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); | 
|  | event = ev_page + pos % AIO_EVENTS_PER_PAGE; | 
|  |  | 
|  | event->obj = (u64)(unsigned long)iocb->ki_user_iocb; | 
|  | event->data = iocb->ki_user_data; | 
|  | event->res = res; | 
|  | event->res2 = res2; | 
|  |  | 
|  | kunmap_atomic(ev_page); | 
|  | flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); | 
|  |  | 
|  | pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", | 
|  | ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data, | 
|  | res, res2); | 
|  |  | 
|  | /* after flagging the request as done, we | 
|  | * must never even look at it again | 
|  | */ | 
|  | smp_wmb();	/* make event visible before updating tail */ | 
|  |  | 
|  | ctx->tail = tail; | 
|  |  | 
|  | ring = kmap_atomic(ctx->ring_pages[0]); | 
|  | head = ring->head; | 
|  | ring->tail = tail; | 
|  | kunmap_atomic(ring); | 
|  | flush_dcache_page(ctx->ring_pages[0]); | 
|  |  | 
|  | ctx->completed_events++; | 
|  | if (ctx->completed_events > 1) | 
|  | refill_reqs_available(ctx, head, tail); | 
|  | spin_unlock_irqrestore(&ctx->completion_lock, flags); | 
|  |  | 
|  | pr_debug("added to ring %p at [%u]\n", iocb, tail); | 
|  |  | 
|  | /* | 
|  | * Check if the user asked us to deliver the result through an | 
|  | * eventfd. The eventfd_signal() function is safe to be called | 
|  | * from IRQ context. | 
|  | */ | 
|  | if (iocb->ki_eventfd != NULL) | 
|  | eventfd_signal(iocb->ki_eventfd, 1); | 
|  |  | 
|  | /* everything turned out well, dispose of the aiocb. */ | 
|  | kiocb_free(iocb); | 
|  |  | 
|  | /* | 
|  | * We have to order our ring_info tail store above and test | 
|  | * of the wait list below outside the wait lock.  This is | 
|  | * like in wake_up_bit() where clearing a bit has to be | 
|  | * ordered with the unlocked test. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | if (waitqueue_active(&ctx->wait)) | 
|  | wake_up(&ctx->wait); | 
|  |  | 
|  | percpu_ref_put(&ctx->reqs); | 
|  | } | 
|  |  | 
|  | /* aio_read_events_ring | 
|  | *	Pull an event off of the ioctx's event ring.  Returns the number of | 
|  | *	events fetched | 
|  | */ | 
|  | static long aio_read_events_ring(struct kioctx *ctx, | 
|  | struct io_event __user *event, long nr) | 
|  | { | 
|  | struct aio_ring *ring; | 
|  | unsigned head, tail, pos; | 
|  | long ret = 0; | 
|  | int copy_ret; | 
|  |  | 
|  | /* | 
|  | * The mutex can block and wake us up and that will cause | 
|  | * wait_event_interruptible_hrtimeout() to schedule without sleeping | 
|  | * and repeat. This should be rare enough that it doesn't cause | 
|  | * peformance issues. See the comment in read_events() for more detail. | 
|  | */ | 
|  | sched_annotate_sleep(); | 
|  | mutex_lock(&ctx->ring_lock); | 
|  |  | 
|  | /* Access to ->ring_pages here is protected by ctx->ring_lock. */ | 
|  | ring = kmap_atomic(ctx->ring_pages[0]); | 
|  | head = ring->head; | 
|  | tail = ring->tail; | 
|  | kunmap_atomic(ring); | 
|  |  | 
|  | /* | 
|  | * Ensure that once we've read the current tail pointer, that | 
|  | * we also see the events that were stored up to the tail. | 
|  | */ | 
|  | smp_rmb(); | 
|  |  | 
|  | pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); | 
|  |  | 
|  | if (head == tail) | 
|  | goto out; | 
|  |  | 
|  | head %= ctx->nr_events; | 
|  | tail %= ctx->nr_events; | 
|  |  | 
|  | while (ret < nr) { | 
|  | long avail; | 
|  | struct io_event *ev; | 
|  | struct page *page; | 
|  |  | 
|  | avail = (head <= tail ?  tail : ctx->nr_events) - head; | 
|  | if (head == tail) | 
|  | break; | 
|  |  | 
|  | avail = min(avail, nr - ret); | 
|  | avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - | 
|  | ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); | 
|  |  | 
|  | pos = head + AIO_EVENTS_OFFSET; | 
|  | page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; | 
|  | pos %= AIO_EVENTS_PER_PAGE; | 
|  |  | 
|  | ev = kmap(page); | 
|  | copy_ret = copy_to_user(event + ret, ev + pos, | 
|  | sizeof(*ev) * avail); | 
|  | kunmap(page); | 
|  |  | 
|  | if (unlikely(copy_ret)) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret += avail; | 
|  | head += avail; | 
|  | head %= ctx->nr_events; | 
|  | } | 
|  |  | 
|  | ring = kmap_atomic(ctx->ring_pages[0]); | 
|  | ring->head = head; | 
|  | kunmap_atomic(ring); | 
|  | flush_dcache_page(ctx->ring_pages[0]); | 
|  |  | 
|  | pr_debug("%li  h%u t%u\n", ret, head, tail); | 
|  | out: | 
|  | mutex_unlock(&ctx->ring_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, | 
|  | struct io_event __user *event, long *i) | 
|  | { | 
|  | long ret = aio_read_events_ring(ctx, event + *i, nr - *i); | 
|  |  | 
|  | if (ret > 0) | 
|  | *i += ret; | 
|  |  | 
|  | if (unlikely(atomic_read(&ctx->dead))) | 
|  | ret = -EINVAL; | 
|  |  | 
|  | if (!*i) | 
|  | *i = ret; | 
|  |  | 
|  | return ret < 0 || *i >= min_nr; | 
|  | } | 
|  |  | 
|  | static long read_events(struct kioctx *ctx, long min_nr, long nr, | 
|  | struct io_event __user *event, | 
|  | struct timespec __user *timeout) | 
|  | { | 
|  | ktime_t until = { .tv64 = KTIME_MAX }; | 
|  | long ret = 0; | 
|  |  | 
|  | if (timeout) { | 
|  | struct timespec	ts; | 
|  |  | 
|  | if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) | 
|  | return -EFAULT; | 
|  |  | 
|  | until = timespec_to_ktime(ts); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that aio_read_events() is being called as the conditional - i.e. | 
|  | * we're calling it after prepare_to_wait() has set task state to | 
|  | * TASK_INTERRUPTIBLE. | 
|  | * | 
|  | * But aio_read_events() can block, and if it blocks it's going to flip | 
|  | * the task state back to TASK_RUNNING. | 
|  | * | 
|  | * This should be ok, provided it doesn't flip the state back to | 
|  | * TASK_RUNNING and return 0 too much - that causes us to spin. That | 
|  | * will only happen if the mutex_lock() call blocks, and we then find | 
|  | * the ringbuffer empty. So in practice we should be ok, but it's | 
|  | * something to be aware of when touching this code. | 
|  | */ | 
|  | if (until.tv64 == 0) | 
|  | aio_read_events(ctx, min_nr, nr, event, &ret); | 
|  | else | 
|  | wait_event_interruptible_hrtimeout(ctx->wait, | 
|  | aio_read_events(ctx, min_nr, nr, event, &ret), | 
|  | until); | 
|  |  | 
|  | if (!ret && signal_pending(current)) | 
|  | ret = -EINTR; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* sys_io_setup: | 
|  | *	Create an aio_context capable of receiving at least nr_events. | 
|  | *	ctxp must not point to an aio_context that already exists, and | 
|  | *	must be initialized to 0 prior to the call.  On successful | 
|  | *	creation of the aio_context, *ctxp is filled in with the resulting | 
|  | *	handle.  May fail with -EINVAL if *ctxp is not initialized, | 
|  | *	if the specified nr_events exceeds internal limits.  May fail | 
|  | *	with -EAGAIN if the specified nr_events exceeds the user's limit | 
|  | *	of available events.  May fail with -ENOMEM if insufficient kernel | 
|  | *	resources are available.  May fail with -EFAULT if an invalid | 
|  | *	pointer is passed for ctxp.  Will fail with -ENOSYS if not | 
|  | *	implemented. | 
|  | */ | 
|  | SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) | 
|  | { | 
|  | struct kioctx *ioctx = NULL; | 
|  | unsigned long ctx; | 
|  | long ret; | 
|  |  | 
|  | ret = get_user(ctx, ctxp); | 
|  | if (unlikely(ret)) | 
|  | goto out; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (unlikely(ctx || nr_events == 0)) { | 
|  | pr_debug("EINVAL: ctx %lu nr_events %u\n", | 
|  | ctx, nr_events); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ioctx = ioctx_alloc(nr_events); | 
|  | ret = PTR_ERR(ioctx); | 
|  | if (!IS_ERR(ioctx)) { | 
|  | ret = put_user(ioctx->user_id, ctxp); | 
|  | if (ret) | 
|  | kill_ioctx(current->mm, ioctx, NULL); | 
|  | percpu_ref_put(&ioctx->users); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* sys_io_destroy: | 
|  | *	Destroy the aio_context specified.  May cancel any outstanding | 
|  | *	AIOs and block on completion.  Will fail with -ENOSYS if not | 
|  | *	implemented.  May fail with -EINVAL if the context pointed to | 
|  | *	is invalid. | 
|  | */ | 
|  | SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) | 
|  | { | 
|  | struct kioctx *ioctx = lookup_ioctx(ctx); | 
|  | if (likely(NULL != ioctx)) { | 
|  | struct ctx_rq_wait wait; | 
|  | int ret; | 
|  |  | 
|  | init_completion(&wait.comp); | 
|  | atomic_set(&wait.count, 1); | 
|  |  | 
|  | /* Pass requests_done to kill_ioctx() where it can be set | 
|  | * in a thread-safe way. If we try to set it here then we have | 
|  | * a race condition if two io_destroy() called simultaneously. | 
|  | */ | 
|  | ret = kill_ioctx(current->mm, ioctx, &wait); | 
|  | percpu_ref_put(&ioctx->users); | 
|  |  | 
|  | /* Wait until all IO for the context are done. Otherwise kernel | 
|  | * keep using user-space buffers even if user thinks the context | 
|  | * is destroyed. | 
|  | */ | 
|  | if (!ret) | 
|  | wait_for_completion(&wait.comp); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | pr_debug("EINVAL: invalid context id\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *); | 
|  |  | 
|  | static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len, | 
|  | struct iovec **iovec, | 
|  | bool compat, | 
|  | struct iov_iter *iter) | 
|  | { | 
|  | #ifdef CONFIG_COMPAT | 
|  | if (compat) | 
|  | return compat_import_iovec(rw, | 
|  | (struct compat_iovec __user *)buf, | 
|  | len, UIO_FASTIOV, iovec, iter); | 
|  | #endif | 
|  | return import_iovec(rw, (struct iovec __user *)buf, | 
|  | len, UIO_FASTIOV, iovec, iter); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * aio_run_iocb: | 
|  | *	Performs the initial checks and io submission. | 
|  | */ | 
|  | static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, | 
|  | char __user *buf, size_t len, bool compat) | 
|  | { | 
|  | struct file *file = req->ki_filp; | 
|  | ssize_t ret; | 
|  | int rw; | 
|  | fmode_t mode; | 
|  | rw_iter_op *iter_op; | 
|  | struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; | 
|  | struct iov_iter iter; | 
|  |  | 
|  | switch (opcode) { | 
|  | case IOCB_CMD_PREAD: | 
|  | case IOCB_CMD_PREADV: | 
|  | mode	= FMODE_READ; | 
|  | rw	= READ; | 
|  | iter_op	= file->f_op->read_iter; | 
|  | goto rw_common; | 
|  |  | 
|  | case IOCB_CMD_PWRITE: | 
|  | case IOCB_CMD_PWRITEV: | 
|  | mode	= FMODE_WRITE; | 
|  | rw	= WRITE; | 
|  | iter_op	= file->f_op->write_iter; | 
|  | goto rw_common; | 
|  | rw_common: | 
|  | if (unlikely(!(file->f_mode & mode))) | 
|  | return -EBADF; | 
|  |  | 
|  | if (!iter_op) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV) | 
|  | ret = aio_setup_vectored_rw(rw, buf, len, | 
|  | &iovec, compat, &iter); | 
|  | else { | 
|  | ret = import_single_range(rw, buf, len, iovec, &iter); | 
|  | iovec = NULL; | 
|  | } | 
|  | if (!ret) | 
|  | ret = rw_verify_area(rw, file, &req->ki_pos, | 
|  | iov_iter_count(&iter)); | 
|  | if (ret < 0) { | 
|  | kfree(iovec); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | len = ret; | 
|  |  | 
|  | if (rw == WRITE) | 
|  | file_start_write(file); | 
|  |  | 
|  | ret = iter_op(req, &iter); | 
|  |  | 
|  | if (rw == WRITE) | 
|  | file_end_write(file); | 
|  | kfree(iovec); | 
|  | break; | 
|  |  | 
|  | case IOCB_CMD_FDSYNC: | 
|  | if (!file->f_op->aio_fsync) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = file->f_op->aio_fsync(req, 1); | 
|  | break; | 
|  |  | 
|  | case IOCB_CMD_FSYNC: | 
|  | if (!file->f_op->aio_fsync) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = file->f_op->aio_fsync(req, 0); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | pr_debug("EINVAL: no operation provided\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (ret != -EIOCBQUEUED) { | 
|  | /* | 
|  | * There's no easy way to restart the syscall since other AIO's | 
|  | * may be already running. Just fail this IO with EINTR. | 
|  | */ | 
|  | if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || | 
|  | ret == -ERESTARTNOHAND || | 
|  | ret == -ERESTART_RESTARTBLOCK)) | 
|  | ret = -EINTR; | 
|  | aio_complete(req, ret, 0); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, | 
|  | struct iocb *iocb, bool compat) | 
|  | { | 
|  | struct aio_kiocb *req; | 
|  | ssize_t ret; | 
|  |  | 
|  | /* enforce forwards compatibility on users */ | 
|  | if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { | 
|  | pr_debug("EINVAL: reserve field set\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* prevent overflows */ | 
|  | if (unlikely( | 
|  | (iocb->aio_buf != (unsigned long)iocb->aio_buf) || | 
|  | (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || | 
|  | ((ssize_t)iocb->aio_nbytes < 0) | 
|  | )) { | 
|  | pr_debug("EINVAL: overflow check\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | req = aio_get_req(ctx); | 
|  | if (unlikely(!req)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | req->common.ki_filp = fget(iocb->aio_fildes); | 
|  | if (unlikely(!req->common.ki_filp)) { | 
|  | ret = -EBADF; | 
|  | goto out_put_req; | 
|  | } | 
|  | req->common.ki_pos = iocb->aio_offset; | 
|  | req->common.ki_complete = aio_complete; | 
|  | req->common.ki_flags = iocb_flags(req->common.ki_filp); | 
|  |  | 
|  | if (iocb->aio_flags & IOCB_FLAG_RESFD) { | 
|  | /* | 
|  | * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an | 
|  | * instance of the file* now. The file descriptor must be | 
|  | * an eventfd() fd, and will be signaled for each completed | 
|  | * event using the eventfd_signal() function. | 
|  | */ | 
|  | req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); | 
|  | if (IS_ERR(req->ki_eventfd)) { | 
|  | ret = PTR_ERR(req->ki_eventfd); | 
|  | req->ki_eventfd = NULL; | 
|  | goto out_put_req; | 
|  | } | 
|  |  | 
|  | req->common.ki_flags |= IOCB_EVENTFD; | 
|  | } | 
|  |  | 
|  | ret = put_user(KIOCB_KEY, &user_iocb->aio_key); | 
|  | if (unlikely(ret)) { | 
|  | pr_debug("EFAULT: aio_key\n"); | 
|  | goto out_put_req; | 
|  | } | 
|  |  | 
|  | req->ki_user_iocb = user_iocb; | 
|  | req->ki_user_data = iocb->aio_data; | 
|  |  | 
|  | ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode, | 
|  | (char __user *)(unsigned long)iocb->aio_buf, | 
|  | iocb->aio_nbytes, | 
|  | compat); | 
|  | if (ret) | 
|  | goto out_put_req; | 
|  |  | 
|  | return 0; | 
|  | out_put_req: | 
|  | put_reqs_available(ctx, 1); | 
|  | percpu_ref_put(&ctx->reqs); | 
|  | kiocb_free(req); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | long do_io_submit(aio_context_t ctx_id, long nr, | 
|  | struct iocb __user *__user *iocbpp, bool compat) | 
|  | { | 
|  | struct kioctx *ctx; | 
|  | long ret = 0; | 
|  | int i = 0; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | if (unlikely(nr < 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) | 
|  | nr = LONG_MAX/sizeof(*iocbpp); | 
|  |  | 
|  | if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) | 
|  | return -EFAULT; | 
|  |  | 
|  | ctx = lookup_ioctx(ctx_id); | 
|  | if (unlikely(!ctx)) { | 
|  | pr_debug("EINVAL: invalid context id\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  |  | 
|  | /* | 
|  | * AKPM: should this return a partial result if some of the IOs were | 
|  | * successfully submitted? | 
|  | */ | 
|  | for (i=0; i<nr; i++) { | 
|  | struct iocb __user *user_iocb; | 
|  | struct iocb tmp; | 
|  |  | 
|  | if (unlikely(__get_user(user_iocb, iocbpp + i))) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = io_submit_one(ctx, user_iocb, &tmp, compat); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | percpu_ref_put(&ctx->users); | 
|  | return i ? i : ret; | 
|  | } | 
|  |  | 
|  | /* sys_io_submit: | 
|  | *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns | 
|  | *	the number of iocbs queued.  May return -EINVAL if the aio_context | 
|  | *	specified by ctx_id is invalid, if nr is < 0, if the iocb at | 
|  | *	*iocbpp[0] is not properly initialized, if the operation specified | 
|  | *	is invalid for the file descriptor in the iocb.  May fail with | 
|  | *	-EFAULT if any of the data structures point to invalid data.  May | 
|  | *	fail with -EBADF if the file descriptor specified in the first | 
|  | *	iocb is invalid.  May fail with -EAGAIN if insufficient resources | 
|  | *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will | 
|  | *	fail with -ENOSYS if not implemented. | 
|  | */ | 
|  | SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, | 
|  | struct iocb __user * __user *, iocbpp) | 
|  | { | 
|  | return do_io_submit(ctx_id, nr, iocbpp, 0); | 
|  | } | 
|  |  | 
|  | /* lookup_kiocb | 
|  | *	Finds a given iocb for cancellation. | 
|  | */ | 
|  | static struct aio_kiocb * | 
|  | lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key) | 
|  | { | 
|  | struct aio_kiocb *kiocb; | 
|  |  | 
|  | assert_spin_locked(&ctx->ctx_lock); | 
|  |  | 
|  | if (key != KIOCB_KEY) | 
|  | return NULL; | 
|  |  | 
|  | /* TODO: use a hash or array, this sucks. */ | 
|  | list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { | 
|  | if (kiocb->ki_user_iocb == iocb) | 
|  | return kiocb; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* sys_io_cancel: | 
|  | *	Attempts to cancel an iocb previously passed to io_submit.  If | 
|  | *	the operation is successfully cancelled, the resulting event is | 
|  | *	copied into the memory pointed to by result without being placed | 
|  | *	into the completion queue and 0 is returned.  May fail with | 
|  | *	-EFAULT if any of the data structures pointed to are invalid. | 
|  | *	May fail with -EINVAL if aio_context specified by ctx_id is | 
|  | *	invalid.  May fail with -EAGAIN if the iocb specified was not | 
|  | *	cancelled.  Will fail with -ENOSYS if not implemented. | 
|  | */ | 
|  | SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, | 
|  | struct io_event __user *, result) | 
|  | { | 
|  | struct kioctx *ctx; | 
|  | struct aio_kiocb *kiocb; | 
|  | u32 key; | 
|  | int ret; | 
|  |  | 
|  | ret = get_user(key, &iocb->aio_key); | 
|  | if (unlikely(ret)) | 
|  | return -EFAULT; | 
|  |  | 
|  | ctx = lookup_ioctx(ctx_id); | 
|  | if (unlikely(!ctx)) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irq(&ctx->ctx_lock); | 
|  |  | 
|  | kiocb = lookup_kiocb(ctx, iocb, key); | 
|  | if (kiocb) | 
|  | ret = kiocb_cancel(kiocb); | 
|  | else | 
|  | ret = -EINVAL; | 
|  |  | 
|  | spin_unlock_irq(&ctx->ctx_lock); | 
|  |  | 
|  | if (!ret) { | 
|  | /* | 
|  | * The result argument is no longer used - the io_event is | 
|  | * always delivered via the ring buffer. -EINPROGRESS indicates | 
|  | * cancellation is progress: | 
|  | */ | 
|  | ret = -EINPROGRESS; | 
|  | } | 
|  |  | 
|  | percpu_ref_put(&ctx->users); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* io_getevents: | 
|  | *	Attempts to read at least min_nr events and up to nr events from | 
|  | *	the completion queue for the aio_context specified by ctx_id. If | 
|  | *	it succeeds, the number of read events is returned. May fail with | 
|  | *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is | 
|  | *	out of range, if timeout is out of range.  May fail with -EFAULT | 
|  | *	if any of the memory specified is invalid.  May return 0 or | 
|  | *	< min_nr if the timeout specified by timeout has elapsed | 
|  | *	before sufficient events are available, where timeout == NULL | 
|  | *	specifies an infinite timeout. Note that the timeout pointed to by | 
|  | *	timeout is relative.  Will fail with -ENOSYS if not implemented. | 
|  | */ | 
|  | SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, | 
|  | long, min_nr, | 
|  | long, nr, | 
|  | struct io_event __user *, events, | 
|  | struct timespec __user *, timeout) | 
|  | { | 
|  | struct kioctx *ioctx = lookup_ioctx(ctx_id); | 
|  | long ret = -EINVAL; | 
|  |  | 
|  | if (likely(ioctx)) { | 
|  | if (likely(min_nr <= nr && min_nr >= 0)) | 
|  | ret = read_events(ioctx, min_nr, nr, events, timeout); | 
|  | percpu_ref_put(&ioctx->users); | 
|  | } | 
|  | return ret; | 
|  | } |