| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Simple NUMA memory policy for the Linux kernel. | 
 |  * | 
 |  * Copyright 2003,2004 Andi Kleen, SuSE Labs. | 
 |  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. | 
 |  * | 
 |  * NUMA policy allows the user to give hints in which node(s) memory should | 
 |  * be allocated. | 
 |  * | 
 |  * Support six policies per VMA and per process: | 
 |  * | 
 |  * The VMA policy has priority over the process policy for a page fault. | 
 |  * | 
 |  * interleave     Allocate memory interleaved over a set of nodes, | 
 |  *                with normal fallback if it fails. | 
 |  *                For VMA based allocations this interleaves based on the | 
 |  *                offset into the backing object or offset into the mapping | 
 |  *                for anonymous memory. For process policy an process counter | 
 |  *                is used. | 
 |  * | 
 |  * weighted interleave | 
 |  *                Allocate memory interleaved over a set of nodes based on | 
 |  *                a set of weights (per-node), with normal fallback if it | 
 |  *                fails.  Otherwise operates the same as interleave. | 
 |  *                Example: nodeset(0,1) & weights (2,1) - 2 pages allocated | 
 |  *                on node 0 for every 1 page allocated on node 1. | 
 |  * | 
 |  * bind           Only allocate memory on a specific set of nodes, | 
 |  *                no fallback. | 
 |  *                FIXME: memory is allocated starting with the first node | 
 |  *                to the last. It would be better if bind would truly restrict | 
 |  *                the allocation to memory nodes instead | 
 |  * | 
 |  * preferred      Try a specific node first before normal fallback. | 
 |  *                As a special case NUMA_NO_NODE here means do the allocation | 
 |  *                on the local CPU. This is normally identical to default, | 
 |  *                but useful to set in a VMA when you have a non default | 
 |  *                process policy. | 
 |  * | 
 |  * preferred many Try a set of nodes first before normal fallback. This is | 
 |  *                similar to preferred without the special case. | 
 |  * | 
 |  * default        Allocate on the local node first, or when on a VMA | 
 |  *                use the process policy. This is what Linux always did | 
 |  *		  in a NUMA aware kernel and still does by, ahem, default. | 
 |  * | 
 |  * The process policy is applied for most non interrupt memory allocations | 
 |  * in that process' context. Interrupts ignore the policies and always | 
 |  * try to allocate on the local CPU. The VMA policy is only applied for memory | 
 |  * allocations for a VMA in the VM. | 
 |  * | 
 |  * Currently there are a few corner cases in swapping where the policy | 
 |  * is not applied, but the majority should be handled. When process policy | 
 |  * is used it is not remembered over swap outs/swap ins. | 
 |  * | 
 |  * Only the highest zone in the zone hierarchy gets policied. Allocations | 
 |  * requesting a lower zone just use default policy. This implies that | 
 |  * on systems with highmem kernel lowmem allocation don't get policied. | 
 |  * Same with GFP_DMA allocations. | 
 |  * | 
 |  * For shmem/tmpfs shared memory the policy is shared between | 
 |  * all users and remembered even when nobody has memory mapped. | 
 |  */ | 
 |  | 
 | /* Notebook: | 
 |    fix mmap readahead to honour policy and enable policy for any page cache | 
 |    object | 
 |    statistics for bigpages | 
 |    global policy for page cache? currently it uses process policy. Requires | 
 |    first item above. | 
 |    handle mremap for shared memory (currently ignored for the policy) | 
 |    grows down? | 
 |    make bind policy root only? It can trigger oom much faster and the | 
 |    kernel is not always grateful with that. | 
 | */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/pagewalk.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/numa_balancing.h> | 
 | #include <linux/sched/task.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/string.h> | 
 | #include <linux/export.h> | 
 | #include <linux/nsproxy.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/init.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/ksm.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/security.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/mmu_notifier.h> | 
 | #include <linux/printk.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/gcd.h> | 
 |  | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/tlb.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/memory.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | /* Internal flags */ | 
 | #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */ | 
 | #define MPOL_MF_INVERT       (MPOL_MF_INTERNAL << 1)	/* Invert check for nodemask */ | 
 | #define MPOL_MF_WRLOCK       (MPOL_MF_INTERNAL << 2)	/* Write-lock walked vmas */ | 
 |  | 
 | static struct kmem_cache *policy_cache; | 
 | static struct kmem_cache *sn_cache; | 
 |  | 
 | /* Highest zone. An specific allocation for a zone below that is not | 
 |    policied. */ | 
 | enum zone_type policy_zone = 0; | 
 |  | 
 | /* | 
 |  * run-time system-wide default policy => local allocation | 
 |  */ | 
 | static struct mempolicy default_policy = { | 
 | 	.refcnt = ATOMIC_INIT(1), /* never free it */ | 
 | 	.mode = MPOL_LOCAL, | 
 | }; | 
 |  | 
 | static struct mempolicy preferred_node_policy[MAX_NUMNODES]; | 
 |  | 
 | /* | 
 |  * weightiness balances the tradeoff between small weights (cycles through nodes | 
 |  * faster, more fair/even distribution) and large weights (smaller errors | 
 |  * between actual bandwidth ratios and weight ratios). 32 is a number that has | 
 |  * been found to perform at a reasonable compromise between the two goals. | 
 |  */ | 
 | static const int weightiness = 32; | 
 |  | 
 | /* | 
 |  * A null weighted_interleave_state is interpreted as having .mode="auto", | 
 |  * and .iw_table is interpreted as an array of 1s with length nr_node_ids. | 
 |  */ | 
 | struct weighted_interleave_state { | 
 | 	bool mode_auto; | 
 | 	u8 iw_table[]; | 
 | }; | 
 | static struct weighted_interleave_state __rcu *wi_state; | 
 | static unsigned int *node_bw_table; | 
 |  | 
 | /* | 
 |  * wi_state_lock protects both wi_state and node_bw_table. | 
 |  * node_bw_table is only used by writers to update wi_state. | 
 |  */ | 
 | static DEFINE_MUTEX(wi_state_lock); | 
 |  | 
 | static u8 get_il_weight(int node) | 
 | { | 
 | 	struct weighted_interleave_state *state; | 
 | 	u8 weight = 1; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	state = rcu_dereference(wi_state); | 
 | 	if (state) | 
 | 		weight = state->iw_table[node]; | 
 | 	rcu_read_unlock(); | 
 | 	return weight; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert bandwidth values into weighted interleave weights. | 
 |  * Call with wi_state_lock. | 
 |  */ | 
 | static void reduce_interleave_weights(unsigned int *bw, u8 *new_iw) | 
 | { | 
 | 	u64 sum_bw = 0; | 
 | 	unsigned int cast_sum_bw, scaling_factor = 1, iw_gcd = 0; | 
 | 	int nid; | 
 |  | 
 | 	for_each_node_state(nid, N_MEMORY) | 
 | 		sum_bw += bw[nid]; | 
 |  | 
 | 	/* Scale bandwidths to whole numbers in the range [1, weightiness] */ | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		/* | 
 | 		 * Try not to perform 64-bit division. | 
 | 		 * If sum_bw < scaling_factor, then sum_bw < U32_MAX. | 
 | 		 * If sum_bw > scaling_factor, then round the weight up to 1. | 
 | 		 */ | 
 | 		scaling_factor = weightiness * bw[nid]; | 
 | 		if (bw[nid] && sum_bw < scaling_factor) { | 
 | 			cast_sum_bw = (unsigned int)sum_bw; | 
 | 			new_iw[nid] = scaling_factor / cast_sum_bw; | 
 | 		} else { | 
 | 			new_iw[nid] = 1; | 
 | 		} | 
 | 		if (!iw_gcd) | 
 | 			iw_gcd = new_iw[nid]; | 
 | 		iw_gcd = gcd(iw_gcd, new_iw[nid]); | 
 | 	} | 
 |  | 
 | 	/* 1:2 is strictly better than 16:32. Reduce by the weights' GCD. */ | 
 | 	for_each_node_state(nid, N_MEMORY) | 
 | 		new_iw[nid] /= iw_gcd; | 
 | } | 
 |  | 
 | int mempolicy_set_node_perf(unsigned int node, struct access_coordinate *coords) | 
 | { | 
 | 	struct weighted_interleave_state *new_wi_state, *old_wi_state = NULL; | 
 | 	unsigned int *old_bw, *new_bw; | 
 | 	unsigned int bw_val; | 
 | 	int i; | 
 |  | 
 | 	bw_val = min(coords->read_bandwidth, coords->write_bandwidth); | 
 | 	new_bw = kcalloc(nr_node_ids, sizeof(unsigned int), GFP_KERNEL); | 
 | 	if (!new_bw) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	new_wi_state = kmalloc(struct_size(new_wi_state, iw_table, nr_node_ids), | 
 | 			       GFP_KERNEL); | 
 | 	if (!new_wi_state) { | 
 | 		kfree(new_bw); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	new_wi_state->mode_auto = true; | 
 | 	for (i = 0; i < nr_node_ids; i++) | 
 | 		new_wi_state->iw_table[i] = 1; | 
 |  | 
 | 	/* | 
 | 	 * Update bandwidth info, even in manual mode. That way, when switching | 
 | 	 * to auto mode in the future, iw_table can be overwritten using | 
 | 	 * accurate bw data. | 
 | 	 */ | 
 | 	mutex_lock(&wi_state_lock); | 
 |  | 
 | 	old_bw = node_bw_table; | 
 | 	if (old_bw) | 
 | 		memcpy(new_bw, old_bw, nr_node_ids * sizeof(*old_bw)); | 
 | 	new_bw[node] = bw_val; | 
 | 	node_bw_table = new_bw; | 
 |  | 
 | 	old_wi_state = rcu_dereference_protected(wi_state, | 
 | 					lockdep_is_held(&wi_state_lock)); | 
 | 	if (old_wi_state && !old_wi_state->mode_auto) { | 
 | 		/* Manual mode; skip reducing weights and updating wi_state */ | 
 | 		mutex_unlock(&wi_state_lock); | 
 | 		kfree(new_wi_state); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* NULL wi_state assumes auto=true; reduce weights and update wi_state*/ | 
 | 	reduce_interleave_weights(new_bw, new_wi_state->iw_table); | 
 | 	rcu_assign_pointer(wi_state, new_wi_state); | 
 |  | 
 | 	mutex_unlock(&wi_state_lock); | 
 | 	if (old_wi_state) { | 
 | 		synchronize_rcu(); | 
 | 		kfree(old_wi_state); | 
 | 	} | 
 | out: | 
 | 	kfree(old_bw); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * numa_nearest_node - Find nearest node by state | 
 |  * @node: Node id to start the search | 
 |  * @state: State to filter the search | 
 |  * | 
 |  * Lookup the closest node by distance if @nid is not in state. | 
 |  * | 
 |  * Return: this @node if it is in state, otherwise the closest node by distance | 
 |  */ | 
 | int numa_nearest_node(int node, unsigned int state) | 
 | { | 
 | 	int min_dist = INT_MAX, dist, n, min_node; | 
 |  | 
 | 	if (state >= NR_NODE_STATES) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (node == NUMA_NO_NODE || node_state(node, state)) | 
 | 		return node; | 
 |  | 
 | 	min_node = node; | 
 | 	for_each_node_state(n, state) { | 
 | 		dist = node_distance(node, n); | 
 | 		if (dist < min_dist) { | 
 | 			min_dist = dist; | 
 | 			min_node = n; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return min_node; | 
 | } | 
 | EXPORT_SYMBOL_GPL(numa_nearest_node); | 
 |  | 
 | /** | 
 |  * nearest_node_nodemask - Find the node in @mask at the nearest distance | 
 |  *			   from @node. | 
 |  * | 
 |  * @node: a valid node ID to start the search from. | 
 |  * @mask: a pointer to a nodemask representing the allowed nodes. | 
 |  * | 
 |  * This function iterates over all nodes in @mask and calculates the | 
 |  * distance from the starting @node, then it returns the node ID that is | 
 |  * the closest to @node, or MAX_NUMNODES if no node is found. | 
 |  * | 
 |  * Note that @node must be a valid node ID usable with node_distance(), | 
 |  * providing an invalid node ID (e.g., NUMA_NO_NODE) may result in crashes | 
 |  * or unexpected behavior. | 
 |  */ | 
 | int nearest_node_nodemask(int node, nodemask_t *mask) | 
 | { | 
 | 	int dist, n, min_dist = INT_MAX, min_node = MAX_NUMNODES; | 
 |  | 
 | 	for_each_node_mask(n, *mask) { | 
 | 		dist = node_distance(node, n); | 
 | 		if (dist < min_dist) { | 
 | 			min_dist = dist; | 
 | 			min_node = n; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return min_node; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nearest_node_nodemask); | 
 |  | 
 | struct mempolicy *get_task_policy(struct task_struct *p) | 
 | { | 
 | 	struct mempolicy *pol = p->mempolicy; | 
 | 	int node; | 
 |  | 
 | 	if (pol) | 
 | 		return pol; | 
 |  | 
 | 	node = numa_node_id(); | 
 | 	if (node != NUMA_NO_NODE) { | 
 | 		pol = &preferred_node_policy[node]; | 
 | 		/* preferred_node_policy is not initialised early in boot */ | 
 | 		if (pol->mode) | 
 | 			return pol; | 
 | 	} | 
 |  | 
 | 	return &default_policy; | 
 | } | 
 |  | 
 | static const struct mempolicy_operations { | 
 | 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes); | 
 | 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); | 
 | } mpol_ops[MPOL_MAX]; | 
 |  | 
 | static inline int mpol_store_user_nodemask(const struct mempolicy *pol) | 
 | { | 
 | 	return pol->flags & MPOL_MODE_FLAGS; | 
 | } | 
 |  | 
 | static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, | 
 | 				   const nodemask_t *rel) | 
 | { | 
 | 	nodemask_t tmp; | 
 | 	nodes_fold(tmp, *orig, nodes_weight(*rel)); | 
 | 	nodes_onto(*ret, tmp, *rel); | 
 | } | 
 |  | 
 | static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) | 
 | { | 
 | 	if (nodes_empty(*nodes)) | 
 | 		return -EINVAL; | 
 | 	pol->nodes = *nodes; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) | 
 | { | 
 | 	if (nodes_empty(*nodes)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	nodes_clear(pol->nodes); | 
 | 	node_set(first_node(*nodes), pol->nodes); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if | 
 |  * any, for the new policy.  mpol_new() has already validated the nodes | 
 |  * parameter with respect to the policy mode and flags. | 
 |  * | 
 |  * Must be called holding task's alloc_lock to protect task's mems_allowed | 
 |  * and mempolicy.  May also be called holding the mmap_lock for write. | 
 |  */ | 
 | static int mpol_set_nodemask(struct mempolicy *pol, | 
 | 		     const nodemask_t *nodes, struct nodemask_scratch *nsc) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Default (pol==NULL) resp. local memory policies are not a | 
 | 	 * subject of any remapping. They also do not need any special | 
 | 	 * constructor. | 
 | 	 */ | 
 | 	if (!pol || pol->mode == MPOL_LOCAL) | 
 | 		return 0; | 
 |  | 
 | 	/* Check N_MEMORY */ | 
 | 	nodes_and(nsc->mask1, | 
 | 		  cpuset_current_mems_allowed, node_states[N_MEMORY]); | 
 |  | 
 | 	VM_BUG_ON(!nodes); | 
 |  | 
 | 	if (pol->flags & MPOL_F_RELATIVE_NODES) | 
 | 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); | 
 | 	else | 
 | 		nodes_and(nsc->mask2, *nodes, nsc->mask1); | 
 |  | 
 | 	if (mpol_store_user_nodemask(pol)) | 
 | 		pol->w.user_nodemask = *nodes; | 
 | 	else | 
 | 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; | 
 |  | 
 | 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This function just creates a new policy, does some check and simple | 
 |  * initialization. You must invoke mpol_set_nodemask() to set nodes. | 
 |  */ | 
 | static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, | 
 | 				  nodemask_t *nodes) | 
 | { | 
 | 	struct mempolicy *policy; | 
 |  | 
 | 	if (mode == MPOL_DEFAULT) { | 
 | 		if (nodes && !nodes_empty(*nodes)) | 
 | 			return ERR_PTR(-EINVAL); | 
 | 		return NULL; | 
 | 	} | 
 | 	VM_BUG_ON(!nodes); | 
 |  | 
 | 	/* | 
 | 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or | 
 | 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). | 
 | 	 * All other modes require a valid pointer to a non-empty nodemask. | 
 | 	 */ | 
 | 	if (mode == MPOL_PREFERRED) { | 
 | 		if (nodes_empty(*nodes)) { | 
 | 			if (((flags & MPOL_F_STATIC_NODES) || | 
 | 			     (flags & MPOL_F_RELATIVE_NODES))) | 
 | 				return ERR_PTR(-EINVAL); | 
 |  | 
 | 			mode = MPOL_LOCAL; | 
 | 		} | 
 | 	} else if (mode == MPOL_LOCAL) { | 
 | 		if (!nodes_empty(*nodes) || | 
 | 		    (flags & MPOL_F_STATIC_NODES) || | 
 | 		    (flags & MPOL_F_RELATIVE_NODES)) | 
 | 			return ERR_PTR(-EINVAL); | 
 | 	} else if (nodes_empty(*nodes)) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); | 
 | 	if (!policy) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	atomic_set(&policy->refcnt, 1); | 
 | 	policy->mode = mode; | 
 | 	policy->flags = flags; | 
 | 	policy->home_node = NUMA_NO_NODE; | 
 |  | 
 | 	return policy; | 
 | } | 
 |  | 
 | /* Slow path of a mpol destructor. */ | 
 | void __mpol_put(struct mempolicy *pol) | 
 | { | 
 | 	if (!atomic_dec_and_test(&pol->refcnt)) | 
 | 		return; | 
 | 	kmem_cache_free(policy_cache, pol); | 
 | } | 
 |  | 
 | static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) | 
 | { | 
 | } | 
 |  | 
 | static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) | 
 | { | 
 | 	nodemask_t tmp; | 
 |  | 
 | 	if (pol->flags & MPOL_F_STATIC_NODES) | 
 | 		nodes_and(tmp, pol->w.user_nodemask, *nodes); | 
 | 	else if (pol->flags & MPOL_F_RELATIVE_NODES) | 
 | 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); | 
 | 	else { | 
 | 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, | 
 | 								*nodes); | 
 | 		pol->w.cpuset_mems_allowed = *nodes; | 
 | 	} | 
 |  | 
 | 	if (nodes_empty(tmp)) | 
 | 		tmp = *nodes; | 
 |  | 
 | 	pol->nodes = tmp; | 
 | } | 
 |  | 
 | static void mpol_rebind_preferred(struct mempolicy *pol, | 
 | 						const nodemask_t *nodes) | 
 | { | 
 | 	pol->w.cpuset_mems_allowed = *nodes; | 
 | } | 
 |  | 
 | /* | 
 |  * mpol_rebind_policy - Migrate a policy to a different set of nodes | 
 |  * | 
 |  * Per-vma policies are protected by mmap_lock. Allocations using per-task | 
 |  * policies are protected by task->mems_allowed_seq to prevent a premature | 
 |  * OOM/allocation failure due to parallel nodemask modification. | 
 |  */ | 
 | static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) | 
 | { | 
 | 	if (!pol || pol->mode == MPOL_LOCAL) | 
 | 		return; | 
 | 	if (!mpol_store_user_nodemask(pol) && | 
 | 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) | 
 | 		return; | 
 |  | 
 | 	mpol_ops[pol->mode].rebind(pol, newmask); | 
 | } | 
 |  | 
 | /* | 
 |  * Wrapper for mpol_rebind_policy() that just requires task | 
 |  * pointer, and updates task mempolicy. | 
 |  * | 
 |  * Called with task's alloc_lock held. | 
 |  */ | 
 | void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) | 
 | { | 
 | 	mpol_rebind_policy(tsk->mempolicy, new); | 
 | } | 
 |  | 
 | /* | 
 |  * Rebind each vma in mm to new nodemask. | 
 |  * | 
 |  * Call holding a reference to mm.  Takes mm->mmap_lock during call. | 
 |  */ | 
 | void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	VMA_ITERATOR(vmi, mm, 0); | 
 |  | 
 | 	mmap_write_lock(mm); | 
 | 	for_each_vma(vmi, vma) { | 
 | 		vma_start_write(vma); | 
 | 		mpol_rebind_policy(vma->vm_policy, new); | 
 | 	} | 
 | 	mmap_write_unlock(mm); | 
 | } | 
 |  | 
 | static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { | 
 | 	[MPOL_DEFAULT] = { | 
 | 		.rebind = mpol_rebind_default, | 
 | 	}, | 
 | 	[MPOL_INTERLEAVE] = { | 
 | 		.create = mpol_new_nodemask, | 
 | 		.rebind = mpol_rebind_nodemask, | 
 | 	}, | 
 | 	[MPOL_PREFERRED] = { | 
 | 		.create = mpol_new_preferred, | 
 | 		.rebind = mpol_rebind_preferred, | 
 | 	}, | 
 | 	[MPOL_BIND] = { | 
 | 		.create = mpol_new_nodemask, | 
 | 		.rebind = mpol_rebind_nodemask, | 
 | 	}, | 
 | 	[MPOL_LOCAL] = { | 
 | 		.rebind = mpol_rebind_default, | 
 | 	}, | 
 | 	[MPOL_PREFERRED_MANY] = { | 
 | 		.create = mpol_new_nodemask, | 
 | 		.rebind = mpol_rebind_preferred, | 
 | 	}, | 
 | 	[MPOL_WEIGHTED_INTERLEAVE] = { | 
 | 		.create = mpol_new_nodemask, | 
 | 		.rebind = mpol_rebind_nodemask, | 
 | 	}, | 
 | }; | 
 |  | 
 | static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, | 
 | 				unsigned long flags); | 
 | static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol, | 
 | 				pgoff_t ilx, int *nid); | 
 |  | 
 | static bool strictly_unmovable(unsigned long flags) | 
 | { | 
 | 	/* | 
 | 	 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO | 
 | 	 * if any misplaced page is found. | 
 | 	 */ | 
 | 	return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) == | 
 | 			 MPOL_MF_STRICT; | 
 | } | 
 |  | 
 | struct migration_mpol {		/* for alloc_migration_target_by_mpol() */ | 
 | 	struct mempolicy *pol; | 
 | 	pgoff_t ilx; | 
 | }; | 
 |  | 
 | struct queue_pages { | 
 | 	struct list_head *pagelist; | 
 | 	unsigned long flags; | 
 | 	nodemask_t *nmask; | 
 | 	unsigned long start; | 
 | 	unsigned long end; | 
 | 	struct vm_area_struct *first; | 
 | 	struct folio *large;		/* note last large folio encountered */ | 
 | 	long nr_failed;			/* could not be isolated at this time */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Check if the folio's nid is in qp->nmask. | 
 |  * | 
 |  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is | 
 |  * in the invert of qp->nmask. | 
 |  */ | 
 | static inline bool queue_folio_required(struct folio *folio, | 
 | 					struct queue_pages *qp) | 
 | { | 
 | 	int nid = folio_nid(folio); | 
 | 	unsigned long flags = qp->flags; | 
 |  | 
 | 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); | 
 | } | 
 |  | 
 | static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk) | 
 | { | 
 | 	struct folio *folio; | 
 | 	struct queue_pages *qp = walk->private; | 
 |  | 
 | 	if (unlikely(is_pmd_migration_entry(*pmd))) { | 
 | 		qp->nr_failed++; | 
 | 		return; | 
 | 	} | 
 | 	folio = pmd_folio(*pmd); | 
 | 	if (is_huge_zero_folio(folio)) { | 
 | 		walk->action = ACTION_CONTINUE; | 
 | 		return; | 
 | 	} | 
 | 	if (!queue_folio_required(folio, qp)) | 
 | 		return; | 
 | 	if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || | 
 | 	    !vma_migratable(walk->vma) || | 
 | 	    !migrate_folio_add(folio, qp->pagelist, qp->flags)) | 
 | 		qp->nr_failed++; | 
 | } | 
 |  | 
 | /* | 
 |  * Scan through folios, checking if they satisfy the required conditions, | 
 |  * moving them from LRU to local pagelist for migration if they do (or not). | 
 |  * | 
 |  * queue_folios_pte_range() has two possible return values: | 
 |  * 0 - continue walking to scan for more, even if an existing folio on the | 
 |  *     wrong node could not be isolated and queued for migration. | 
 |  * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL, | 
 |  *        and an existing folio was on a node that does not follow the policy. | 
 |  */ | 
 | static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr, | 
 | 			unsigned long end, struct mm_walk *walk) | 
 | { | 
 | 	struct vm_area_struct *vma = walk->vma; | 
 | 	struct folio *folio; | 
 | 	struct queue_pages *qp = walk->private; | 
 | 	unsigned long flags = qp->flags; | 
 | 	pte_t *pte, *mapped_pte; | 
 | 	pte_t ptent; | 
 | 	spinlock_t *ptl; | 
 | 	int max_nr, nr; | 
 |  | 
 | 	ptl = pmd_trans_huge_lock(pmd, vma); | 
 | 	if (ptl) { | 
 | 		queue_folios_pmd(pmd, walk); | 
 | 		spin_unlock(ptl); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); | 
 | 	if (!pte) { | 
 | 		walk->action = ACTION_AGAIN; | 
 | 		return 0; | 
 | 	} | 
 | 	for (; addr != end; pte += nr, addr += nr * PAGE_SIZE) { | 
 | 		max_nr = (end - addr) >> PAGE_SHIFT; | 
 | 		nr = 1; | 
 | 		ptent = ptep_get(pte); | 
 | 		if (pte_none(ptent)) | 
 | 			continue; | 
 | 		if (!pte_present(ptent)) { | 
 | 			if (is_migration_entry(pte_to_swp_entry(ptent))) | 
 | 				qp->nr_failed++; | 
 | 			continue; | 
 | 		} | 
 | 		folio = vm_normal_folio(vma, addr, ptent); | 
 | 		if (!folio || folio_is_zone_device(folio)) | 
 | 			continue; | 
 | 		if (folio_test_large(folio) && max_nr != 1) | 
 | 			nr = folio_pte_batch(folio, pte, ptent, max_nr); | 
 | 		/* | 
 | 		 * vm_normal_folio() filters out zero pages, but there might | 
 | 		 * still be reserved folios to skip, perhaps in a VDSO. | 
 | 		 */ | 
 | 		if (folio_test_reserved(folio)) | 
 | 			continue; | 
 | 		if (!queue_folio_required(folio, qp)) | 
 | 			continue; | 
 | 		if (folio_test_large(folio)) { | 
 | 			/* | 
 | 			 * A large folio can only be isolated from LRU once, | 
 | 			 * but may be mapped by many PTEs (and Copy-On-Write may | 
 | 			 * intersperse PTEs of other, order 0, folios).  This is | 
 | 			 * a common case, so don't mistake it for failure (but | 
 | 			 * there can be other cases of multi-mapped pages which | 
 | 			 * this quick check does not help to filter out - and a | 
 | 			 * search of the pagelist might grow to be prohibitive). | 
 | 			 * | 
 | 			 * migrate_pages(&pagelist) returns nr_failed folios, so | 
 | 			 * check "large" now so that queue_pages_range() returns | 
 | 			 * a comparable nr_failed folios.  This does imply that | 
 | 			 * if folio could not be isolated for some racy reason | 
 | 			 * at its first PTE, later PTEs will not give it another | 
 | 			 * chance of isolation; but keeps the accounting simple. | 
 | 			 */ | 
 | 			if (folio == qp->large) | 
 | 				continue; | 
 | 			qp->large = folio; | 
 | 		} | 
 | 		if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || | 
 | 		    !vma_migratable(vma) || | 
 | 		    !migrate_folio_add(folio, qp->pagelist, flags)) { | 
 | 			qp->nr_failed += nr; | 
 | 			if (strictly_unmovable(flags)) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	pte_unmap_unlock(mapped_pte, ptl); | 
 | 	cond_resched(); | 
 | out: | 
 | 	if (qp->nr_failed && strictly_unmovable(flags)) | 
 | 		return -EIO; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask, | 
 | 			       unsigned long addr, unsigned long end, | 
 | 			       struct mm_walk *walk) | 
 | { | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | 	struct queue_pages *qp = walk->private; | 
 | 	unsigned long flags = qp->flags; | 
 | 	struct folio *folio; | 
 | 	spinlock_t *ptl; | 
 | 	pte_t entry; | 
 |  | 
 | 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); | 
 | 	entry = huge_ptep_get(walk->mm, addr, pte); | 
 | 	if (!pte_present(entry)) { | 
 | 		if (unlikely(is_hugetlb_entry_migration(entry))) | 
 | 			qp->nr_failed++; | 
 | 		goto unlock; | 
 | 	} | 
 | 	folio = pfn_folio(pte_pfn(entry)); | 
 | 	if (!queue_folio_required(folio, qp)) | 
 | 		goto unlock; | 
 | 	if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || | 
 | 	    !vma_migratable(walk->vma)) { | 
 | 		qp->nr_failed++; | 
 | 		goto unlock; | 
 | 	} | 
 | 	/* | 
 | 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio. | 
 | 	 * Choosing not to migrate a shared folio is not counted as a failure. | 
 | 	 * | 
 | 	 * See folio_maybe_mapped_shared() on possible imprecision when we | 
 | 	 * cannot easily detect if a folio is shared. | 
 | 	 */ | 
 | 	if ((flags & MPOL_MF_MOVE_ALL) || | 
 | 	    (!folio_maybe_mapped_shared(folio) && !hugetlb_pmd_shared(pte))) | 
 | 		if (!folio_isolate_hugetlb(folio, qp->pagelist)) | 
 | 			qp->nr_failed++; | 
 | unlock: | 
 | 	spin_unlock(ptl); | 
 | 	if (qp->nr_failed && strictly_unmovable(flags)) | 
 | 		return -EIO; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | /* | 
 |  * This is used to mark a range of virtual addresses to be inaccessible. | 
 |  * These are later cleared by a NUMA hinting fault. Depending on these | 
 |  * faults, pages may be migrated for better NUMA placement. | 
 |  * | 
 |  * This is assuming that NUMA faults are handled using PROT_NONE. If | 
 |  * an architecture makes a different choice, it will need further | 
 |  * changes to the core. | 
 |  */ | 
 | unsigned long change_prot_numa(struct vm_area_struct *vma, | 
 | 			unsigned long addr, unsigned long end) | 
 | { | 
 | 	struct mmu_gather tlb; | 
 | 	long nr_updated; | 
 |  | 
 | 	tlb_gather_mmu(&tlb, vma->vm_mm); | 
 |  | 
 | 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); | 
 | 	if (nr_updated > 0) { | 
 | 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); | 
 | 		count_memcg_events_mm(vma->vm_mm, NUMA_PTE_UPDATES, nr_updated); | 
 | 	} | 
 |  | 
 | 	tlb_finish_mmu(&tlb); | 
 |  | 
 | 	return nr_updated; | 
 | } | 
 | #endif /* CONFIG_NUMA_BALANCING */ | 
 |  | 
 | static int queue_pages_test_walk(unsigned long start, unsigned long end, | 
 | 				struct mm_walk *walk) | 
 | { | 
 | 	struct vm_area_struct *next, *vma = walk->vma; | 
 | 	struct queue_pages *qp = walk->private; | 
 | 	unsigned long flags = qp->flags; | 
 |  | 
 | 	/* range check first */ | 
 | 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); | 
 |  | 
 | 	if (!qp->first) { | 
 | 		qp->first = vma; | 
 | 		if (!(flags & MPOL_MF_DISCONTIG_OK) && | 
 | 			(qp->start < vma->vm_start)) | 
 | 			/* hole at head side of range */ | 
 | 			return -EFAULT; | 
 | 	} | 
 | 	next = find_vma(vma->vm_mm, vma->vm_end); | 
 | 	if (!(flags & MPOL_MF_DISCONTIG_OK) && | 
 | 		((vma->vm_end < qp->end) && | 
 | 		(!next || vma->vm_end < next->vm_start))) | 
 | 		/* hole at middle or tail of range */ | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * Need check MPOL_MF_STRICT to return -EIO if possible | 
 | 	 * regardless of vma_migratable | 
 | 	 */ | 
 | 	if (!vma_migratable(vma) && | 
 | 	    !(flags & MPOL_MF_STRICT)) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * Check page nodes, and queue pages to move, in the current vma. | 
 | 	 * But if no moving, and no strict checking, the scan can be skipped. | 
 | 	 */ | 
 | 	if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static const struct mm_walk_ops queue_pages_walk_ops = { | 
 | 	.hugetlb_entry		= queue_folios_hugetlb, | 
 | 	.pmd_entry		= queue_folios_pte_range, | 
 | 	.test_walk		= queue_pages_test_walk, | 
 | 	.walk_lock		= PGWALK_RDLOCK, | 
 | }; | 
 |  | 
 | static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = { | 
 | 	.hugetlb_entry		= queue_folios_hugetlb, | 
 | 	.pmd_entry		= queue_folios_pte_range, | 
 | 	.test_walk		= queue_pages_test_walk, | 
 | 	.walk_lock		= PGWALK_WRLOCK, | 
 | }; | 
 |  | 
 | /* | 
 |  * Walk through page tables and collect pages to be migrated. | 
 |  * | 
 |  * If pages found in a given range are not on the required set of @nodes, | 
 |  * and migration is allowed, they are isolated and queued to @pagelist. | 
 |  * | 
 |  * queue_pages_range() may return: | 
 |  * 0 - all pages already on the right node, or successfully queued for moving | 
 |  *     (or neither strict checking nor moving requested: only range checking). | 
 |  * >0 - this number of misplaced folios could not be queued for moving | 
 |  *      (a hugetlbfs page or a transparent huge page being counted as 1). | 
 |  * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs. | 
 |  * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified. | 
 |  */ | 
 | static long | 
 | queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, | 
 | 		nodemask_t *nodes, unsigned long flags, | 
 | 		struct list_head *pagelist) | 
 | { | 
 | 	int err; | 
 | 	struct queue_pages qp = { | 
 | 		.pagelist = pagelist, | 
 | 		.flags = flags, | 
 | 		.nmask = nodes, | 
 | 		.start = start, | 
 | 		.end = end, | 
 | 		.first = NULL, | 
 | 	}; | 
 | 	const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ? | 
 | 			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops; | 
 |  | 
 | 	err = walk_page_range(mm, start, end, ops, &qp); | 
 |  | 
 | 	if (!qp.first) | 
 | 		/* whole range in hole */ | 
 | 		err = -EFAULT; | 
 |  | 
 | 	return err ? : qp.nr_failed; | 
 | } | 
 |  | 
 | /* | 
 |  * Apply policy to a single VMA | 
 |  * This must be called with the mmap_lock held for writing. | 
 |  */ | 
 | static int vma_replace_policy(struct vm_area_struct *vma, | 
 | 				struct mempolicy *pol) | 
 | { | 
 | 	int err; | 
 | 	struct mempolicy *old; | 
 | 	struct mempolicy *new; | 
 |  | 
 | 	vma_assert_write_locked(vma); | 
 |  | 
 | 	new = mpol_dup(pol); | 
 | 	if (IS_ERR(new)) | 
 | 		return PTR_ERR(new); | 
 |  | 
 | 	if (vma->vm_ops && vma->vm_ops->set_policy) { | 
 | 		err = vma->vm_ops->set_policy(vma, new); | 
 | 		if (err) | 
 | 			goto err_out; | 
 | 	} | 
 |  | 
 | 	old = vma->vm_policy; | 
 | 	vma->vm_policy = new; /* protected by mmap_lock */ | 
 | 	mpol_put(old); | 
 |  | 
 | 	return 0; | 
 |  err_out: | 
 | 	mpol_put(new); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* Split or merge the VMA (if required) and apply the new policy */ | 
 | static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma, | 
 | 		struct vm_area_struct **prev, unsigned long start, | 
 | 		unsigned long end, struct mempolicy *new_pol) | 
 | { | 
 | 	unsigned long vmstart, vmend; | 
 |  | 
 | 	vmend = min(end, vma->vm_end); | 
 | 	if (start > vma->vm_start) { | 
 | 		*prev = vma; | 
 | 		vmstart = start; | 
 | 	} else { | 
 | 		vmstart = vma->vm_start; | 
 | 	} | 
 |  | 
 | 	if (mpol_equal(vma->vm_policy, new_pol)) { | 
 | 		*prev = vma; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	vma =  vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol); | 
 | 	if (IS_ERR(vma)) | 
 | 		return PTR_ERR(vma); | 
 |  | 
 | 	*prev = vma; | 
 | 	return vma_replace_policy(vma, new_pol); | 
 | } | 
 |  | 
 | /* Set the process memory policy */ | 
 | static long do_set_mempolicy(unsigned short mode, unsigned short flags, | 
 | 			     nodemask_t *nodes) | 
 | { | 
 | 	struct mempolicy *new, *old; | 
 | 	NODEMASK_SCRATCH(scratch); | 
 | 	int ret; | 
 |  | 
 | 	if (!scratch) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	new = mpol_new(mode, flags, nodes); | 
 | 	if (IS_ERR(new)) { | 
 | 		ret = PTR_ERR(new); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	task_lock(current); | 
 | 	ret = mpol_set_nodemask(new, nodes, scratch); | 
 | 	if (ret) { | 
 | 		task_unlock(current); | 
 | 		mpol_put(new); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	old = current->mempolicy; | 
 | 	current->mempolicy = new; | 
 | 	if (new && (new->mode == MPOL_INTERLEAVE || | 
 | 		    new->mode == MPOL_WEIGHTED_INTERLEAVE)) { | 
 | 		current->il_prev = MAX_NUMNODES-1; | 
 | 		current->il_weight = 0; | 
 | 	} | 
 | 	task_unlock(current); | 
 | 	mpol_put(old); | 
 | 	ret = 0; | 
 | out: | 
 | 	NODEMASK_SCRATCH_FREE(scratch); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Return nodemask for policy for get_mempolicy() query | 
 |  * | 
 |  * Called with task's alloc_lock held | 
 |  */ | 
 | static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes) | 
 | { | 
 | 	nodes_clear(*nodes); | 
 | 	if (pol == &default_policy) | 
 | 		return; | 
 |  | 
 | 	switch (pol->mode) { | 
 | 	case MPOL_BIND: | 
 | 	case MPOL_INTERLEAVE: | 
 | 	case MPOL_PREFERRED: | 
 | 	case MPOL_PREFERRED_MANY: | 
 | 	case MPOL_WEIGHTED_INTERLEAVE: | 
 | 		*nodes = pol->nodes; | 
 | 		break; | 
 | 	case MPOL_LOCAL: | 
 | 		/* return empty node mask for local allocation */ | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static int lookup_node(struct mm_struct *mm, unsigned long addr) | 
 | { | 
 | 	struct page *p = NULL; | 
 | 	int ret; | 
 |  | 
 | 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); | 
 | 	if (ret > 0) { | 
 | 		ret = page_to_nid(p); | 
 | 		put_page(p); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Retrieve NUMA policy */ | 
 | static long do_get_mempolicy(int *policy, nodemask_t *nmask, | 
 | 			     unsigned long addr, unsigned long flags) | 
 | { | 
 | 	int err; | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct vm_area_struct *vma = NULL; | 
 | 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; | 
 |  | 
 | 	if (flags & | 
 | 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (flags & MPOL_F_MEMS_ALLOWED) { | 
 | 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) | 
 | 			return -EINVAL; | 
 | 		*policy = 0;	/* just so it's initialized */ | 
 | 		task_lock(current); | 
 | 		*nmask  = cpuset_current_mems_allowed; | 
 | 		task_unlock(current); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (flags & MPOL_F_ADDR) { | 
 | 		pgoff_t ilx;		/* ignored here */ | 
 | 		/* | 
 | 		 * Do NOT fall back to task policy if the | 
 | 		 * vma/shared policy at addr is NULL.  We | 
 | 		 * want to return MPOL_DEFAULT in this case. | 
 | 		 */ | 
 | 		mmap_read_lock(mm); | 
 | 		vma = vma_lookup(mm, addr); | 
 | 		if (!vma) { | 
 | 			mmap_read_unlock(mm); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 		pol = __get_vma_policy(vma, addr, &ilx); | 
 | 	} else if (addr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!pol) | 
 | 		pol = &default_policy;	/* indicates default behavior */ | 
 |  | 
 | 	if (flags & MPOL_F_NODE) { | 
 | 		if (flags & MPOL_F_ADDR) { | 
 | 			/* | 
 | 			 * Take a refcount on the mpol, because we are about to | 
 | 			 * drop the mmap_lock, after which only "pol" remains | 
 | 			 * valid, "vma" is stale. | 
 | 			 */ | 
 | 			pol_refcount = pol; | 
 | 			vma = NULL; | 
 | 			mpol_get(pol); | 
 | 			mmap_read_unlock(mm); | 
 | 			err = lookup_node(mm, addr); | 
 | 			if (err < 0) | 
 | 				goto out; | 
 | 			*policy = err; | 
 | 		} else if (pol == current->mempolicy && | 
 | 				pol->mode == MPOL_INTERLEAVE) { | 
 | 			*policy = next_node_in(current->il_prev, pol->nodes); | 
 | 		} else if (pol == current->mempolicy && | 
 | 				pol->mode == MPOL_WEIGHTED_INTERLEAVE) { | 
 | 			if (current->il_weight) | 
 | 				*policy = current->il_prev; | 
 | 			else | 
 | 				*policy = next_node_in(current->il_prev, | 
 | 						       pol->nodes); | 
 | 		} else { | 
 | 			err = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 	} else { | 
 | 		*policy = pol == &default_policy ? MPOL_DEFAULT : | 
 | 						pol->mode; | 
 | 		/* | 
 | 		 * Internal mempolicy flags must be masked off before exposing | 
 | 		 * the policy to userspace. | 
 | 		 */ | 
 | 		*policy |= (pol->flags & MPOL_MODE_FLAGS); | 
 | 	} | 
 |  | 
 | 	err = 0; | 
 | 	if (nmask) { | 
 | 		if (mpol_store_user_nodemask(pol)) { | 
 | 			*nmask = pol->w.user_nodemask; | 
 | 		} else { | 
 | 			task_lock(current); | 
 | 			get_policy_nodemask(pol, nmask); | 
 | 			task_unlock(current); | 
 | 		} | 
 | 	} | 
 |  | 
 |  out: | 
 | 	mpol_cond_put(pol); | 
 | 	if (vma) | 
 | 		mmap_read_unlock(mm); | 
 | 	if (pol_refcount) | 
 | 		mpol_put(pol_refcount); | 
 | 	return err; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MIGRATION | 
 | static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, | 
 | 				unsigned long flags) | 
 | { | 
 | 	/* | 
 | 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio. | 
 | 	 * Choosing not to migrate a shared folio is not counted as a failure. | 
 | 	 * | 
 | 	 * See folio_maybe_mapped_shared() on possible imprecision when we | 
 | 	 * cannot easily detect if a folio is shared. | 
 | 	 */ | 
 | 	if ((flags & MPOL_MF_MOVE_ALL) || !folio_maybe_mapped_shared(folio)) { | 
 | 		if (folio_isolate_lru(folio)) { | 
 | 			list_add_tail(&folio->lru, foliolist); | 
 | 			node_stat_mod_folio(folio, | 
 | 				NR_ISOLATED_ANON + folio_is_file_lru(folio), | 
 | 				folio_nr_pages(folio)); | 
 | 		} else { | 
 | 			/* | 
 | 			 * Non-movable folio may reach here.  And, there may be | 
 | 			 * temporary off LRU folios or non-LRU movable folios. | 
 | 			 * Treat them as unmovable folios since they can't be | 
 | 			 * isolated, so they can't be moved at the moment. | 
 | 			 */ | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Migrate pages from one node to a target node. | 
 |  * Returns error or the number of pages not migrated. | 
 |  */ | 
 | static long migrate_to_node(struct mm_struct *mm, int source, int dest, | 
 | 			    int flags) | 
 | { | 
 | 	nodemask_t nmask; | 
 | 	struct vm_area_struct *vma; | 
 | 	LIST_HEAD(pagelist); | 
 | 	long nr_failed; | 
 | 	long err = 0; | 
 | 	struct migration_target_control mtc = { | 
 | 		.nid = dest, | 
 | 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, | 
 | 		.reason = MR_SYSCALL, | 
 | 	}; | 
 |  | 
 | 	nodes_clear(nmask); | 
 | 	node_set(source, nmask); | 
 |  | 
 | 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); | 
 |  | 
 | 	mmap_read_lock(mm); | 
 | 	vma = find_vma(mm, 0); | 
 | 	if (unlikely(!vma)) { | 
 | 		mmap_read_unlock(mm); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * This does not migrate the range, but isolates all pages that | 
 | 	 * need migration.  Between passing in the full user address | 
 | 	 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail, | 
 | 	 * but passes back the count of pages which could not be isolated. | 
 | 	 */ | 
 | 	nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, | 
 | 				      flags | MPOL_MF_DISCONTIG_OK, &pagelist); | 
 | 	mmap_read_unlock(mm); | 
 |  | 
 | 	if (!list_empty(&pagelist)) { | 
 | 		err = migrate_pages(&pagelist, alloc_migration_target, NULL, | 
 | 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); | 
 | 		if (err) | 
 | 			putback_movable_pages(&pagelist); | 
 | 	} | 
 |  | 
 | 	if (err >= 0) | 
 | 		err += nr_failed; | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Move pages between the two nodesets so as to preserve the physical | 
 |  * layout as much as possible. | 
 |  * | 
 |  * Returns the number of page that could not be moved. | 
 |  */ | 
 | int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, | 
 | 		     const nodemask_t *to, int flags) | 
 | { | 
 | 	long nr_failed = 0; | 
 | 	long err = 0; | 
 | 	nodemask_t tmp; | 
 |  | 
 | 	lru_cache_disable(); | 
 |  | 
 | 	/* | 
 | 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' | 
 | 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source' | 
 | 	 * bit in 'tmp', and return that <source, dest> pair for migration. | 
 | 	 * The pair of nodemasks 'to' and 'from' define the map. | 
 | 	 * | 
 | 	 * If no pair of bits is found that way, fallback to picking some | 
 | 	 * pair of 'source' and 'dest' bits that are not the same.  If the | 
 | 	 * 'source' and 'dest' bits are the same, this represents a node | 
 | 	 * that will be migrating to itself, so no pages need move. | 
 | 	 * | 
 | 	 * If no bits are left in 'tmp', or if all remaining bits left | 
 | 	 * in 'tmp' correspond to the same bit in 'to', return false | 
 | 	 * (nothing left to migrate). | 
 | 	 * | 
 | 	 * This lets us pick a pair of nodes to migrate between, such that | 
 | 	 * if possible the dest node is not already occupied by some other | 
 | 	 * source node, minimizing the risk of overloading the memory on a | 
 | 	 * node that would happen if we migrated incoming memory to a node | 
 | 	 * before migrating outgoing memory source that same node. | 
 | 	 * | 
 | 	 * A single scan of tmp is sufficient.  As we go, we remember the | 
 | 	 * most recent <s, d> pair that moved (s != d).  If we find a pair | 
 | 	 * that not only moved, but what's better, moved to an empty slot | 
 | 	 * (d is not set in tmp), then we break out then, with that pair. | 
 | 	 * Otherwise when we finish scanning from_tmp, we at least have the | 
 | 	 * most recent <s, d> pair that moved.  If we get all the way through | 
 | 	 * the scan of tmp without finding any node that moved, much less | 
 | 	 * moved to an empty node, then there is nothing left worth migrating. | 
 | 	 */ | 
 |  | 
 | 	tmp = *from; | 
 | 	while (!nodes_empty(tmp)) { | 
 | 		int s, d; | 
 | 		int source = NUMA_NO_NODE; | 
 | 		int dest = 0; | 
 |  | 
 | 		for_each_node_mask(s, tmp) { | 
 |  | 
 | 			/* | 
 | 			 * do_migrate_pages() tries to maintain the relative | 
 | 			 * node relationship of the pages established between | 
 | 			 * threads and memory areas. | 
 |                          * | 
 | 			 * However if the number of source nodes is not equal to | 
 | 			 * the number of destination nodes we can not preserve | 
 | 			 * this node relative relationship.  In that case, skip | 
 | 			 * copying memory from a node that is in the destination | 
 | 			 * mask. | 
 | 			 * | 
 | 			 * Example: [2,3,4] -> [3,4,5] moves everything. | 
 | 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7. | 
 | 			 */ | 
 |  | 
 | 			if ((nodes_weight(*from) != nodes_weight(*to)) && | 
 | 						(node_isset(s, *to))) | 
 | 				continue; | 
 |  | 
 | 			d = node_remap(s, *from, *to); | 
 | 			if (s == d) | 
 | 				continue; | 
 |  | 
 | 			source = s;	/* Node moved. Memorize */ | 
 | 			dest = d; | 
 |  | 
 | 			/* dest not in remaining from nodes? */ | 
 | 			if (!node_isset(dest, tmp)) | 
 | 				break; | 
 | 		} | 
 | 		if (source == NUMA_NO_NODE) | 
 | 			break; | 
 |  | 
 | 		node_clear(source, tmp); | 
 | 		err = migrate_to_node(mm, source, dest, flags); | 
 | 		if (err > 0) | 
 | 			nr_failed += err; | 
 | 		if (err < 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	lru_cache_enable(); | 
 | 	if (err < 0) | 
 | 		return err; | 
 | 	return (nr_failed < INT_MAX) ? nr_failed : INT_MAX; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a new folio for page migration, according to NUMA mempolicy. | 
 |  */ | 
 | static struct folio *alloc_migration_target_by_mpol(struct folio *src, | 
 | 						    unsigned long private) | 
 | { | 
 | 	struct migration_mpol *mmpol = (struct migration_mpol *)private; | 
 | 	struct mempolicy *pol = mmpol->pol; | 
 | 	pgoff_t ilx = mmpol->ilx; | 
 | 	unsigned int order; | 
 | 	int nid = numa_node_id(); | 
 | 	gfp_t gfp; | 
 |  | 
 | 	order = folio_order(src); | 
 | 	ilx += src->index >> order; | 
 |  | 
 | 	if (folio_test_hugetlb(src)) { | 
 | 		nodemask_t *nodemask; | 
 | 		struct hstate *h; | 
 |  | 
 | 		h = folio_hstate(src); | 
 | 		gfp = htlb_alloc_mask(h); | 
 | 		nodemask = policy_nodemask(gfp, pol, ilx, &nid); | 
 | 		return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp, | 
 | 				htlb_allow_alloc_fallback(MR_MEMPOLICY_MBIND)); | 
 | 	} | 
 |  | 
 | 	if (folio_test_large(src)) | 
 | 		gfp = GFP_TRANSHUGE; | 
 | 	else | 
 | 		gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP; | 
 |  | 
 | 	return folio_alloc_mpol(gfp, order, pol, ilx, nid); | 
 | } | 
 | #else | 
 |  | 
 | static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, | 
 | 				unsigned long flags) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, | 
 | 		     const nodemask_t *to, int flags) | 
 | { | 
 | 	return -ENOSYS; | 
 | } | 
 |  | 
 | static struct folio *alloc_migration_target_by_mpol(struct folio *src, | 
 | 						    unsigned long private) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif | 
 |  | 
 | static long do_mbind(unsigned long start, unsigned long len, | 
 | 		     unsigned short mode, unsigned short mode_flags, | 
 | 		     nodemask_t *nmask, unsigned long flags) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct vm_area_struct *vma, *prev; | 
 | 	struct vma_iterator vmi; | 
 | 	struct migration_mpol mmpol; | 
 | 	struct mempolicy *new; | 
 | 	unsigned long end; | 
 | 	long err; | 
 | 	long nr_failed; | 
 | 	LIST_HEAD(pagelist); | 
 |  | 
 | 	if (flags & ~(unsigned long)MPOL_MF_VALID) | 
 | 		return -EINVAL; | 
 | 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (start & ~PAGE_MASK) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (mode == MPOL_DEFAULT) | 
 | 		flags &= ~MPOL_MF_STRICT; | 
 |  | 
 | 	len = PAGE_ALIGN(len); | 
 | 	end = start + len; | 
 |  | 
 | 	if (end < start) | 
 | 		return -EINVAL; | 
 | 	if (end == start) | 
 | 		return 0; | 
 |  | 
 | 	new = mpol_new(mode, mode_flags, nmask); | 
 | 	if (IS_ERR(new)) | 
 | 		return PTR_ERR(new); | 
 |  | 
 | 	/* | 
 | 	 * If we are using the default policy then operation | 
 | 	 * on discontinuous address spaces is okay after all | 
 | 	 */ | 
 | 	if (!new) | 
 | 		flags |= MPOL_MF_DISCONTIG_OK; | 
 |  | 
 | 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) | 
 | 		lru_cache_disable(); | 
 | 	{ | 
 | 		NODEMASK_SCRATCH(scratch); | 
 | 		if (scratch) { | 
 | 			mmap_write_lock(mm); | 
 | 			err = mpol_set_nodemask(new, nmask, scratch); | 
 | 			if (err) | 
 | 				mmap_write_unlock(mm); | 
 | 		} else | 
 | 			err = -ENOMEM; | 
 | 		NODEMASK_SCRATCH_FREE(scratch); | 
 | 	} | 
 | 	if (err) | 
 | 		goto mpol_out; | 
 |  | 
 | 	/* | 
 | 	 * Lock the VMAs before scanning for pages to migrate, | 
 | 	 * to ensure we don't miss a concurrently inserted page. | 
 | 	 */ | 
 | 	nr_failed = queue_pages_range(mm, start, end, nmask, | 
 | 			flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist); | 
 |  | 
 | 	if (nr_failed < 0) { | 
 | 		err = nr_failed; | 
 | 		nr_failed = 0; | 
 | 	} else { | 
 | 		vma_iter_init(&vmi, mm, start); | 
 | 		prev = vma_prev(&vmi); | 
 | 		for_each_vma_range(vmi, vma, end) { | 
 | 			err = mbind_range(&vmi, vma, &prev, start, end, new); | 
 | 			if (err) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!err && !list_empty(&pagelist)) { | 
 | 		/* Convert MPOL_DEFAULT's NULL to task or default policy */ | 
 | 		if (!new) { | 
 | 			new = get_task_policy(current); | 
 | 			mpol_get(new); | 
 | 		} | 
 | 		mmpol.pol = new; | 
 | 		mmpol.ilx = 0; | 
 |  | 
 | 		/* | 
 | 		 * In the interleaved case, attempt to allocate on exactly the | 
 | 		 * targeted nodes, for the first VMA to be migrated; for later | 
 | 		 * VMAs, the nodes will still be interleaved from the targeted | 
 | 		 * nodemask, but one by one may be selected differently. | 
 | 		 */ | 
 | 		if (new->mode == MPOL_INTERLEAVE || | 
 | 		    new->mode == MPOL_WEIGHTED_INTERLEAVE) { | 
 | 			struct folio *folio; | 
 | 			unsigned int order; | 
 | 			unsigned long addr = -EFAULT; | 
 |  | 
 | 			list_for_each_entry(folio, &pagelist, lru) { | 
 | 				if (!folio_test_ksm(folio)) | 
 | 					break; | 
 | 			} | 
 | 			if (!list_entry_is_head(folio, &pagelist, lru)) { | 
 | 				vma_iter_init(&vmi, mm, start); | 
 | 				for_each_vma_range(vmi, vma, end) { | 
 | 					addr = page_address_in_vma(folio, | 
 | 						folio_page(folio, 0), vma); | 
 | 					if (addr != -EFAULT) | 
 | 						break; | 
 | 				} | 
 | 			} | 
 | 			if (addr != -EFAULT) { | 
 | 				order = folio_order(folio); | 
 | 				/* We already know the pol, but not the ilx */ | 
 | 				mpol_cond_put(get_vma_policy(vma, addr, order, | 
 | 							     &mmpol.ilx)); | 
 | 				/* Set base from which to increment by index */ | 
 | 				mmpol.ilx -= folio->index >> order; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mmap_write_unlock(mm); | 
 |  | 
 | 	if (!err && !list_empty(&pagelist)) { | 
 | 		nr_failed |= migrate_pages(&pagelist, | 
 | 				alloc_migration_target_by_mpol, NULL, | 
 | 				(unsigned long)&mmpol, MIGRATE_SYNC, | 
 | 				MR_MEMPOLICY_MBIND, NULL); | 
 | 	} | 
 |  | 
 | 	if (nr_failed && (flags & MPOL_MF_STRICT)) | 
 | 		err = -EIO; | 
 | 	if (!list_empty(&pagelist)) | 
 | 		putback_movable_pages(&pagelist); | 
 | mpol_out: | 
 | 	mpol_put(new); | 
 | 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) | 
 | 		lru_cache_enable(); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * User space interface with variable sized bitmaps for nodelists. | 
 |  */ | 
 | static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, | 
 | 		      unsigned long maxnode) | 
 | { | 
 | 	unsigned long nlongs = BITS_TO_LONGS(maxnode); | 
 | 	int ret; | 
 |  | 
 | 	if (in_compat_syscall()) | 
 | 		ret = compat_get_bitmap(mask, | 
 | 					(const compat_ulong_t __user *)nmask, | 
 | 					maxnode); | 
 | 	else | 
 | 		ret = copy_from_user(mask, nmask, | 
 | 				     nlongs * sizeof(unsigned long)); | 
 |  | 
 | 	if (ret) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (maxnode % BITS_PER_LONG) | 
 | 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Copy a node mask from user space. */ | 
 | static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, | 
 | 		     unsigned long maxnode) | 
 | { | 
 | 	--maxnode; | 
 | 	nodes_clear(*nodes); | 
 | 	if (maxnode == 0 || !nmask) | 
 | 		return 0; | 
 | 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * When the user specified more nodes than supported just check | 
 | 	 * if the non supported part is all zero, one word at a time, | 
 | 	 * starting at the end. | 
 | 	 */ | 
 | 	while (maxnode > MAX_NUMNODES) { | 
 | 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); | 
 | 		unsigned long t; | 
 |  | 
 | 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) | 
 | 			return -EFAULT; | 
 |  | 
 | 		if (maxnode - bits >= MAX_NUMNODES) { | 
 | 			maxnode -= bits; | 
 | 		} else { | 
 | 			maxnode = MAX_NUMNODES; | 
 | 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); | 
 | 		} | 
 | 		if (t) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode); | 
 | } | 
 |  | 
 | /* Copy a kernel node mask to user space */ | 
 | static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, | 
 | 			      nodemask_t *nodes) | 
 | { | 
 | 	unsigned long copy = ALIGN(maxnode-1, 64) / 8; | 
 | 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); | 
 | 	bool compat = in_compat_syscall(); | 
 |  | 
 | 	if (compat) | 
 | 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); | 
 |  | 
 | 	if (copy > nbytes) { | 
 | 		if (copy > PAGE_SIZE) | 
 | 			return -EINVAL; | 
 | 		if (clear_user((char __user *)mask + nbytes, copy - nbytes)) | 
 | 			return -EFAULT; | 
 | 		copy = nbytes; | 
 | 		maxnode = nr_node_ids; | 
 | 	} | 
 |  | 
 | 	if (compat) | 
 | 		return compat_put_bitmap((compat_ulong_t __user *)mask, | 
 | 					 nodes_addr(*nodes), maxnode); | 
 |  | 
 | 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; | 
 | } | 
 |  | 
 | /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ | 
 | static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) | 
 | { | 
 | 	*flags = *mode & MPOL_MODE_FLAGS; | 
 | 	*mode &= ~MPOL_MODE_FLAGS; | 
 |  | 
 | 	if ((unsigned int)(*mode) >=  MPOL_MAX) | 
 | 		return -EINVAL; | 
 | 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) | 
 | 		return -EINVAL; | 
 | 	if (*flags & MPOL_F_NUMA_BALANCING) { | 
 | 		if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY) | 
 | 			*flags |= (MPOL_F_MOF | MPOL_F_MORON); | 
 | 		else | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static long kernel_mbind(unsigned long start, unsigned long len, | 
 | 			 unsigned long mode, const unsigned long __user *nmask, | 
 | 			 unsigned long maxnode, unsigned int flags) | 
 | { | 
 | 	unsigned short mode_flags; | 
 | 	nodemask_t nodes; | 
 | 	int lmode = mode; | 
 | 	int err; | 
 |  | 
 | 	start = untagged_addr(start); | 
 | 	err = sanitize_mpol_flags(&lmode, &mode_flags); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = get_nodes(&nodes, nmask, maxnode); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags); | 
 | } | 
 |  | 
 | SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, | 
 | 		unsigned long, home_node, unsigned long, flags) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct vm_area_struct *vma, *prev; | 
 | 	struct mempolicy *new, *old; | 
 | 	unsigned long end; | 
 | 	int err = -ENOENT; | 
 | 	VMA_ITERATOR(vmi, mm, start); | 
 |  | 
 | 	start = untagged_addr(start); | 
 | 	if (start & ~PAGE_MASK) | 
 | 		return -EINVAL; | 
 | 	/* | 
 | 	 * flags is used for future extension if any. | 
 | 	 */ | 
 | 	if (flags != 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Check home_node is online to avoid accessing uninitialized | 
 | 	 * NODE_DATA. | 
 | 	 */ | 
 | 	if (home_node >= MAX_NUMNODES || !node_online(home_node)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	len = PAGE_ALIGN(len); | 
 | 	end = start + len; | 
 |  | 
 | 	if (end < start) | 
 | 		return -EINVAL; | 
 | 	if (end == start) | 
 | 		return 0; | 
 | 	mmap_write_lock(mm); | 
 | 	prev = vma_prev(&vmi); | 
 | 	for_each_vma_range(vmi, vma, end) { | 
 | 		/* | 
 | 		 * If any vma in the range got policy other than MPOL_BIND | 
 | 		 * or MPOL_PREFERRED_MANY we return error. We don't reset | 
 | 		 * the home node for vmas we already updated before. | 
 | 		 */ | 
 | 		old = vma_policy(vma); | 
 | 		if (!old) { | 
 | 			prev = vma; | 
 | 			continue; | 
 | 		} | 
 | 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { | 
 | 			err = -EOPNOTSUPP; | 
 | 			break; | 
 | 		} | 
 | 		new = mpol_dup(old); | 
 | 		if (IS_ERR(new)) { | 
 | 			err = PTR_ERR(new); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		vma_start_write(vma); | 
 | 		new->home_node = home_node; | 
 | 		err = mbind_range(&vmi, vma, &prev, start, end, new); | 
 | 		mpol_put(new); | 
 | 		if (err) | 
 | 			break; | 
 | 	} | 
 | 	mmap_write_unlock(mm); | 
 | 	return err; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, | 
 | 		unsigned long, mode, const unsigned long __user *, nmask, | 
 | 		unsigned long, maxnode, unsigned int, flags) | 
 | { | 
 | 	return kernel_mbind(start, len, mode, nmask, maxnode, flags); | 
 | } | 
 |  | 
 | /* Set the process memory policy */ | 
 | static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, | 
 | 				 unsigned long maxnode) | 
 | { | 
 | 	unsigned short mode_flags; | 
 | 	nodemask_t nodes; | 
 | 	int lmode = mode; | 
 | 	int err; | 
 |  | 
 | 	err = sanitize_mpol_flags(&lmode, &mode_flags); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = get_nodes(&nodes, nmask, maxnode); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return do_set_mempolicy(lmode, mode_flags, &nodes); | 
 | } | 
 |  | 
 | SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, | 
 | 		unsigned long, maxnode) | 
 | { | 
 | 	return kernel_set_mempolicy(mode, nmask, maxnode); | 
 | } | 
 |  | 
 | static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, | 
 | 				const unsigned long __user *old_nodes, | 
 | 				const unsigned long __user *new_nodes) | 
 | { | 
 | 	struct mm_struct *mm = NULL; | 
 | 	struct task_struct *task; | 
 | 	nodemask_t task_nodes; | 
 | 	int err; | 
 | 	nodemask_t *old; | 
 | 	nodemask_t *new; | 
 | 	NODEMASK_SCRATCH(scratch); | 
 |  | 
 | 	if (!scratch) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	old = &scratch->mask1; | 
 | 	new = &scratch->mask2; | 
 |  | 
 | 	err = get_nodes(old, old_nodes, maxnode); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	err = get_nodes(new, new_nodes, maxnode); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* Find the mm_struct */ | 
 | 	rcu_read_lock(); | 
 | 	task = pid ? find_task_by_vpid(pid) : current; | 
 | 	if (!task) { | 
 | 		rcu_read_unlock(); | 
 | 		err = -ESRCH; | 
 | 		goto out; | 
 | 	} | 
 | 	get_task_struct(task); | 
 |  | 
 | 	err = -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Check if this process has the right to modify the specified process. | 
 | 	 * Use the regular "ptrace_may_access()" checks. | 
 | 	 */ | 
 | 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { | 
 | 		rcu_read_unlock(); | 
 | 		err = -EPERM; | 
 | 		goto out_put; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	task_nodes = cpuset_mems_allowed(task); | 
 | 	/* Is the user allowed to access the target nodes? */ | 
 | 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { | 
 | 		err = -EPERM; | 
 | 		goto out_put; | 
 | 	} | 
 |  | 
 | 	task_nodes = cpuset_mems_allowed(current); | 
 | 	nodes_and(*new, *new, task_nodes); | 
 | 	if (nodes_empty(*new)) | 
 | 		goto out_put; | 
 |  | 
 | 	err = security_task_movememory(task); | 
 | 	if (err) | 
 | 		goto out_put; | 
 |  | 
 | 	mm = get_task_mm(task); | 
 | 	put_task_struct(task); | 
 |  | 
 | 	if (!mm) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = do_migrate_pages(mm, old, new, | 
 | 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); | 
 |  | 
 | 	mmput(mm); | 
 | out: | 
 | 	NODEMASK_SCRATCH_FREE(scratch); | 
 |  | 
 | 	return err; | 
 |  | 
 | out_put: | 
 | 	put_task_struct(task); | 
 | 	goto out; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, | 
 | 		const unsigned long __user *, old_nodes, | 
 | 		const unsigned long __user *, new_nodes) | 
 | { | 
 | 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); | 
 | } | 
 |  | 
 | /* Retrieve NUMA policy */ | 
 | static int kernel_get_mempolicy(int __user *policy, | 
 | 				unsigned long __user *nmask, | 
 | 				unsigned long maxnode, | 
 | 				unsigned long addr, | 
 | 				unsigned long flags) | 
 | { | 
 | 	int err; | 
 | 	int pval; | 
 | 	nodemask_t nodes; | 
 |  | 
 | 	if (nmask != NULL && maxnode < nr_node_ids) | 
 | 		return -EINVAL; | 
 |  | 
 | 	addr = untagged_addr(addr); | 
 |  | 
 | 	err = do_get_mempolicy(&pval, &nodes, addr, flags); | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (policy && put_user(pval, policy)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (nmask) | 
 | 		err = copy_nodes_to_user(nmask, maxnode, &nodes); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, | 
 | 		unsigned long __user *, nmask, unsigned long, maxnode, | 
 | 		unsigned long, addr, unsigned long, flags) | 
 | { | 
 | 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); | 
 | } | 
 |  | 
 | bool vma_migratable(struct vm_area_struct *vma) | 
 | { | 
 | 	if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * DAX device mappings require predictable access latency, so avoid | 
 | 	 * incurring periodic faults. | 
 | 	 */ | 
 | 	if (vma_is_dax(vma)) | 
 | 		return false; | 
 |  | 
 | 	if (is_vm_hugetlb_page(vma) && | 
 | 		!hugepage_migration_supported(hstate_vma(vma))) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Migration allocates pages in the highest zone. If we cannot | 
 | 	 * do so then migration (at least from node to node) is not | 
 | 	 * possible. | 
 | 	 */ | 
 | 	if (vma->vm_file && | 
 | 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) | 
 | 			< policy_zone) | 
 | 		return false; | 
 | 	return true; | 
 | } | 
 |  | 
 | struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, | 
 | 				   unsigned long addr, pgoff_t *ilx) | 
 | { | 
 | 	*ilx = 0; | 
 | 	return (vma->vm_ops && vma->vm_ops->get_policy) ? | 
 | 		vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy; | 
 | } | 
 |  | 
 | /* | 
 |  * get_vma_policy(@vma, @addr, @order, @ilx) | 
 |  * @vma: virtual memory area whose policy is sought | 
 |  * @addr: address in @vma for shared policy lookup | 
 |  * @order: 0, or appropriate huge_page_order for interleaving | 
 |  * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or | 
 |  *       MPOL_WEIGHTED_INTERLEAVE | 
 |  * | 
 |  * Returns effective policy for a VMA at specified address. | 
 |  * Falls back to current->mempolicy or system default policy, as necessary. | 
 |  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference | 
 |  * count--added by the get_policy() vm_op, as appropriate--to protect against | 
 |  * freeing by another task.  It is the caller's responsibility to free the | 
 |  * extra reference for shared policies. | 
 |  */ | 
 | struct mempolicy *get_vma_policy(struct vm_area_struct *vma, | 
 | 				 unsigned long addr, int order, pgoff_t *ilx) | 
 | { | 
 | 	struct mempolicy *pol; | 
 |  | 
 | 	pol = __get_vma_policy(vma, addr, ilx); | 
 | 	if (!pol) | 
 | 		pol = get_task_policy(current); | 
 | 	if (pol->mode == MPOL_INTERLEAVE || | 
 | 	    pol->mode == MPOL_WEIGHTED_INTERLEAVE) { | 
 | 		*ilx += vma->vm_pgoff >> order; | 
 | 		*ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order); | 
 | 	} | 
 | 	return pol; | 
 | } | 
 |  | 
 | bool vma_policy_mof(struct vm_area_struct *vma) | 
 | { | 
 | 	struct mempolicy *pol; | 
 |  | 
 | 	if (vma->vm_ops && vma->vm_ops->get_policy) { | 
 | 		bool ret = false; | 
 | 		pgoff_t ilx;		/* ignored here */ | 
 |  | 
 | 		pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx); | 
 | 		if (pol && (pol->flags & MPOL_F_MOF)) | 
 | 			ret = true; | 
 | 		mpol_cond_put(pol); | 
 |  | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	pol = vma->vm_policy; | 
 | 	if (!pol) | 
 | 		pol = get_task_policy(current); | 
 |  | 
 | 	return pol->flags & MPOL_F_MOF; | 
 | } | 
 |  | 
 | bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) | 
 | { | 
 | 	enum zone_type dynamic_policy_zone = policy_zone; | 
 |  | 
 | 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); | 
 |  | 
 | 	/* | 
 | 	 * if policy->nodes has movable memory only, | 
 | 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. | 
 | 	 * | 
 | 	 * policy->nodes is intersect with node_states[N_MEMORY]. | 
 | 	 * so if the following test fails, it implies | 
 | 	 * policy->nodes has movable memory only. | 
 | 	 */ | 
 | 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) | 
 | 		dynamic_policy_zone = ZONE_MOVABLE; | 
 |  | 
 | 	return zone >= dynamic_policy_zone; | 
 | } | 
 |  | 
 | static unsigned int weighted_interleave_nodes(struct mempolicy *policy) | 
 | { | 
 | 	unsigned int node; | 
 | 	unsigned int cpuset_mems_cookie; | 
 |  | 
 | retry: | 
 | 	/* to prevent miscount use tsk->mems_allowed_seq to detect rebind */ | 
 | 	cpuset_mems_cookie = read_mems_allowed_begin(); | 
 | 	node = current->il_prev; | 
 | 	if (!current->il_weight || !node_isset(node, policy->nodes)) { | 
 | 		node = next_node_in(node, policy->nodes); | 
 | 		if (read_mems_allowed_retry(cpuset_mems_cookie)) | 
 | 			goto retry; | 
 | 		if (node == MAX_NUMNODES) | 
 | 			return node; | 
 | 		current->il_prev = node; | 
 | 		current->il_weight = get_il_weight(node); | 
 | 	} | 
 | 	current->il_weight--; | 
 | 	return node; | 
 | } | 
 |  | 
 | /* Do dynamic interleaving for a process */ | 
 | static unsigned int interleave_nodes(struct mempolicy *policy) | 
 | { | 
 | 	unsigned int nid; | 
 | 	unsigned int cpuset_mems_cookie; | 
 |  | 
 | 	/* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */ | 
 | 	do { | 
 | 		cpuset_mems_cookie = read_mems_allowed_begin(); | 
 | 		nid = next_node_in(current->il_prev, policy->nodes); | 
 | 	} while (read_mems_allowed_retry(cpuset_mems_cookie)); | 
 |  | 
 | 	if (nid < MAX_NUMNODES) | 
 | 		current->il_prev = nid; | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * Depending on the memory policy provide a node from which to allocate the | 
 |  * next slab entry. | 
 |  */ | 
 | unsigned int mempolicy_slab_node(void) | 
 | { | 
 | 	struct mempolicy *policy; | 
 | 	int node = numa_mem_id(); | 
 |  | 
 | 	if (!in_task()) | 
 | 		return node; | 
 |  | 
 | 	policy = current->mempolicy; | 
 | 	if (!policy) | 
 | 		return node; | 
 |  | 
 | 	switch (policy->mode) { | 
 | 	case MPOL_PREFERRED: | 
 | 		return first_node(policy->nodes); | 
 |  | 
 | 	case MPOL_INTERLEAVE: | 
 | 		return interleave_nodes(policy); | 
 |  | 
 | 	case MPOL_WEIGHTED_INTERLEAVE: | 
 | 		return weighted_interleave_nodes(policy); | 
 |  | 
 | 	case MPOL_BIND: | 
 | 	case MPOL_PREFERRED_MANY: | 
 | 	{ | 
 | 		struct zoneref *z; | 
 |  | 
 | 		/* | 
 | 		 * Follow bind policy behavior and start allocation at the | 
 | 		 * first node. | 
 | 		 */ | 
 | 		struct zonelist *zonelist; | 
 | 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); | 
 | 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; | 
 | 		z = first_zones_zonelist(zonelist, highest_zoneidx, | 
 | 							&policy->nodes); | 
 | 		return zonelist_zone(z) ? zonelist_node_idx(z) : node; | 
 | 	} | 
 | 	case MPOL_LOCAL: | 
 | 		return node; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned int read_once_policy_nodemask(struct mempolicy *pol, | 
 | 					      nodemask_t *mask) | 
 | { | 
 | 	/* | 
 | 	 * barrier stabilizes the nodemask locally so that it can be iterated | 
 | 	 * over safely without concern for changes. Allocators validate node | 
 | 	 * selection does not violate mems_allowed, so this is safe. | 
 | 	 */ | 
 | 	barrier(); | 
 | 	memcpy(mask, &pol->nodes, sizeof(nodemask_t)); | 
 | 	barrier(); | 
 | 	return nodes_weight(*mask); | 
 | } | 
 |  | 
 | static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx) | 
 | { | 
 | 	struct weighted_interleave_state *state; | 
 | 	nodemask_t nodemask; | 
 | 	unsigned int target, nr_nodes; | 
 | 	u8 *table = NULL; | 
 | 	unsigned int weight_total = 0; | 
 | 	u8 weight; | 
 | 	int nid = 0; | 
 |  | 
 | 	nr_nodes = read_once_policy_nodemask(pol, &nodemask); | 
 | 	if (!nr_nodes) | 
 | 		return numa_node_id(); | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	state = rcu_dereference(wi_state); | 
 | 	/* Uninitialized wi_state means we should assume all weights are 1 */ | 
 | 	if (state) | 
 | 		table = state->iw_table; | 
 |  | 
 | 	/* calculate the total weight */ | 
 | 	for_each_node_mask(nid, nodemask) | 
 | 		weight_total += table ? table[nid] : 1; | 
 |  | 
 | 	/* Calculate the node offset based on totals */ | 
 | 	target = ilx % weight_total; | 
 | 	nid = first_node(nodemask); | 
 | 	while (target) { | 
 | 		/* detect system default usage */ | 
 | 		weight = table ? table[nid] : 1; | 
 | 		if (target < weight) | 
 | 			break; | 
 | 		target -= weight; | 
 | 		nid = next_node_in(nid, nodemask); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * Do static interleaving for interleave index @ilx.  Returns the ilx'th | 
 |  * node in pol->nodes (starting from ilx=0), wrapping around if ilx | 
 |  * exceeds the number of present nodes. | 
 |  */ | 
 | static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx) | 
 | { | 
 | 	nodemask_t nodemask; | 
 | 	unsigned int target, nnodes; | 
 | 	int i; | 
 | 	int nid; | 
 |  | 
 | 	nnodes = read_once_policy_nodemask(pol, &nodemask); | 
 | 	if (!nnodes) | 
 | 		return numa_node_id(); | 
 | 	target = ilx % nnodes; | 
 | 	nid = first_node(nodemask); | 
 | 	for (i = 0; i < target; i++) | 
 | 		nid = next_node(nid, nodemask); | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * Return a nodemask representing a mempolicy for filtering nodes for | 
 |  * page allocation, together with preferred node id (or the input node id). | 
 |  */ | 
 | static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol, | 
 | 				   pgoff_t ilx, int *nid) | 
 | { | 
 | 	nodemask_t *nodemask = NULL; | 
 |  | 
 | 	switch (pol->mode) { | 
 | 	case MPOL_PREFERRED: | 
 | 		/* Override input node id */ | 
 | 		*nid = first_node(pol->nodes); | 
 | 		break; | 
 | 	case MPOL_PREFERRED_MANY: | 
 | 		nodemask = &pol->nodes; | 
 | 		if (pol->home_node != NUMA_NO_NODE) | 
 | 			*nid = pol->home_node; | 
 | 		break; | 
 | 	case MPOL_BIND: | 
 | 		/* Restrict to nodemask (but not on lower zones) */ | 
 | 		if (apply_policy_zone(pol, gfp_zone(gfp)) && | 
 | 		    cpuset_nodemask_valid_mems_allowed(&pol->nodes)) | 
 | 			nodemask = &pol->nodes; | 
 | 		if (pol->home_node != NUMA_NO_NODE) | 
 | 			*nid = pol->home_node; | 
 | 		/* | 
 | 		 * __GFP_THISNODE shouldn't even be used with the bind policy | 
 | 		 * because we might easily break the expectation to stay on the | 
 | 		 * requested node and not break the policy. | 
 | 		 */ | 
 | 		WARN_ON_ONCE(gfp & __GFP_THISNODE); | 
 | 		break; | 
 | 	case MPOL_INTERLEAVE: | 
 | 		/* Override input node id */ | 
 | 		*nid = (ilx == NO_INTERLEAVE_INDEX) ? | 
 | 			interleave_nodes(pol) : interleave_nid(pol, ilx); | 
 | 		break; | 
 | 	case MPOL_WEIGHTED_INTERLEAVE: | 
 | 		*nid = (ilx == NO_INTERLEAVE_INDEX) ? | 
 | 			weighted_interleave_nodes(pol) : | 
 | 			weighted_interleave_nid(pol, ilx); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return nodemask; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HUGETLBFS | 
 | /* | 
 |  * huge_node(@vma, @addr, @gfp_flags, @mpol) | 
 |  * @vma: virtual memory area whose policy is sought | 
 |  * @addr: address in @vma for shared policy lookup and interleave policy | 
 |  * @gfp_flags: for requested zone | 
 |  * @mpol: pointer to mempolicy pointer for reference counted mempolicy | 
 |  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy | 
 |  * | 
 |  * Returns a nid suitable for a huge page allocation and a pointer | 
 |  * to the struct mempolicy for conditional unref after allocation. | 
 |  * If the effective policy is 'bind' or 'prefer-many', returns a pointer | 
 |  * to the mempolicy's @nodemask for filtering the zonelist. | 
 |  */ | 
 | int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, | 
 | 		struct mempolicy **mpol, nodemask_t **nodemask) | 
 | { | 
 | 	pgoff_t ilx; | 
 | 	int nid; | 
 |  | 
 | 	nid = numa_node_id(); | 
 | 	*mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx); | 
 | 	*nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid); | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * init_nodemask_of_mempolicy | 
 |  * | 
 |  * If the current task's mempolicy is "default" [NULL], return 'false' | 
 |  * to indicate default policy.  Otherwise, extract the policy nodemask | 
 |  * for 'bind' or 'interleave' policy into the argument nodemask, or | 
 |  * initialize the argument nodemask to contain the single node for | 
 |  * 'preferred' or 'local' policy and return 'true' to indicate presence | 
 |  * of non-default mempolicy. | 
 |  * | 
 |  * We don't bother with reference counting the mempolicy [mpol_get/put] | 
 |  * because the current task is examining it's own mempolicy and a task's | 
 |  * mempolicy is only ever changed by the task itself. | 
 |  * | 
 |  * N.B., it is the caller's responsibility to free a returned nodemask. | 
 |  */ | 
 | bool init_nodemask_of_mempolicy(nodemask_t *mask) | 
 | { | 
 | 	struct mempolicy *mempolicy; | 
 |  | 
 | 	if (!(mask && current->mempolicy)) | 
 | 		return false; | 
 |  | 
 | 	task_lock(current); | 
 | 	mempolicy = current->mempolicy; | 
 | 	switch (mempolicy->mode) { | 
 | 	case MPOL_PREFERRED: | 
 | 	case MPOL_PREFERRED_MANY: | 
 | 	case MPOL_BIND: | 
 | 	case MPOL_INTERLEAVE: | 
 | 	case MPOL_WEIGHTED_INTERLEAVE: | 
 | 		*mask = mempolicy->nodes; | 
 | 		break; | 
 |  | 
 | 	case MPOL_LOCAL: | 
 | 		init_nodemask_of_node(mask, numa_node_id()); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	task_unlock(current); | 
 |  | 
 | 	return true; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * mempolicy_in_oom_domain | 
 |  * | 
 |  * If tsk's mempolicy is "bind", check for intersection between mask and | 
 |  * the policy nodemask. Otherwise, return true for all other policies | 
 |  * including "interleave", as a tsk with "interleave" policy may have | 
 |  * memory allocated from all nodes in system. | 
 |  * | 
 |  * Takes task_lock(tsk) to prevent freeing of its mempolicy. | 
 |  */ | 
 | bool mempolicy_in_oom_domain(struct task_struct *tsk, | 
 | 					const nodemask_t *mask) | 
 | { | 
 | 	struct mempolicy *mempolicy; | 
 | 	bool ret = true; | 
 |  | 
 | 	if (!mask) | 
 | 		return ret; | 
 |  | 
 | 	task_lock(tsk); | 
 | 	mempolicy = tsk->mempolicy; | 
 | 	if (mempolicy && mempolicy->mode == MPOL_BIND) | 
 | 		ret = nodes_intersects(mempolicy->nodes, *mask); | 
 | 	task_unlock(tsk); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, | 
 | 						int nid, nodemask_t *nodemask) | 
 | { | 
 | 	struct page *page; | 
 | 	gfp_t preferred_gfp; | 
 |  | 
 | 	/* | 
 | 	 * This is a two pass approach. The first pass will only try the | 
 | 	 * preferred nodes but skip the direct reclaim and allow the | 
 | 	 * allocation to fail, while the second pass will try all the | 
 | 	 * nodes in system. | 
 | 	 */ | 
 | 	preferred_gfp = gfp | __GFP_NOWARN; | 
 | 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); | 
 | 	page = __alloc_frozen_pages_noprof(preferred_gfp, order, nid, nodemask); | 
 | 	if (!page) | 
 | 		page = __alloc_frozen_pages_noprof(gfp, order, nid, NULL); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /** | 
 |  * alloc_pages_mpol - Allocate pages according to NUMA mempolicy. | 
 |  * @gfp: GFP flags. | 
 |  * @order: Order of the page allocation. | 
 |  * @pol: Pointer to the NUMA mempolicy. | 
 |  * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()). | 
 |  * @nid: Preferred node (usually numa_node_id() but @mpol may override it). | 
 |  * | 
 |  * Return: The page on success or NULL if allocation fails. | 
 |  */ | 
 | static struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order, | 
 | 		struct mempolicy *pol, pgoff_t ilx, int nid) | 
 | { | 
 | 	nodemask_t *nodemask; | 
 | 	struct page *page; | 
 |  | 
 | 	nodemask = policy_nodemask(gfp, pol, ilx, &nid); | 
 |  | 
 | 	if (pol->mode == MPOL_PREFERRED_MANY) | 
 | 		return alloc_pages_preferred_many(gfp, order, nid, nodemask); | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && | 
 | 	    /* filter "hugepage" allocation, unless from alloc_pages() */ | 
 | 	    order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) { | 
 | 		/* | 
 | 		 * For hugepage allocation and non-interleave policy which | 
 | 		 * allows the current node (or other explicitly preferred | 
 | 		 * node) we only try to allocate from the current/preferred | 
 | 		 * node and don't fall back to other nodes, as the cost of | 
 | 		 * remote accesses would likely offset THP benefits. | 
 | 		 * | 
 | 		 * If the policy is interleave or does not allow the current | 
 | 		 * node in its nodemask, we allocate the standard way. | 
 | 		 */ | 
 | 		if (pol->mode != MPOL_INTERLEAVE && | 
 | 		    pol->mode != MPOL_WEIGHTED_INTERLEAVE && | 
 | 		    (!nodemask || node_isset(nid, *nodemask))) { | 
 | 			/* | 
 | 			 * First, try to allocate THP only on local node, but | 
 | 			 * don't reclaim unnecessarily, just compact. | 
 | 			 */ | 
 | 			page = __alloc_frozen_pages_noprof( | 
 | 				gfp | __GFP_THISNODE | __GFP_NORETRY, order, | 
 | 				nid, NULL); | 
 | 			if (page || !(gfp & __GFP_DIRECT_RECLAIM)) | 
 | 				return page; | 
 | 			/* | 
 | 			 * If hugepage allocations are configured to always | 
 | 			 * synchronous compact or the vma has been madvised | 
 | 			 * to prefer hugepage backing, retry allowing remote | 
 | 			 * memory with both reclaim and compact as well. | 
 | 			 */ | 
 | 		} | 
 | 	} | 
 |  | 
 | 	page = __alloc_frozen_pages_noprof(gfp, order, nid, nodemask); | 
 |  | 
 | 	if (unlikely(pol->mode == MPOL_INTERLEAVE || | 
 | 		     pol->mode == MPOL_WEIGHTED_INTERLEAVE) && page) { | 
 | 		/* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */ | 
 | 		if (static_branch_likely(&vm_numa_stat_key) && | 
 | 		    page_to_nid(page) == nid) { | 
 | 			preempt_disable(); | 
 | 			__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); | 
 | 			preempt_enable(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order, | 
 | 		struct mempolicy *pol, pgoff_t ilx, int nid) | 
 | { | 
 | 	struct page *page = alloc_pages_mpol(gfp | __GFP_COMP, order, pol, | 
 | 			ilx, nid); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	set_page_refcounted(page); | 
 | 	return page_rmappable_folio(page); | 
 | } | 
 |  | 
 | /** | 
 |  * vma_alloc_folio - Allocate a folio for a VMA. | 
 |  * @gfp: GFP flags. | 
 |  * @order: Order of the folio. | 
 |  * @vma: Pointer to VMA. | 
 |  * @addr: Virtual address of the allocation.  Must be inside @vma. | 
 |  * | 
 |  * Allocate a folio for a specific address in @vma, using the appropriate | 
 |  * NUMA policy.  The caller must hold the mmap_lock of the mm_struct of the | 
 |  * VMA to prevent it from going away.  Should be used for all allocations | 
 |  * for folios that will be mapped into user space, excepting hugetlbfs, and | 
 |  * excepting where direct use of folio_alloc_mpol() is more appropriate. | 
 |  * | 
 |  * Return: The folio on success or NULL if allocation fails. | 
 |  */ | 
 | struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma, | 
 | 		unsigned long addr) | 
 | { | 
 | 	struct mempolicy *pol; | 
 | 	pgoff_t ilx; | 
 | 	struct folio *folio; | 
 |  | 
 | 	if (vma->vm_flags & VM_DROPPABLE) | 
 | 		gfp |= __GFP_NOWARN; | 
 |  | 
 | 	pol = get_vma_policy(vma, addr, order, &ilx); | 
 | 	folio = folio_alloc_mpol_noprof(gfp, order, pol, ilx, numa_node_id()); | 
 | 	mpol_cond_put(pol); | 
 | 	return folio; | 
 | } | 
 | EXPORT_SYMBOL(vma_alloc_folio_noprof); | 
 |  | 
 | struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned order) | 
 | { | 
 | 	struct mempolicy *pol = &default_policy; | 
 |  | 
 | 	/* | 
 | 	 * No reference counting needed for current->mempolicy | 
 | 	 * nor system default_policy | 
 | 	 */ | 
 | 	if (!in_interrupt() && !(gfp & __GFP_THISNODE)) | 
 | 		pol = get_task_policy(current); | 
 |  | 
 | 	return alloc_pages_mpol(gfp, order, pol, NO_INTERLEAVE_INDEX, | 
 | 				       numa_node_id()); | 
 | } | 
 |  | 
 | /** | 
 |  * alloc_pages - Allocate pages. | 
 |  * @gfp: GFP flags. | 
 |  * @order: Power of two of number of pages to allocate. | 
 |  * | 
 |  * Allocate 1 << @order contiguous pages.  The physical address of the | 
 |  * first page is naturally aligned (eg an order-3 allocation will be aligned | 
 |  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current | 
 |  * process is honoured when in process context. | 
 |  * | 
 |  * Context: Can be called from any context, providing the appropriate GFP | 
 |  * flags are used. | 
 |  * Return: The page on success or NULL if allocation fails. | 
 |  */ | 
 | struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order) | 
 | { | 
 | 	struct page *page = alloc_frozen_pages_noprof(gfp, order); | 
 |  | 
 | 	if (page) | 
 | 		set_page_refcounted(page); | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL(alloc_pages_noprof); | 
 |  | 
 | struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order) | 
 | { | 
 | 	return page_rmappable_folio(alloc_pages_noprof(gfp | __GFP_COMP, order)); | 
 | } | 
 | EXPORT_SYMBOL(folio_alloc_noprof); | 
 |  | 
 | static unsigned long alloc_pages_bulk_interleave(gfp_t gfp, | 
 | 		struct mempolicy *pol, unsigned long nr_pages, | 
 | 		struct page **page_array) | 
 | { | 
 | 	int nodes; | 
 | 	unsigned long nr_pages_per_node; | 
 | 	int delta; | 
 | 	int i; | 
 | 	unsigned long nr_allocated; | 
 | 	unsigned long total_allocated = 0; | 
 |  | 
 | 	nodes = nodes_weight(pol->nodes); | 
 | 	nr_pages_per_node = nr_pages / nodes; | 
 | 	delta = nr_pages - nodes * nr_pages_per_node; | 
 |  | 
 | 	for (i = 0; i < nodes; i++) { | 
 | 		if (delta) { | 
 | 			nr_allocated = alloc_pages_bulk_noprof(gfp, | 
 | 					interleave_nodes(pol), NULL, | 
 | 					nr_pages_per_node + 1, | 
 | 					page_array); | 
 | 			delta--; | 
 | 		} else { | 
 | 			nr_allocated = alloc_pages_bulk_noprof(gfp, | 
 | 					interleave_nodes(pol), NULL, | 
 | 					nr_pages_per_node, page_array); | 
 | 		} | 
 |  | 
 | 		page_array += nr_allocated; | 
 | 		total_allocated += nr_allocated; | 
 | 	} | 
 |  | 
 | 	return total_allocated; | 
 | } | 
 |  | 
 | static unsigned long alloc_pages_bulk_weighted_interleave(gfp_t gfp, | 
 | 		struct mempolicy *pol, unsigned long nr_pages, | 
 | 		struct page **page_array) | 
 | { | 
 | 	struct weighted_interleave_state *state; | 
 | 	struct task_struct *me = current; | 
 | 	unsigned int cpuset_mems_cookie; | 
 | 	unsigned long total_allocated = 0; | 
 | 	unsigned long nr_allocated = 0; | 
 | 	unsigned long rounds; | 
 | 	unsigned long node_pages, delta; | 
 | 	u8 *weights, weight; | 
 | 	unsigned int weight_total = 0; | 
 | 	unsigned long rem_pages = nr_pages; | 
 | 	nodemask_t nodes; | 
 | 	int nnodes, node; | 
 | 	int resume_node = MAX_NUMNODES - 1; | 
 | 	u8 resume_weight = 0; | 
 | 	int prev_node; | 
 | 	int i; | 
 |  | 
 | 	if (!nr_pages) | 
 | 		return 0; | 
 |  | 
 | 	/* read the nodes onto the stack, retry if done during rebind */ | 
 | 	do { | 
 | 		cpuset_mems_cookie = read_mems_allowed_begin(); | 
 | 		nnodes = read_once_policy_nodemask(pol, &nodes); | 
 | 	} while (read_mems_allowed_retry(cpuset_mems_cookie)); | 
 |  | 
 | 	/* if the nodemask has become invalid, we cannot do anything */ | 
 | 	if (!nnodes) | 
 | 		return 0; | 
 |  | 
 | 	/* Continue allocating from most recent node and adjust the nr_pages */ | 
 | 	node = me->il_prev; | 
 | 	weight = me->il_weight; | 
 | 	if (weight && node_isset(node, nodes)) { | 
 | 		node_pages = min(rem_pages, weight); | 
 | 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages, | 
 | 						  page_array); | 
 | 		page_array += nr_allocated; | 
 | 		total_allocated += nr_allocated; | 
 | 		/* if that's all the pages, no need to interleave */ | 
 | 		if (rem_pages <= weight) { | 
 | 			me->il_weight -= rem_pages; | 
 | 			return total_allocated; | 
 | 		} | 
 | 		/* Otherwise we adjust remaining pages, continue from there */ | 
 | 		rem_pages -= weight; | 
 | 	} | 
 | 	/* clear active weight in case of an allocation failure */ | 
 | 	me->il_weight = 0; | 
 | 	prev_node = node; | 
 |  | 
 | 	/* create a local copy of node weights to operate on outside rcu */ | 
 | 	weights = kzalloc(nr_node_ids, GFP_KERNEL); | 
 | 	if (!weights) | 
 | 		return total_allocated; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	state = rcu_dereference(wi_state); | 
 | 	if (state) { | 
 | 		memcpy(weights, state->iw_table, nr_node_ids * sizeof(u8)); | 
 | 		rcu_read_unlock(); | 
 | 	} else { | 
 | 		rcu_read_unlock(); | 
 | 		for (i = 0; i < nr_node_ids; i++) | 
 | 			weights[i] = 1; | 
 | 	} | 
 |  | 
 | 	/* calculate total, detect system default usage */ | 
 | 	for_each_node_mask(node, nodes) | 
 | 		weight_total += weights[node]; | 
 |  | 
 | 	/* | 
 | 	 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls. | 
 | 	 * Track which node weighted interleave should resume from. | 
 | 	 * | 
 | 	 * if (rounds > 0) and (delta == 0), resume_node will always be | 
 | 	 * the node following prev_node and its weight. | 
 | 	 */ | 
 | 	rounds = rem_pages / weight_total; | 
 | 	delta = rem_pages % weight_total; | 
 | 	resume_node = next_node_in(prev_node, nodes); | 
 | 	resume_weight = weights[resume_node]; | 
 | 	for (i = 0; i < nnodes; i++) { | 
 | 		node = next_node_in(prev_node, nodes); | 
 | 		weight = weights[node]; | 
 | 		node_pages = weight * rounds; | 
 | 		/* If a delta exists, add this node's portion of the delta */ | 
 | 		if (delta > weight) { | 
 | 			node_pages += weight; | 
 | 			delta -= weight; | 
 | 		} else if (delta) { | 
 | 			/* when delta is depleted, resume from that node */ | 
 | 			node_pages += delta; | 
 | 			resume_node = node; | 
 | 			resume_weight = weight - delta; | 
 | 			delta = 0; | 
 | 		} | 
 | 		/* node_pages can be 0 if an allocation fails and rounds == 0 */ | 
 | 		if (!node_pages) | 
 | 			break; | 
 | 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages, | 
 | 						  page_array); | 
 | 		page_array += nr_allocated; | 
 | 		total_allocated += nr_allocated; | 
 | 		if (total_allocated == nr_pages) | 
 | 			break; | 
 | 		prev_node = node; | 
 | 	} | 
 | 	me->il_prev = resume_node; | 
 | 	me->il_weight = resume_weight; | 
 | 	kfree(weights); | 
 | 	return total_allocated; | 
 | } | 
 |  | 
 | static unsigned long alloc_pages_bulk_preferred_many(gfp_t gfp, int nid, | 
 | 		struct mempolicy *pol, unsigned long nr_pages, | 
 | 		struct page **page_array) | 
 | { | 
 | 	gfp_t preferred_gfp; | 
 | 	unsigned long nr_allocated = 0; | 
 |  | 
 | 	preferred_gfp = gfp | __GFP_NOWARN; | 
 | 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); | 
 |  | 
 | 	nr_allocated  = alloc_pages_bulk_noprof(preferred_gfp, nid, &pol->nodes, | 
 | 					   nr_pages, page_array); | 
 |  | 
 | 	if (nr_allocated < nr_pages) | 
 | 		nr_allocated += alloc_pages_bulk_noprof(gfp, numa_node_id(), NULL, | 
 | 				nr_pages - nr_allocated, | 
 | 				page_array + nr_allocated); | 
 | 	return nr_allocated; | 
 | } | 
 |  | 
 | /* alloc pages bulk and mempolicy should be considered at the | 
 |  * same time in some situation such as vmalloc. | 
 |  * | 
 |  * It can accelerate memory allocation especially interleaving | 
 |  * allocate memory. | 
 |  */ | 
 | unsigned long alloc_pages_bulk_mempolicy_noprof(gfp_t gfp, | 
 | 		unsigned long nr_pages, struct page **page_array) | 
 | { | 
 | 	struct mempolicy *pol = &default_policy; | 
 | 	nodemask_t *nodemask; | 
 | 	int nid; | 
 |  | 
 | 	if (!in_interrupt() && !(gfp & __GFP_THISNODE)) | 
 | 		pol = get_task_policy(current); | 
 |  | 
 | 	if (pol->mode == MPOL_INTERLEAVE) | 
 | 		return alloc_pages_bulk_interleave(gfp, pol, | 
 | 							 nr_pages, page_array); | 
 |  | 
 | 	if (pol->mode == MPOL_WEIGHTED_INTERLEAVE) | 
 | 		return alloc_pages_bulk_weighted_interleave( | 
 | 				  gfp, pol, nr_pages, page_array); | 
 |  | 
 | 	if (pol->mode == MPOL_PREFERRED_MANY) | 
 | 		return alloc_pages_bulk_preferred_many(gfp, | 
 | 				numa_node_id(), pol, nr_pages, page_array); | 
 |  | 
 | 	nid = numa_node_id(); | 
 | 	nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid); | 
 | 	return alloc_pages_bulk_noprof(gfp, nid, nodemask, | 
 | 				       nr_pages, page_array); | 
 | } | 
 |  | 
 | int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) | 
 | { | 
 | 	struct mempolicy *pol = mpol_dup(src->vm_policy); | 
 |  | 
 | 	if (IS_ERR(pol)) | 
 | 		return PTR_ERR(pol); | 
 | 	dst->vm_policy = pol; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it | 
 |  * rebinds the mempolicy its copying by calling mpol_rebind_policy() | 
 |  * with the mems_allowed returned by cpuset_mems_allowed().  This | 
 |  * keeps mempolicies cpuset relative after its cpuset moves.  See | 
 |  * further kernel/cpuset.c update_nodemask(). | 
 |  * | 
 |  * current's mempolicy may be rebinded by the other task(the task that changes | 
 |  * cpuset's mems), so we needn't do rebind work for current task. | 
 |  */ | 
 |  | 
 | /* Slow path of a mempolicy duplicate */ | 
 | struct mempolicy *__mpol_dup(struct mempolicy *old) | 
 | { | 
 | 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); | 
 |  | 
 | 	if (!new) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	/* task's mempolicy is protected by alloc_lock */ | 
 | 	if (old == current->mempolicy) { | 
 | 		task_lock(current); | 
 | 		*new = *old; | 
 | 		task_unlock(current); | 
 | 	} else | 
 | 		*new = *old; | 
 |  | 
 | 	if (current_cpuset_is_being_rebound()) { | 
 | 		nodemask_t mems = cpuset_mems_allowed(current); | 
 | 		mpol_rebind_policy(new, &mems); | 
 | 	} | 
 | 	atomic_set(&new->refcnt, 1); | 
 | 	return new; | 
 | } | 
 |  | 
 | /* Slow path of a mempolicy comparison */ | 
 | bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) | 
 | { | 
 | 	if (!a || !b) | 
 | 		return false; | 
 | 	if (a->mode != b->mode) | 
 | 		return false; | 
 | 	if (a->flags != b->flags) | 
 | 		return false; | 
 | 	if (a->home_node != b->home_node) | 
 | 		return false; | 
 | 	if (mpol_store_user_nodemask(a)) | 
 | 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) | 
 | 			return false; | 
 |  | 
 | 	switch (a->mode) { | 
 | 	case MPOL_BIND: | 
 | 	case MPOL_INTERLEAVE: | 
 | 	case MPOL_PREFERRED: | 
 | 	case MPOL_PREFERRED_MANY: | 
 | 	case MPOL_WEIGHTED_INTERLEAVE: | 
 | 		return !!nodes_equal(a->nodes, b->nodes); | 
 | 	case MPOL_LOCAL: | 
 | 		return true; | 
 | 	default: | 
 | 		BUG(); | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Shared memory backing store policy support. | 
 |  * | 
 |  * Remember policies even when nobody has shared memory mapped. | 
 |  * The policies are kept in Red-Black tree linked from the inode. | 
 |  * They are protected by the sp->lock rwlock, which should be held | 
 |  * for any accesses to the tree. | 
 |  */ | 
 |  | 
 | /* | 
 |  * lookup first element intersecting start-end.  Caller holds sp->lock for | 
 |  * reading or for writing | 
 |  */ | 
 | static struct sp_node *sp_lookup(struct shared_policy *sp, | 
 | 					pgoff_t start, pgoff_t end) | 
 | { | 
 | 	struct rb_node *n = sp->root.rb_node; | 
 |  | 
 | 	while (n) { | 
 | 		struct sp_node *p = rb_entry(n, struct sp_node, nd); | 
 |  | 
 | 		if (start >= p->end) | 
 | 			n = n->rb_right; | 
 | 		else if (end <= p->start) | 
 | 			n = n->rb_left; | 
 | 		else | 
 | 			break; | 
 | 	} | 
 | 	if (!n) | 
 | 		return NULL; | 
 | 	for (;;) { | 
 | 		struct sp_node *w = NULL; | 
 | 		struct rb_node *prev = rb_prev(n); | 
 | 		if (!prev) | 
 | 			break; | 
 | 		w = rb_entry(prev, struct sp_node, nd); | 
 | 		if (w->end <= start) | 
 | 			break; | 
 | 		n = prev; | 
 | 	} | 
 | 	return rb_entry(n, struct sp_node, nd); | 
 | } | 
 |  | 
 | /* | 
 |  * Insert a new shared policy into the list.  Caller holds sp->lock for | 
 |  * writing. | 
 |  */ | 
 | static void sp_insert(struct shared_policy *sp, struct sp_node *new) | 
 | { | 
 | 	struct rb_node **p = &sp->root.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct sp_node *nd; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		nd = rb_entry(parent, struct sp_node, nd); | 
 | 		if (new->start < nd->start) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (new->end > nd->end) | 
 | 			p = &(*p)->rb_right; | 
 | 		else | 
 | 			BUG(); | 
 | 	} | 
 | 	rb_link_node(&new->nd, parent, p); | 
 | 	rb_insert_color(&new->nd, &sp->root); | 
 | } | 
 |  | 
 | /* Find shared policy intersecting idx */ | 
 | struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp, | 
 | 						pgoff_t idx) | 
 | { | 
 | 	struct mempolicy *pol = NULL; | 
 | 	struct sp_node *sn; | 
 |  | 
 | 	if (!sp->root.rb_node) | 
 | 		return NULL; | 
 | 	read_lock(&sp->lock); | 
 | 	sn = sp_lookup(sp, idx, idx+1); | 
 | 	if (sn) { | 
 | 		mpol_get(sn->policy); | 
 | 		pol = sn->policy; | 
 | 	} | 
 | 	read_unlock(&sp->lock); | 
 | 	return pol; | 
 | } | 
 |  | 
 | static void sp_free(struct sp_node *n) | 
 | { | 
 | 	mpol_put(n->policy); | 
 | 	kmem_cache_free(sn_cache, n); | 
 | } | 
 |  | 
 | /** | 
 |  * mpol_misplaced - check whether current folio node is valid in policy | 
 |  * | 
 |  * @folio: folio to be checked | 
 |  * @vmf: structure describing the fault | 
 |  * @addr: virtual address in @vma for shared policy lookup and interleave policy | 
 |  * | 
 |  * Lookup current policy node id for vma,addr and "compare to" folio's | 
 |  * node id.  Policy determination "mimics" alloc_page_vma(). | 
 |  * Called from fault path where we know the vma and faulting address. | 
 |  * | 
 |  * Return: NUMA_NO_NODE if the page is in a node that is valid for this | 
 |  * policy, or a suitable node ID to allocate a replacement folio from. | 
 |  */ | 
 | int mpol_misplaced(struct folio *folio, struct vm_fault *vmf, | 
 | 		   unsigned long addr) | 
 | { | 
 | 	struct mempolicy *pol; | 
 | 	pgoff_t ilx; | 
 | 	struct zoneref *z; | 
 | 	int curnid = folio_nid(folio); | 
 | 	struct vm_area_struct *vma = vmf->vma; | 
 | 	int thiscpu = raw_smp_processor_id(); | 
 | 	int thisnid = numa_node_id(); | 
 | 	int polnid = NUMA_NO_NODE; | 
 | 	int ret = NUMA_NO_NODE; | 
 |  | 
 | 	/* | 
 | 	 * Make sure ptl is held so that we don't preempt and we | 
 | 	 * have a stable smp processor id | 
 | 	 */ | 
 | 	lockdep_assert_held(vmf->ptl); | 
 | 	pol = get_vma_policy(vma, addr, folio_order(folio), &ilx); | 
 | 	if (!(pol->flags & MPOL_F_MOF)) | 
 | 		goto out; | 
 |  | 
 | 	switch (pol->mode) { | 
 | 	case MPOL_INTERLEAVE: | 
 | 		polnid = interleave_nid(pol, ilx); | 
 | 		break; | 
 |  | 
 | 	case MPOL_WEIGHTED_INTERLEAVE: | 
 | 		polnid = weighted_interleave_nid(pol, ilx); | 
 | 		break; | 
 |  | 
 | 	case MPOL_PREFERRED: | 
 | 		if (node_isset(curnid, pol->nodes)) | 
 | 			goto out; | 
 | 		polnid = first_node(pol->nodes); | 
 | 		break; | 
 |  | 
 | 	case MPOL_LOCAL: | 
 | 		polnid = numa_node_id(); | 
 | 		break; | 
 |  | 
 | 	case MPOL_BIND: | 
 | 	case MPOL_PREFERRED_MANY: | 
 | 		/* | 
 | 		 * Even though MPOL_PREFERRED_MANY can allocate pages outside | 
 | 		 * policy nodemask we don't allow numa migration to nodes | 
 | 		 * outside policy nodemask for now. This is done so that if we | 
 | 		 * want demotion to slow memory to happen, before allocating | 
 | 		 * from some DRAM node say 'x', we will end up using a | 
 | 		 * MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario | 
 | 		 * we should not promote to node 'x' from slow memory node. | 
 | 		 */ | 
 | 		if (pol->flags & MPOL_F_MORON) { | 
 | 			/* | 
 | 			 * Optimize placement among multiple nodes | 
 | 			 * via NUMA balancing | 
 | 			 */ | 
 | 			if (node_isset(thisnid, pol->nodes)) | 
 | 				break; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * use current page if in policy nodemask, | 
 | 		 * else select nearest allowed node, if any. | 
 | 		 * If no allowed nodes, use current [!misplaced]. | 
 | 		 */ | 
 | 		if (node_isset(curnid, pol->nodes)) | 
 | 			goto out; | 
 | 		z = first_zones_zonelist( | 
 | 				node_zonelist(thisnid, GFP_HIGHUSER), | 
 | 				gfp_zone(GFP_HIGHUSER), | 
 | 				&pol->nodes); | 
 | 		polnid = zonelist_node_idx(z); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	/* Migrate the folio towards the node whose CPU is referencing it */ | 
 | 	if (pol->flags & MPOL_F_MORON) { | 
 | 		polnid = thisnid; | 
 |  | 
 | 		if (!should_numa_migrate_memory(current, folio, curnid, | 
 | 						thiscpu)) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (curnid != polnid) | 
 | 		ret = polnid; | 
 | out: | 
 | 	mpol_cond_put(pol); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Drop the (possibly final) reference to task->mempolicy.  It needs to be | 
 |  * dropped after task->mempolicy is set to NULL so that any allocation done as | 
 |  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed | 
 |  * policy. | 
 |  */ | 
 | void mpol_put_task_policy(struct task_struct *task) | 
 | { | 
 | 	struct mempolicy *pol; | 
 |  | 
 | 	task_lock(task); | 
 | 	pol = task->mempolicy; | 
 | 	task->mempolicy = NULL; | 
 | 	task_unlock(task); | 
 | 	mpol_put(pol); | 
 | } | 
 |  | 
 | static void sp_delete(struct shared_policy *sp, struct sp_node *n) | 
 | { | 
 | 	rb_erase(&n->nd, &sp->root); | 
 | 	sp_free(n); | 
 | } | 
 |  | 
 | static void sp_node_init(struct sp_node *node, unsigned long start, | 
 | 			unsigned long end, struct mempolicy *pol) | 
 | { | 
 | 	node->start = start; | 
 | 	node->end = end; | 
 | 	node->policy = pol; | 
 | } | 
 |  | 
 | static struct sp_node *sp_alloc(unsigned long start, unsigned long end, | 
 | 				struct mempolicy *pol) | 
 | { | 
 | 	struct sp_node *n; | 
 | 	struct mempolicy *newpol; | 
 |  | 
 | 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL); | 
 | 	if (!n) | 
 | 		return NULL; | 
 |  | 
 | 	newpol = mpol_dup(pol); | 
 | 	if (IS_ERR(newpol)) { | 
 | 		kmem_cache_free(sn_cache, n); | 
 | 		return NULL; | 
 | 	} | 
 | 	newpol->flags |= MPOL_F_SHARED; | 
 | 	sp_node_init(n, start, end, newpol); | 
 |  | 
 | 	return n; | 
 | } | 
 |  | 
 | /* Replace a policy range. */ | 
 | static int shared_policy_replace(struct shared_policy *sp, pgoff_t start, | 
 | 				 pgoff_t end, struct sp_node *new) | 
 | { | 
 | 	struct sp_node *n; | 
 | 	struct sp_node *n_new = NULL; | 
 | 	struct mempolicy *mpol_new = NULL; | 
 | 	int ret = 0; | 
 |  | 
 | restart: | 
 | 	write_lock(&sp->lock); | 
 | 	n = sp_lookup(sp, start, end); | 
 | 	/* Take care of old policies in the same range. */ | 
 | 	while (n && n->start < end) { | 
 | 		struct rb_node *next = rb_next(&n->nd); | 
 | 		if (n->start >= start) { | 
 | 			if (n->end <= end) | 
 | 				sp_delete(sp, n); | 
 | 			else | 
 | 				n->start = end; | 
 | 		} else { | 
 | 			/* Old policy spanning whole new range. */ | 
 | 			if (n->end > end) { | 
 | 				if (!n_new) | 
 | 					goto alloc_new; | 
 |  | 
 | 				*mpol_new = *n->policy; | 
 | 				atomic_set(&mpol_new->refcnt, 1); | 
 | 				sp_node_init(n_new, end, n->end, mpol_new); | 
 | 				n->end = start; | 
 | 				sp_insert(sp, n_new); | 
 | 				n_new = NULL; | 
 | 				mpol_new = NULL; | 
 | 				break; | 
 | 			} else | 
 | 				n->end = start; | 
 | 		} | 
 | 		if (!next) | 
 | 			break; | 
 | 		n = rb_entry(next, struct sp_node, nd); | 
 | 	} | 
 | 	if (new) | 
 | 		sp_insert(sp, new); | 
 | 	write_unlock(&sp->lock); | 
 | 	ret = 0; | 
 |  | 
 | err_out: | 
 | 	if (mpol_new) | 
 | 		mpol_put(mpol_new); | 
 | 	if (n_new) | 
 | 		kmem_cache_free(sn_cache, n_new); | 
 |  | 
 | 	return ret; | 
 |  | 
 | alloc_new: | 
 | 	write_unlock(&sp->lock); | 
 | 	ret = -ENOMEM; | 
 | 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); | 
 | 	if (!n_new) | 
 | 		goto err_out; | 
 | 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); | 
 | 	if (!mpol_new) | 
 | 		goto err_out; | 
 | 	atomic_set(&mpol_new->refcnt, 1); | 
 | 	goto restart; | 
 | } | 
 |  | 
 | /** | 
 |  * mpol_shared_policy_init - initialize shared policy for inode | 
 |  * @sp: pointer to inode shared policy | 
 |  * @mpol:  struct mempolicy to install | 
 |  * | 
 |  * Install non-NULL @mpol in inode's shared policy rb-tree. | 
 |  * On entry, the current task has a reference on a non-NULL @mpol. | 
 |  * This must be released on exit. | 
 |  * This is called at get_inode() calls and we can use GFP_KERNEL. | 
 |  */ | 
 | void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */ | 
 | 	rwlock_init(&sp->lock); | 
 |  | 
 | 	if (mpol) { | 
 | 		struct sp_node *sn; | 
 | 		struct mempolicy *npol; | 
 | 		NODEMASK_SCRATCH(scratch); | 
 |  | 
 | 		if (!scratch) | 
 | 			goto put_mpol; | 
 |  | 
 | 		/* contextualize the tmpfs mount point mempolicy to this file */ | 
 | 		npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); | 
 | 		if (IS_ERR(npol)) | 
 | 			goto free_scratch; /* no valid nodemask intersection */ | 
 |  | 
 | 		task_lock(current); | 
 | 		ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch); | 
 | 		task_unlock(current); | 
 | 		if (ret) | 
 | 			goto put_npol; | 
 |  | 
 | 		/* alloc node covering entire file; adds ref to file's npol */ | 
 | 		sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol); | 
 | 		if (sn) | 
 | 			sp_insert(sp, sn); | 
 | put_npol: | 
 | 		mpol_put(npol);	/* drop initial ref on file's npol */ | 
 | free_scratch: | 
 | 		NODEMASK_SCRATCH_FREE(scratch); | 
 | put_mpol: | 
 | 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */ | 
 | 	} | 
 | } | 
 |  | 
 | int mpol_set_shared_policy(struct shared_policy *sp, | 
 | 			struct vm_area_struct *vma, struct mempolicy *pol) | 
 | { | 
 | 	int err; | 
 | 	struct sp_node *new = NULL; | 
 | 	unsigned long sz = vma_pages(vma); | 
 |  | 
 | 	if (pol) { | 
 | 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol); | 
 | 		if (!new) | 
 | 			return -ENOMEM; | 
 | 	} | 
 | 	err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new); | 
 | 	if (err && new) | 
 | 		sp_free(new); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* Free a backing policy store on inode delete. */ | 
 | void mpol_free_shared_policy(struct shared_policy *sp) | 
 | { | 
 | 	struct sp_node *n; | 
 | 	struct rb_node *next; | 
 |  | 
 | 	if (!sp->root.rb_node) | 
 | 		return; | 
 | 	write_lock(&sp->lock); | 
 | 	next = rb_first(&sp->root); | 
 | 	while (next) { | 
 | 		n = rb_entry(next, struct sp_node, nd); | 
 | 		next = rb_next(&n->nd); | 
 | 		sp_delete(sp, n); | 
 | 	} | 
 | 	write_unlock(&sp->lock); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | static int __initdata numabalancing_override; | 
 |  | 
 | static void __init check_numabalancing_enable(void) | 
 | { | 
 | 	bool numabalancing_default = false; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) | 
 | 		numabalancing_default = true; | 
 |  | 
 | 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ | 
 | 	if (numabalancing_override) | 
 | 		set_numabalancing_state(numabalancing_override == 1); | 
 |  | 
 | 	if (num_online_nodes() > 1 && !numabalancing_override) { | 
 | 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", | 
 | 			numabalancing_default ? "Enabling" : "Disabling"); | 
 | 		set_numabalancing_state(numabalancing_default); | 
 | 	} | 
 | } | 
 |  | 
 | static int __init setup_numabalancing(char *str) | 
 | { | 
 | 	int ret = 0; | 
 | 	if (!str) | 
 | 		goto out; | 
 |  | 
 | 	if (!strcmp(str, "enable")) { | 
 | 		numabalancing_override = 1; | 
 | 		ret = 1; | 
 | 	} else if (!strcmp(str, "disable")) { | 
 | 		numabalancing_override = -1; | 
 | 		ret = 1; | 
 | 	} | 
 | out: | 
 | 	if (!ret) | 
 | 		pr_warn("Unable to parse numa_balancing=\n"); | 
 |  | 
 | 	return ret; | 
 | } | 
 | __setup("numa_balancing=", setup_numabalancing); | 
 | #else | 
 | static inline void __init check_numabalancing_enable(void) | 
 | { | 
 | } | 
 | #endif /* CONFIG_NUMA_BALANCING */ | 
 |  | 
 | void __init numa_policy_init(void) | 
 | { | 
 | 	nodemask_t interleave_nodes; | 
 | 	unsigned long largest = 0; | 
 | 	int nid, prefer = 0; | 
 |  | 
 | 	policy_cache = kmem_cache_create("numa_policy", | 
 | 					 sizeof(struct mempolicy), | 
 | 					 0, SLAB_PANIC, NULL); | 
 |  | 
 | 	sn_cache = kmem_cache_create("shared_policy_node", | 
 | 				     sizeof(struct sp_node), | 
 | 				     0, SLAB_PANIC, NULL); | 
 |  | 
 | 	for_each_node(nid) { | 
 | 		preferred_node_policy[nid] = (struct mempolicy) { | 
 | 			.refcnt = ATOMIC_INIT(1), | 
 | 			.mode = MPOL_PREFERRED, | 
 | 			.flags = MPOL_F_MOF | MPOL_F_MORON, | 
 | 			.nodes = nodemask_of_node(nid), | 
 | 		}; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set interleaving policy for system init. Interleaving is only | 
 | 	 * enabled across suitably sized nodes (default is >= 16MB), or | 
 | 	 * fall back to the largest node if they're all smaller. | 
 | 	 */ | 
 | 	nodes_clear(interleave_nodes); | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		unsigned long total_pages = node_present_pages(nid); | 
 |  | 
 | 		/* Preserve the largest node */ | 
 | 		if (largest < total_pages) { | 
 | 			largest = total_pages; | 
 | 			prefer = nid; | 
 | 		} | 
 |  | 
 | 		/* Interleave this node? */ | 
 | 		if ((total_pages << PAGE_SHIFT) >= (16 << 20)) | 
 | 			node_set(nid, interleave_nodes); | 
 | 	} | 
 |  | 
 | 	/* All too small, use the largest */ | 
 | 	if (unlikely(nodes_empty(interleave_nodes))) | 
 | 		node_set(prefer, interleave_nodes); | 
 |  | 
 | 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) | 
 | 		pr_err("%s: interleaving failed\n", __func__); | 
 |  | 
 | 	check_numabalancing_enable(); | 
 | } | 
 |  | 
 | /* Reset policy of current process to default */ | 
 | void numa_default_policy(void) | 
 | { | 
 | 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Parse and format mempolicy from/to strings | 
 |  */ | 
 | static const char * const policy_modes[] = | 
 | { | 
 | 	[MPOL_DEFAULT]    = "default", | 
 | 	[MPOL_PREFERRED]  = "prefer", | 
 | 	[MPOL_BIND]       = "bind", | 
 | 	[MPOL_INTERLEAVE] = "interleave", | 
 | 	[MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave", | 
 | 	[MPOL_LOCAL]      = "local", | 
 | 	[MPOL_PREFERRED_MANY]  = "prefer (many)", | 
 | }; | 
 |  | 
 | #ifdef CONFIG_TMPFS | 
 | /** | 
 |  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. | 
 |  * @str:  string containing mempolicy to parse | 
 |  * @mpol:  pointer to struct mempolicy pointer, returned on success. | 
 |  * | 
 |  * Format of input: | 
 |  *	<mode>[=<flags>][:<nodelist>] | 
 |  * | 
 |  * Return: %0 on success, else %1 | 
 |  */ | 
 | int mpol_parse_str(char *str, struct mempolicy **mpol) | 
 | { | 
 | 	struct mempolicy *new = NULL; | 
 | 	unsigned short mode_flags; | 
 | 	nodemask_t nodes; | 
 | 	char *nodelist = strchr(str, ':'); | 
 | 	char *flags = strchr(str, '='); | 
 | 	int err = 1, mode; | 
 |  | 
 | 	if (flags) | 
 | 		*flags++ = '\0';	/* terminate mode string */ | 
 |  | 
 | 	if (nodelist) { | 
 | 		/* NUL-terminate mode or flags string */ | 
 | 		*nodelist++ = '\0'; | 
 | 		if (nodelist_parse(nodelist, nodes)) | 
 | 			goto out; | 
 | 		if (!nodes_subset(nodes, node_states[N_MEMORY])) | 
 | 			goto out; | 
 | 	} else | 
 | 		nodes_clear(nodes); | 
 |  | 
 | 	mode = match_string(policy_modes, MPOL_MAX, str); | 
 | 	if (mode < 0) | 
 | 		goto out; | 
 |  | 
 | 	switch (mode) { | 
 | 	case MPOL_PREFERRED: | 
 | 		/* | 
 | 		 * Insist on a nodelist of one node only, although later | 
 | 		 * we use first_node(nodes) to grab a single node, so here | 
 | 		 * nodelist (or nodes) cannot be empty. | 
 | 		 */ | 
 | 		if (nodelist) { | 
 | 			char *rest = nodelist; | 
 | 			while (isdigit(*rest)) | 
 | 				rest++; | 
 | 			if (*rest) | 
 | 				goto out; | 
 | 			if (nodes_empty(nodes)) | 
 | 				goto out; | 
 | 		} | 
 | 		break; | 
 | 	case MPOL_INTERLEAVE: | 
 | 	case MPOL_WEIGHTED_INTERLEAVE: | 
 | 		/* | 
 | 		 * Default to online nodes with memory if no nodelist | 
 | 		 */ | 
 | 		if (!nodelist) | 
 | 			nodes = node_states[N_MEMORY]; | 
 | 		break; | 
 | 	case MPOL_LOCAL: | 
 | 		/* | 
 | 		 * Don't allow a nodelist;  mpol_new() checks flags | 
 | 		 */ | 
 | 		if (nodelist) | 
 | 			goto out; | 
 | 		break; | 
 | 	case MPOL_DEFAULT: | 
 | 		/* | 
 | 		 * Insist on a empty nodelist | 
 | 		 */ | 
 | 		if (!nodelist) | 
 | 			err = 0; | 
 | 		goto out; | 
 | 	case MPOL_PREFERRED_MANY: | 
 | 	case MPOL_BIND: | 
 | 		/* | 
 | 		 * Insist on a nodelist | 
 | 		 */ | 
 | 		if (!nodelist) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	mode_flags = 0; | 
 | 	if (flags) { | 
 | 		/* | 
 | 		 * Currently, we only support two mutually exclusive | 
 | 		 * mode flags. | 
 | 		 */ | 
 | 		if (!strcmp(flags, "static")) | 
 | 			mode_flags |= MPOL_F_STATIC_NODES; | 
 | 		else if (!strcmp(flags, "relative")) | 
 | 			mode_flags |= MPOL_F_RELATIVE_NODES; | 
 | 		else | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	new = mpol_new(mode, mode_flags, &nodes); | 
 | 	if (IS_ERR(new)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Save nodes for mpol_to_str() to show the tmpfs mount options | 
 | 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. | 
 | 	 */ | 
 | 	if (mode != MPOL_PREFERRED) { | 
 | 		new->nodes = nodes; | 
 | 	} else if (nodelist) { | 
 | 		nodes_clear(new->nodes); | 
 | 		node_set(first_node(nodes), new->nodes); | 
 | 	} else { | 
 | 		new->mode = MPOL_LOCAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Save nodes for contextualization: this will be used to "clone" | 
 | 	 * the mempolicy in a specific context [cpuset] at a later time. | 
 | 	 */ | 
 | 	new->w.user_nodemask = nodes; | 
 |  | 
 | 	err = 0; | 
 |  | 
 | out: | 
 | 	/* Restore string for error message */ | 
 | 	if (nodelist) | 
 | 		*--nodelist = ':'; | 
 | 	if (flags) | 
 | 		*--flags = '='; | 
 | 	if (!err) | 
 | 		*mpol = new; | 
 | 	return err; | 
 | } | 
 | #endif /* CONFIG_TMPFS */ | 
 |  | 
 | /** | 
 |  * mpol_to_str - format a mempolicy structure for printing | 
 |  * @buffer:  to contain formatted mempolicy string | 
 |  * @maxlen:  length of @buffer | 
 |  * @pol:  pointer to mempolicy to be formatted | 
 |  * | 
 |  * Convert @pol into a string.  If @buffer is too short, truncate the string. | 
 |  * Recommend a @maxlen of at least 51 for the longest mode, "weighted | 
 |  * interleave", plus the longest flag flags, "relative|balancing", and to | 
 |  * display at least a few node ids. | 
 |  */ | 
 | void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) | 
 | { | 
 | 	char *p = buffer; | 
 | 	nodemask_t nodes = NODE_MASK_NONE; | 
 | 	unsigned short mode = MPOL_DEFAULT; | 
 | 	unsigned short flags = 0; | 
 |  | 
 | 	if (pol && | 
 | 	    pol != &default_policy && | 
 | 	    !(pol >= &preferred_node_policy[0] && | 
 | 	      pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) { | 
 | 		mode = pol->mode; | 
 | 		flags = pol->flags; | 
 | 	} | 
 |  | 
 | 	switch (mode) { | 
 | 	case MPOL_DEFAULT: | 
 | 	case MPOL_LOCAL: | 
 | 		break; | 
 | 	case MPOL_PREFERRED: | 
 | 	case MPOL_PREFERRED_MANY: | 
 | 	case MPOL_BIND: | 
 | 	case MPOL_INTERLEAVE: | 
 | 	case MPOL_WEIGHTED_INTERLEAVE: | 
 | 		nodes = pol->nodes; | 
 | 		break; | 
 | 	default: | 
 | 		WARN_ON_ONCE(1); | 
 | 		snprintf(p, maxlen, "unknown"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	p += snprintf(p, maxlen, "%s", policy_modes[mode]); | 
 |  | 
 | 	if (flags & MPOL_MODE_FLAGS) { | 
 | 		p += snprintf(p, buffer + maxlen - p, "="); | 
 |  | 
 | 		/* | 
 | 		 * Static and relative are mutually exclusive. | 
 | 		 */ | 
 | 		if (flags & MPOL_F_STATIC_NODES) | 
 | 			p += snprintf(p, buffer + maxlen - p, "static"); | 
 | 		else if (flags & MPOL_F_RELATIVE_NODES) | 
 | 			p += snprintf(p, buffer + maxlen - p, "relative"); | 
 |  | 
 | 		if (flags & MPOL_F_NUMA_BALANCING) { | 
 | 			if (!is_power_of_2(flags & MPOL_MODE_FLAGS)) | 
 | 				p += snprintf(p, buffer + maxlen - p, "|"); | 
 | 			p += snprintf(p, buffer + maxlen - p, "balancing"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!nodes_empty(nodes)) | 
 | 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl", | 
 | 			       nodemask_pr_args(&nodes)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 | struct iw_node_attr { | 
 | 	struct kobj_attribute kobj_attr; | 
 | 	int nid; | 
 | }; | 
 |  | 
 | struct sysfs_wi_group { | 
 | 	struct kobject wi_kobj; | 
 | 	struct mutex kobj_lock; | 
 | 	struct iw_node_attr *nattrs[]; | 
 | }; | 
 |  | 
 | static struct sysfs_wi_group *wi_group; | 
 |  | 
 | static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr, | 
 | 			 char *buf) | 
 | { | 
 | 	struct iw_node_attr *node_attr; | 
 | 	u8 weight; | 
 |  | 
 | 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr); | 
 | 	weight = get_il_weight(node_attr->nid); | 
 | 	return sysfs_emit(buf, "%d\n", weight); | 
 | } | 
 |  | 
 | static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr, | 
 | 			  const char *buf, size_t count) | 
 | { | 
 | 	struct weighted_interleave_state *new_wi_state, *old_wi_state = NULL; | 
 | 	struct iw_node_attr *node_attr; | 
 | 	u8 weight = 0; | 
 | 	int i; | 
 |  | 
 | 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr); | 
 | 	if (count == 0 || sysfs_streq(buf, "") || | 
 | 	    kstrtou8(buf, 0, &weight) || weight == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	new_wi_state = kzalloc(struct_size(new_wi_state, iw_table, nr_node_ids), | 
 | 			       GFP_KERNEL); | 
 | 	if (!new_wi_state) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	mutex_lock(&wi_state_lock); | 
 | 	old_wi_state = rcu_dereference_protected(wi_state, | 
 | 					lockdep_is_held(&wi_state_lock)); | 
 | 	if (old_wi_state) { | 
 | 		memcpy(new_wi_state->iw_table, old_wi_state->iw_table, | 
 | 					nr_node_ids * sizeof(u8)); | 
 | 	} else { | 
 | 		for (i = 0; i < nr_node_ids; i++) | 
 | 			new_wi_state->iw_table[i] = 1; | 
 | 	} | 
 | 	new_wi_state->iw_table[node_attr->nid] = weight; | 
 | 	new_wi_state->mode_auto = false; | 
 |  | 
 | 	rcu_assign_pointer(wi_state, new_wi_state); | 
 | 	mutex_unlock(&wi_state_lock); | 
 | 	if (old_wi_state) { | 
 | 		synchronize_rcu(); | 
 | 		kfree(old_wi_state); | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t weighted_interleave_auto_show(struct kobject *kobj, | 
 | 		struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	struct weighted_interleave_state *state; | 
 | 	bool wi_auto = true; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	state = rcu_dereference(wi_state); | 
 | 	if (state) | 
 | 		wi_auto = state->mode_auto; | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return sysfs_emit(buf, "%s\n", str_true_false(wi_auto)); | 
 | } | 
 |  | 
 | static ssize_t weighted_interleave_auto_store(struct kobject *kobj, | 
 | 		struct kobj_attribute *attr, const char *buf, size_t count) | 
 | { | 
 | 	struct weighted_interleave_state *new_wi_state, *old_wi_state = NULL; | 
 | 	unsigned int *bw; | 
 | 	bool input; | 
 | 	int i; | 
 |  | 
 | 	if (kstrtobool(buf, &input)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	new_wi_state = kzalloc(struct_size(new_wi_state, iw_table, nr_node_ids), | 
 | 			       GFP_KERNEL); | 
 | 	if (!new_wi_state) | 
 | 		return -ENOMEM; | 
 | 	for (i = 0; i < nr_node_ids; i++) | 
 | 		new_wi_state->iw_table[i] = 1; | 
 |  | 
 | 	mutex_lock(&wi_state_lock); | 
 | 	if (!input) { | 
 | 		old_wi_state = rcu_dereference_protected(wi_state, | 
 | 					lockdep_is_held(&wi_state_lock)); | 
 | 		if (!old_wi_state) | 
 | 			goto update_wi_state; | 
 | 		if (input == old_wi_state->mode_auto) { | 
 | 			mutex_unlock(&wi_state_lock); | 
 | 			return count; | 
 | 		} | 
 |  | 
 | 		memcpy(new_wi_state->iw_table, old_wi_state->iw_table, | 
 | 					       nr_node_ids * sizeof(u8)); | 
 | 		goto update_wi_state; | 
 | 	} | 
 |  | 
 | 	bw = node_bw_table; | 
 | 	if (!bw) { | 
 | 		mutex_unlock(&wi_state_lock); | 
 | 		kfree(new_wi_state); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	new_wi_state->mode_auto = true; | 
 | 	reduce_interleave_weights(bw, new_wi_state->iw_table); | 
 |  | 
 | update_wi_state: | 
 | 	rcu_assign_pointer(wi_state, new_wi_state); | 
 | 	mutex_unlock(&wi_state_lock); | 
 | 	if (old_wi_state) { | 
 | 		synchronize_rcu(); | 
 | 		kfree(old_wi_state); | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | static void sysfs_wi_node_delete(int nid) | 
 | { | 
 | 	struct iw_node_attr *attr; | 
 |  | 
 | 	if (nid < 0 || nid >= nr_node_ids) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&wi_group->kobj_lock); | 
 | 	attr = wi_group->nattrs[nid]; | 
 | 	if (!attr) { | 
 | 		mutex_unlock(&wi_group->kobj_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	wi_group->nattrs[nid] = NULL; | 
 | 	mutex_unlock(&wi_group->kobj_lock); | 
 |  | 
 | 	sysfs_remove_file(&wi_group->wi_kobj, &attr->kobj_attr.attr); | 
 | 	kfree(attr->kobj_attr.attr.name); | 
 | 	kfree(attr); | 
 | } | 
 |  | 
 | static void sysfs_wi_node_delete_all(void) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	for (nid = 0; nid < nr_node_ids; nid++) | 
 | 		sysfs_wi_node_delete(nid); | 
 | } | 
 |  | 
 | static void wi_state_free(void) | 
 | { | 
 | 	struct weighted_interleave_state *old_wi_state; | 
 |  | 
 | 	mutex_lock(&wi_state_lock); | 
 | 	old_wi_state = rcu_dereference_protected(wi_state, | 
 | 			lockdep_is_held(&wi_state_lock)); | 
 | 	rcu_assign_pointer(wi_state, NULL); | 
 | 	mutex_unlock(&wi_state_lock); | 
 |  | 
 | 	if (old_wi_state) { | 
 | 		synchronize_rcu(); | 
 | 		kfree(old_wi_state); | 
 | 	} | 
 | } | 
 |  | 
 | static struct kobj_attribute wi_auto_attr = | 
 | 	__ATTR(auto, 0664, weighted_interleave_auto_show, | 
 | 			   weighted_interleave_auto_store); | 
 |  | 
 | static void wi_cleanup(void) { | 
 | 	sysfs_remove_file(&wi_group->wi_kobj, &wi_auto_attr.attr); | 
 | 	sysfs_wi_node_delete_all(); | 
 | 	wi_state_free(); | 
 | } | 
 |  | 
 | static void wi_kobj_release(struct kobject *wi_kobj) | 
 | { | 
 | 	kfree(wi_group); | 
 | } | 
 |  | 
 | static const struct kobj_type wi_ktype = { | 
 | 	.sysfs_ops = &kobj_sysfs_ops, | 
 | 	.release = wi_kobj_release, | 
 | }; | 
 |  | 
 | static int sysfs_wi_node_add(int nid) | 
 | { | 
 | 	int ret; | 
 | 	char *name; | 
 | 	struct iw_node_attr *new_attr; | 
 |  | 
 | 	if (nid < 0 || nid >= nr_node_ids) { | 
 | 		pr_err("invalid node id: %d\n", nid); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	new_attr = kzalloc(sizeof(*new_attr), GFP_KERNEL); | 
 | 	if (!new_attr) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	name = kasprintf(GFP_KERNEL, "node%d", nid); | 
 | 	if (!name) { | 
 | 		kfree(new_attr); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	sysfs_attr_init(&new_attr->kobj_attr.attr); | 
 | 	new_attr->kobj_attr.attr.name = name; | 
 | 	new_attr->kobj_attr.attr.mode = 0644; | 
 | 	new_attr->kobj_attr.show = node_show; | 
 | 	new_attr->kobj_attr.store = node_store; | 
 | 	new_attr->nid = nid; | 
 |  | 
 | 	mutex_lock(&wi_group->kobj_lock); | 
 | 	if (wi_group->nattrs[nid]) { | 
 | 		mutex_unlock(&wi_group->kobj_lock); | 
 | 		ret = -EEXIST; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = sysfs_create_file(&wi_group->wi_kobj, &new_attr->kobj_attr.attr); | 
 | 	if (ret) { | 
 | 		mutex_unlock(&wi_group->kobj_lock); | 
 | 		goto out; | 
 | 	} | 
 | 	wi_group->nattrs[nid] = new_attr; | 
 | 	mutex_unlock(&wi_group->kobj_lock); | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	kfree(new_attr->kobj_attr.attr.name); | 
 | 	kfree(new_attr); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int wi_node_notifier(struct notifier_block *nb, | 
 | 			       unsigned long action, void *data) | 
 | { | 
 | 	int err; | 
 | 	struct node_notify *nn = data; | 
 | 	int nid = nn->nid; | 
 |  | 
 | 	switch (action) { | 
 | 	case NODE_ADDED_FIRST_MEMORY: | 
 | 		err = sysfs_wi_node_add(nid); | 
 | 		if (err) | 
 | 			pr_err("failed to add sysfs for node%d during hotplug: %d\n", | 
 | 			       nid, err); | 
 | 		break; | 
 | 	case NODE_REMOVED_LAST_MEMORY: | 
 | 		sysfs_wi_node_delete(nid); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static int __init add_weighted_interleave_group(struct kobject *mempolicy_kobj) | 
 | { | 
 | 	int nid, err; | 
 |  | 
 | 	wi_group = kzalloc(struct_size(wi_group, nattrs, nr_node_ids), | 
 | 			   GFP_KERNEL); | 
 | 	if (!wi_group) | 
 | 		return -ENOMEM; | 
 | 	mutex_init(&wi_group->kobj_lock); | 
 |  | 
 | 	err = kobject_init_and_add(&wi_group->wi_kobj, &wi_ktype, mempolicy_kobj, | 
 | 				   "weighted_interleave"); | 
 | 	if (err) | 
 | 		goto err_put_kobj; | 
 |  | 
 | 	err = sysfs_create_file(&wi_group->wi_kobj, &wi_auto_attr.attr); | 
 | 	if (err) | 
 | 		goto err_put_kobj; | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		if (!node_state(nid, N_MEMORY)) | 
 | 			continue; | 
 |  | 
 | 		err = sysfs_wi_node_add(nid); | 
 | 		if (err) { | 
 | 			pr_err("failed to add sysfs for node%d during init: %d\n", | 
 | 			       nid, err); | 
 | 			goto err_cleanup_kobj; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	hotplug_node_notifier(wi_node_notifier, DEFAULT_CALLBACK_PRI); | 
 | 	return 0; | 
 |  | 
 | err_cleanup_kobj: | 
 | 	wi_cleanup(); | 
 | 	kobject_del(&wi_group->wi_kobj); | 
 | err_put_kobj: | 
 | 	kobject_put(&wi_group->wi_kobj); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int __init mempolicy_sysfs_init(void) | 
 | { | 
 | 	int err; | 
 | 	static struct kobject *mempolicy_kobj; | 
 |  | 
 | 	mempolicy_kobj = kobject_create_and_add("mempolicy", mm_kobj); | 
 | 	if (!mempolicy_kobj) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	err = add_weighted_interleave_group(mempolicy_kobj); | 
 | 	if (err) | 
 | 		goto err_kobj; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_kobj: | 
 | 	kobject_del(mempolicy_kobj); | 
 | 	kobject_put(mempolicy_kobj); | 
 | 	return err; | 
 | } | 
 |  | 
 | late_initcall(mempolicy_sysfs_init); | 
 | #endif /* CONFIG_SYSFS */ |