|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. | 
|  | * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. | 
|  | * | 
|  | * KVM Xen emulation | 
|  | */ | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include "x86.h" | 
|  | #include "xen.h" | 
|  | #include "hyperv.h" | 
|  | #include "irq.h" | 
|  |  | 
|  | #include <linux/eventfd.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/sched/stat.h> | 
|  |  | 
|  | #include <trace/events/kvm.h> | 
|  | #include <xen/interface/xen.h> | 
|  | #include <xen/interface/vcpu.h> | 
|  | #include <xen/interface/version.h> | 
|  | #include <xen/interface/event_channel.h> | 
|  | #include <xen/interface/sched.h> | 
|  |  | 
|  | #include <asm/xen/cpuid.h> | 
|  | #include <asm/pvclock.h> | 
|  |  | 
|  | #include "cpuid.h" | 
|  | #include "trace.h" | 
|  |  | 
|  | static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm); | 
|  | static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data); | 
|  | static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r); | 
|  |  | 
|  | DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ); | 
|  |  | 
|  | static int kvm_xen_shared_info_init(struct kvm *kvm) | 
|  | { | 
|  | struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; | 
|  | struct pvclock_wall_clock *wc; | 
|  | u32 *wc_sec_hi; | 
|  | u32 wc_version; | 
|  | u64 wall_nsec; | 
|  | int ret = 0; | 
|  | int idx = srcu_read_lock(&kvm->srcu); | 
|  |  | 
|  | read_lock_irq(&gpc->lock); | 
|  | while (!kvm_gpc_check(gpc, PAGE_SIZE)) { | 
|  | read_unlock_irq(&gpc->lock); | 
|  |  | 
|  | ret = kvm_gpc_refresh(gpc, PAGE_SIZE); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | read_lock_irq(&gpc->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This code mirrors kvm_write_wall_clock() except that it writes | 
|  | * directly through the pfn cache and doesn't mark the page dirty. | 
|  | */ | 
|  | wall_nsec = kvm_get_wall_clock_epoch(kvm); | 
|  |  | 
|  | /* Paranoia checks on the 32-bit struct layout */ | 
|  | BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900); | 
|  | BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924); | 
|  | BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* Paranoia checks on the 64-bit struct layout */ | 
|  | BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00); | 
|  | BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { | 
|  | struct shared_info *shinfo = gpc->khva; | 
|  |  | 
|  | wc_sec_hi = &shinfo->wc_sec_hi; | 
|  | wc = &shinfo->wc; | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | struct compat_shared_info *shinfo = gpc->khva; | 
|  |  | 
|  | wc_sec_hi = &shinfo->arch.wc_sec_hi; | 
|  | wc = &shinfo->wc; | 
|  | } | 
|  |  | 
|  | /* Increment and ensure an odd value */ | 
|  | wc_version = wc->version = (wc->version + 1) | 1; | 
|  | smp_wmb(); | 
|  |  | 
|  | wc->nsec = do_div(wall_nsec, NSEC_PER_SEC); | 
|  | wc->sec = (u32)wall_nsec; | 
|  | *wc_sec_hi = wall_nsec >> 32; | 
|  | smp_wmb(); | 
|  |  | 
|  | wc->version = wc_version + 1; | 
|  | read_unlock_irq(&gpc->lock); | 
|  |  | 
|  | kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE); | 
|  |  | 
|  | out: | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) { | 
|  | struct kvm_xen_evtchn e; | 
|  |  | 
|  | e.vcpu_id = vcpu->vcpu_id; | 
|  | e.vcpu_idx = vcpu->vcpu_idx; | 
|  | e.port = vcpu->arch.xen.timer_virq; | 
|  | e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; | 
|  |  | 
|  | kvm_xen_set_evtchn(&e, vcpu->kvm); | 
|  |  | 
|  | vcpu->arch.xen.timer_expires = 0; | 
|  | atomic_set(&vcpu->arch.xen.timer_pending, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu, | 
|  | arch.xen.timer); | 
|  | struct kvm_xen_evtchn e; | 
|  | int rc; | 
|  |  | 
|  | if (atomic_read(&vcpu->arch.xen.timer_pending)) | 
|  | return HRTIMER_NORESTART; | 
|  |  | 
|  | e.vcpu_id = vcpu->vcpu_id; | 
|  | e.vcpu_idx = vcpu->vcpu_idx; | 
|  | e.port = vcpu->arch.xen.timer_virq; | 
|  | e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; | 
|  |  | 
|  | rc = kvm_xen_set_evtchn_fast(&e, vcpu->kvm); | 
|  | if (rc != -EWOULDBLOCK) { | 
|  | vcpu->arch.xen.timer_expires = 0; | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | atomic_inc(&vcpu->arch.xen.timer_pending); | 
|  | kvm_make_request(KVM_REQ_UNBLOCK, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  |  | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | static int xen_get_guest_pvclock(struct kvm_vcpu *vcpu, | 
|  | struct pvclock_vcpu_time_info *hv_clock, | 
|  | struct gfn_to_pfn_cache *gpc, | 
|  | unsigned int offset) | 
|  | { | 
|  | unsigned long flags; | 
|  | int r; | 
|  |  | 
|  | read_lock_irqsave(&gpc->lock, flags); | 
|  | while (!kvm_gpc_check(gpc, offset + sizeof(*hv_clock))) { | 
|  | read_unlock_irqrestore(&gpc->lock, flags); | 
|  |  | 
|  | r = kvm_gpc_refresh(gpc, offset + sizeof(*hv_clock)); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | read_lock_irqsave(&gpc->lock, flags); | 
|  | } | 
|  |  | 
|  | memcpy(hv_clock, gpc->khva + offset, sizeof(*hv_clock)); | 
|  | read_unlock_irqrestore(&gpc->lock, flags); | 
|  |  | 
|  | /* | 
|  | * Sanity check TSC shift+multiplier to verify the guest's view of time | 
|  | * is more or less consistent. | 
|  | */ | 
|  | if (hv_clock->tsc_shift != vcpu->arch.pvclock_tsc_shift || | 
|  | hv_clock->tsc_to_system_mul != vcpu->arch.pvclock_tsc_mul) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, | 
|  | bool linux_wa) | 
|  | { | 
|  | struct kvm_vcpu_xen *xen = &vcpu->arch.xen; | 
|  | int64_t kernel_now, delta; | 
|  | uint64_t guest_now; | 
|  | int r = -EOPNOTSUPP; | 
|  |  | 
|  | /* | 
|  | * The guest provides the requested timeout in absolute nanoseconds | 
|  | * of the KVM clock — as *it* sees it, based on the scaled TSC and | 
|  | * the pvclock information provided by KVM. | 
|  | * | 
|  | * The kernel doesn't support hrtimers based on CLOCK_MONOTONIC_RAW | 
|  | * so use CLOCK_MONOTONIC. In the timescales covered by timers, the | 
|  | * difference won't matter much as there is no cumulative effect. | 
|  | * | 
|  | * Calculate the time for some arbitrary point in time around "now" | 
|  | * in terms of both kvmclock and CLOCK_MONOTONIC. Calculate the | 
|  | * delta between the kvmclock "now" value and the guest's requested | 
|  | * timeout, apply the "Linux workaround" described below, and add | 
|  | * the resulting delta to the CLOCK_MONOTONIC "now" value, to get | 
|  | * the absolute CLOCK_MONOTONIC time at which the timer should | 
|  | * fire. | 
|  | */ | 
|  | do { | 
|  | struct pvclock_vcpu_time_info hv_clock; | 
|  | uint64_t host_tsc, guest_tsc; | 
|  |  | 
|  | if (!static_cpu_has(X86_FEATURE_CONSTANT_TSC) || | 
|  | !vcpu->kvm->arch.use_master_clock) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If both Xen PV clocks are active, arbitrarily try to use the | 
|  | * compat clock first, but also try to use the non-compat clock | 
|  | * if the compat clock is unusable.  The two PV clocks hold the | 
|  | * same information, but it's possible one (or both) is stale | 
|  | * and/or currently unreachable. | 
|  | */ | 
|  | if (xen->vcpu_info_cache.active) | 
|  | r = xen_get_guest_pvclock(vcpu, &hv_clock, &xen->vcpu_info_cache, | 
|  | offsetof(struct compat_vcpu_info, time)); | 
|  | if (r && xen->vcpu_time_info_cache.active) | 
|  | r = xen_get_guest_pvclock(vcpu, &hv_clock, &xen->vcpu_time_info_cache, 0); | 
|  | if (r) | 
|  | break; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_64BIT) || | 
|  | !kvm_get_monotonic_and_clockread(&kernel_now, &host_tsc)) { | 
|  | /* | 
|  | * Don't fall back to get_kvmclock_ns() because it's | 
|  | * broken; it has a systemic error in its results | 
|  | * because it scales directly from host TSC to | 
|  | * nanoseconds, and doesn't scale first to guest TSC | 
|  | * and *then* to nanoseconds as the guest does. | 
|  | * | 
|  | * There is a small error introduced here because time | 
|  | * continues to elapse between the ktime_get() and the | 
|  | * subsequent rdtsc(). But not the systemic drift due | 
|  | * to get_kvmclock_ns(). | 
|  | */ | 
|  | kernel_now = ktime_get(); /* This is CLOCK_MONOTONIC */ | 
|  | host_tsc = rdtsc(); | 
|  | } | 
|  |  | 
|  | /* Calculate the guest kvmclock as the guest would do it. */ | 
|  | guest_tsc = kvm_read_l1_tsc(vcpu, host_tsc); | 
|  | guest_now = __pvclock_read_cycles(&hv_clock, guest_tsc); | 
|  | } while (0); | 
|  |  | 
|  | if (r) { | 
|  | /* | 
|  | * Without CONSTANT_TSC, get_kvmclock_ns() is the only option. | 
|  | * | 
|  | * Also if the guest PV clock hasn't been set up yet, as is | 
|  | * likely to be the case during migration when the vCPU has | 
|  | * not been run yet. It would be possible to calculate the | 
|  | * scaling factors properly in that case but there's not much | 
|  | * point in doing so. The get_kvmclock_ns() drift accumulates | 
|  | * over time, so it's OK to use it at startup. Besides, on | 
|  | * migration there's going to be a little bit of skew in the | 
|  | * precise moment at which timers fire anyway. Often they'll | 
|  | * be in the "past" by the time the VM is running again after | 
|  | * migration. | 
|  | */ | 
|  | guest_now = get_kvmclock_ns(vcpu->kvm); | 
|  | kernel_now = ktime_get(); | 
|  | } | 
|  |  | 
|  | delta = guest_abs - guest_now; | 
|  |  | 
|  | /* | 
|  | * Xen has a 'Linux workaround' in do_set_timer_op() which checks for | 
|  | * negative absolute timeout values (caused by integer overflow), and | 
|  | * for values about 13 days in the future (2^50ns) which would be | 
|  | * caused by jiffies overflow. For those cases, Xen sets the timeout | 
|  | * 100ms in the future (not *too* soon, since if a guest really did | 
|  | * set a long timeout on purpose we don't want to keep churning CPU | 
|  | * time by waking it up).  Emulate Xen's workaround when starting the | 
|  | * timer in response to __HYPERVISOR_set_timer_op. | 
|  | */ | 
|  | if (linux_wa && | 
|  | unlikely((int64_t)guest_abs < 0 || | 
|  | (delta > 0 && (uint32_t) (delta >> 50) != 0))) { | 
|  | delta = 100 * NSEC_PER_MSEC; | 
|  | guest_abs = guest_now + delta; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Avoid races with the old timer firing. Checking timer_expires | 
|  | * to avoid calling hrtimer_cancel() will only have false positives | 
|  | * so is fine. | 
|  | */ | 
|  | if (vcpu->arch.xen.timer_expires) | 
|  | hrtimer_cancel(&vcpu->arch.xen.timer); | 
|  |  | 
|  | atomic_set(&vcpu->arch.xen.timer_pending, 0); | 
|  | vcpu->arch.xen.timer_expires = guest_abs; | 
|  |  | 
|  | if (delta <= 0) | 
|  | xen_timer_callback(&vcpu->arch.xen.timer); | 
|  | else | 
|  | hrtimer_start(&vcpu->arch.xen.timer, | 
|  | ktime_add_ns(kernel_now, delta), | 
|  | HRTIMER_MODE_ABS_HARD); | 
|  | } | 
|  |  | 
|  | static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | hrtimer_cancel(&vcpu->arch.xen.timer); | 
|  | vcpu->arch.xen.timer_expires = 0; | 
|  | atomic_set(&vcpu->arch.xen.timer_pending, 0); | 
|  | } | 
|  |  | 
|  | static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic) | 
|  | { | 
|  | struct kvm_vcpu_xen *vx = &v->arch.xen; | 
|  | struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache; | 
|  | struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache; | 
|  | size_t user_len, user_len1, user_len2; | 
|  | struct vcpu_runstate_info rs; | 
|  | unsigned long flags; | 
|  | size_t times_ofs; | 
|  | uint8_t *update_bit = NULL; | 
|  | uint64_t entry_time; | 
|  | uint64_t *rs_times; | 
|  | int *rs_state; | 
|  |  | 
|  | /* | 
|  | * The only difference between 32-bit and 64-bit versions of the | 
|  | * runstate struct is the alignment of uint64_t in 32-bit, which | 
|  | * means that the 64-bit version has an additional 4 bytes of | 
|  | * padding after the first field 'state'. Let's be really really | 
|  | * paranoid about that, and matching it with our internal data | 
|  | * structures that we memcpy into it... | 
|  | */ | 
|  | BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0); | 
|  | BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0); | 
|  | BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c); | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* | 
|  | * The 64-bit structure has 4 bytes of padding before 'state_entry_time' | 
|  | * so each subsequent field is shifted by 4, and it's 4 bytes longer. | 
|  | */ | 
|  | BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != | 
|  | offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4); | 
|  | BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) != | 
|  | offsetof(struct compat_vcpu_runstate_info, time) + 4); | 
|  | BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4); | 
|  | #endif | 
|  | /* | 
|  | * The state field is in the same place at the start of both structs, | 
|  | * and is the same size (int) as vx->current_runstate. | 
|  | */ | 
|  | BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != | 
|  | offsetof(struct compat_vcpu_runstate_info, state)); | 
|  | BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) != | 
|  | sizeof(vx->current_runstate)); | 
|  | BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) != | 
|  | sizeof(vx->current_runstate)); | 
|  |  | 
|  | /* | 
|  | * The state_entry_time field is 64 bits in both versions, and the | 
|  | * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86 | 
|  | * is little-endian means that it's in the last *byte* of the word. | 
|  | * That detail is important later. | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) != | 
|  | sizeof(uint64_t)); | 
|  | BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) != | 
|  | sizeof(uint64_t)); | 
|  | BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80); | 
|  |  | 
|  | /* | 
|  | * The time array is four 64-bit quantities in both versions, matching | 
|  | * the vx->runstate_times and immediately following state_entry_time. | 
|  | */ | 
|  | BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != | 
|  | offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t)); | 
|  | BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) != | 
|  | offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t)); | 
|  | BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != | 
|  | sizeof_field(struct compat_vcpu_runstate_info, time)); | 
|  | BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != | 
|  | sizeof(vx->runstate_times)); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { | 
|  | user_len = sizeof(struct vcpu_runstate_info); | 
|  | times_ofs = offsetof(struct vcpu_runstate_info, | 
|  | state_entry_time); | 
|  | } else { | 
|  | user_len = sizeof(struct compat_vcpu_runstate_info); | 
|  | times_ofs = offsetof(struct compat_vcpu_runstate_info, | 
|  | state_entry_time); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are basically no alignment constraints. The guest can set it | 
|  | * up so it crosses from one page to the next, and at arbitrary byte | 
|  | * alignment (and the 32-bit ABI doesn't align the 64-bit integers | 
|  | * anyway, even if the overall struct had been 64-bit aligned). | 
|  | */ | 
|  | if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) { | 
|  | user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK); | 
|  | user_len2 = user_len - user_len1; | 
|  | } else { | 
|  | user_len1 = user_len; | 
|  | user_len2 = 0; | 
|  | } | 
|  | BUG_ON(user_len1 + user_len2 != user_len); | 
|  |  | 
|  | retry: | 
|  | /* | 
|  | * Attempt to obtain the GPC lock on *both* (if there are two) | 
|  | * gfn_to_pfn caches that cover the region. | 
|  | */ | 
|  | if (atomic) { | 
|  | local_irq_save(flags); | 
|  | if (!read_trylock(&gpc1->lock)) { | 
|  | local_irq_restore(flags); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | read_lock_irqsave(&gpc1->lock, flags); | 
|  | } | 
|  | while (!kvm_gpc_check(gpc1, user_len1)) { | 
|  | read_unlock_irqrestore(&gpc1->lock, flags); | 
|  |  | 
|  | /* When invoked from kvm_sched_out() we cannot sleep */ | 
|  | if (atomic) | 
|  | return; | 
|  |  | 
|  | if (kvm_gpc_refresh(gpc1, user_len1)) | 
|  | return; | 
|  |  | 
|  | read_lock_irqsave(&gpc1->lock, flags); | 
|  | } | 
|  |  | 
|  | if (likely(!user_len2)) { | 
|  | /* | 
|  | * Set up three pointers directly to the runstate_info | 
|  | * struct in the guest (via the GPC). | 
|  | * | 
|  | *  • @rs_state   → state field | 
|  | *  • @rs_times   → state_entry_time field. | 
|  | *  • @update_bit → last byte of state_entry_time, which | 
|  | *                  contains the XEN_RUNSTATE_UPDATE bit. | 
|  | */ | 
|  | rs_state = gpc1->khva; | 
|  | rs_times = gpc1->khva + times_ofs; | 
|  | if (v->kvm->arch.xen.runstate_update_flag) | 
|  | update_bit = ((void *)(&rs_times[1])) - 1; | 
|  | } else { | 
|  | /* | 
|  | * The guest's runstate_info is split across two pages and we | 
|  | * need to hold and validate both GPCs simultaneously. We can | 
|  | * declare a lock ordering GPC1 > GPC2 because nothing else | 
|  | * takes them more than one at a time. Set a subclass on the | 
|  | * gpc1 lock to make lockdep shut up about it. | 
|  | */ | 
|  | lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_); | 
|  | if (atomic) { | 
|  | if (!read_trylock(&gpc2->lock)) { | 
|  | read_unlock_irqrestore(&gpc1->lock, flags); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | read_lock(&gpc2->lock); | 
|  | } | 
|  |  | 
|  | if (!kvm_gpc_check(gpc2, user_len2)) { | 
|  | read_unlock(&gpc2->lock); | 
|  | read_unlock_irqrestore(&gpc1->lock, flags); | 
|  |  | 
|  | /* When invoked from kvm_sched_out() we cannot sleep */ | 
|  | if (atomic) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Use kvm_gpc_activate() here because if the runstate | 
|  | * area was configured in 32-bit mode and only extends | 
|  | * to the second page now because the guest changed to | 
|  | * 64-bit mode, the second GPC won't have been set up. | 
|  | */ | 
|  | if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1, | 
|  | user_len2)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We dropped the lock on GPC1 so we have to go all the | 
|  | * way back and revalidate that too. | 
|  | */ | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In this case, the runstate_info struct will be assembled on | 
|  | * the kernel stack (compat or not as appropriate) and will | 
|  | * be copied to GPC1/GPC2 with a dual memcpy. Set up the three | 
|  | * rs pointers accordingly. | 
|  | */ | 
|  | rs_times = &rs.state_entry_time; | 
|  |  | 
|  | /* | 
|  | * The rs_state pointer points to the start of what we'll | 
|  | * copy to the guest, which in the case of a compat guest | 
|  | * is the 32-bit field that the compiler thinks is padding. | 
|  | */ | 
|  | rs_state = ((void *)rs_times) - times_ofs; | 
|  |  | 
|  | /* | 
|  | * The update_bit is still directly in the guest memory, | 
|  | * via one GPC or the other. | 
|  | */ | 
|  | if (v->kvm->arch.xen.runstate_update_flag) { | 
|  | if (user_len1 >= times_ofs + sizeof(uint64_t)) | 
|  | update_bit = gpc1->khva + times_ofs + | 
|  | sizeof(uint64_t) - 1; | 
|  | else | 
|  | update_bit = gpc2->khva + times_ofs + | 
|  | sizeof(uint64_t) - 1 - user_len1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* | 
|  | * Don't leak kernel memory through the padding in the 64-bit | 
|  | * version of the struct. | 
|  | */ | 
|  | memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the | 
|  | * state_entry_time field, directly in the guest. We need to set | 
|  | * that (and write-barrier) before writing to the rest of the | 
|  | * structure, and clear it last. Just as Xen does, we address the | 
|  | * single *byte* in which it resides because it might be in a | 
|  | * different cache line to the rest of the 64-bit word, due to | 
|  | * the (lack of) alignment constraints. | 
|  | */ | 
|  | entry_time = vx->runstate_entry_time; | 
|  | if (update_bit) { | 
|  | entry_time |= XEN_RUNSTATE_UPDATE; | 
|  | *update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56; | 
|  | smp_wmb(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now assemble the actual structure, either on our kernel stack | 
|  | * or directly in the guest according to how the rs_state and | 
|  | * rs_times pointers were set up above. | 
|  | */ | 
|  | *rs_state = vx->current_runstate; | 
|  | rs_times[0] = entry_time; | 
|  | memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times)); | 
|  |  | 
|  | /* For the split case, we have to then copy it to the guest. */ | 
|  | if (user_len2) { | 
|  | memcpy(gpc1->khva, rs_state, user_len1); | 
|  | memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2); | 
|  | } | 
|  | smp_wmb(); | 
|  |  | 
|  | /* Finally, clear the XEN_RUNSTATE_UPDATE bit. */ | 
|  | if (update_bit) { | 
|  | entry_time &= ~XEN_RUNSTATE_UPDATE; | 
|  | *update_bit = entry_time >> 56; | 
|  | smp_wmb(); | 
|  | } | 
|  |  | 
|  | if (user_len2) { | 
|  | kvm_gpc_mark_dirty_in_slot(gpc2); | 
|  | read_unlock(&gpc2->lock); | 
|  | } | 
|  |  | 
|  | kvm_gpc_mark_dirty_in_slot(gpc1); | 
|  | read_unlock_irqrestore(&gpc1->lock, flags); | 
|  | } | 
|  |  | 
|  | void kvm_xen_update_runstate(struct kvm_vcpu *v, int state) | 
|  | { | 
|  | struct kvm_vcpu_xen *vx = &v->arch.xen; | 
|  | u64 now = get_kvmclock_ns(v->kvm); | 
|  | u64 delta_ns = now - vx->runstate_entry_time; | 
|  | u64 run_delay = current->sched_info.run_delay; | 
|  |  | 
|  | if (unlikely(!vx->runstate_entry_time)) | 
|  | vx->current_runstate = RUNSTATE_offline; | 
|  |  | 
|  | /* | 
|  | * Time waiting for the scheduler isn't "stolen" if the | 
|  | * vCPU wasn't running anyway. | 
|  | */ | 
|  | if (vx->current_runstate == RUNSTATE_running) { | 
|  | u64 steal_ns = run_delay - vx->last_steal; | 
|  |  | 
|  | delta_ns -= steal_ns; | 
|  |  | 
|  | vx->runstate_times[RUNSTATE_runnable] += steal_ns; | 
|  | } | 
|  | vx->last_steal = run_delay; | 
|  |  | 
|  | vx->runstate_times[vx->current_runstate] += delta_ns; | 
|  | vx->current_runstate = state; | 
|  | vx->runstate_entry_time = now; | 
|  |  | 
|  | if (vx->runstate_cache.active) | 
|  | kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable); | 
|  | } | 
|  |  | 
|  | void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v) | 
|  | { | 
|  | struct kvm_lapic_irq irq = { }; | 
|  |  | 
|  | irq.dest_id = v->vcpu_id; | 
|  | irq.vector = v->arch.xen.upcall_vector; | 
|  | irq.dest_mode = APIC_DEST_PHYSICAL; | 
|  | irq.shorthand = APIC_DEST_NOSHORT; | 
|  | irq.delivery_mode = APIC_DM_FIXED; | 
|  | irq.level = 1; | 
|  |  | 
|  | kvm_irq_delivery_to_apic(v->kvm, NULL, &irq, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On event channel delivery, the vcpu_info may not have been accessible. | 
|  | * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which | 
|  | * need to be marked into the vcpu_info (and evtchn_upcall_pending set). | 
|  | * Do so now that we can sleep in the context of the vCPU to bring the | 
|  | * page in, and refresh the pfn cache for it. | 
|  | */ | 
|  | void kvm_xen_inject_pending_events(struct kvm_vcpu *v) | 
|  | { | 
|  | unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel); | 
|  | struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!evtchn_pending_sel) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Yes, this is an open-coded loop. But that's just what put_user() | 
|  | * does anyway. Page it in and retry the instruction. We're just a | 
|  | * little more honest about it. | 
|  | */ | 
|  | read_lock_irqsave(&gpc->lock, flags); | 
|  | while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { | 
|  | read_unlock_irqrestore(&gpc->lock, flags); | 
|  |  | 
|  | if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) | 
|  | return; | 
|  |  | 
|  | read_lock_irqsave(&gpc->lock, flags); | 
|  | } | 
|  |  | 
|  | /* Now gpc->khva is a valid kernel address for the vcpu_info */ | 
|  | if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { | 
|  | struct vcpu_info *vi = gpc->khva; | 
|  |  | 
|  | asm volatile(LOCK_PREFIX "orq %0, %1\n" | 
|  | "notq %0\n" | 
|  | LOCK_PREFIX "andq %0, %2\n" | 
|  | : "=r" (evtchn_pending_sel), | 
|  | "+m" (vi->evtchn_pending_sel), | 
|  | "+m" (v->arch.xen.evtchn_pending_sel) | 
|  | : "0" (evtchn_pending_sel)); | 
|  | WRITE_ONCE(vi->evtchn_upcall_pending, 1); | 
|  | } else { | 
|  | u32 evtchn_pending_sel32 = evtchn_pending_sel; | 
|  | struct compat_vcpu_info *vi = gpc->khva; | 
|  |  | 
|  | asm volatile(LOCK_PREFIX "orl %0, %1\n" | 
|  | "notl %0\n" | 
|  | LOCK_PREFIX "andl %0, %2\n" | 
|  | : "=r" (evtchn_pending_sel32), | 
|  | "+m" (vi->evtchn_pending_sel), | 
|  | "+m" (v->arch.xen.evtchn_pending_sel) | 
|  | : "0" (evtchn_pending_sel32)); | 
|  | WRITE_ONCE(vi->evtchn_upcall_pending, 1); | 
|  | } | 
|  |  | 
|  | kvm_gpc_mark_dirty_in_slot(gpc); | 
|  | read_unlock_irqrestore(&gpc->lock, flags); | 
|  |  | 
|  | /* For the per-vCPU lapic vector, deliver it as MSI. */ | 
|  | if (v->arch.xen.upcall_vector) | 
|  | kvm_xen_inject_vcpu_vector(v); | 
|  | } | 
|  |  | 
|  | int __kvm_xen_has_interrupt(struct kvm_vcpu *v) | 
|  | { | 
|  | struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; | 
|  | unsigned long flags; | 
|  | u8 rc = 0; | 
|  |  | 
|  | /* | 
|  | * If the global upcall vector (HVMIRQ_callback_vector) is set and | 
|  | * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending. | 
|  | */ | 
|  |  | 
|  | /* No need for compat handling here */ | 
|  | BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) != | 
|  | offsetof(struct compat_vcpu_info, evtchn_upcall_pending)); | 
|  | BUILD_BUG_ON(sizeof(rc) != | 
|  | sizeof_field(struct vcpu_info, evtchn_upcall_pending)); | 
|  | BUILD_BUG_ON(sizeof(rc) != | 
|  | sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending)); | 
|  |  | 
|  | read_lock_irqsave(&gpc->lock, flags); | 
|  | while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { | 
|  | read_unlock_irqrestore(&gpc->lock, flags); | 
|  |  | 
|  | /* | 
|  | * This function gets called from kvm_vcpu_block() after setting the | 
|  | * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately | 
|  | * from a HLT. So we really mustn't sleep. If the page ended up absent | 
|  | * at that point, just return 1 in order to trigger an immediate wake, | 
|  | * and we'll end up getting called again from a context where we *can* | 
|  | * fault in the page and wait for it. | 
|  | */ | 
|  | if (in_atomic() || !task_is_running(current)) | 
|  | return 1; | 
|  |  | 
|  | if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) { | 
|  | /* | 
|  | * If this failed, userspace has screwed up the | 
|  | * vcpu_info mapping. No interrupts for you. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  | read_lock_irqsave(&gpc->lock, flags); | 
|  | } | 
|  |  | 
|  | rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending; | 
|  | read_unlock_irqrestore(&gpc->lock, flags); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) | 
|  | { | 
|  | int r = -ENOENT; | 
|  |  | 
|  |  | 
|  | switch (data->type) { | 
|  | case KVM_XEN_ATTR_TYPE_LONG_MODE: | 
|  | if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) { | 
|  | r = -EINVAL; | 
|  | } else { | 
|  | mutex_lock(&kvm->arch.xen.xen_lock); | 
|  | kvm->arch.xen.long_mode = !!data->u.long_mode; | 
|  |  | 
|  | /* | 
|  | * Re-initialize shared_info to put the wallclock in the | 
|  | * correct place. Whilst it's not necessary to do this | 
|  | * unless the mode is actually changed, it does no harm | 
|  | * to make the call anyway. | 
|  | */ | 
|  | r = kvm->arch.xen.shinfo_cache.active ? | 
|  | kvm_xen_shared_info_init(kvm) : 0; | 
|  | mutex_unlock(&kvm->arch.xen.xen_lock); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_ATTR_TYPE_SHARED_INFO: | 
|  | case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA: { | 
|  | int idx; | 
|  |  | 
|  | mutex_lock(&kvm->arch.xen.xen_lock); | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  |  | 
|  | if (data->type == KVM_XEN_ATTR_TYPE_SHARED_INFO) { | 
|  | gfn_t gfn = data->u.shared_info.gfn; | 
|  |  | 
|  | if (gfn == KVM_XEN_INVALID_GFN) { | 
|  | kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); | 
|  | r = 0; | 
|  | } else { | 
|  | r = kvm_gpc_activate(&kvm->arch.xen.shinfo_cache, | 
|  | gfn_to_gpa(gfn), PAGE_SIZE); | 
|  | } | 
|  | } else { | 
|  | void __user * hva = u64_to_user_ptr(data->u.shared_info.hva); | 
|  |  | 
|  | if (!PAGE_ALIGNED(hva)) { | 
|  | r = -EINVAL; | 
|  | } else if (!hva) { | 
|  | kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); | 
|  | r = 0; | 
|  | } else { | 
|  | r = kvm_gpc_activate_hva(&kvm->arch.xen.shinfo_cache, | 
|  | (unsigned long)hva, PAGE_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  |  | 
|  | if (!r && kvm->arch.xen.shinfo_cache.active) | 
|  | r = kvm_xen_shared_info_init(kvm); | 
|  |  | 
|  | mutex_unlock(&kvm->arch.xen.xen_lock); | 
|  | break; | 
|  | } | 
|  | case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: | 
|  | if (data->u.vector && data->u.vector < 0x10) | 
|  | r = -EINVAL; | 
|  | else { | 
|  | mutex_lock(&kvm->arch.xen.xen_lock); | 
|  | kvm->arch.xen.upcall_vector = data->u.vector; | 
|  | mutex_unlock(&kvm->arch.xen.xen_lock); | 
|  | r = 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_ATTR_TYPE_EVTCHN: | 
|  | r = kvm_xen_setattr_evtchn(kvm, data); | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_ATTR_TYPE_XEN_VERSION: | 
|  | mutex_lock(&kvm->arch.xen.xen_lock); | 
|  | kvm->arch.xen.xen_version = data->u.xen_version; | 
|  | mutex_unlock(&kvm->arch.xen.xen_lock); | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: | 
|  | if (!sched_info_on()) { | 
|  | r = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  | mutex_lock(&kvm->arch.xen.xen_lock); | 
|  | kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag; | 
|  | mutex_unlock(&kvm->arch.xen.xen_lock); | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) | 
|  | { | 
|  | int r = -ENOENT; | 
|  |  | 
|  | mutex_lock(&kvm->arch.xen.xen_lock); | 
|  |  | 
|  | switch (data->type) { | 
|  | case KVM_XEN_ATTR_TYPE_LONG_MODE: | 
|  | data->u.long_mode = kvm->arch.xen.long_mode; | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_ATTR_TYPE_SHARED_INFO: | 
|  | if (kvm_gpc_is_gpa_active(&kvm->arch.xen.shinfo_cache)) | 
|  | data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa); | 
|  | else | 
|  | data->u.shared_info.gfn = KVM_XEN_INVALID_GFN; | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA: | 
|  | if (kvm_gpc_is_hva_active(&kvm->arch.xen.shinfo_cache)) | 
|  | data->u.shared_info.hva = kvm->arch.xen.shinfo_cache.uhva; | 
|  | else | 
|  | data->u.shared_info.hva = 0; | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: | 
|  | data->u.vector = kvm->arch.xen.upcall_vector; | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_ATTR_TYPE_XEN_VERSION: | 
|  | data->u.xen_version = kvm->arch.xen.xen_version; | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG: | 
|  | if (!sched_info_on()) { | 
|  | r = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  | data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag; | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&kvm->arch.xen.xen_lock); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) | 
|  | { | 
|  | int idx, r = -ENOENT; | 
|  |  | 
|  | mutex_lock(&vcpu->kvm->arch.xen.xen_lock); | 
|  | idx = srcu_read_lock(&vcpu->kvm->srcu); | 
|  |  | 
|  | switch (data->type) { | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA: | 
|  | /* No compat necessary here. */ | 
|  | BUILD_BUG_ON(sizeof(struct vcpu_info) != | 
|  | sizeof(struct compat_vcpu_info)); | 
|  | BUILD_BUG_ON(offsetof(struct vcpu_info, time) != | 
|  | offsetof(struct compat_vcpu_info, time)); | 
|  |  | 
|  | if (data->type == KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO) { | 
|  | if (data->u.gpa == KVM_XEN_INVALID_GPA) { | 
|  | kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache, | 
|  | data->u.gpa, sizeof(struct vcpu_info)); | 
|  | } else { | 
|  | if (data->u.hva == 0) { | 
|  | kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | r = kvm_gpc_activate_hva(&vcpu->arch.xen.vcpu_info_cache, | 
|  | data->u.hva, sizeof(struct vcpu_info)); | 
|  | } | 
|  |  | 
|  | if (!r) | 
|  | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: | 
|  | if (data->u.gpa == KVM_XEN_INVALID_GPA) { | 
|  | kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache, | 
|  | data->u.gpa, | 
|  | sizeof(struct pvclock_vcpu_time_info)); | 
|  | if (!r) | 
|  | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: { | 
|  | size_t sz, sz1, sz2; | 
|  |  | 
|  | if (!sched_info_on()) { | 
|  | r = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  | if (data->u.gpa == KVM_XEN_INVALID_GPA) { | 
|  | r = 0; | 
|  | deactivate_out: | 
|  | kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); | 
|  | kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the guest switches to 64-bit mode after setting the runstate | 
|  | * address, that's actually OK. kvm_xen_update_runstate_guest() | 
|  | * will cope. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode) | 
|  | sz = sizeof(struct vcpu_runstate_info); | 
|  | else | 
|  | sz = sizeof(struct compat_vcpu_runstate_info); | 
|  |  | 
|  | /* How much fits in the (first) page? */ | 
|  | sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK); | 
|  | r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache, | 
|  | data->u.gpa, sz1); | 
|  | if (r) | 
|  | goto deactivate_out; | 
|  |  | 
|  | /* Either map the second page, or deactivate the second GPC */ | 
|  | if (sz1 >= sz) { | 
|  | kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); | 
|  | } else { | 
|  | sz2 = sz - sz1; | 
|  | BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK); | 
|  | r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache, | 
|  | data->u.gpa + sz1, sz2); | 
|  | if (r) | 
|  | goto deactivate_out; | 
|  | } | 
|  |  | 
|  | kvm_xen_update_runstate_guest(vcpu, false); | 
|  | break; | 
|  | } | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: | 
|  | if (!sched_info_on()) { | 
|  | r = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  | if (data->u.runstate.state > RUNSTATE_offline) { | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | kvm_xen_update_runstate(vcpu, data->u.runstate.state); | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: | 
|  | if (!sched_info_on()) { | 
|  | r = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  | if (data->u.runstate.state > RUNSTATE_offline) { | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  | if (data->u.runstate.state_entry_time != | 
|  | (data->u.runstate.time_running + | 
|  | data->u.runstate.time_runnable + | 
|  | data->u.runstate.time_blocked + | 
|  | data->u.runstate.time_offline)) { | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  | if (get_kvmclock_ns(vcpu->kvm) < | 
|  | data->u.runstate.state_entry_time) { | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | vcpu->arch.xen.current_runstate = data->u.runstate.state; | 
|  | vcpu->arch.xen.runstate_entry_time = | 
|  | data->u.runstate.state_entry_time; | 
|  | vcpu->arch.xen.runstate_times[RUNSTATE_running] = | 
|  | data->u.runstate.time_running; | 
|  | vcpu->arch.xen.runstate_times[RUNSTATE_runnable] = | 
|  | data->u.runstate.time_runnable; | 
|  | vcpu->arch.xen.runstate_times[RUNSTATE_blocked] = | 
|  | data->u.runstate.time_blocked; | 
|  | vcpu->arch.xen.runstate_times[RUNSTATE_offline] = | 
|  | data->u.runstate.time_offline; | 
|  | vcpu->arch.xen.last_steal = current->sched_info.run_delay; | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: | 
|  | if (!sched_info_on()) { | 
|  | r = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  | if (data->u.runstate.state > RUNSTATE_offline && | 
|  | data->u.runstate.state != (u64)-1) { | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  | /* The adjustment must add up */ | 
|  | if (data->u.runstate.state_entry_time != | 
|  | (data->u.runstate.time_running + | 
|  | data->u.runstate.time_runnable + | 
|  | data->u.runstate.time_blocked + | 
|  | data->u.runstate.time_offline)) { | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (get_kvmclock_ns(vcpu->kvm) < | 
|  | (vcpu->arch.xen.runstate_entry_time + | 
|  | data->u.runstate.state_entry_time)) { | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | vcpu->arch.xen.runstate_entry_time += | 
|  | data->u.runstate.state_entry_time; | 
|  | vcpu->arch.xen.runstate_times[RUNSTATE_running] += | 
|  | data->u.runstate.time_running; | 
|  | vcpu->arch.xen.runstate_times[RUNSTATE_runnable] += | 
|  | data->u.runstate.time_runnable; | 
|  | vcpu->arch.xen.runstate_times[RUNSTATE_blocked] += | 
|  | data->u.runstate.time_blocked; | 
|  | vcpu->arch.xen.runstate_times[RUNSTATE_offline] += | 
|  | data->u.runstate.time_offline; | 
|  |  | 
|  | if (data->u.runstate.state <= RUNSTATE_offline) | 
|  | kvm_xen_update_runstate(vcpu, data->u.runstate.state); | 
|  | else if (vcpu->arch.xen.runstate_cache.active) | 
|  | kvm_xen_update_runstate_guest(vcpu, false); | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: | 
|  | if (data->u.vcpu_id >= KVM_MAX_VCPUS) | 
|  | r = -EINVAL; | 
|  | else { | 
|  | vcpu->arch.xen.vcpu_id = data->u.vcpu_id; | 
|  | r = 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_TIMER: | 
|  | if (data->u.timer.port && | 
|  | data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) { | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Stop the timer (if it's running) before changing the vector */ | 
|  | kvm_xen_stop_timer(vcpu); | 
|  | vcpu->arch.xen.timer_virq = data->u.timer.port; | 
|  |  | 
|  | /* Start the timer if the new value has a valid vector+expiry. */ | 
|  | if (data->u.timer.port && data->u.timer.expires_ns) | 
|  | kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, false); | 
|  |  | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: | 
|  | if (data->u.vector && data->u.vector < 0x10) | 
|  | r = -EINVAL; | 
|  | else { | 
|  | vcpu->arch.xen.upcall_vector = data->u.vector; | 
|  | r = 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
|  | mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) | 
|  | { | 
|  | int r = -ENOENT; | 
|  |  | 
|  | mutex_lock(&vcpu->kvm->arch.xen.xen_lock); | 
|  |  | 
|  | switch (data->type) { | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: | 
|  | if (kvm_gpc_is_gpa_active(&vcpu->arch.xen.vcpu_info_cache)) | 
|  | data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa; | 
|  | else | 
|  | data->u.gpa = KVM_XEN_INVALID_GPA; | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO_HVA: | 
|  | if (kvm_gpc_is_hva_active(&vcpu->arch.xen.vcpu_info_cache)) | 
|  | data->u.hva = vcpu->arch.xen.vcpu_info_cache.uhva; | 
|  | else | 
|  | data->u.hva = 0; | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: | 
|  | if (vcpu->arch.xen.vcpu_time_info_cache.active) | 
|  | data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa; | 
|  | else | 
|  | data->u.gpa = KVM_XEN_INVALID_GPA; | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: | 
|  | if (!sched_info_on()) { | 
|  | r = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  | if (vcpu->arch.xen.runstate_cache.active) { | 
|  | data->u.gpa = vcpu->arch.xen.runstate_cache.gpa; | 
|  | r = 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: | 
|  | if (!sched_info_on()) { | 
|  | r = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  | data->u.runstate.state = vcpu->arch.xen.current_runstate; | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: | 
|  | if (!sched_info_on()) { | 
|  | r = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  | data->u.runstate.state = vcpu->arch.xen.current_runstate; | 
|  | data->u.runstate.state_entry_time = | 
|  | vcpu->arch.xen.runstate_entry_time; | 
|  | data->u.runstate.time_running = | 
|  | vcpu->arch.xen.runstate_times[RUNSTATE_running]; | 
|  | data->u.runstate.time_runnable = | 
|  | vcpu->arch.xen.runstate_times[RUNSTATE_runnable]; | 
|  | data->u.runstate.time_blocked = | 
|  | vcpu->arch.xen.runstate_times[RUNSTATE_blocked]; | 
|  | data->u.runstate.time_offline = | 
|  | vcpu->arch.xen.runstate_times[RUNSTATE_offline]; | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: | 
|  | r = -EINVAL; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: | 
|  | data->u.vcpu_id = vcpu->arch.xen.vcpu_id; | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_TIMER: | 
|  | /* | 
|  | * Ensure a consistent snapshot of state is captured, with a | 
|  | * timer either being pending, or the event channel delivered | 
|  | * to the corresponding bit in the shared_info. Not still | 
|  | * lurking in the timer_pending flag for deferred delivery. | 
|  | * Purely as an optimisation, if the timer_expires field is | 
|  | * zero, that means the timer isn't active (or even in the | 
|  | * timer_pending flag) and there is no need to cancel it. | 
|  | */ | 
|  | if (vcpu->arch.xen.timer_expires) { | 
|  | hrtimer_cancel(&vcpu->arch.xen.timer); | 
|  | kvm_xen_inject_timer_irqs(vcpu); | 
|  | } | 
|  |  | 
|  | data->u.timer.port = vcpu->arch.xen.timer_virq; | 
|  | data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; | 
|  | data->u.timer.expires_ns = vcpu->arch.xen.timer_expires; | 
|  |  | 
|  | /* | 
|  | * The hrtimer may trigger and raise the IRQ immediately, | 
|  | * while the returned state causes it to be set up and | 
|  | * raised again on the destination system after migration. | 
|  | * That's fine, as the guest won't even have had a chance | 
|  | * to run and handle the interrupt. Asserting an already | 
|  | * pending event channel is idempotent. | 
|  | */ | 
|  | if (vcpu->arch.xen.timer_expires) | 
|  | hrtimer_start_expires(&vcpu->arch.xen.timer, | 
|  | HRTIMER_MODE_ABS_HARD); | 
|  |  | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: | 
|  | data->u.vector = vcpu->arch.xen.upcall_vector; | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&vcpu->kvm->arch.xen.xen_lock); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | u32 page_num = data & ~PAGE_MASK; | 
|  | u64 page_addr = data & PAGE_MASK; | 
|  | bool lm = is_long_mode(vcpu); | 
|  | int r = 0; | 
|  |  | 
|  | mutex_lock(&kvm->arch.xen.xen_lock); | 
|  | if (kvm->arch.xen.long_mode != lm) { | 
|  | kvm->arch.xen.long_mode = lm; | 
|  |  | 
|  | /* | 
|  | * Re-initialize shared_info to put the wallclock in the | 
|  | * correct place. | 
|  | */ | 
|  | if (kvm->arch.xen.shinfo_cache.active && | 
|  | kvm_xen_shared_info_init(kvm)) | 
|  | r = 1; | 
|  | } | 
|  | mutex_unlock(&kvm->arch.xen.xen_lock); | 
|  |  | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | /* | 
|  | * If Xen hypercall intercept is enabled, fill the hypercall | 
|  | * page with VMCALL/VMMCALL instructions since that's what | 
|  | * we catch. Else the VMM has provided the hypercall pages | 
|  | * with instructions of its own choosing, so use those. | 
|  | */ | 
|  | if (kvm_xen_hypercall_enabled(kvm)) { | 
|  | u8 instructions[32]; | 
|  | int i; | 
|  |  | 
|  | if (page_num) | 
|  | return 1; | 
|  |  | 
|  | /* mov imm32, %eax */ | 
|  | instructions[0] = 0xb8; | 
|  |  | 
|  | /* vmcall / vmmcall */ | 
|  | kvm_x86_call(patch_hypercall)(vcpu, instructions + 5); | 
|  |  | 
|  | /* ret */ | 
|  | instructions[8] = 0xc3; | 
|  |  | 
|  | /* int3 to pad */ | 
|  | memset(instructions + 9, 0xcc, sizeof(instructions) - 9); | 
|  |  | 
|  | for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) { | 
|  | *(u32 *)&instructions[1] = i; | 
|  | if (kvm_vcpu_write_guest(vcpu, | 
|  | page_addr + (i * sizeof(instructions)), | 
|  | instructions, sizeof(instructions))) | 
|  | return 1; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Note, truncation is a non-issue as 'lm' is guaranteed to be | 
|  | * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes. | 
|  | */ | 
|  | hva_t blob_addr = lm ? kvm->arch.xen.hvm_config.blob_addr_64 | 
|  | : kvm->arch.xen.hvm_config.blob_addr_32; | 
|  | u8 blob_size = lm ? kvm->arch.xen.hvm_config.blob_size_64 | 
|  | : kvm->arch.xen.hvm_config.blob_size_32; | 
|  | u8 *page; | 
|  | int ret; | 
|  |  | 
|  | if (page_num >= blob_size) | 
|  | return 1; | 
|  |  | 
|  | blob_addr += page_num * PAGE_SIZE; | 
|  |  | 
|  | page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE); | 
|  | if (IS_ERR(page)) | 
|  | return PTR_ERR(page); | 
|  |  | 
|  | ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE); | 
|  | kfree(page); | 
|  | if (ret) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc) | 
|  | { | 
|  | /* Only some feature flags need to be *enabled* by userspace */ | 
|  | u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | | 
|  | KVM_XEN_HVM_CONFIG_EVTCHN_SEND | | 
|  | KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; | 
|  | u32 old_flags; | 
|  |  | 
|  | if (xhc->flags & ~permitted_flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * With hypercall interception the kernel generates its own | 
|  | * hypercall page so it must not be provided. | 
|  | */ | 
|  | if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) && | 
|  | (xhc->blob_addr_32 || xhc->blob_addr_64 || | 
|  | xhc->blob_size_32 || xhc->blob_size_64)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Restrict the MSR to the range that is unofficially reserved for | 
|  | * synthetic, virtualization-defined MSRs, e.g. to prevent confusing | 
|  | * KVM by colliding with a real MSR that requires special handling. | 
|  | */ | 
|  | if (xhc->msr && | 
|  | (xhc->msr < KVM_XEN_MSR_MIN_INDEX || xhc->msr > KVM_XEN_MSR_MAX_INDEX)) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&kvm->arch.xen.xen_lock); | 
|  |  | 
|  | if (xhc->msr && !kvm->arch.xen.hvm_config.msr) | 
|  | static_branch_inc(&kvm_xen_enabled.key); | 
|  | else if (!xhc->msr && kvm->arch.xen.hvm_config.msr) | 
|  | static_branch_slow_dec_deferred(&kvm_xen_enabled); | 
|  |  | 
|  | old_flags = kvm->arch.xen.hvm_config.flags; | 
|  | memcpy(&kvm->arch.xen.hvm_config, xhc, sizeof(*xhc)); | 
|  |  | 
|  | mutex_unlock(&kvm->arch.xen.xen_lock); | 
|  |  | 
|  | if ((old_flags ^ xhc->flags) & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE) | 
|  | kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) | 
|  | { | 
|  | kvm_rax_write(vcpu, result); | 
|  | return kvm_skip_emulated_instruction(vcpu); | 
|  | } | 
|  |  | 
|  | static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_run *run = vcpu->run; | 
|  |  | 
|  | if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip))) | 
|  | return 1; | 
|  |  | 
|  | return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result); | 
|  | } | 
|  |  | 
|  | static inline int max_evtchn_port(struct kvm *kvm) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) | 
|  | return EVTCHN_2L_NR_CHANNELS; | 
|  | else | 
|  | return COMPAT_EVTCHN_2L_NR_CHANNELS; | 
|  | } | 
|  |  | 
|  | static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports, | 
|  | evtchn_port_t *ports) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; | 
|  | unsigned long *pending_bits; | 
|  | unsigned long flags; | 
|  | bool ret = true; | 
|  | int idx, i; | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | read_lock_irqsave(&gpc->lock, flags); | 
|  | if (!kvm_gpc_check(gpc, PAGE_SIZE)) | 
|  | goto out_rcu; | 
|  |  | 
|  | ret = false; | 
|  | if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { | 
|  | struct shared_info *shinfo = gpc->khva; | 
|  | pending_bits = (unsigned long *)&shinfo->evtchn_pending; | 
|  | } else { | 
|  | struct compat_shared_info *shinfo = gpc->khva; | 
|  | pending_bits = (unsigned long *)&shinfo->evtchn_pending; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_ports; i++) { | 
|  | if (test_bit(ports[i], pending_bits)) { | 
|  | ret = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | out_rcu: | 
|  | read_unlock_irqrestore(&gpc->lock, flags); | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode, | 
|  | u64 param, u64 *r) | 
|  | { | 
|  | struct sched_poll sched_poll; | 
|  | evtchn_port_t port, *ports; | 
|  | struct x86_exception e; | 
|  | int i; | 
|  |  | 
|  | if (!lapic_in_kernel(vcpu) || | 
|  | !(vcpu->kvm->arch.xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND)) | 
|  | return false; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_64BIT) && !longmode) { | 
|  | struct compat_sched_poll sp32; | 
|  |  | 
|  | /* Sanity check that the compat struct definition is correct */ | 
|  | BUILD_BUG_ON(sizeof(sp32) != 16); | 
|  |  | 
|  | if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) { | 
|  | *r = -EFAULT; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a 32-bit pointer to an array of evtchn_port_t which | 
|  | * are uint32_t, so once it's converted no further compat | 
|  | * handling is needed. | 
|  | */ | 
|  | sched_poll.ports = (void *)(unsigned long)(sp32.ports); | 
|  | sched_poll.nr_ports = sp32.nr_ports; | 
|  | sched_poll.timeout = sp32.timeout; | 
|  | } else { | 
|  | if (kvm_read_guest_virt(vcpu, param, &sched_poll, | 
|  | sizeof(sched_poll), &e)) { | 
|  | *r = -EFAULT; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(sched_poll.nr_ports > 1)) { | 
|  | /* Xen (unofficially) limits number of pollers to 128 */ | 
|  | if (sched_poll.nr_ports > 128) { | 
|  | *r = -EINVAL; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ports = kmalloc_array(sched_poll.nr_ports, | 
|  | sizeof(*ports), GFP_KERNEL); | 
|  | if (!ports) { | 
|  | *r = -ENOMEM; | 
|  | return true; | 
|  | } | 
|  | } else | 
|  | ports = &port; | 
|  |  | 
|  | if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports, | 
|  | sched_poll.nr_ports * sizeof(*ports), &e)) { | 
|  | *r = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < sched_poll.nr_ports; i++) { | 
|  | if (ports[i] >= max_evtchn_port(vcpu->kvm)) { | 
|  | *r = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sched_poll.nr_ports == 1) | 
|  | vcpu->arch.xen.poll_evtchn = port; | 
|  | else | 
|  | vcpu->arch.xen.poll_evtchn = -1; | 
|  |  | 
|  | set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); | 
|  |  | 
|  | if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) { | 
|  | kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED); | 
|  |  | 
|  | if (sched_poll.timeout) | 
|  | mod_timer(&vcpu->arch.xen.poll_timer, | 
|  | jiffies + nsecs_to_jiffies(sched_poll.timeout)); | 
|  |  | 
|  | kvm_vcpu_halt(vcpu); | 
|  |  | 
|  | if (sched_poll.timeout) | 
|  | timer_delete(&vcpu->arch.xen.poll_timer); | 
|  |  | 
|  | kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); | 
|  | } | 
|  |  | 
|  | vcpu->arch.xen.poll_evtchn = 0; | 
|  | *r = 0; | 
|  | out: | 
|  | /* Really, this is only needed in case of timeout */ | 
|  | clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); | 
|  |  | 
|  | if (unlikely(sched_poll.nr_ports > 1)) | 
|  | kfree(ports); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void cancel_evtchn_poll(struct timer_list *t) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = timer_container_of(vcpu, t, | 
|  | arch.xen.poll_timer); | 
|  |  | 
|  | kvm_make_request(KVM_REQ_UNBLOCK, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  | } | 
|  |  | 
|  | static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode, | 
|  | int cmd, u64 param, u64 *r) | 
|  | { | 
|  | switch (cmd) { | 
|  | case SCHEDOP_poll: | 
|  | if (kvm_xen_schedop_poll(vcpu, longmode, param, r)) | 
|  | return true; | 
|  | fallthrough; | 
|  | case SCHEDOP_yield: | 
|  | kvm_vcpu_on_spin(vcpu, true); | 
|  | *r = 0; | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | struct compat_vcpu_set_singleshot_timer { | 
|  | uint64_t timeout_abs_ns; | 
|  | uint32_t flags; | 
|  | } __attribute__((packed)); | 
|  |  | 
|  | static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd, | 
|  | int vcpu_id, u64 param, u64 *r) | 
|  | { | 
|  | struct vcpu_set_singleshot_timer oneshot; | 
|  | struct x86_exception e; | 
|  |  | 
|  | if (!kvm_xen_timer_enabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | switch (cmd) { | 
|  | case VCPUOP_set_singleshot_timer: | 
|  | if (vcpu->arch.xen.vcpu_id != vcpu_id) { | 
|  | *r = -EINVAL; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The only difference for 32-bit compat is the 4 bytes of | 
|  | * padding after the interesting part of the structure. So | 
|  | * for a faithful emulation of Xen we have to *try* to copy | 
|  | * the padding and return -EFAULT if we can't. Otherwise we | 
|  | * might as well just have copied the 12-byte 32-bit struct. | 
|  | */ | 
|  | BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != | 
|  | offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns)); | 
|  | BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != | 
|  | sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns)); | 
|  | BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) != | 
|  | offsetof(struct vcpu_set_singleshot_timer, flags)); | 
|  | BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) != | 
|  | sizeof_field(struct vcpu_set_singleshot_timer, flags)); | 
|  |  | 
|  | if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) : | 
|  | sizeof(struct compat_vcpu_set_singleshot_timer), &e)) { | 
|  | *r = -EFAULT; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, false); | 
|  | *r = 0; | 
|  | return true; | 
|  |  | 
|  | case VCPUOP_stop_singleshot_timer: | 
|  | if (vcpu->arch.xen.vcpu_id != vcpu_id) { | 
|  | *r = -EINVAL; | 
|  | return true; | 
|  | } | 
|  | kvm_xen_stop_timer(vcpu); | 
|  | *r = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout, | 
|  | u64 *r) | 
|  | { | 
|  | if (!kvm_xen_timer_enabled(vcpu)) | 
|  | return false; | 
|  |  | 
|  | if (timeout) | 
|  | kvm_xen_start_timer(vcpu, timeout, true); | 
|  | else | 
|  | kvm_xen_stop_timer(vcpu); | 
|  |  | 
|  | *r = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int kvm_xen_hypercall(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | bool longmode; | 
|  | u64 input, params[6], r = -ENOSYS; | 
|  | bool handled = false; | 
|  | u8 cpl; | 
|  |  | 
|  | input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX); | 
|  |  | 
|  | /* Hyper-V hypercalls get bit 31 set in EAX */ | 
|  | if ((input & 0x80000000) && | 
|  | kvm_hv_hypercall_enabled(vcpu)) | 
|  | return kvm_hv_hypercall(vcpu); | 
|  |  | 
|  | longmode = is_64_bit_hypercall(vcpu); | 
|  | if (!longmode) { | 
|  | params[0] = (u32)kvm_rbx_read(vcpu); | 
|  | params[1] = (u32)kvm_rcx_read(vcpu); | 
|  | params[2] = (u32)kvm_rdx_read(vcpu); | 
|  | params[3] = (u32)kvm_rsi_read(vcpu); | 
|  | params[4] = (u32)kvm_rdi_read(vcpu); | 
|  | params[5] = (u32)kvm_rbp_read(vcpu); | 
|  | } | 
|  | #ifdef CONFIG_X86_64 | 
|  | else { | 
|  | params[0] = (u64)kvm_rdi_read(vcpu); | 
|  | params[1] = (u64)kvm_rsi_read(vcpu); | 
|  | params[2] = (u64)kvm_rdx_read(vcpu); | 
|  | params[3] = (u64)kvm_r10_read(vcpu); | 
|  | params[4] = (u64)kvm_r8_read(vcpu); | 
|  | params[5] = (u64)kvm_r9_read(vcpu); | 
|  | } | 
|  | #endif | 
|  | cpl = kvm_x86_call(get_cpl)(vcpu); | 
|  | trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2], | 
|  | params[3], params[4], params[5]); | 
|  |  | 
|  | /* | 
|  | * Only allow hypercall acceleration for CPL0. The rare hypercalls that | 
|  | * are permitted in guest userspace can be handled by the VMM. | 
|  | */ | 
|  | if (unlikely(cpl > 0)) | 
|  | goto handle_in_userspace; | 
|  |  | 
|  | switch (input) { | 
|  | case __HYPERVISOR_xen_version: | 
|  | if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) { | 
|  | r = vcpu->kvm->arch.xen.xen_version; | 
|  | handled = true; | 
|  | } | 
|  | break; | 
|  | case __HYPERVISOR_event_channel_op: | 
|  | if (params[0] == EVTCHNOP_send) | 
|  | handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r); | 
|  | break; | 
|  | case __HYPERVISOR_sched_op: | 
|  | handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0], | 
|  | params[1], &r); | 
|  | break; | 
|  | case __HYPERVISOR_vcpu_op: | 
|  | handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1], | 
|  | params[2], &r); | 
|  | break; | 
|  | case __HYPERVISOR_set_timer_op: { | 
|  | u64 timeout = params[0]; | 
|  | /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */ | 
|  | if (!longmode) | 
|  | timeout |= params[1] << 32; | 
|  | handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (handled) | 
|  | return kvm_xen_hypercall_set_result(vcpu, r); | 
|  |  | 
|  | handle_in_userspace: | 
|  | vcpu->run->exit_reason = KVM_EXIT_XEN; | 
|  | vcpu->run->xen.type = KVM_EXIT_XEN_HCALL; | 
|  | vcpu->run->xen.u.hcall.longmode = longmode; | 
|  | vcpu->run->xen.u.hcall.cpl = cpl; | 
|  | vcpu->run->xen.u.hcall.input = input; | 
|  | vcpu->run->xen.u.hcall.params[0] = params[0]; | 
|  | vcpu->run->xen.u.hcall.params[1] = params[1]; | 
|  | vcpu->run->xen.u.hcall.params[2] = params[2]; | 
|  | vcpu->run->xen.u.hcall.params[3] = params[3]; | 
|  | vcpu->run->xen.u.hcall.params[4] = params[4]; | 
|  | vcpu->run->xen.u.hcall.params[5] = params[5]; | 
|  | vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu); | 
|  | vcpu->arch.complete_userspace_io = | 
|  | kvm_xen_hypercall_complete_userspace; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port) | 
|  | { | 
|  | int poll_evtchn = vcpu->arch.xen.poll_evtchn; | 
|  |  | 
|  | if ((poll_evtchn == port || poll_evtchn == -1) && | 
|  | test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) { | 
|  | kvm_make_request(KVM_REQ_UNBLOCK, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The return value from this function is propagated to kvm_set_irq() API, | 
|  | * so it returns: | 
|  | *  < 0   Interrupt was ignored (masked or not delivered for other reasons) | 
|  | *  = 0   Interrupt was coalesced (previous irq is still pending) | 
|  | *  > 0   Number of CPUs interrupt was delivered to | 
|  | * | 
|  | * It is also called directly from kvm_arch_set_irq_inatomic(), where the | 
|  | * only check on its return value is a comparison with -EWOULDBLOCK'. | 
|  | */ | 
|  | int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm) | 
|  | { | 
|  | struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; | 
|  | struct kvm_vcpu *vcpu; | 
|  | unsigned long *pending_bits, *mask_bits; | 
|  | unsigned long flags; | 
|  | int port_word_bit; | 
|  | bool kick_vcpu = false; | 
|  | int vcpu_idx, idx, rc; | 
|  |  | 
|  | vcpu_idx = READ_ONCE(xe->vcpu_idx); | 
|  | if (vcpu_idx >= 0) | 
|  | vcpu = kvm_get_vcpu(kvm, vcpu_idx); | 
|  | else { | 
|  | vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id); | 
|  | if (!vcpu) | 
|  | return -EINVAL; | 
|  | WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx); | 
|  | } | 
|  |  | 
|  | if (xe->port >= max_evtchn_port(kvm)) | 
|  | return -EINVAL; | 
|  |  | 
|  | rc = -EWOULDBLOCK; | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  |  | 
|  | read_lock_irqsave(&gpc->lock, flags); | 
|  | if (!kvm_gpc_check(gpc, PAGE_SIZE)) | 
|  | goto out_rcu; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { | 
|  | struct shared_info *shinfo = gpc->khva; | 
|  | pending_bits = (unsigned long *)&shinfo->evtchn_pending; | 
|  | mask_bits = (unsigned long *)&shinfo->evtchn_mask; | 
|  | port_word_bit = xe->port / 64; | 
|  | } else { | 
|  | struct compat_shared_info *shinfo = gpc->khva; | 
|  | pending_bits = (unsigned long *)&shinfo->evtchn_pending; | 
|  | mask_bits = (unsigned long *)&shinfo->evtchn_mask; | 
|  | port_word_bit = xe->port / 32; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this port wasn't already set, and if it isn't masked, then | 
|  | * we try to set the corresponding bit in the in-kernel shadow of | 
|  | * evtchn_pending_sel for the target vCPU. And if *that* wasn't | 
|  | * already set, then we kick the vCPU in question to write to the | 
|  | * *real* evtchn_pending_sel in its own guest vcpu_info struct. | 
|  | */ | 
|  | if (test_and_set_bit(xe->port, pending_bits)) { | 
|  | rc = 0; /* It was already raised */ | 
|  | } else if (test_bit(xe->port, mask_bits)) { | 
|  | rc = -ENOTCONN; /* Masked */ | 
|  | kvm_xen_check_poller(vcpu, xe->port); | 
|  | } else { | 
|  | rc = 1; /* Delivered to the bitmap in shared_info. */ | 
|  | /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */ | 
|  | read_unlock_irqrestore(&gpc->lock, flags); | 
|  | gpc = &vcpu->arch.xen.vcpu_info_cache; | 
|  |  | 
|  | read_lock_irqsave(&gpc->lock, flags); | 
|  | if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) { | 
|  | /* | 
|  | * Could not access the vcpu_info. Set the bit in-kernel | 
|  | * and prod the vCPU to deliver it for itself. | 
|  | */ | 
|  | if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel)) | 
|  | kick_vcpu = true; | 
|  | goto out_rcu; | 
|  | } | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { | 
|  | struct vcpu_info *vcpu_info = gpc->khva; | 
|  | if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) { | 
|  | WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); | 
|  | kick_vcpu = true; | 
|  | } | 
|  | } else { | 
|  | struct compat_vcpu_info *vcpu_info = gpc->khva; | 
|  | if (!test_and_set_bit(port_word_bit, | 
|  | (unsigned long *)&vcpu_info->evtchn_pending_sel)) { | 
|  | WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); | 
|  | kick_vcpu = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* For the per-vCPU lapic vector, deliver it as MSI. */ | 
|  | if (kick_vcpu && vcpu->arch.xen.upcall_vector) { | 
|  | kvm_xen_inject_vcpu_vector(vcpu); | 
|  | kick_vcpu = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | out_rcu: | 
|  | read_unlock_irqrestore(&gpc->lock, flags); | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  |  | 
|  | if (kick_vcpu) { | 
|  | kvm_make_request(KVM_REQ_UNBLOCK, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm) | 
|  | { | 
|  | bool mm_borrowed = false; | 
|  | int rc; | 
|  |  | 
|  | rc = kvm_xen_set_evtchn_fast(xe, kvm); | 
|  | if (rc != -EWOULDBLOCK) | 
|  | return rc; | 
|  |  | 
|  | if (current->mm != kvm->mm) { | 
|  | /* | 
|  | * If not on a thread which already belongs to this KVM, | 
|  | * we'd better be in the irqfd workqueue. | 
|  | */ | 
|  | if (WARN_ON_ONCE(current->mm)) | 
|  | return -EINVAL; | 
|  |  | 
|  | kthread_use_mm(kvm->mm); | 
|  | mm_borrowed = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is theoretically possible for the page to be unmapped | 
|  | * and the MMU notifier to invalidate the shared_info before | 
|  | * we even get to use it. In that case, this looks like an | 
|  | * infinite loop. It was tempting to do it via the userspace | 
|  | * HVA instead... but that just *hides* the fact that it's | 
|  | * an infinite loop, because if a fault occurs and it waits | 
|  | * for the page to come back, it can *still* immediately | 
|  | * fault and have to wait again, repeatedly. | 
|  | * | 
|  | * Conversely, the page could also have been reinstated by | 
|  | * another thread before we even obtain the mutex above, so | 
|  | * check again *first* before remapping it. | 
|  | */ | 
|  | do { | 
|  | struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; | 
|  | int idx; | 
|  |  | 
|  | rc = kvm_xen_set_evtchn_fast(xe, kvm); | 
|  | if (rc != -EWOULDBLOCK) | 
|  | break; | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | rc = kvm_gpc_refresh(gpc, PAGE_SIZE); | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  | } while(!rc); | 
|  |  | 
|  | if (mm_borrowed) | 
|  | kthread_unuse_mm(kvm->mm); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* This is the version called from kvm_set_irq() as the .set function */ | 
|  | static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, | 
|  | int irq_source_id, int level, bool line_status) | 
|  | { | 
|  | if (!level) | 
|  | return -EINVAL; | 
|  |  | 
|  | return kvm_xen_set_evtchn(&e->xen_evtchn, kvm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up an event channel interrupt from the KVM IRQ routing table. | 
|  | * Used for e.g. PIRQ from passed through physical devices. | 
|  | */ | 
|  | int kvm_xen_setup_evtchn(struct kvm *kvm, | 
|  | struct kvm_kernel_irq_routing_entry *e, | 
|  | const struct kvm_irq_routing_entry *ue) | 
|  |  | 
|  | { | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | /* | 
|  | * Don't check for the port being within range of max_evtchn_port(). | 
|  | * Userspace can configure what ever targets it likes; events just won't | 
|  | * be delivered if/while the target is invalid, just like userspace can | 
|  | * configure MSIs which target non-existent APICs. | 
|  | * | 
|  | * This allow on Live Migration and Live Update, the IRQ routing table | 
|  | * can be restored *independently* of other things like creating vCPUs, | 
|  | * without imposing an ordering dependency on userspace.  In this | 
|  | * particular case, the problematic ordering would be with setting the | 
|  | * Xen 'long mode' flag, which changes max_evtchn_port() to allow 4096 | 
|  | * instead of 1024 event channels. | 
|  | */ | 
|  |  | 
|  | /* We only support 2 level event channels for now */ | 
|  | if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Xen gives us interesting mappings from vCPU index to APIC ID, | 
|  | * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs | 
|  | * to find it. Do that once at setup time, instead of every time. | 
|  | * But beware that on live update / live migration, the routing | 
|  | * table might be reinstated before the vCPU threads have finished | 
|  | * recreating their vCPUs. | 
|  | */ | 
|  | vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu); | 
|  | if (vcpu) | 
|  | e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx; | 
|  | else | 
|  | e->xen_evtchn.vcpu_idx = -1; | 
|  |  | 
|  | e->xen_evtchn.port = ue->u.xen_evtchn.port; | 
|  | e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu; | 
|  | e->xen_evtchn.priority = ue->u.xen_evtchn.priority; | 
|  | e->set = evtchn_set_fn; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl. | 
|  | */ | 
|  | int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe) | 
|  | { | 
|  | struct kvm_xen_evtchn e; | 
|  | int ret; | 
|  |  | 
|  | if (!uxe->port || uxe->port >= max_evtchn_port(kvm)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* We only support 2 level event channels for now */ | 
|  | if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) | 
|  | return -EINVAL; | 
|  |  | 
|  | e.port = uxe->port; | 
|  | e.vcpu_id = uxe->vcpu; | 
|  | e.vcpu_idx = -1; | 
|  | e.priority = uxe->priority; | 
|  |  | 
|  | ret = kvm_xen_set_evtchn(&e, kvm); | 
|  |  | 
|  | /* | 
|  | * None of that 'return 1 if it actually got delivered' nonsense. | 
|  | * We don't care if it was masked (-ENOTCONN) either. | 
|  | */ | 
|  | if (ret > 0 || ret == -ENOTCONN) | 
|  | ret = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Support for *outbound* event channel events via the EVTCHNOP_send hypercall. | 
|  | */ | 
|  | struct evtchnfd { | 
|  | u32 send_port; | 
|  | u32 type; | 
|  | union { | 
|  | struct kvm_xen_evtchn port; | 
|  | struct { | 
|  | u32 port; /* zero */ | 
|  | struct eventfd_ctx *ctx; | 
|  | } eventfd; | 
|  | } deliver; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Update target vCPU or priority for a registered sending channel. | 
|  | */ | 
|  | static int kvm_xen_eventfd_update(struct kvm *kvm, | 
|  | struct kvm_xen_hvm_attr *data) | 
|  | { | 
|  | u32 port = data->u.evtchn.send_port; | 
|  | struct evtchnfd *evtchnfd; | 
|  | int ret; | 
|  |  | 
|  | /* Protect writes to evtchnfd as well as the idr lookup.  */ | 
|  | mutex_lock(&kvm->arch.xen.xen_lock); | 
|  | evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port); | 
|  |  | 
|  | ret = -ENOENT; | 
|  | if (!evtchnfd) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* For an UPDATE, nothing may change except the priority/vcpu */ | 
|  | ret = -EINVAL; | 
|  | if (evtchnfd->type != data->u.evtchn.type) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * Port cannot change, and if it's zero that was an eventfd | 
|  | * which can't be changed either. | 
|  | */ | 
|  | if (!evtchnfd->deliver.port.port || | 
|  | evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* We only support 2 level event channels for now */ | 
|  | if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) | 
|  | goto out_unlock; | 
|  |  | 
|  | evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; | 
|  | if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) { | 
|  | evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; | 
|  | evtchnfd->deliver.port.vcpu_idx = -1; | 
|  | } | 
|  | ret = 0; | 
|  | out_unlock: | 
|  | mutex_unlock(&kvm->arch.xen.xen_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Configure the target (eventfd or local port delivery) for sending on | 
|  | * a given event channel. | 
|  | */ | 
|  | static int kvm_xen_eventfd_assign(struct kvm *kvm, | 
|  | struct kvm_xen_hvm_attr *data) | 
|  | { | 
|  | u32 port = data->u.evtchn.send_port; | 
|  | struct eventfd_ctx *eventfd = NULL; | 
|  | struct evtchnfd *evtchnfd; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL); | 
|  | if (!evtchnfd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | switch(data->u.evtchn.type) { | 
|  | case EVTCHNSTAT_ipi: | 
|  | /* IPI  must map back to the same port# */ | 
|  | if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port) | 
|  | goto out_noeventfd; /* -EINVAL */ | 
|  | break; | 
|  |  | 
|  | case EVTCHNSTAT_interdomain: | 
|  | if (data->u.evtchn.deliver.port.port) { | 
|  | if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm)) | 
|  | goto out_noeventfd; /* -EINVAL */ | 
|  | } else { | 
|  | eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd); | 
|  | if (IS_ERR(eventfd)) { | 
|  | ret = PTR_ERR(eventfd); | 
|  | goto out_noeventfd; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case EVTCHNSTAT_virq: | 
|  | case EVTCHNSTAT_closed: | 
|  | case EVTCHNSTAT_unbound: | 
|  | case EVTCHNSTAT_pirq: | 
|  | default: /* Unknown event channel type */ | 
|  | goto out; /* -EINVAL */ | 
|  | } | 
|  |  | 
|  | evtchnfd->send_port = data->u.evtchn.send_port; | 
|  | evtchnfd->type = data->u.evtchn.type; | 
|  | if (eventfd) { | 
|  | evtchnfd->deliver.eventfd.ctx = eventfd; | 
|  | } else { | 
|  | /* We only support 2 level event channels for now */ | 
|  | if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) | 
|  | goto out; /* -EINVAL; */ | 
|  |  | 
|  | evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port; | 
|  | evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; | 
|  | evtchnfd->deliver.port.vcpu_idx = -1; | 
|  | evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; | 
|  | } | 
|  |  | 
|  | mutex_lock(&kvm->arch.xen.xen_lock); | 
|  | ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1, | 
|  | GFP_KERNEL); | 
|  | mutex_unlock(&kvm->arch.xen.xen_lock); | 
|  | if (ret >= 0) | 
|  | return 0; | 
|  |  | 
|  | if (ret == -ENOSPC) | 
|  | ret = -EEXIST; | 
|  | out: | 
|  | if (eventfd) | 
|  | eventfd_ctx_put(eventfd); | 
|  | out_noeventfd: | 
|  | kfree(evtchnfd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port) | 
|  | { | 
|  | struct evtchnfd *evtchnfd; | 
|  |  | 
|  | mutex_lock(&kvm->arch.xen.xen_lock); | 
|  | evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port); | 
|  | mutex_unlock(&kvm->arch.xen.xen_lock); | 
|  |  | 
|  | if (!evtchnfd) | 
|  | return -ENOENT; | 
|  |  | 
|  | synchronize_srcu(&kvm->srcu); | 
|  | if (!evtchnfd->deliver.port.port) | 
|  | eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); | 
|  | kfree(evtchnfd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_xen_eventfd_reset(struct kvm *kvm) | 
|  | { | 
|  | struct evtchnfd *evtchnfd, **all_evtchnfds; | 
|  | int i; | 
|  | int n = 0; | 
|  |  | 
|  | mutex_lock(&kvm->arch.xen.xen_lock); | 
|  |  | 
|  | /* | 
|  | * Because synchronize_srcu() cannot be called inside the | 
|  | * critical section, first collect all the evtchnfd objects | 
|  | * in an array as they are removed from evtchn_ports. | 
|  | */ | 
|  | idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) | 
|  | n++; | 
|  |  | 
|  | all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL); | 
|  | if (!all_evtchnfds) { | 
|  | mutex_unlock(&kvm->arch.xen.xen_lock); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | n = 0; | 
|  | idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { | 
|  | all_evtchnfds[n++] = evtchnfd; | 
|  | idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port); | 
|  | } | 
|  | mutex_unlock(&kvm->arch.xen.xen_lock); | 
|  |  | 
|  | synchronize_srcu(&kvm->srcu); | 
|  |  | 
|  | while (n--) { | 
|  | evtchnfd = all_evtchnfds[n]; | 
|  | if (!evtchnfd->deliver.port.port) | 
|  | eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); | 
|  | kfree(evtchnfd); | 
|  | } | 
|  | kfree(all_evtchnfds); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data) | 
|  | { | 
|  | u32 port = data->u.evtchn.send_port; | 
|  |  | 
|  | if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET) | 
|  | return kvm_xen_eventfd_reset(kvm); | 
|  |  | 
|  | if (!port || port >= max_evtchn_port(kvm)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN) | 
|  | return kvm_xen_eventfd_deassign(kvm, port); | 
|  | if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE) | 
|  | return kvm_xen_eventfd_update(kvm, data); | 
|  | if (data->u.evtchn.flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | return kvm_xen_eventfd_assign(kvm, data); | 
|  | } | 
|  |  | 
|  | static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r) | 
|  | { | 
|  | struct evtchnfd *evtchnfd; | 
|  | struct evtchn_send send; | 
|  | struct x86_exception e; | 
|  |  | 
|  | /* Sanity check: this structure is the same for 32-bit and 64-bit */ | 
|  | BUILD_BUG_ON(sizeof(send) != 4); | 
|  | if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) { | 
|  | *r = -EFAULT; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * evtchnfd is protected by kvm->srcu; the idr lookup instead | 
|  | * is protected by RCU. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port); | 
|  | rcu_read_unlock(); | 
|  | if (!evtchnfd) | 
|  | return false; | 
|  |  | 
|  | if (evtchnfd->deliver.port.port) { | 
|  | int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm); | 
|  | if (ret < 0 && ret != -ENOTCONN) | 
|  | return false; | 
|  | } else { | 
|  | eventfd_signal(evtchnfd->deliver.eventfd.ctx); | 
|  | } | 
|  |  | 
|  | *r = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx; | 
|  | vcpu->arch.xen.poll_evtchn = 0; | 
|  |  | 
|  | timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0); | 
|  | hrtimer_setup(&vcpu->arch.xen.timer, xen_timer_callback, CLOCK_MONOTONIC, | 
|  | HRTIMER_MODE_ABS_HARD); | 
|  |  | 
|  | kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm); | 
|  | kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm); | 
|  | kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm); | 
|  | kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm); | 
|  | } | 
|  |  | 
|  | void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (kvm_xen_timer_enabled(vcpu)) | 
|  | kvm_xen_stop_timer(vcpu); | 
|  |  | 
|  | kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache); | 
|  | kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache); | 
|  | kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache); | 
|  | kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache); | 
|  |  | 
|  | timer_delete_sync(&vcpu->arch.xen.poll_timer); | 
|  | } | 
|  |  | 
|  | void kvm_xen_init_vm(struct kvm *kvm) | 
|  | { | 
|  | mutex_init(&kvm->arch.xen.xen_lock); | 
|  | idr_init(&kvm->arch.xen.evtchn_ports); | 
|  | kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm); | 
|  | } | 
|  |  | 
|  | void kvm_xen_destroy_vm(struct kvm *kvm) | 
|  | { | 
|  | struct evtchnfd *evtchnfd; | 
|  | int i; | 
|  |  | 
|  | kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache); | 
|  |  | 
|  | idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { | 
|  | if (!evtchnfd->deliver.port.port) | 
|  | eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); | 
|  | kfree(evtchnfd); | 
|  | } | 
|  | idr_destroy(&kvm->arch.xen.evtchn_ports); | 
|  |  | 
|  | if (kvm->arch.xen.hvm_config.msr) | 
|  | static_branch_slow_dec_deferred(&kvm_xen_enabled); | 
|  | } |