|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * K3 SA2UL crypto accelerator driver | 
|  | * | 
|  | * Copyright (C) 2018-2020 Texas Instruments Incorporated - http://www.ti.com | 
|  | * | 
|  | * Authors:	Keerthy | 
|  | *		Vitaly Andrianov | 
|  | *		Tero Kristo | 
|  | */ | 
|  | #include <linux/bitfield.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/dmapool.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_platform.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/pm_runtime.h> | 
|  |  | 
|  | #include <crypto/aes.h> | 
|  | #include <crypto/authenc.h> | 
|  | #include <crypto/des.h> | 
|  | #include <crypto/internal/aead.h> | 
|  | #include <crypto/internal/hash.h> | 
|  | #include <crypto/internal/skcipher.h> | 
|  | #include <crypto/scatterwalk.h> | 
|  | #include <crypto/sha1.h> | 
|  | #include <crypto/sha2.h> | 
|  |  | 
|  | #include "sa2ul.h" | 
|  |  | 
|  | /* Byte offset for key in encryption security context */ | 
|  | #define SC_ENC_KEY_OFFSET (1 + 27 + 4) | 
|  | /* Byte offset for Aux-1 in encryption security context */ | 
|  | #define SC_ENC_AUX1_OFFSET (1 + 27 + 4 + 32) | 
|  |  | 
|  | #define SA_CMDL_UPD_ENC         0x0001 | 
|  | #define SA_CMDL_UPD_AUTH        0x0002 | 
|  | #define SA_CMDL_UPD_ENC_IV      0x0004 | 
|  | #define SA_CMDL_UPD_AUTH_IV     0x0008 | 
|  | #define SA_CMDL_UPD_AUX_KEY     0x0010 | 
|  |  | 
|  | #define SA_AUTH_SUBKEY_LEN	16 | 
|  | #define SA_CMDL_PAYLOAD_LENGTH_MASK	0xFFFF | 
|  | #define SA_CMDL_SOP_BYPASS_LEN_MASK	0xFF000000 | 
|  |  | 
|  | #define MODE_CONTROL_BYTES	27 | 
|  | #define SA_HASH_PROCESSING	0 | 
|  | #define SA_CRYPTO_PROCESSING	0 | 
|  | #define SA_UPLOAD_HASH_TO_TLR	BIT(6) | 
|  |  | 
|  | #define SA_SW0_FLAGS_MASK	0xF0000 | 
|  | #define SA_SW0_CMDL_INFO_MASK	0x1F00000 | 
|  | #define SA_SW0_CMDL_PRESENT	BIT(4) | 
|  | #define SA_SW0_ENG_ID_MASK	0x3E000000 | 
|  | #define SA_SW0_DEST_INFO_PRESENT	BIT(30) | 
|  | #define SA_SW2_EGRESS_LENGTH		0xFF000000 | 
|  | #define SA_BASIC_HASH		0x10 | 
|  |  | 
|  | #define SHA256_DIGEST_WORDS    8 | 
|  | /* Make 32-bit word from 4 bytes */ | 
|  | #define SA_MK_U32(b0, b1, b2, b3) (((b0) << 24) | ((b1) << 16) | \ | 
|  | ((b2) << 8) | (b3)) | 
|  |  | 
|  | /* size of SCCTL structure in bytes */ | 
|  | #define SA_SCCTL_SZ 16 | 
|  |  | 
|  | /* Max Authentication tag size */ | 
|  | #define SA_MAX_AUTH_TAG_SZ 64 | 
|  |  | 
|  | enum sa_algo_id { | 
|  | SA_ALG_CBC_AES = 0, | 
|  | SA_ALG_EBC_AES, | 
|  | SA_ALG_CBC_DES3, | 
|  | SA_ALG_ECB_DES3, | 
|  | SA_ALG_SHA1, | 
|  | SA_ALG_SHA256, | 
|  | SA_ALG_SHA512, | 
|  | SA_ALG_AUTHENC_SHA1_AES, | 
|  | SA_ALG_AUTHENC_SHA256_AES, | 
|  | }; | 
|  |  | 
|  | struct sa_match_data { | 
|  | u8 priv; | 
|  | u8 priv_id; | 
|  | u32 supported_algos; | 
|  | }; | 
|  |  | 
|  | static struct device *sa_k3_dev; | 
|  |  | 
|  | /** | 
|  | * struct sa_cmdl_cfg - Command label configuration descriptor | 
|  | * @aalg: authentication algorithm ID | 
|  | * @enc_eng_id: Encryption Engine ID supported by the SA hardware | 
|  | * @auth_eng_id: Authentication Engine ID | 
|  | * @iv_size: Initialization Vector size | 
|  | * @akey: Authentication key | 
|  | * @akey_len: Authentication key length | 
|  | * @enc: True, if this is an encode request | 
|  | */ | 
|  | struct sa_cmdl_cfg { | 
|  | int aalg; | 
|  | u8 enc_eng_id; | 
|  | u8 auth_eng_id; | 
|  | u8 iv_size; | 
|  | const u8 *akey; | 
|  | u16 akey_len; | 
|  | bool enc; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct algo_data - Crypto algorithm specific data | 
|  | * @enc_eng: Encryption engine info structure | 
|  | * @auth_eng: Authentication engine info structure | 
|  | * @auth_ctrl: Authentication control word | 
|  | * @hash_size: Size of digest | 
|  | * @iv_idx: iv index in psdata | 
|  | * @iv_out_size: iv out size | 
|  | * @ealg_id: Encryption Algorithm ID | 
|  | * @aalg_id: Authentication algorithm ID | 
|  | * @mci_enc: Mode Control Instruction for Encryption algorithm | 
|  | * @mci_dec: Mode Control Instruction for Decryption | 
|  | * @inv_key: Whether the encryption algorithm demands key inversion | 
|  | * @ctx: Pointer to the algorithm context | 
|  | * @keyed_mac: Whether the authentication algorithm has key | 
|  | * @prep_iopad: Function pointer to generate intermediate ipad/opad | 
|  | */ | 
|  | struct algo_data { | 
|  | struct sa_eng_info enc_eng; | 
|  | struct sa_eng_info auth_eng; | 
|  | u8 auth_ctrl; | 
|  | u8 hash_size; | 
|  | u8 iv_idx; | 
|  | u8 iv_out_size; | 
|  | u8 ealg_id; | 
|  | u8 aalg_id; | 
|  | u8 *mci_enc; | 
|  | u8 *mci_dec; | 
|  | bool inv_key; | 
|  | struct sa_tfm_ctx *ctx; | 
|  | bool keyed_mac; | 
|  | void (*prep_iopad)(struct algo_data *algo, const u8 *key, | 
|  | u16 key_sz, __be32 *ipad, __be32 *opad); | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct sa_alg_tmpl: A generic template encompassing crypto/aead algorithms | 
|  | * @type: Type of the crypto algorithm. | 
|  | * @alg: Union of crypto algorithm definitions. | 
|  | * @registered: Flag indicating if the crypto algorithm is already registered | 
|  | */ | 
|  | struct sa_alg_tmpl { | 
|  | u32 type;		/* CRYPTO_ALG_TYPE from <linux/crypto.h> */ | 
|  | union { | 
|  | struct skcipher_alg skcipher; | 
|  | struct ahash_alg ahash; | 
|  | struct aead_alg aead; | 
|  | } alg; | 
|  | bool registered; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct sa_mapped_sg: scatterlist information for tx and rx | 
|  | * @mapped: Set to true if the @sgt is mapped | 
|  | * @dir: mapping direction used for @sgt | 
|  | * @split_sg: Set if the sg is split and needs to be freed up | 
|  | * @static_sg: Static scatterlist entry for overriding data | 
|  | * @sgt: scatterlist table for DMA API use | 
|  | */ | 
|  | struct sa_mapped_sg { | 
|  | bool mapped; | 
|  | enum dma_data_direction dir; | 
|  | struct scatterlist static_sg; | 
|  | struct scatterlist *split_sg; | 
|  | struct sg_table sgt; | 
|  | }; | 
|  | /** | 
|  | * struct sa_rx_data: RX Packet miscellaneous data place holder | 
|  | * @req: crypto request data pointer | 
|  | * @ddev: pointer to the DMA device | 
|  | * @tx_in: dma_async_tx_descriptor pointer for rx channel | 
|  | * @mapped_sg: Information on tx (0) and rx (1) scatterlist DMA mapping | 
|  | * @enc: Flag indicating either encryption or decryption | 
|  | * @enc_iv_size: Initialisation vector size | 
|  | * @iv_idx: Initialisation vector index | 
|  | */ | 
|  | struct sa_rx_data { | 
|  | void *req; | 
|  | struct device *ddev; | 
|  | struct dma_async_tx_descriptor *tx_in; | 
|  | struct sa_mapped_sg mapped_sg[2]; | 
|  | u8 enc; | 
|  | u8 enc_iv_size; | 
|  | u8 iv_idx; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct sa_req: SA request definition | 
|  | * @dev: device for the request | 
|  | * @size: total data to the xmitted via DMA | 
|  | * @enc_offset: offset of cipher data | 
|  | * @enc_size: data to be passed to cipher engine | 
|  | * @enc_iv: cipher IV | 
|  | * @auth_offset: offset of the authentication data | 
|  | * @auth_size: size of the authentication data | 
|  | * @auth_iv: authentication IV | 
|  | * @type: algorithm type for the request | 
|  | * @cmdl: command label pointer | 
|  | * @base: pointer to the base request | 
|  | * @ctx: pointer to the algorithm context data | 
|  | * @enc: true if this is an encode request | 
|  | * @src: source data | 
|  | * @dst: destination data | 
|  | * @callback: DMA callback for the request | 
|  | * @mdata_size: metadata size passed to DMA | 
|  | */ | 
|  | struct sa_req { | 
|  | struct device *dev; | 
|  | u16 size; | 
|  | u8 enc_offset; | 
|  | u16 enc_size; | 
|  | u8 *enc_iv; | 
|  | u8 auth_offset; | 
|  | u16 auth_size; | 
|  | u8 *auth_iv; | 
|  | u32 type; | 
|  | u32 *cmdl; | 
|  | struct crypto_async_request *base; | 
|  | struct sa_tfm_ctx *ctx; | 
|  | bool enc; | 
|  | struct scatterlist *src; | 
|  | struct scatterlist *dst; | 
|  | dma_async_tx_callback callback; | 
|  | u16 mdata_size; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Mode Control Instructions for various Key lengths 128, 192, 256 | 
|  | * For CBC (Cipher Block Chaining) mode for encryption | 
|  | */ | 
|  | static u8 mci_cbc_enc_array[3][MODE_CONTROL_BYTES] = { | 
|  | {	0x61, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | {	0x61, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | {	0x61, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Mode Control Instructions for various Key lengths 128, 192, 256 | 
|  | * For CBC (Cipher Block Chaining) mode for decryption | 
|  | */ | 
|  | static u8 mci_cbc_dec_array[3][MODE_CONTROL_BYTES] = { | 
|  | {	0x71, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | {	0x71, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | {	0x71, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Mode Control Instructions for various Key lengths 128, 192, 256 | 
|  | * For CBC (Cipher Block Chaining) mode for encryption | 
|  | */ | 
|  | static u8 mci_cbc_enc_no_iv_array[3][MODE_CONTROL_BYTES] = { | 
|  | {	0x21, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | {	0x21, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | {	0x21, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Mode Control Instructions for various Key lengths 128, 192, 256 | 
|  | * For CBC (Cipher Block Chaining) mode for decryption | 
|  | */ | 
|  | static u8 mci_cbc_dec_no_iv_array[3][MODE_CONTROL_BYTES] = { | 
|  | {	0x31, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | {	0x31, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | {	0x31, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Mode Control Instructions for various Key lengths 128, 192, 256 | 
|  | * For ECB (Electronic Code Book) mode for encryption | 
|  | */ | 
|  | static u8 mci_ecb_enc_array[3][27] = { | 
|  | {	0x21, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | {	0x21, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | {	0x21, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Mode Control Instructions for various Key lengths 128, 192, 256 | 
|  | * For ECB (Electronic Code Book) mode for decryption | 
|  | */ | 
|  | static u8 mci_ecb_dec_array[3][27] = { | 
|  | {	0x31, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | {	0x31, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | {	0x31, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	}, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Mode Control Instructions for DES algorithm | 
|  | * For CBC (Cipher Block Chaining) mode and ECB mode | 
|  | * encryption and for decryption respectively | 
|  | */ | 
|  | static u8 mci_cbc_3des_enc_array[MODE_CONTROL_BYTES] = { | 
|  | 0x60, 0x00, 0x00, 0x18, 0x88, 0x52, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, | 
|  | }; | 
|  |  | 
|  | static u8 mci_cbc_3des_dec_array[MODE_CONTROL_BYTES] = { | 
|  | 0x70, 0x00, 0x00, 0x85, 0x0a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, | 
|  | }; | 
|  |  | 
|  | static u8 mci_ecb_3des_enc_array[MODE_CONTROL_BYTES] = { | 
|  | 0x20, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, | 
|  | }; | 
|  |  | 
|  | static u8 mci_ecb_3des_dec_array[MODE_CONTROL_BYTES] = { | 
|  | 0x30, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Perform 16 byte or 128 bit swizzling | 
|  | * The SA2UL Expects the security context to | 
|  | * be in little Endian and the bus width is 128 bits or 16 bytes | 
|  | * Hence swap 16 bytes at a time from higher to lower address | 
|  | */ | 
|  | static void sa_swiz_128(u8 *in, u16 len) | 
|  | { | 
|  | u8 data[16]; | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < len; i += 16) { | 
|  | memcpy(data, &in[i], 16); | 
|  | for (j = 0; j < 16; j++) | 
|  | in[i + j] = data[15 - j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Prepare the ipad and opad from key as per SHA algorithm step 1*/ | 
|  | static void prepare_kipad(u8 *k_ipad, const u8 *key, u16 key_sz) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < key_sz; i++) | 
|  | k_ipad[i] = key[i] ^ 0x36; | 
|  |  | 
|  | /* Instead of XOR with 0 */ | 
|  | for (; i < SHA1_BLOCK_SIZE; i++) | 
|  | k_ipad[i] = 0x36; | 
|  | } | 
|  |  | 
|  | static void prepare_kopad(u8 *k_opad, const u8 *key, u16 key_sz) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < key_sz; i++) | 
|  | k_opad[i] = key[i] ^ 0x5c; | 
|  |  | 
|  | /* Instead of XOR with 0 */ | 
|  | for (; i < SHA1_BLOCK_SIZE; i++) | 
|  | k_opad[i] = 0x5c; | 
|  | } | 
|  |  | 
|  | static void sa_export_shash(void *state, struct shash_desc *hash, | 
|  | int digest_size, __be32 *out) | 
|  | { | 
|  | struct sha1_state *sha1; | 
|  | struct sha256_state *sha256; | 
|  | u32 *result; | 
|  |  | 
|  | switch (digest_size) { | 
|  | case SHA1_DIGEST_SIZE: | 
|  | sha1 = state; | 
|  | result = sha1->state; | 
|  | break; | 
|  | case SHA256_DIGEST_SIZE: | 
|  | sha256 = state; | 
|  | result = sha256->state; | 
|  | break; | 
|  | default: | 
|  | dev_err(sa_k3_dev, "%s: bad digest_size=%d\n", __func__, | 
|  | digest_size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | crypto_shash_export(hash, state); | 
|  |  | 
|  | cpu_to_be32_array(out, result, digest_size / 4); | 
|  | } | 
|  |  | 
|  | static void sa_prepare_iopads(struct algo_data *data, const u8 *key, | 
|  | u16 key_sz, __be32 *ipad, __be32 *opad) | 
|  | { | 
|  | SHASH_DESC_ON_STACK(shash, data->ctx->shash); | 
|  | int block_size = crypto_shash_blocksize(data->ctx->shash); | 
|  | int digest_size = crypto_shash_digestsize(data->ctx->shash); | 
|  | union { | 
|  | struct sha1_state sha1; | 
|  | struct sha256_state sha256; | 
|  | u8 k_pad[SHA1_BLOCK_SIZE]; | 
|  | } sha; | 
|  |  | 
|  | shash->tfm = data->ctx->shash; | 
|  |  | 
|  | prepare_kipad(sha.k_pad, key, key_sz); | 
|  |  | 
|  | crypto_shash_init(shash); | 
|  | crypto_shash_update(shash, sha.k_pad, block_size); | 
|  | sa_export_shash(&sha, shash, digest_size, ipad); | 
|  |  | 
|  | prepare_kopad(sha.k_pad, key, key_sz); | 
|  |  | 
|  | crypto_shash_init(shash); | 
|  | crypto_shash_update(shash, sha.k_pad, block_size); | 
|  |  | 
|  | sa_export_shash(&sha, shash, digest_size, opad); | 
|  |  | 
|  | memzero_explicit(&sha, sizeof(sha)); | 
|  | } | 
|  |  | 
|  | /* Derive the inverse key used in AES-CBC decryption operation */ | 
|  | static inline int sa_aes_inv_key(u8 *inv_key, const u8 *key, u16 key_sz) | 
|  | { | 
|  | struct crypto_aes_ctx ctx; | 
|  | int key_pos; | 
|  |  | 
|  | if (aes_expandkey(&ctx, key, key_sz)) { | 
|  | dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* work around to get the right inverse for AES_KEYSIZE_192 size keys */ | 
|  | if (key_sz == AES_KEYSIZE_192) { | 
|  | ctx.key_enc[52] = ctx.key_enc[51] ^ ctx.key_enc[46]; | 
|  | ctx.key_enc[53] = ctx.key_enc[52] ^ ctx.key_enc[47]; | 
|  | } | 
|  |  | 
|  | /* Based crypto_aes_expand_key logic */ | 
|  | switch (key_sz) { | 
|  | case AES_KEYSIZE_128: | 
|  | case AES_KEYSIZE_192: | 
|  | key_pos = key_sz + 24; | 
|  | break; | 
|  |  | 
|  | case AES_KEYSIZE_256: | 
|  | key_pos = key_sz + 24 - 4; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | memcpy(inv_key, &ctx.key_enc[key_pos], key_sz); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Set Security context for the encryption engine */ | 
|  | static int sa_set_sc_enc(struct algo_data *ad, const u8 *key, u16 key_sz, | 
|  | u8 enc, u8 *sc_buf) | 
|  | { | 
|  | const u8 *mci = NULL; | 
|  |  | 
|  | /* Set Encryption mode selector to crypto processing */ | 
|  | sc_buf[0] = SA_CRYPTO_PROCESSING; | 
|  |  | 
|  | if (enc) | 
|  | mci = ad->mci_enc; | 
|  | else | 
|  | mci = ad->mci_dec; | 
|  | /* Set the mode control instructions in security context */ | 
|  | if (mci) | 
|  | memcpy(&sc_buf[1], mci, MODE_CONTROL_BYTES); | 
|  |  | 
|  | /* For AES-CBC decryption get the inverse key */ | 
|  | if (ad->inv_key && !enc) { | 
|  | if (sa_aes_inv_key(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz)) | 
|  | return -EINVAL; | 
|  | /* For all other cases: key is used */ | 
|  | } else { | 
|  | memcpy(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Set Security context for the authentication engine */ | 
|  | static void sa_set_sc_auth(struct algo_data *ad, const u8 *key, u16 key_sz, | 
|  | u8 *sc_buf) | 
|  | { | 
|  | __be32 *ipad = (void *)(sc_buf + 32); | 
|  | __be32 *opad = (void *)(sc_buf + 64); | 
|  |  | 
|  | /* Set Authentication mode selector to hash processing */ | 
|  | sc_buf[0] = SA_HASH_PROCESSING; | 
|  | /* Auth SW ctrl word: bit[6]=1 (upload computed hash to TLR section) */ | 
|  | sc_buf[1] = SA_UPLOAD_HASH_TO_TLR; | 
|  | sc_buf[1] |= ad->auth_ctrl; | 
|  |  | 
|  | /* Copy the keys or ipad/opad */ | 
|  | if (ad->keyed_mac) | 
|  | ad->prep_iopad(ad, key, key_sz, ipad, opad); | 
|  | else { | 
|  | /* basic hash */ | 
|  | sc_buf[1] |= SA_BASIC_HASH; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void sa_copy_iv(__be32 *out, const u8 *iv, bool size16) | 
|  | { | 
|  | int j; | 
|  |  | 
|  | for (j = 0; j < ((size16) ? 4 : 2); j++) { | 
|  | *out = cpu_to_be32(*((u32 *)iv)); | 
|  | iv += 4; | 
|  | out++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Format general command label */ | 
|  | static int sa_format_cmdl_gen(struct sa_cmdl_cfg *cfg, u8 *cmdl, | 
|  | struct sa_cmdl_upd_info *upd_info) | 
|  | { | 
|  | u8 enc_offset = 0, auth_offset = 0, total = 0; | 
|  | u8 enc_next_eng = SA_ENG_ID_OUTPORT2; | 
|  | u8 auth_next_eng = SA_ENG_ID_OUTPORT2; | 
|  | u32 *word_ptr = (u32 *)cmdl; | 
|  | int i; | 
|  |  | 
|  | /* Clear the command label */ | 
|  | memzero_explicit(cmdl, (SA_MAX_CMDL_WORDS * sizeof(u32))); | 
|  |  | 
|  | /* Initialize the command update structure */ | 
|  | memzero_explicit(upd_info, sizeof(*upd_info)); | 
|  |  | 
|  | if (cfg->enc_eng_id && cfg->auth_eng_id) { | 
|  | if (cfg->enc) { | 
|  | auth_offset = SA_CMDL_HEADER_SIZE_BYTES; | 
|  | enc_next_eng = cfg->auth_eng_id; | 
|  |  | 
|  | if (cfg->iv_size) | 
|  | auth_offset += cfg->iv_size; | 
|  | } else { | 
|  | enc_offset = SA_CMDL_HEADER_SIZE_BYTES; | 
|  | auth_next_eng = cfg->enc_eng_id; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cfg->enc_eng_id) { | 
|  | upd_info->flags |= SA_CMDL_UPD_ENC; | 
|  | upd_info->enc_size.index = enc_offset >> 2; | 
|  | upd_info->enc_offset.index = upd_info->enc_size.index + 1; | 
|  | /* Encryption command label */ | 
|  | cmdl[enc_offset + SA_CMDL_OFFSET_NESC] = enc_next_eng; | 
|  |  | 
|  | /* Encryption modes requiring IV */ | 
|  | if (cfg->iv_size) { | 
|  | upd_info->flags |= SA_CMDL_UPD_ENC_IV; | 
|  | upd_info->enc_iv.index = | 
|  | (enc_offset + SA_CMDL_HEADER_SIZE_BYTES) >> 2; | 
|  | upd_info->enc_iv.size = cfg->iv_size; | 
|  |  | 
|  | cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] = | 
|  | SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size; | 
|  |  | 
|  | cmdl[enc_offset + SA_CMDL_OFFSET_OPTION_CTRL1] = | 
|  | (SA_CTX_ENC_AUX2_OFFSET | (cfg->iv_size >> 3)); | 
|  | total += SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size; | 
|  | } else { | 
|  | cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] = | 
|  | SA_CMDL_HEADER_SIZE_BYTES; | 
|  | total += SA_CMDL_HEADER_SIZE_BYTES; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cfg->auth_eng_id) { | 
|  | upd_info->flags |= SA_CMDL_UPD_AUTH; | 
|  | upd_info->auth_size.index = auth_offset >> 2; | 
|  | upd_info->auth_offset.index = upd_info->auth_size.index + 1; | 
|  | cmdl[auth_offset + SA_CMDL_OFFSET_NESC] = auth_next_eng; | 
|  | cmdl[auth_offset + SA_CMDL_OFFSET_LABEL_LEN] = | 
|  | SA_CMDL_HEADER_SIZE_BYTES; | 
|  | total += SA_CMDL_HEADER_SIZE_BYTES; | 
|  | } | 
|  |  | 
|  | total = roundup(total, 8); | 
|  |  | 
|  | for (i = 0; i < total / 4; i++) | 
|  | word_ptr[i] = swab32(word_ptr[i]); | 
|  |  | 
|  | return total; | 
|  | } | 
|  |  | 
|  | /* Update Command label */ | 
|  | static inline void sa_update_cmdl(struct sa_req *req, u32 *cmdl, | 
|  | struct sa_cmdl_upd_info *upd_info) | 
|  | { | 
|  | int i = 0, j; | 
|  |  | 
|  | if (likely(upd_info->flags & SA_CMDL_UPD_ENC)) { | 
|  | cmdl[upd_info->enc_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK; | 
|  | cmdl[upd_info->enc_size.index] |= req->enc_size; | 
|  | cmdl[upd_info->enc_offset.index] &= | 
|  | ~SA_CMDL_SOP_BYPASS_LEN_MASK; | 
|  | cmdl[upd_info->enc_offset.index] |= | 
|  | FIELD_PREP(SA_CMDL_SOP_BYPASS_LEN_MASK, | 
|  | req->enc_offset); | 
|  |  | 
|  | if (likely(upd_info->flags & SA_CMDL_UPD_ENC_IV)) { | 
|  | __be32 *data = (__be32 *)&cmdl[upd_info->enc_iv.index]; | 
|  | u32 *enc_iv = (u32 *)req->enc_iv; | 
|  |  | 
|  | for (j = 0; i < upd_info->enc_iv.size; i += 4, j++) { | 
|  | data[j] = cpu_to_be32(*enc_iv); | 
|  | enc_iv++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (likely(upd_info->flags & SA_CMDL_UPD_AUTH)) { | 
|  | cmdl[upd_info->auth_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK; | 
|  | cmdl[upd_info->auth_size.index] |= req->auth_size; | 
|  | cmdl[upd_info->auth_offset.index] &= | 
|  | ~SA_CMDL_SOP_BYPASS_LEN_MASK; | 
|  | cmdl[upd_info->auth_offset.index] |= | 
|  | FIELD_PREP(SA_CMDL_SOP_BYPASS_LEN_MASK, | 
|  | req->auth_offset); | 
|  | if (upd_info->flags & SA_CMDL_UPD_AUTH_IV) { | 
|  | sa_copy_iv((void *)&cmdl[upd_info->auth_iv.index], | 
|  | req->auth_iv, | 
|  | (upd_info->auth_iv.size > 8)); | 
|  | } | 
|  | if (upd_info->flags & SA_CMDL_UPD_AUX_KEY) { | 
|  | int offset = (req->auth_size & 0xF) ? 4 : 0; | 
|  |  | 
|  | memcpy(&cmdl[upd_info->aux_key_info.index], | 
|  | &upd_info->aux_key[offset], 16); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Format SWINFO words to be sent to SA */ | 
|  | static | 
|  | void sa_set_swinfo(u8 eng_id, u16 sc_id, dma_addr_t sc_phys, | 
|  | u8 cmdl_present, u8 cmdl_offset, u8 flags, | 
|  | u8 hash_size, u32 *swinfo) | 
|  | { | 
|  | swinfo[0] = sc_id; | 
|  | swinfo[0] |= FIELD_PREP(SA_SW0_FLAGS_MASK, flags); | 
|  | if (likely(cmdl_present)) | 
|  | swinfo[0] |= FIELD_PREP(SA_SW0_CMDL_INFO_MASK, | 
|  | cmdl_offset | SA_SW0_CMDL_PRESENT); | 
|  | swinfo[0] |= FIELD_PREP(SA_SW0_ENG_ID_MASK, eng_id); | 
|  |  | 
|  | swinfo[0] |= SA_SW0_DEST_INFO_PRESENT; | 
|  | swinfo[1] = (u32)(sc_phys & 0xFFFFFFFFULL); | 
|  | swinfo[2] = (u32)((sc_phys & 0xFFFFFFFF00000000ULL) >> 32); | 
|  | swinfo[2] |= FIELD_PREP(SA_SW2_EGRESS_LENGTH, hash_size); | 
|  | } | 
|  |  | 
|  | /* Dump the security context */ | 
|  | static void sa_dump_sc(u8 *buf, dma_addr_t dma_addr) | 
|  | { | 
|  | #ifdef DEBUG | 
|  | dev_info(sa_k3_dev, "Security context dump:: 0x%pad\n", &dma_addr); | 
|  | print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, | 
|  | 16, 1, buf, SA_CTX_MAX_SZ, false); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static | 
|  | int sa_init_sc(struct sa_ctx_info *ctx, const struct sa_match_data *match_data, | 
|  | const u8 *enc_key, u16 enc_key_sz, | 
|  | const u8 *auth_key, u16 auth_key_sz, | 
|  | struct algo_data *ad, u8 enc, u32 *swinfo) | 
|  | { | 
|  | int enc_sc_offset = 0; | 
|  | int auth_sc_offset = 0; | 
|  | u8 *sc_buf = ctx->sc; | 
|  | u16 sc_id = ctx->sc_id; | 
|  | u8 first_engine = 0; | 
|  |  | 
|  | memzero_explicit(sc_buf, SA_CTX_MAX_SZ); | 
|  |  | 
|  | if (ad->auth_eng.eng_id) { | 
|  | if (enc) | 
|  | first_engine = ad->enc_eng.eng_id; | 
|  | else | 
|  | first_engine = ad->auth_eng.eng_id; | 
|  |  | 
|  | enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ; | 
|  | auth_sc_offset = enc_sc_offset + ad->enc_eng.sc_size; | 
|  | sc_buf[1] = SA_SCCTL_FE_AUTH_ENC; | 
|  | if (!ad->hash_size) | 
|  | return -EINVAL; | 
|  | ad->hash_size = roundup(ad->hash_size, 8); | 
|  |  | 
|  | } else if (ad->enc_eng.eng_id && !ad->auth_eng.eng_id) { | 
|  | enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ; | 
|  | first_engine = ad->enc_eng.eng_id; | 
|  | sc_buf[1] = SA_SCCTL_FE_ENC; | 
|  | ad->hash_size = ad->iv_out_size; | 
|  | } | 
|  |  | 
|  | /* SCCTL Owner info: 0=host, 1=CP_ACE */ | 
|  | sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0; | 
|  | memcpy(&sc_buf[2], &sc_id, 2); | 
|  | sc_buf[4] = 0x0; | 
|  | sc_buf[5] = match_data->priv_id; | 
|  | sc_buf[6] = match_data->priv; | 
|  | sc_buf[7] = 0x0; | 
|  |  | 
|  | /* Prepare context for encryption engine */ | 
|  | if (ad->enc_eng.sc_size) { | 
|  | if (sa_set_sc_enc(ad, enc_key, enc_key_sz, enc, | 
|  | &sc_buf[enc_sc_offset])) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Prepare context for authentication engine */ | 
|  | if (ad->auth_eng.sc_size) | 
|  | sa_set_sc_auth(ad, auth_key, auth_key_sz, | 
|  | &sc_buf[auth_sc_offset]); | 
|  |  | 
|  | /* Set the ownership of context to CP_ACE */ | 
|  | sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0x80; | 
|  |  | 
|  | /* swizzle the security context */ | 
|  | sa_swiz_128(sc_buf, SA_CTX_MAX_SZ); | 
|  |  | 
|  | sa_set_swinfo(first_engine, ctx->sc_id, ctx->sc_phys, 1, 0, | 
|  | SA_SW_INFO_FLAG_EVICT, ad->hash_size, swinfo); | 
|  |  | 
|  | sa_dump_sc(sc_buf, ctx->sc_phys); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Free the per direction context memory */ | 
|  | static void sa_free_ctx_info(struct sa_ctx_info *ctx, | 
|  | struct sa_crypto_data *data) | 
|  | { | 
|  | unsigned long bn; | 
|  |  | 
|  | bn = ctx->sc_id - data->sc_id_start; | 
|  | spin_lock(&data->scid_lock); | 
|  | __clear_bit(bn, data->ctx_bm); | 
|  | data->sc_id--; | 
|  | spin_unlock(&data->scid_lock); | 
|  |  | 
|  | if (ctx->sc) { | 
|  | dma_pool_free(data->sc_pool, ctx->sc, ctx->sc_phys); | 
|  | ctx->sc = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int sa_init_ctx_info(struct sa_ctx_info *ctx, | 
|  | struct sa_crypto_data *data) | 
|  | { | 
|  | unsigned long bn; | 
|  | int err; | 
|  |  | 
|  | spin_lock(&data->scid_lock); | 
|  | bn = find_first_zero_bit(data->ctx_bm, SA_MAX_NUM_CTX); | 
|  | __set_bit(bn, data->ctx_bm); | 
|  | data->sc_id++; | 
|  | spin_unlock(&data->scid_lock); | 
|  |  | 
|  | ctx->sc_id = (u16)(data->sc_id_start + bn); | 
|  |  | 
|  | ctx->sc = dma_pool_alloc(data->sc_pool, GFP_KERNEL, &ctx->sc_phys); | 
|  | if (!ctx->sc) { | 
|  | dev_err(&data->pdev->dev, "Failed to allocate SC memory\n"); | 
|  | err = -ENOMEM; | 
|  | goto scid_rollback; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | scid_rollback: | 
|  | spin_lock(&data->scid_lock); | 
|  | __clear_bit(bn, data->ctx_bm); | 
|  | data->sc_id--; | 
|  | spin_unlock(&data->scid_lock); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void sa_cipher_cra_exit(struct crypto_skcipher *tfm) | 
|  | { | 
|  | struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); | 
|  | struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); | 
|  |  | 
|  | dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", | 
|  | __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, | 
|  | ctx->dec.sc_id, &ctx->dec.sc_phys); | 
|  |  | 
|  | sa_free_ctx_info(&ctx->enc, data); | 
|  | sa_free_ctx_info(&ctx->dec, data); | 
|  |  | 
|  | crypto_free_skcipher(ctx->fallback.skcipher); | 
|  | } | 
|  |  | 
|  | static int sa_cipher_cra_init(struct crypto_skcipher *tfm) | 
|  | { | 
|  | struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); | 
|  | struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); | 
|  | const char *name = crypto_tfm_alg_name(&tfm->base); | 
|  | struct crypto_skcipher *child; | 
|  | int ret; | 
|  |  | 
|  | memzero_explicit(ctx, sizeof(*ctx)); | 
|  | ctx->dev_data = data; | 
|  |  | 
|  | ret = sa_init_ctx_info(&ctx->enc, data); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = sa_init_ctx_info(&ctx->dec, data); | 
|  | if (ret) { | 
|  | sa_free_ctx_info(&ctx->enc, data); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | child = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK); | 
|  |  | 
|  | if (IS_ERR(child)) { | 
|  | dev_err(sa_k3_dev, "Error allocating fallback algo %s\n", name); | 
|  | return PTR_ERR(child); | 
|  | } | 
|  |  | 
|  | ctx->fallback.skcipher = child; | 
|  | crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) + | 
|  | sizeof(struct skcipher_request)); | 
|  |  | 
|  | dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", | 
|  | __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, | 
|  | ctx->dec.sc_id, &ctx->dec.sc_phys); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sa_cipher_setkey(struct crypto_skcipher *tfm, const u8 *key, | 
|  | unsigned int keylen, struct algo_data *ad) | 
|  | { | 
|  | struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); | 
|  | struct crypto_skcipher *child = ctx->fallback.skcipher; | 
|  | int cmdl_len; | 
|  | struct sa_cmdl_cfg cfg; | 
|  | int ret; | 
|  |  | 
|  | if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && | 
|  | keylen != AES_KEYSIZE_256) | 
|  | return -EINVAL; | 
|  |  | 
|  | ad->enc_eng.eng_id = SA_ENG_ID_EM1; | 
|  | ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ; | 
|  |  | 
|  | memzero_explicit(&cfg, sizeof(cfg)); | 
|  | cfg.enc_eng_id = ad->enc_eng.eng_id; | 
|  | cfg.iv_size = crypto_skcipher_ivsize(tfm); | 
|  |  | 
|  | crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); | 
|  | crypto_skcipher_set_flags(child, tfm->base.crt_flags & | 
|  | CRYPTO_TFM_REQ_MASK); | 
|  | ret = crypto_skcipher_setkey(child, key, keylen); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Setup Encryption Security Context & Command label template */ | 
|  | if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, key, keylen, NULL, 0, | 
|  | ad, 1, &ctx->enc.epib[1])) | 
|  | goto badkey; | 
|  |  | 
|  | cmdl_len = sa_format_cmdl_gen(&cfg, | 
|  | (u8 *)ctx->enc.cmdl, | 
|  | &ctx->enc.cmdl_upd_info); | 
|  | if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) | 
|  | goto badkey; | 
|  |  | 
|  | ctx->enc.cmdl_size = cmdl_len; | 
|  |  | 
|  | /* Setup Decryption Security Context & Command label template */ | 
|  | if (sa_init_sc(&ctx->dec, ctx->dev_data->match_data, key, keylen, NULL, 0, | 
|  | ad, 0, &ctx->dec.epib[1])) | 
|  | goto badkey; | 
|  |  | 
|  | cfg.enc_eng_id = ad->enc_eng.eng_id; | 
|  | cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl, | 
|  | &ctx->dec.cmdl_upd_info); | 
|  |  | 
|  | if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) | 
|  | goto badkey; | 
|  |  | 
|  | ctx->dec.cmdl_size = cmdl_len; | 
|  | ctx->iv_idx = ad->iv_idx; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | badkey: | 
|  | dev_err(sa_k3_dev, "%s: badkey\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int sa_aes_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct algo_data ad = { 0 }; | 
|  | /* Convert the key size (16/24/32) to the key size index (0/1/2) */ | 
|  | int key_idx = (keylen >> 3) - 2; | 
|  |  | 
|  | if (key_idx >= 3) | 
|  | return -EINVAL; | 
|  |  | 
|  | ad.mci_enc = mci_cbc_enc_array[key_idx]; | 
|  | ad.mci_dec = mci_cbc_dec_array[key_idx]; | 
|  | ad.inv_key = true; | 
|  | ad.ealg_id = SA_EALG_ID_AES_CBC; | 
|  | ad.iv_idx = 4; | 
|  | ad.iv_out_size = 16; | 
|  |  | 
|  | return sa_cipher_setkey(tfm, key, keylen, &ad); | 
|  | } | 
|  |  | 
|  | static int sa_aes_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct algo_data ad = { 0 }; | 
|  | /* Convert the key size (16/24/32) to the key size index (0/1/2) */ | 
|  | int key_idx = (keylen >> 3) - 2; | 
|  |  | 
|  | if (key_idx >= 3) | 
|  | return -EINVAL; | 
|  |  | 
|  | ad.mci_enc = mci_ecb_enc_array[key_idx]; | 
|  | ad.mci_dec = mci_ecb_dec_array[key_idx]; | 
|  | ad.inv_key = true; | 
|  | ad.ealg_id = SA_EALG_ID_AES_ECB; | 
|  |  | 
|  | return sa_cipher_setkey(tfm, key, keylen, &ad); | 
|  | } | 
|  |  | 
|  | static int sa_3des_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct algo_data ad = { 0 }; | 
|  |  | 
|  | ad.mci_enc = mci_cbc_3des_enc_array; | 
|  | ad.mci_dec = mci_cbc_3des_dec_array; | 
|  | ad.ealg_id = SA_EALG_ID_3DES_CBC; | 
|  | ad.iv_idx = 6; | 
|  | ad.iv_out_size = 8; | 
|  |  | 
|  | return sa_cipher_setkey(tfm, key, keylen, &ad); | 
|  | } | 
|  |  | 
|  | static int sa_3des_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct algo_data ad = { 0 }; | 
|  |  | 
|  | ad.mci_enc = mci_ecb_3des_enc_array; | 
|  | ad.mci_dec = mci_ecb_3des_dec_array; | 
|  |  | 
|  | return sa_cipher_setkey(tfm, key, keylen, &ad); | 
|  | } | 
|  |  | 
|  | static void sa_sync_from_device(struct sa_rx_data *rxd) | 
|  | { | 
|  | struct sg_table *sgt; | 
|  |  | 
|  | if (rxd->mapped_sg[0].dir == DMA_BIDIRECTIONAL) | 
|  | sgt = &rxd->mapped_sg[0].sgt; | 
|  | else | 
|  | sgt = &rxd->mapped_sg[1].sgt; | 
|  |  | 
|  | dma_sync_sgtable_for_cpu(rxd->ddev, sgt, DMA_FROM_DEVICE); | 
|  | } | 
|  |  | 
|  | static void sa_free_sa_rx_data(struct sa_rx_data *rxd) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(rxd->mapped_sg); i++) { | 
|  | struct sa_mapped_sg *mapped_sg = &rxd->mapped_sg[i]; | 
|  |  | 
|  | if (mapped_sg->mapped) { | 
|  | dma_unmap_sgtable(rxd->ddev, &mapped_sg->sgt, | 
|  | mapped_sg->dir, 0); | 
|  | kfree(mapped_sg->split_sg); | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(rxd); | 
|  | } | 
|  |  | 
|  | static void sa_aes_dma_in_callback(void *data) | 
|  | { | 
|  | struct sa_rx_data *rxd = data; | 
|  | struct skcipher_request *req; | 
|  | u32 *result; | 
|  | __be32 *mdptr; | 
|  | size_t ml, pl; | 
|  | int i; | 
|  |  | 
|  | sa_sync_from_device(rxd); | 
|  | req = container_of(rxd->req, struct skcipher_request, base); | 
|  |  | 
|  | if (req->iv) { | 
|  | mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, | 
|  | &ml); | 
|  | result = (u32 *)req->iv; | 
|  |  | 
|  | for (i = 0; i < (rxd->enc_iv_size / 4); i++) | 
|  | result[i] = be32_to_cpu(mdptr[i + rxd->iv_idx]); | 
|  | } | 
|  |  | 
|  | sa_free_sa_rx_data(rxd); | 
|  |  | 
|  | skcipher_request_complete(req, 0); | 
|  | } | 
|  |  | 
|  | static void | 
|  | sa_prepare_tx_desc(u32 *mdptr, u32 pslen, u32 *psdata, u32 epiblen, u32 *epib) | 
|  | { | 
|  | u32 *out, *in; | 
|  | int i; | 
|  |  | 
|  | for (out = mdptr, in = epib, i = 0; i < epiblen / sizeof(u32); i++) | 
|  | *out++ = *in++; | 
|  |  | 
|  | mdptr[4] = (0xFFFF << 16); | 
|  | for (out = &mdptr[5], in = psdata, i = 0; | 
|  | i < pslen / sizeof(u32); i++) | 
|  | *out++ = *in++; | 
|  | } | 
|  |  | 
|  | static int sa_run(struct sa_req *req) | 
|  | { | 
|  | struct sa_rx_data *rxd; | 
|  | gfp_t gfp_flags; | 
|  | u32 cmdl[SA_MAX_CMDL_WORDS]; | 
|  | struct sa_crypto_data *pdata = dev_get_drvdata(sa_k3_dev); | 
|  | struct device *ddev; | 
|  | struct dma_chan *dma_rx; | 
|  | int sg_nents, src_nents, dst_nents; | 
|  | struct scatterlist *src, *dst; | 
|  | size_t pl, ml, split_size; | 
|  | struct sa_ctx_info *sa_ctx = req->enc ? &req->ctx->enc : &req->ctx->dec; | 
|  | int ret; | 
|  | struct dma_async_tx_descriptor *tx_out; | 
|  | u32 *mdptr; | 
|  | bool diff_dst; | 
|  | enum dma_data_direction dir_src; | 
|  | struct sa_mapped_sg *mapped_sg; | 
|  |  | 
|  | gfp_flags = req->base->flags & CRYPTO_TFM_REQ_MAY_SLEEP ? | 
|  | GFP_KERNEL : GFP_ATOMIC; | 
|  |  | 
|  | rxd = kzalloc(sizeof(*rxd), gfp_flags); | 
|  | if (!rxd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (req->src != req->dst) { | 
|  | diff_dst = true; | 
|  | dir_src = DMA_TO_DEVICE; | 
|  | } else { | 
|  | diff_dst = false; | 
|  | dir_src = DMA_BIDIRECTIONAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SA2UL has an interesting feature where the receive DMA channel | 
|  | * is selected based on the data passed to the engine. Within the | 
|  | * transition range, there is also a space where it is impossible | 
|  | * to determine where the data will end up, and this should be | 
|  | * avoided. This will be handled by the SW fallback mechanism by | 
|  | * the individual algorithm implementations. | 
|  | */ | 
|  | if (req->size >= 256) | 
|  | dma_rx = pdata->dma_rx2; | 
|  | else | 
|  | dma_rx = pdata->dma_rx1; | 
|  |  | 
|  | ddev = dmaengine_get_dma_device(pdata->dma_tx); | 
|  | rxd->ddev = ddev; | 
|  |  | 
|  | memcpy(cmdl, sa_ctx->cmdl, sa_ctx->cmdl_size); | 
|  |  | 
|  | sa_update_cmdl(req, cmdl, &sa_ctx->cmdl_upd_info); | 
|  |  | 
|  | if (req->type != CRYPTO_ALG_TYPE_AHASH) { | 
|  | if (req->enc) | 
|  | req->type |= | 
|  | (SA_REQ_SUBTYPE_ENC << SA_REQ_SUBTYPE_SHIFT); | 
|  | else | 
|  | req->type |= | 
|  | (SA_REQ_SUBTYPE_DEC << SA_REQ_SUBTYPE_SHIFT); | 
|  | } | 
|  |  | 
|  | cmdl[sa_ctx->cmdl_size / sizeof(u32)] = req->type; | 
|  |  | 
|  | /* | 
|  | * Map the packets, first we check if the data fits into a single | 
|  | * sg entry and use that if possible. If it does not fit, we check | 
|  | * if we need to do sg_split to align the scatterlist data on the | 
|  | * actual data size being processed by the crypto engine. | 
|  | */ | 
|  | src = req->src; | 
|  | sg_nents = sg_nents_for_len(src, req->size); | 
|  |  | 
|  | split_size = req->size; | 
|  |  | 
|  | mapped_sg = &rxd->mapped_sg[0]; | 
|  | if (sg_nents == 1 && split_size <= req->src->length) { | 
|  | src = &mapped_sg->static_sg; | 
|  | src_nents = 1; | 
|  | sg_init_table(src, 1); | 
|  | sg_set_page(src, sg_page(req->src), split_size, | 
|  | req->src->offset); | 
|  |  | 
|  | mapped_sg->sgt.sgl = src; | 
|  | mapped_sg->sgt.orig_nents = src_nents; | 
|  | ret = dma_map_sgtable(ddev, &mapped_sg->sgt, dir_src, 0); | 
|  | if (ret) { | 
|  | kfree(rxd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | mapped_sg->dir = dir_src; | 
|  | mapped_sg->mapped = true; | 
|  | } else { | 
|  | mapped_sg->sgt.sgl = req->src; | 
|  | mapped_sg->sgt.orig_nents = sg_nents; | 
|  | ret = dma_map_sgtable(ddev, &mapped_sg->sgt, dir_src, 0); | 
|  | if (ret) { | 
|  | kfree(rxd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | mapped_sg->dir = dir_src; | 
|  | mapped_sg->mapped = true; | 
|  |  | 
|  | ret = sg_split(mapped_sg->sgt.sgl, mapped_sg->sgt.nents, 0, 1, | 
|  | &split_size, &src, &src_nents, gfp_flags); | 
|  | if (ret) { | 
|  | src_nents = mapped_sg->sgt.nents; | 
|  | src = mapped_sg->sgt.sgl; | 
|  | } else { | 
|  | mapped_sg->split_sg = src; | 
|  | } | 
|  | } | 
|  |  | 
|  | dma_sync_sgtable_for_device(ddev, &mapped_sg->sgt, DMA_TO_DEVICE); | 
|  |  | 
|  | if (!diff_dst) { | 
|  | dst_nents = src_nents; | 
|  | dst = src; | 
|  | } else { | 
|  | dst_nents = sg_nents_for_len(req->dst, req->size); | 
|  | mapped_sg = &rxd->mapped_sg[1]; | 
|  |  | 
|  | if (dst_nents == 1 && split_size <= req->dst->length) { | 
|  | dst = &mapped_sg->static_sg; | 
|  | dst_nents = 1; | 
|  | sg_init_table(dst, 1); | 
|  | sg_set_page(dst, sg_page(req->dst), split_size, | 
|  | req->dst->offset); | 
|  |  | 
|  | mapped_sg->sgt.sgl = dst; | 
|  | mapped_sg->sgt.orig_nents = dst_nents; | 
|  | ret = dma_map_sgtable(ddev, &mapped_sg->sgt, | 
|  | DMA_FROM_DEVICE, 0); | 
|  | if (ret) | 
|  | goto err_cleanup; | 
|  |  | 
|  | mapped_sg->dir = DMA_FROM_DEVICE; | 
|  | mapped_sg->mapped = true; | 
|  | } else { | 
|  | mapped_sg->sgt.sgl = req->dst; | 
|  | mapped_sg->sgt.orig_nents = dst_nents; | 
|  | ret = dma_map_sgtable(ddev, &mapped_sg->sgt, | 
|  | DMA_FROM_DEVICE, 0); | 
|  | if (ret) | 
|  | goto err_cleanup; | 
|  |  | 
|  | mapped_sg->dir = DMA_FROM_DEVICE; | 
|  | mapped_sg->mapped = true; | 
|  |  | 
|  | ret = sg_split(mapped_sg->sgt.sgl, mapped_sg->sgt.nents, | 
|  | 0, 1, &split_size, &dst, &dst_nents, | 
|  | gfp_flags); | 
|  | if (ret) { | 
|  | dst_nents = mapped_sg->sgt.nents; | 
|  | dst = mapped_sg->sgt.sgl; | 
|  | } else { | 
|  | mapped_sg->split_sg = dst; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | rxd->tx_in = dmaengine_prep_slave_sg(dma_rx, dst, dst_nents, | 
|  | DMA_DEV_TO_MEM, | 
|  | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
|  | if (!rxd->tx_in) { | 
|  | dev_err(pdata->dev, "IN prep_slave_sg() failed\n"); | 
|  | ret = -EINVAL; | 
|  | goto err_cleanup; | 
|  | } | 
|  |  | 
|  | rxd->req = (void *)req->base; | 
|  | rxd->enc = req->enc; | 
|  | rxd->iv_idx = req->ctx->iv_idx; | 
|  | rxd->enc_iv_size = sa_ctx->cmdl_upd_info.enc_iv.size; | 
|  | rxd->tx_in->callback = req->callback; | 
|  | rxd->tx_in->callback_param = rxd; | 
|  |  | 
|  | tx_out = dmaengine_prep_slave_sg(pdata->dma_tx, src, | 
|  | src_nents, DMA_MEM_TO_DEV, | 
|  | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
|  |  | 
|  | if (!tx_out) { | 
|  | dev_err(pdata->dev, "OUT prep_slave_sg() failed\n"); | 
|  | ret = -EINVAL; | 
|  | goto err_cleanup; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare metadata for DMA engine. This essentially describes the | 
|  | * crypto algorithm to be used, data sizes, different keys etc. | 
|  | */ | 
|  | mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(tx_out, &pl, &ml); | 
|  |  | 
|  | sa_prepare_tx_desc(mdptr, (sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * | 
|  | sizeof(u32))), cmdl, sizeof(sa_ctx->epib), | 
|  | sa_ctx->epib); | 
|  |  | 
|  | ml = sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * sizeof(u32)); | 
|  | dmaengine_desc_set_metadata_len(tx_out, req->mdata_size); | 
|  |  | 
|  | dmaengine_submit(tx_out); | 
|  | dmaengine_submit(rxd->tx_in); | 
|  |  | 
|  | dma_async_issue_pending(dma_rx); | 
|  | dma_async_issue_pending(pdata->dma_tx); | 
|  |  | 
|  | return -EINPROGRESS; | 
|  |  | 
|  | err_cleanup: | 
|  | sa_free_sa_rx_data(rxd); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sa_cipher_run(struct skcipher_request *req, u8 *iv, int enc) | 
|  | { | 
|  | struct sa_tfm_ctx *ctx = | 
|  | crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); | 
|  | struct crypto_alg *alg = req->base.tfm->__crt_alg; | 
|  | struct sa_req sa_req = { 0 }; | 
|  |  | 
|  | if (!req->cryptlen) | 
|  | return 0; | 
|  |  | 
|  | if (req->cryptlen % alg->cra_blocksize) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Use SW fallback if the data size is not supported */ | 
|  | if (req->cryptlen > SA_MAX_DATA_SZ || | 
|  | (req->cryptlen >= SA_UNSAFE_DATA_SZ_MIN && | 
|  | req->cryptlen <= SA_UNSAFE_DATA_SZ_MAX)) { | 
|  | struct skcipher_request *subreq = skcipher_request_ctx(req); | 
|  |  | 
|  | skcipher_request_set_tfm(subreq, ctx->fallback.skcipher); | 
|  | skcipher_request_set_callback(subreq, req->base.flags, | 
|  | req->base.complete, | 
|  | req->base.data); | 
|  | skcipher_request_set_crypt(subreq, req->src, req->dst, | 
|  | req->cryptlen, req->iv); | 
|  | if (enc) | 
|  | return crypto_skcipher_encrypt(subreq); | 
|  | else | 
|  | return crypto_skcipher_decrypt(subreq); | 
|  | } | 
|  |  | 
|  | sa_req.size = req->cryptlen; | 
|  | sa_req.enc_size = req->cryptlen; | 
|  | sa_req.src = req->src; | 
|  | sa_req.dst = req->dst; | 
|  | sa_req.enc_iv = iv; | 
|  | sa_req.type = CRYPTO_ALG_TYPE_SKCIPHER; | 
|  | sa_req.enc = enc; | 
|  | sa_req.callback = sa_aes_dma_in_callback; | 
|  | sa_req.mdata_size = 44; | 
|  | sa_req.base = &req->base; | 
|  | sa_req.ctx = ctx; | 
|  |  | 
|  | return sa_run(&sa_req); | 
|  | } | 
|  |  | 
|  | static int sa_encrypt(struct skcipher_request *req) | 
|  | { | 
|  | return sa_cipher_run(req, req->iv, 1); | 
|  | } | 
|  |  | 
|  | static int sa_decrypt(struct skcipher_request *req) | 
|  | { | 
|  | return sa_cipher_run(req, req->iv, 0); | 
|  | } | 
|  |  | 
|  | static void sa_sha_dma_in_callback(void *data) | 
|  | { | 
|  | struct sa_rx_data *rxd = data; | 
|  | struct ahash_request *req; | 
|  | struct crypto_ahash *tfm; | 
|  | unsigned int authsize; | 
|  | int i; | 
|  | size_t ml, pl; | 
|  | u32 *result; | 
|  | __be32 *mdptr; | 
|  |  | 
|  | sa_sync_from_device(rxd); | 
|  | req = container_of(rxd->req, struct ahash_request, base); | 
|  | tfm = crypto_ahash_reqtfm(req); | 
|  | authsize = crypto_ahash_digestsize(tfm); | 
|  |  | 
|  | mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml); | 
|  | result = (u32 *)req->result; | 
|  |  | 
|  | for (i = 0; i < (authsize / 4); i++) | 
|  | result[i] = be32_to_cpu(mdptr[i + 4]); | 
|  |  | 
|  | sa_free_sa_rx_data(rxd); | 
|  |  | 
|  | ahash_request_complete(req, 0); | 
|  | } | 
|  |  | 
|  | static int zero_message_process(struct ahash_request *req) | 
|  | { | 
|  | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
|  | int sa_digest_size = crypto_ahash_digestsize(tfm); | 
|  |  | 
|  | switch (sa_digest_size) { | 
|  | case SHA1_DIGEST_SIZE: | 
|  | memcpy(req->result, sha1_zero_message_hash, sa_digest_size); | 
|  | break; | 
|  | case SHA256_DIGEST_SIZE: | 
|  | memcpy(req->result, sha256_zero_message_hash, sa_digest_size); | 
|  | break; | 
|  | case SHA512_DIGEST_SIZE: | 
|  | memcpy(req->result, sha512_zero_message_hash, sa_digest_size); | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sa_sha_run(struct ahash_request *req) | 
|  | { | 
|  | struct sa_tfm_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req)); | 
|  | struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); | 
|  | struct sa_req sa_req = { 0 }; | 
|  | size_t auth_len; | 
|  |  | 
|  | auth_len = req->nbytes; | 
|  |  | 
|  | if (!auth_len) | 
|  | return zero_message_process(req); | 
|  |  | 
|  | if (auth_len > SA_MAX_DATA_SZ || | 
|  | (auth_len >= SA_UNSAFE_DATA_SZ_MIN && | 
|  | auth_len <= SA_UNSAFE_DATA_SZ_MAX)) { | 
|  | struct ahash_request *subreq = &rctx->fallback_req; | 
|  | int ret; | 
|  |  | 
|  | ahash_request_set_tfm(subreq, ctx->fallback.ahash); | 
|  | ahash_request_set_callback(subreq, req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); | 
|  | ahash_request_set_crypt(subreq, req->src, req->result, auth_len); | 
|  |  | 
|  | ret = crypto_ahash_digest(subreq); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | sa_req.size = auth_len; | 
|  | sa_req.auth_size = auth_len; | 
|  | sa_req.src = req->src; | 
|  | sa_req.dst = req->src; | 
|  | sa_req.enc = true; | 
|  | sa_req.type = CRYPTO_ALG_TYPE_AHASH; | 
|  | sa_req.callback = sa_sha_dma_in_callback; | 
|  | sa_req.mdata_size = 28; | 
|  | sa_req.ctx = ctx; | 
|  | sa_req.base = &req->base; | 
|  |  | 
|  | return sa_run(&sa_req); | 
|  | } | 
|  |  | 
|  | static int sa_sha_setup(struct sa_tfm_ctx *ctx, struct  algo_data *ad) | 
|  | { | 
|  | int bs = crypto_shash_blocksize(ctx->shash); | 
|  | int cmdl_len; | 
|  | struct sa_cmdl_cfg cfg; | 
|  |  | 
|  | ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ; | 
|  | ad->auth_eng.eng_id = SA_ENG_ID_AM1; | 
|  | ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ; | 
|  |  | 
|  | memset(ctx->authkey, 0, bs); | 
|  | memset(&cfg, 0, sizeof(cfg)); | 
|  | cfg.aalg = ad->aalg_id; | 
|  | cfg.enc_eng_id = ad->enc_eng.eng_id; | 
|  | cfg.auth_eng_id = ad->auth_eng.eng_id; | 
|  | cfg.iv_size = 0; | 
|  | cfg.akey = NULL; | 
|  | cfg.akey_len = 0; | 
|  |  | 
|  | ctx->dev_data = dev_get_drvdata(sa_k3_dev); | 
|  | /* Setup Encryption Security Context & Command label template */ | 
|  | if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, NULL, 0, NULL, 0, | 
|  | ad, 0, &ctx->enc.epib[1])) | 
|  | goto badkey; | 
|  |  | 
|  | cmdl_len = sa_format_cmdl_gen(&cfg, | 
|  | (u8 *)ctx->enc.cmdl, | 
|  | &ctx->enc.cmdl_upd_info); | 
|  | if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) | 
|  | goto badkey; | 
|  |  | 
|  | ctx->enc.cmdl_size = cmdl_len; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | badkey: | 
|  | dev_err(sa_k3_dev, "%s: badkey\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int sa_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base) | 
|  | { | 
|  | struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); | 
|  | int ret; | 
|  |  | 
|  | memset(ctx, 0, sizeof(*ctx)); | 
|  | ctx->dev_data = data; | 
|  | ret = sa_init_ctx_info(&ctx->enc, data); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (alg_base) { | 
|  | ctx->shash = crypto_alloc_shash(alg_base, 0, 0); | 
|  | if (IS_ERR(ctx->shash)) { | 
|  | dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n", | 
|  | alg_base); | 
|  | return PTR_ERR(ctx->shash); | 
|  | } | 
|  | /* for fallback */ | 
|  | ctx->fallback.ahash = | 
|  | crypto_alloc_ahash(alg_base, 0, CRYPTO_ALG_ASYNC); | 
|  | if (IS_ERR(ctx->fallback.ahash)) { | 
|  | dev_err(ctx->dev_data->dev, | 
|  | "Could not load fallback driver\n"); | 
|  | return PTR_ERR(ctx->fallback.ahash); | 
|  | } | 
|  | } | 
|  |  | 
|  | dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", | 
|  | __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, | 
|  | ctx->dec.sc_id, &ctx->dec.sc_phys); | 
|  |  | 
|  | crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), | 
|  | sizeof(struct sa_sha_req_ctx) + | 
|  | crypto_ahash_reqsize(ctx->fallback.ahash)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sa_sha_digest(struct ahash_request *req) | 
|  | { | 
|  | return sa_sha_run(req); | 
|  | } | 
|  |  | 
|  | static int sa_sha_init(struct ahash_request *req) | 
|  | { | 
|  | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
|  | struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); | 
|  | struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); | 
|  |  | 
|  | dev_dbg(sa_k3_dev, "init: digest size: %u, rctx=%p\n", | 
|  | crypto_ahash_digestsize(tfm), rctx); | 
|  |  | 
|  | ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash); | 
|  | ahash_request_set_callback(&rctx->fallback_req, req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); | 
|  | ahash_request_set_crypt(&rctx->fallback_req, NULL, NULL, 0); | 
|  |  | 
|  | return crypto_ahash_init(&rctx->fallback_req); | 
|  | } | 
|  |  | 
|  | static int sa_sha_update(struct ahash_request *req) | 
|  | { | 
|  | struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); | 
|  |  | 
|  | ahash_request_set_callback(&rctx->fallback_req, req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); | 
|  | ahash_request_set_crypt(&rctx->fallback_req, req->src, NULL, req->nbytes); | 
|  |  | 
|  | return crypto_ahash_update(&rctx->fallback_req); | 
|  | } | 
|  |  | 
|  | static int sa_sha_final(struct ahash_request *req) | 
|  | { | 
|  | struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); | 
|  |  | 
|  | ahash_request_set_callback(&rctx->fallback_req, req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); | 
|  | ahash_request_set_crypt(&rctx->fallback_req, NULL, req->result, 0); | 
|  |  | 
|  | return crypto_ahash_final(&rctx->fallback_req); | 
|  | } | 
|  |  | 
|  | static int sa_sha_finup(struct ahash_request *req) | 
|  | { | 
|  | struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); | 
|  |  | 
|  | ahash_request_set_callback(&rctx->fallback_req, req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); | 
|  | ahash_request_set_crypt(&rctx->fallback_req, req->src, req->result, req->nbytes); | 
|  |  | 
|  | return crypto_ahash_finup(&rctx->fallback_req); | 
|  | } | 
|  |  | 
|  | static int sa_sha_import(struct ahash_request *req, const void *in) | 
|  | { | 
|  | struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); | 
|  | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
|  | struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); | 
|  |  | 
|  | ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash); | 
|  | ahash_request_set_callback(&rctx->fallback_req, req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); | 
|  |  | 
|  | return crypto_ahash_import(&rctx->fallback_req, in); | 
|  | } | 
|  |  | 
|  | static int sa_sha_export(struct ahash_request *req, void *out) | 
|  | { | 
|  | struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); | 
|  | struct ahash_request *subreq = &rctx->fallback_req; | 
|  |  | 
|  | ahash_request_set_callback(subreq, req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); | 
|  |  | 
|  | return crypto_ahash_export(subreq, out); | 
|  | } | 
|  |  | 
|  | static int sa_sha1_cra_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct algo_data ad = { 0 }; | 
|  | struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  |  | 
|  | sa_sha_cra_init_alg(tfm, "sha1"); | 
|  |  | 
|  | ad.aalg_id = SA_AALG_ID_SHA1; | 
|  | ad.hash_size = SHA1_DIGEST_SIZE; | 
|  | ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1; | 
|  |  | 
|  | sa_sha_setup(ctx, &ad); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sa_sha256_cra_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct algo_data ad = { 0 }; | 
|  | struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  |  | 
|  | sa_sha_cra_init_alg(tfm, "sha256"); | 
|  |  | 
|  | ad.aalg_id = SA_AALG_ID_SHA2_256; | 
|  | ad.hash_size = SHA256_DIGEST_SIZE; | 
|  | ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256; | 
|  |  | 
|  | sa_sha_setup(ctx, &ad); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sa_sha512_cra_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct algo_data ad = { 0 }; | 
|  | struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  |  | 
|  | sa_sha_cra_init_alg(tfm, "sha512"); | 
|  |  | 
|  | ad.aalg_id = SA_AALG_ID_SHA2_512; | 
|  | ad.hash_size = SHA512_DIGEST_SIZE; | 
|  | ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA512; | 
|  |  | 
|  | sa_sha_setup(ctx, &ad); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sa_sha_cra_exit(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); | 
|  |  | 
|  | dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", | 
|  | __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, | 
|  | ctx->dec.sc_id, &ctx->dec.sc_phys); | 
|  |  | 
|  | if (crypto_tfm_alg_type(tfm) == CRYPTO_ALG_TYPE_AHASH) | 
|  | sa_free_ctx_info(&ctx->enc, data); | 
|  |  | 
|  | crypto_free_shash(ctx->shash); | 
|  | crypto_free_ahash(ctx->fallback.ahash); | 
|  | } | 
|  |  | 
|  | static void sa_aead_dma_in_callback(void *data) | 
|  | { | 
|  | struct sa_rx_data *rxd = data; | 
|  | struct aead_request *req; | 
|  | struct crypto_aead *tfm; | 
|  | unsigned int start; | 
|  | unsigned int authsize; | 
|  | u8 auth_tag[SA_MAX_AUTH_TAG_SZ]; | 
|  | size_t pl, ml; | 
|  | int i; | 
|  | int err = 0; | 
|  | u32 *mdptr; | 
|  |  | 
|  | sa_sync_from_device(rxd); | 
|  | req = container_of(rxd->req, struct aead_request, base); | 
|  | tfm = crypto_aead_reqtfm(req); | 
|  | start = req->assoclen + req->cryptlen; | 
|  | authsize = crypto_aead_authsize(tfm); | 
|  |  | 
|  | mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml); | 
|  | for (i = 0; i < (authsize / 4); i++) | 
|  | mdptr[i + 4] = swab32(mdptr[i + 4]); | 
|  |  | 
|  | if (rxd->enc) { | 
|  | scatterwalk_map_and_copy(&mdptr[4], req->dst, start, authsize, | 
|  | 1); | 
|  | } else { | 
|  | start -= authsize; | 
|  | scatterwalk_map_and_copy(auth_tag, req->src, start, authsize, | 
|  | 0); | 
|  |  | 
|  | err = memcmp(&mdptr[4], auth_tag, authsize) ? -EBADMSG : 0; | 
|  | } | 
|  |  | 
|  | sa_free_sa_rx_data(rxd); | 
|  |  | 
|  | aead_request_complete(req, err); | 
|  | } | 
|  |  | 
|  | static int sa_cra_init_aead(struct crypto_aead *tfm, const char *hash, | 
|  | const char *fallback) | 
|  | { | 
|  | struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm); | 
|  | struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); | 
|  | int ret; | 
|  |  | 
|  | memzero_explicit(ctx, sizeof(*ctx)); | 
|  | ctx->dev_data = data; | 
|  |  | 
|  | ctx->shash = crypto_alloc_shash(hash, 0, CRYPTO_ALG_NEED_FALLBACK); | 
|  | if (IS_ERR(ctx->shash)) { | 
|  | dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n", hash); | 
|  | return PTR_ERR(ctx->shash); | 
|  | } | 
|  |  | 
|  | ctx->fallback.aead = crypto_alloc_aead(fallback, 0, | 
|  | CRYPTO_ALG_NEED_FALLBACK); | 
|  |  | 
|  | if (IS_ERR(ctx->fallback.aead)) { | 
|  | dev_err(sa_k3_dev, "fallback driver %s couldn't be loaded\n", | 
|  | fallback); | 
|  | return PTR_ERR(ctx->fallback.aead); | 
|  | } | 
|  |  | 
|  | crypto_aead_set_reqsize(tfm, sizeof(struct aead_request) + | 
|  | crypto_aead_reqsize(ctx->fallback.aead)); | 
|  |  | 
|  | ret = sa_init_ctx_info(&ctx->enc, data); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = sa_init_ctx_info(&ctx->dec, data); | 
|  | if (ret) { | 
|  | sa_free_ctx_info(&ctx->enc, data); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", | 
|  | __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, | 
|  | ctx->dec.sc_id, &ctx->dec.sc_phys); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sa_cra_init_aead_sha1(struct crypto_aead *tfm) | 
|  | { | 
|  | return sa_cra_init_aead(tfm, "sha1", | 
|  | "authenc(hmac(sha1-ce),cbc(aes-ce))"); | 
|  | } | 
|  |  | 
|  | static int sa_cra_init_aead_sha256(struct crypto_aead *tfm) | 
|  | { | 
|  | return sa_cra_init_aead(tfm, "sha256", | 
|  | "authenc(hmac(sha256-ce),cbc(aes-ce))"); | 
|  | } | 
|  |  | 
|  | static void sa_exit_tfm_aead(struct crypto_aead *tfm) | 
|  | { | 
|  | struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm); | 
|  | struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); | 
|  |  | 
|  | crypto_free_shash(ctx->shash); | 
|  | crypto_free_aead(ctx->fallback.aead); | 
|  |  | 
|  | sa_free_ctx_info(&ctx->enc, data); | 
|  | sa_free_ctx_info(&ctx->dec, data); | 
|  | } | 
|  |  | 
|  | /* AEAD algorithm configuration interface function */ | 
|  | static int sa_aead_setkey(struct crypto_aead *authenc, | 
|  | const u8 *key, unsigned int keylen, | 
|  | struct algo_data *ad) | 
|  | { | 
|  | struct sa_tfm_ctx *ctx = crypto_aead_ctx(authenc); | 
|  | struct crypto_authenc_keys keys; | 
|  | int cmdl_len; | 
|  | struct sa_cmdl_cfg cfg; | 
|  | int key_idx; | 
|  |  | 
|  | if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Convert the key size (16/24/32) to the key size index (0/1/2) */ | 
|  | key_idx = (keys.enckeylen >> 3) - 2; | 
|  | if (key_idx >= 3) | 
|  | return -EINVAL; | 
|  |  | 
|  | ad->ctx = ctx; | 
|  | ad->enc_eng.eng_id = SA_ENG_ID_EM1; | 
|  | ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ; | 
|  | ad->auth_eng.eng_id = SA_ENG_ID_AM1; | 
|  | ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ; | 
|  | ad->mci_enc = mci_cbc_enc_no_iv_array[key_idx]; | 
|  | ad->mci_dec = mci_cbc_dec_no_iv_array[key_idx]; | 
|  | ad->inv_key = true; | 
|  | ad->keyed_mac = true; | 
|  | ad->ealg_id = SA_EALG_ID_AES_CBC; | 
|  | ad->prep_iopad = sa_prepare_iopads; | 
|  |  | 
|  | memset(&cfg, 0, sizeof(cfg)); | 
|  | cfg.enc = true; | 
|  | cfg.aalg = ad->aalg_id; | 
|  | cfg.enc_eng_id = ad->enc_eng.eng_id; | 
|  | cfg.auth_eng_id = ad->auth_eng.eng_id; | 
|  | cfg.iv_size = crypto_aead_ivsize(authenc); | 
|  | cfg.akey = keys.authkey; | 
|  | cfg.akey_len = keys.authkeylen; | 
|  |  | 
|  | /* Setup Encryption Security Context & Command label template */ | 
|  | if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, keys.enckey, | 
|  | keys.enckeylen, keys.authkey, keys.authkeylen, | 
|  | ad, 1, &ctx->enc.epib[1])) | 
|  | return -EINVAL; | 
|  |  | 
|  | cmdl_len = sa_format_cmdl_gen(&cfg, | 
|  | (u8 *)ctx->enc.cmdl, | 
|  | &ctx->enc.cmdl_upd_info); | 
|  | if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) | 
|  | return -EINVAL; | 
|  |  | 
|  | ctx->enc.cmdl_size = cmdl_len; | 
|  |  | 
|  | /* Setup Decryption Security Context & Command label template */ | 
|  | if (sa_init_sc(&ctx->dec, ctx->dev_data->match_data, keys.enckey, | 
|  | keys.enckeylen, keys.authkey, keys.authkeylen, | 
|  | ad, 0, &ctx->dec.epib[1])) | 
|  | return -EINVAL; | 
|  |  | 
|  | cfg.enc = false; | 
|  | cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl, | 
|  | &ctx->dec.cmdl_upd_info); | 
|  |  | 
|  | if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) | 
|  | return -EINVAL; | 
|  |  | 
|  | ctx->dec.cmdl_size = cmdl_len; | 
|  |  | 
|  | crypto_aead_clear_flags(ctx->fallback.aead, CRYPTO_TFM_REQ_MASK); | 
|  | crypto_aead_set_flags(ctx->fallback.aead, | 
|  | crypto_aead_get_flags(authenc) & | 
|  | CRYPTO_TFM_REQ_MASK); | 
|  |  | 
|  | return crypto_aead_setkey(ctx->fallback.aead, key, keylen); | 
|  | } | 
|  |  | 
|  | static int sa_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) | 
|  | { | 
|  | struct sa_tfm_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm)); | 
|  |  | 
|  | return crypto_aead_setauthsize(ctx->fallback.aead, authsize); | 
|  | } | 
|  |  | 
|  | static int sa_aead_cbc_sha1_setkey(struct crypto_aead *authenc, | 
|  | const u8 *key, unsigned int keylen) | 
|  | { | 
|  | struct algo_data ad = { 0 }; | 
|  |  | 
|  | ad.ealg_id = SA_EALG_ID_AES_CBC; | 
|  | ad.aalg_id = SA_AALG_ID_HMAC_SHA1; | 
|  | ad.hash_size = SHA1_DIGEST_SIZE; | 
|  | ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1; | 
|  |  | 
|  | return sa_aead_setkey(authenc, key, keylen, &ad); | 
|  | } | 
|  |  | 
|  | static int sa_aead_cbc_sha256_setkey(struct crypto_aead *authenc, | 
|  | const u8 *key, unsigned int keylen) | 
|  | { | 
|  | struct algo_data ad = { 0 }; | 
|  |  | 
|  | ad.ealg_id = SA_EALG_ID_AES_CBC; | 
|  | ad.aalg_id = SA_AALG_ID_HMAC_SHA2_256; | 
|  | ad.hash_size = SHA256_DIGEST_SIZE; | 
|  | ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256; | 
|  |  | 
|  | return sa_aead_setkey(authenc, key, keylen, &ad); | 
|  | } | 
|  |  | 
|  | static int sa_aead_run(struct aead_request *req, u8 *iv, int enc) | 
|  | { | 
|  | struct crypto_aead *tfm = crypto_aead_reqtfm(req); | 
|  | struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm); | 
|  | struct sa_req sa_req = { 0 }; | 
|  | size_t auth_size, enc_size; | 
|  |  | 
|  | enc_size = req->cryptlen; | 
|  | auth_size = req->assoclen + req->cryptlen; | 
|  |  | 
|  | if (!enc) { | 
|  | enc_size -= crypto_aead_authsize(tfm); | 
|  | auth_size -= crypto_aead_authsize(tfm); | 
|  | } | 
|  |  | 
|  | if (auth_size > SA_MAX_DATA_SZ || | 
|  | (auth_size >= SA_UNSAFE_DATA_SZ_MIN && | 
|  | auth_size <= SA_UNSAFE_DATA_SZ_MAX)) { | 
|  | struct aead_request *subreq = aead_request_ctx(req); | 
|  | int ret; | 
|  |  | 
|  | aead_request_set_tfm(subreq, ctx->fallback.aead); | 
|  | aead_request_set_callback(subreq, req->base.flags, | 
|  | req->base.complete, req->base.data); | 
|  | aead_request_set_crypt(subreq, req->src, req->dst, | 
|  | req->cryptlen, req->iv); | 
|  | aead_request_set_ad(subreq, req->assoclen); | 
|  |  | 
|  | ret = enc ? crypto_aead_encrypt(subreq) : | 
|  | crypto_aead_decrypt(subreq); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | sa_req.enc_offset = req->assoclen; | 
|  | sa_req.enc_size = enc_size; | 
|  | sa_req.auth_size = auth_size; | 
|  | sa_req.size = auth_size; | 
|  | sa_req.enc_iv = iv; | 
|  | sa_req.type = CRYPTO_ALG_TYPE_AEAD; | 
|  | sa_req.enc = enc; | 
|  | sa_req.callback = sa_aead_dma_in_callback; | 
|  | sa_req.mdata_size = 52; | 
|  | sa_req.base = &req->base; | 
|  | sa_req.ctx = ctx; | 
|  | sa_req.src = req->src; | 
|  | sa_req.dst = req->dst; | 
|  |  | 
|  | return sa_run(&sa_req); | 
|  | } | 
|  |  | 
|  | /* AEAD algorithm encrypt interface function */ | 
|  | static int sa_aead_encrypt(struct aead_request *req) | 
|  | { | 
|  | return sa_aead_run(req, req->iv, 1); | 
|  | } | 
|  |  | 
|  | /* AEAD algorithm decrypt interface function */ | 
|  | static int sa_aead_decrypt(struct aead_request *req) | 
|  | { | 
|  | return sa_aead_run(req, req->iv, 0); | 
|  | } | 
|  |  | 
|  | static struct sa_alg_tmpl sa_algs[] = { | 
|  | [SA_ALG_CBC_AES] = { | 
|  | .type = CRYPTO_ALG_TYPE_SKCIPHER, | 
|  | .alg.skcipher = { | 
|  | .base.cra_name		= "cbc(aes)", | 
|  | .base.cra_driver_name	= "cbc-aes-sa2ul", | 
|  | .base.cra_priority	= 30000, | 
|  | .base.cra_flags		= CRYPTO_ALG_TYPE_SKCIPHER | | 
|  | CRYPTO_ALG_KERN_DRIVER_ONLY | | 
|  | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_NEED_FALLBACK, | 
|  | .base.cra_blocksize	= AES_BLOCK_SIZE, | 
|  | .base.cra_ctxsize	= sizeof(struct sa_tfm_ctx), | 
|  | .base.cra_module	= THIS_MODULE, | 
|  | .init			= sa_cipher_cra_init, | 
|  | .exit			= sa_cipher_cra_exit, | 
|  | .min_keysize		= AES_MIN_KEY_SIZE, | 
|  | .max_keysize		= AES_MAX_KEY_SIZE, | 
|  | .ivsize			= AES_BLOCK_SIZE, | 
|  | .setkey			= sa_aes_cbc_setkey, | 
|  | .encrypt		= sa_encrypt, | 
|  | .decrypt		= sa_decrypt, | 
|  | } | 
|  | }, | 
|  | [SA_ALG_EBC_AES] = { | 
|  | .type = CRYPTO_ALG_TYPE_SKCIPHER, | 
|  | .alg.skcipher = { | 
|  | .base.cra_name		= "ecb(aes)", | 
|  | .base.cra_driver_name	= "ecb-aes-sa2ul", | 
|  | .base.cra_priority	= 30000, | 
|  | .base.cra_flags		= CRYPTO_ALG_TYPE_SKCIPHER | | 
|  | CRYPTO_ALG_KERN_DRIVER_ONLY | | 
|  | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_NEED_FALLBACK, | 
|  | .base.cra_blocksize	= AES_BLOCK_SIZE, | 
|  | .base.cra_ctxsize	= sizeof(struct sa_tfm_ctx), | 
|  | .base.cra_module	= THIS_MODULE, | 
|  | .init			= sa_cipher_cra_init, | 
|  | .exit			= sa_cipher_cra_exit, | 
|  | .min_keysize		= AES_MIN_KEY_SIZE, | 
|  | .max_keysize		= AES_MAX_KEY_SIZE, | 
|  | .setkey			= sa_aes_ecb_setkey, | 
|  | .encrypt		= sa_encrypt, | 
|  | .decrypt		= sa_decrypt, | 
|  | } | 
|  | }, | 
|  | [SA_ALG_CBC_DES3] = { | 
|  | .type = CRYPTO_ALG_TYPE_SKCIPHER, | 
|  | .alg.skcipher = { | 
|  | .base.cra_name		= "cbc(des3_ede)", | 
|  | .base.cra_driver_name	= "cbc-des3-sa2ul", | 
|  | .base.cra_priority	= 30000, | 
|  | .base.cra_flags		= CRYPTO_ALG_TYPE_SKCIPHER | | 
|  | CRYPTO_ALG_KERN_DRIVER_ONLY | | 
|  | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_NEED_FALLBACK, | 
|  | .base.cra_blocksize	= DES_BLOCK_SIZE, | 
|  | .base.cra_ctxsize	= sizeof(struct sa_tfm_ctx), | 
|  | .base.cra_module	= THIS_MODULE, | 
|  | .init			= sa_cipher_cra_init, | 
|  | .exit			= sa_cipher_cra_exit, | 
|  | .min_keysize		= 3 * DES_KEY_SIZE, | 
|  | .max_keysize		= 3 * DES_KEY_SIZE, | 
|  | .ivsize			= DES_BLOCK_SIZE, | 
|  | .setkey			= sa_3des_cbc_setkey, | 
|  | .encrypt		= sa_encrypt, | 
|  | .decrypt		= sa_decrypt, | 
|  | } | 
|  | }, | 
|  | [SA_ALG_ECB_DES3] = { | 
|  | .type = CRYPTO_ALG_TYPE_SKCIPHER, | 
|  | .alg.skcipher = { | 
|  | .base.cra_name		= "ecb(des3_ede)", | 
|  | .base.cra_driver_name	= "ecb-des3-sa2ul", | 
|  | .base.cra_priority	= 30000, | 
|  | .base.cra_flags		= CRYPTO_ALG_TYPE_SKCIPHER | | 
|  | CRYPTO_ALG_KERN_DRIVER_ONLY | | 
|  | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_NEED_FALLBACK, | 
|  | .base.cra_blocksize	= DES_BLOCK_SIZE, | 
|  | .base.cra_ctxsize	= sizeof(struct sa_tfm_ctx), | 
|  | .base.cra_module	= THIS_MODULE, | 
|  | .init			= sa_cipher_cra_init, | 
|  | .exit			= sa_cipher_cra_exit, | 
|  | .min_keysize		= 3 * DES_KEY_SIZE, | 
|  | .max_keysize		= 3 * DES_KEY_SIZE, | 
|  | .setkey			= sa_3des_ecb_setkey, | 
|  | .encrypt		= sa_encrypt, | 
|  | .decrypt		= sa_decrypt, | 
|  | } | 
|  | }, | 
|  | [SA_ALG_SHA1] = { | 
|  | .type = CRYPTO_ALG_TYPE_AHASH, | 
|  | .alg.ahash = { | 
|  | .halg.base = { | 
|  | .cra_name	= "sha1", | 
|  | .cra_driver_name	= "sha1-sa2ul", | 
|  | .cra_priority	= 400, | 
|  | .cra_flags	= CRYPTO_ALG_TYPE_AHASH | | 
|  | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_KERN_DRIVER_ONLY | | 
|  | CRYPTO_ALG_NEED_FALLBACK, | 
|  | .cra_blocksize	= SHA1_BLOCK_SIZE, | 
|  | .cra_ctxsize	= sizeof(struct sa_tfm_ctx), | 
|  | .cra_module	= THIS_MODULE, | 
|  | .cra_init	= sa_sha1_cra_init, | 
|  | .cra_exit	= sa_sha_cra_exit, | 
|  | }, | 
|  | .halg.digestsize	= SHA1_DIGEST_SIZE, | 
|  | .halg.statesize		= sizeof(struct sa_sha_req_ctx) + | 
|  | sizeof(struct sha1_state), | 
|  | .init			= sa_sha_init, | 
|  | .update			= sa_sha_update, | 
|  | .final			= sa_sha_final, | 
|  | .finup			= sa_sha_finup, | 
|  | .digest			= sa_sha_digest, | 
|  | .export			= sa_sha_export, | 
|  | .import			= sa_sha_import, | 
|  | }, | 
|  | }, | 
|  | [SA_ALG_SHA256] = { | 
|  | .type = CRYPTO_ALG_TYPE_AHASH, | 
|  | .alg.ahash = { | 
|  | .halg.base = { | 
|  | .cra_name	= "sha256", | 
|  | .cra_driver_name	= "sha256-sa2ul", | 
|  | .cra_priority	= 400, | 
|  | .cra_flags	= CRYPTO_ALG_TYPE_AHASH | | 
|  | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_KERN_DRIVER_ONLY | | 
|  | CRYPTO_ALG_NEED_FALLBACK, | 
|  | .cra_blocksize	= SHA256_BLOCK_SIZE, | 
|  | .cra_ctxsize	= sizeof(struct sa_tfm_ctx), | 
|  | .cra_module	= THIS_MODULE, | 
|  | .cra_init	= sa_sha256_cra_init, | 
|  | .cra_exit	= sa_sha_cra_exit, | 
|  | }, | 
|  | .halg.digestsize	= SHA256_DIGEST_SIZE, | 
|  | .halg.statesize		= sizeof(struct sa_sha_req_ctx) + | 
|  | sizeof(struct sha256_state), | 
|  | .init			= sa_sha_init, | 
|  | .update			= sa_sha_update, | 
|  | .final			= sa_sha_final, | 
|  | .finup			= sa_sha_finup, | 
|  | .digest			= sa_sha_digest, | 
|  | .export			= sa_sha_export, | 
|  | .import			= sa_sha_import, | 
|  | }, | 
|  | }, | 
|  | [SA_ALG_SHA512] = { | 
|  | .type = CRYPTO_ALG_TYPE_AHASH, | 
|  | .alg.ahash = { | 
|  | .halg.base = { | 
|  | .cra_name	= "sha512", | 
|  | .cra_driver_name	= "sha512-sa2ul", | 
|  | .cra_priority	= 400, | 
|  | .cra_flags	= CRYPTO_ALG_TYPE_AHASH | | 
|  | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_KERN_DRIVER_ONLY | | 
|  | CRYPTO_ALG_NEED_FALLBACK, | 
|  | .cra_blocksize	= SHA512_BLOCK_SIZE, | 
|  | .cra_ctxsize	= sizeof(struct sa_tfm_ctx), | 
|  | .cra_module	= THIS_MODULE, | 
|  | .cra_init	= sa_sha512_cra_init, | 
|  | .cra_exit	= sa_sha_cra_exit, | 
|  | }, | 
|  | .halg.digestsize	= SHA512_DIGEST_SIZE, | 
|  | .halg.statesize		= sizeof(struct sa_sha_req_ctx) + | 
|  | sizeof(struct sha512_state), | 
|  | .init			= sa_sha_init, | 
|  | .update			= sa_sha_update, | 
|  | .final			= sa_sha_final, | 
|  | .finup			= sa_sha_finup, | 
|  | .digest			= sa_sha_digest, | 
|  | .export			= sa_sha_export, | 
|  | .import			= sa_sha_import, | 
|  | }, | 
|  | }, | 
|  | [SA_ALG_AUTHENC_SHA1_AES] = { | 
|  | .type	= CRYPTO_ALG_TYPE_AEAD, | 
|  | .alg.aead = { | 
|  | .base = { | 
|  | .cra_name = "authenc(hmac(sha1),cbc(aes))", | 
|  | .cra_driver_name = | 
|  | "authenc(hmac(sha1),cbc(aes))-sa2ul", | 
|  | .cra_blocksize = AES_BLOCK_SIZE, | 
|  | .cra_flags = CRYPTO_ALG_TYPE_AEAD | | 
|  | CRYPTO_ALG_KERN_DRIVER_ONLY | | 
|  | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_NEED_FALLBACK, | 
|  | .cra_ctxsize = sizeof(struct sa_tfm_ctx), | 
|  | .cra_module = THIS_MODULE, | 
|  | .cra_priority = 3000, | 
|  | }, | 
|  | .ivsize = AES_BLOCK_SIZE, | 
|  | .maxauthsize = SHA1_DIGEST_SIZE, | 
|  |  | 
|  | .init = sa_cra_init_aead_sha1, | 
|  | .exit = sa_exit_tfm_aead, | 
|  | .setkey = sa_aead_cbc_sha1_setkey, | 
|  | .setauthsize = sa_aead_setauthsize, | 
|  | .encrypt = sa_aead_encrypt, | 
|  | .decrypt = sa_aead_decrypt, | 
|  | }, | 
|  | }, | 
|  | [SA_ALG_AUTHENC_SHA256_AES] = { | 
|  | .type	= CRYPTO_ALG_TYPE_AEAD, | 
|  | .alg.aead = { | 
|  | .base = { | 
|  | .cra_name = "authenc(hmac(sha256),cbc(aes))", | 
|  | .cra_driver_name = | 
|  | "authenc(hmac(sha256),cbc(aes))-sa2ul", | 
|  | .cra_blocksize = AES_BLOCK_SIZE, | 
|  | .cra_flags = CRYPTO_ALG_TYPE_AEAD | | 
|  | CRYPTO_ALG_KERN_DRIVER_ONLY | | 
|  | CRYPTO_ALG_ASYNC | | 
|  | CRYPTO_ALG_NEED_FALLBACK, | 
|  | .cra_ctxsize = sizeof(struct sa_tfm_ctx), | 
|  | .cra_module = THIS_MODULE, | 
|  | .cra_alignmask = 0, | 
|  | .cra_priority = 3000, | 
|  | }, | 
|  | .ivsize = AES_BLOCK_SIZE, | 
|  | .maxauthsize = SHA256_DIGEST_SIZE, | 
|  |  | 
|  | .init = sa_cra_init_aead_sha256, | 
|  | .exit = sa_exit_tfm_aead, | 
|  | .setkey = sa_aead_cbc_sha256_setkey, | 
|  | .setauthsize = sa_aead_setauthsize, | 
|  | .encrypt = sa_aead_encrypt, | 
|  | .decrypt = sa_aead_decrypt, | 
|  | }, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* Register the algorithms in crypto framework */ | 
|  | static void sa_register_algos(struct sa_crypto_data *dev_data) | 
|  | { | 
|  | const struct sa_match_data *match_data = dev_data->match_data; | 
|  | struct device *dev = dev_data->dev; | 
|  | char *alg_name; | 
|  | u32 type; | 
|  | int i, err; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(sa_algs); i++) { | 
|  | /* Skip unsupported algos */ | 
|  | if (!(match_data->supported_algos & BIT(i))) | 
|  | continue; | 
|  |  | 
|  | type = sa_algs[i].type; | 
|  | if (type == CRYPTO_ALG_TYPE_SKCIPHER) { | 
|  | alg_name = sa_algs[i].alg.skcipher.base.cra_name; | 
|  | err = crypto_register_skcipher(&sa_algs[i].alg.skcipher); | 
|  | } else if (type == CRYPTO_ALG_TYPE_AHASH) { | 
|  | alg_name = sa_algs[i].alg.ahash.halg.base.cra_name; | 
|  | err = crypto_register_ahash(&sa_algs[i].alg.ahash); | 
|  | } else if (type == CRYPTO_ALG_TYPE_AEAD) { | 
|  | alg_name = sa_algs[i].alg.aead.base.cra_name; | 
|  | err = crypto_register_aead(&sa_algs[i].alg.aead); | 
|  | } else { | 
|  | dev_err(dev, | 
|  | "un-supported crypto algorithm (%d)", | 
|  | sa_algs[i].type); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | dev_err(dev, "Failed to register '%s'\n", alg_name); | 
|  | else | 
|  | sa_algs[i].registered = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Unregister the algorithms in crypto framework */ | 
|  | static void sa_unregister_algos(const struct device *dev) | 
|  | { | 
|  | u32 type; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(sa_algs); i++) { | 
|  | type = sa_algs[i].type; | 
|  | if (!sa_algs[i].registered) | 
|  | continue; | 
|  | if (type == CRYPTO_ALG_TYPE_SKCIPHER) | 
|  | crypto_unregister_skcipher(&sa_algs[i].alg.skcipher); | 
|  | else if (type == CRYPTO_ALG_TYPE_AHASH) | 
|  | crypto_unregister_ahash(&sa_algs[i].alg.ahash); | 
|  | else if (type == CRYPTO_ALG_TYPE_AEAD) | 
|  | crypto_unregister_aead(&sa_algs[i].alg.aead); | 
|  |  | 
|  | sa_algs[i].registered = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int sa_init_mem(struct sa_crypto_data *dev_data) | 
|  | { | 
|  | struct device *dev = &dev_data->pdev->dev; | 
|  | /* Setup dma pool for security context buffers */ | 
|  | dev_data->sc_pool = dma_pool_create("keystone-sc", dev, | 
|  | SA_CTX_MAX_SZ, 64, 0); | 
|  | if (!dev_data->sc_pool) { | 
|  | dev_err(dev, "Failed to create dma pool"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sa_dma_init(struct sa_crypto_data *dd) | 
|  | { | 
|  | int ret; | 
|  | struct dma_slave_config cfg; | 
|  |  | 
|  | dd->dma_rx1 = NULL; | 
|  | dd->dma_tx = NULL; | 
|  | dd->dma_rx2 = NULL; | 
|  |  | 
|  | ret = dma_coerce_mask_and_coherent(dd->dev, DMA_BIT_MASK(48)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | dd->dma_rx1 = dma_request_chan(dd->dev, "rx1"); | 
|  | if (IS_ERR(dd->dma_rx1)) | 
|  | return dev_err_probe(dd->dev, PTR_ERR(dd->dma_rx1), | 
|  | "Unable to request rx1 DMA channel\n"); | 
|  |  | 
|  | dd->dma_rx2 = dma_request_chan(dd->dev, "rx2"); | 
|  | if (IS_ERR(dd->dma_rx2)) { | 
|  | ret = dev_err_probe(dd->dev, PTR_ERR(dd->dma_rx2), | 
|  | "Unable to request rx2 DMA channel\n"); | 
|  | goto err_dma_rx2; | 
|  | } | 
|  |  | 
|  | dd->dma_tx = dma_request_chan(dd->dev, "tx"); | 
|  | if (IS_ERR(dd->dma_tx)) { | 
|  | ret = dev_err_probe(dd->dev, PTR_ERR(dd->dma_tx), | 
|  | "Unable to request tx DMA channel\n"); | 
|  | goto err_dma_tx; | 
|  | } | 
|  |  | 
|  | memzero_explicit(&cfg, sizeof(cfg)); | 
|  |  | 
|  | cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | cfg.src_maxburst = 4; | 
|  | cfg.dst_maxburst = 4; | 
|  |  | 
|  | ret = dmaengine_slave_config(dd->dma_rx1, &cfg); | 
|  | if (ret) { | 
|  | dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n", | 
|  | ret); | 
|  | goto err_dma_config; | 
|  | } | 
|  |  | 
|  | ret = dmaengine_slave_config(dd->dma_rx2, &cfg); | 
|  | if (ret) { | 
|  | dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n", | 
|  | ret); | 
|  | goto err_dma_config; | 
|  | } | 
|  |  | 
|  | ret = dmaengine_slave_config(dd->dma_tx, &cfg); | 
|  | if (ret) { | 
|  | dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n", | 
|  | ret); | 
|  | goto err_dma_config; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_dma_config: | 
|  | dma_release_channel(dd->dma_tx); | 
|  | err_dma_tx: | 
|  | dma_release_channel(dd->dma_rx2); | 
|  | err_dma_rx2: | 
|  | dma_release_channel(dd->dma_rx1); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sa_link_child(struct device *dev, void *data) | 
|  | { | 
|  | struct device *parent = data; | 
|  |  | 
|  | device_link_add(dev, parent, DL_FLAG_AUTOPROBE_CONSUMER); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct sa_match_data am654_match_data = { | 
|  | .priv = 1, | 
|  | .priv_id = 1, | 
|  | .supported_algos = BIT(SA_ALG_CBC_AES) | | 
|  | BIT(SA_ALG_EBC_AES) | | 
|  | BIT(SA_ALG_CBC_DES3) | | 
|  | BIT(SA_ALG_ECB_DES3) | | 
|  | BIT(SA_ALG_SHA1) | | 
|  | BIT(SA_ALG_SHA256) | | 
|  | BIT(SA_ALG_SHA512) | | 
|  | BIT(SA_ALG_AUTHENC_SHA1_AES) | | 
|  | BIT(SA_ALG_AUTHENC_SHA256_AES), | 
|  | }; | 
|  |  | 
|  | static struct sa_match_data am64_match_data = { | 
|  | .priv = 0, | 
|  | .priv_id = 0, | 
|  | .supported_algos = BIT(SA_ALG_CBC_AES) | | 
|  | BIT(SA_ALG_EBC_AES) | | 
|  | BIT(SA_ALG_SHA256) | | 
|  | BIT(SA_ALG_SHA512) | | 
|  | BIT(SA_ALG_AUTHENC_SHA256_AES), | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id of_match[] = { | 
|  | { .compatible = "ti,j721e-sa2ul", .data = &am654_match_data, }, | 
|  | { .compatible = "ti,am654-sa2ul", .data = &am654_match_data, }, | 
|  | { .compatible = "ti,am64-sa2ul", .data = &am64_match_data, }, | 
|  | { .compatible = "ti,am62-sa3ul", .data = &am64_match_data, }, | 
|  | {}, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, of_match); | 
|  |  | 
|  | static int sa_ul_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct device *dev = &pdev->dev; | 
|  | struct device_node *node = dev->of_node; | 
|  | static void __iomem *saul_base; | 
|  | struct sa_crypto_data *dev_data; | 
|  | u32 status, val; | 
|  | int ret; | 
|  |  | 
|  | dev_data = devm_kzalloc(dev, sizeof(*dev_data), GFP_KERNEL); | 
|  | if (!dev_data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dev_data->match_data = of_device_get_match_data(dev); | 
|  | if (!dev_data->match_data) | 
|  | return -ENODEV; | 
|  |  | 
|  | saul_base = devm_platform_ioremap_resource(pdev, 0); | 
|  | if (IS_ERR(saul_base)) | 
|  | return PTR_ERR(saul_base); | 
|  |  | 
|  | sa_k3_dev = dev; | 
|  | dev_data->dev = dev; | 
|  | dev_data->pdev = pdev; | 
|  | dev_data->base = saul_base; | 
|  | platform_set_drvdata(pdev, dev_data); | 
|  | dev_set_drvdata(sa_k3_dev, dev_data); | 
|  |  | 
|  | pm_runtime_enable(dev); | 
|  | ret = pm_runtime_resume_and_get(dev); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "%s: failed to get sync: %d\n", __func__, ret); | 
|  | pm_runtime_disable(dev); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | sa_init_mem(dev_data); | 
|  | ret = sa_dma_init(dev_data); | 
|  | if (ret) | 
|  | goto destroy_dma_pool; | 
|  |  | 
|  | spin_lock_init(&dev_data->scid_lock); | 
|  |  | 
|  | val = SA_EEC_ENCSS_EN | SA_EEC_AUTHSS_EN | SA_EEC_CTXCACH_EN | | 
|  | SA_EEC_CPPI_PORT_IN_EN | SA_EEC_CPPI_PORT_OUT_EN | | 
|  | SA_EEC_TRNG_EN; | 
|  | status = readl_relaxed(saul_base + SA_ENGINE_STATUS); | 
|  | /* Only enable engines if all are not already enabled */ | 
|  | if (val & ~status) | 
|  | writel_relaxed(val, saul_base + SA_ENGINE_ENABLE_CONTROL); | 
|  |  | 
|  | sa_register_algos(dev_data); | 
|  |  | 
|  | ret = of_platform_populate(node, NULL, NULL, dev); | 
|  | if (ret) | 
|  | goto release_dma; | 
|  |  | 
|  | device_for_each_child(dev, dev, sa_link_child); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | release_dma: | 
|  | sa_unregister_algos(dev); | 
|  |  | 
|  | dma_release_channel(dev_data->dma_rx2); | 
|  | dma_release_channel(dev_data->dma_rx1); | 
|  | dma_release_channel(dev_data->dma_tx); | 
|  |  | 
|  | destroy_dma_pool: | 
|  | dma_pool_destroy(dev_data->sc_pool); | 
|  |  | 
|  | pm_runtime_put_sync(dev); | 
|  | pm_runtime_disable(dev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void sa_ul_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct sa_crypto_data *dev_data = platform_get_drvdata(pdev); | 
|  |  | 
|  | of_platform_depopulate(&pdev->dev); | 
|  |  | 
|  | sa_unregister_algos(&pdev->dev); | 
|  |  | 
|  | dma_release_channel(dev_data->dma_rx2); | 
|  | dma_release_channel(dev_data->dma_rx1); | 
|  | dma_release_channel(dev_data->dma_tx); | 
|  |  | 
|  | dma_pool_destroy(dev_data->sc_pool); | 
|  |  | 
|  | platform_set_drvdata(pdev, NULL); | 
|  |  | 
|  | pm_runtime_put_sync(&pdev->dev); | 
|  | pm_runtime_disable(&pdev->dev); | 
|  | } | 
|  |  | 
|  | static struct platform_driver sa_ul_driver = { | 
|  | .probe = sa_ul_probe, | 
|  | .remove = sa_ul_remove, | 
|  | .driver = { | 
|  | .name = "saul-crypto", | 
|  | .of_match_table = of_match, | 
|  | }, | 
|  | }; | 
|  | module_platform_driver(sa_ul_driver); | 
|  | MODULE_DESCRIPTION("K3 SA2UL crypto accelerator driver"); | 
|  | MODULE_LICENSE("GPL v2"); |