| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC | 
 |  * | 
 |  * Authors: | 
 |  *   Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru> | 
 |  *   Serge Semin <Sergey.Semin@baikalelectronics.ru> | 
 |  * | 
 |  * Baikal-T1 Process, Voltage, Temperature sensor driver | 
 |  */ | 
 |  | 
 | #include <linux/bitfield.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/device.h> | 
 | #include <linux/hwmon-sysfs.h> | 
 | #include <linux/hwmon.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/io.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/ktime.h> | 
 | #include <linux/limits.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/of.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/polynomial.h> | 
 | #include <linux/seqlock.h> | 
 | #include <linux/sysfs.h> | 
 | #include <linux/types.h> | 
 |  | 
 | #include "bt1-pvt.h" | 
 |  | 
 | /* | 
 |  * For the sake of the code simplification we created the sensors info table | 
 |  * with the sensor names, activation modes, threshold registers base address | 
 |  * and the thresholds bit fields. | 
 |  */ | 
 | static const struct pvt_sensor_info pvt_info[] = { | 
 | 	PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES), | 
 | 	PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES), | 
 | 	PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES), | 
 | 	PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES), | 
 | 	PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES), | 
 | }; | 
 |  | 
 | /* | 
 |  * The original translation formulae of the temperature (in degrees of Celsius) | 
 |  * to PVT data and vice-versa are following: | 
 |  * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) + | 
 |  *     1.7204e2, | 
 |  * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) + | 
 |  *     3.1020e-1*(N^1) - 4.838e1, | 
 |  * where T = [-48.380, 147.438]C and N = [0, 1023]. | 
 |  * They must be accordingly altered to be suitable for the integer arithmetics. | 
 |  * The technique is called 'factor redistribution', which just makes sure the | 
 |  * multiplications and divisions are made so to have a result of the operations | 
 |  * within the integer numbers limit. In addition we need to translate the | 
 |  * formulae to accept millidegrees of Celsius. Here what they look like after | 
 |  * the alterations: | 
 |  * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T + | 
 |  *     17204e2) / 1e4, | 
 |  * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D - | 
 |  *     48380, | 
 |  * where T = [-48380, 147438] mC and N = [0, 1023]. | 
 |  */ | 
 | static const struct polynomial __maybe_unused poly_temp_to_N = { | 
 | 	.total_divider = 10000, | 
 | 	.terms = { | 
 | 		{4, 18322, 10000, 10000}, | 
 | 		{3, 2343, 10000, 10}, | 
 | 		{2, 87018, 10000, 10}, | 
 | 		{1, 39269, 1000, 1}, | 
 | 		{0, 1720400, 1, 1} | 
 | 	} | 
 | }; | 
 |  | 
 | static const struct polynomial poly_N_to_temp = { | 
 | 	.total_divider = 1, | 
 | 	.terms = { | 
 | 		{4, -16743, 1000, 1}, | 
 | 		{3, 81542, 1000, 1}, | 
 | 		{2, -182010, 1000, 1}, | 
 | 		{1, 310200, 1000, 1}, | 
 | 		{0, -48380, 1, 1} | 
 | 	} | 
 | }; | 
 |  | 
 | /* | 
 |  * Similar alterations are performed for the voltage conversion equations. | 
 |  * The original formulae are: | 
 |  * N = 1.8658e3*V - 1.1572e3, | 
 |  * V = (N + 1.1572e3) / 1.8658e3, | 
 |  * where V = [0.620, 1.168] V and N = [0, 1023]. | 
 |  * After the optimization they looks as follows: | 
 |  * N = (18658e-3*V - 11572) / 10, | 
 |  * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658. | 
 |  */ | 
 | static const struct polynomial __maybe_unused poly_volt_to_N = { | 
 | 	.total_divider = 10, | 
 | 	.terms = { | 
 | 		{1, 18658, 1000, 1}, | 
 | 		{0, -11572, 1, 1} | 
 | 	} | 
 | }; | 
 |  | 
 | static const struct polynomial poly_N_to_volt = { | 
 | 	.total_divider = 10, | 
 | 	.terms = { | 
 | 		{1, 100000, 18658, 1}, | 
 | 		{0, 115720000, 1, 18658} | 
 | 	} | 
 | }; | 
 |  | 
 | static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data) | 
 | { | 
 | 	u32 old; | 
 |  | 
 | 	old = readl_relaxed(reg); | 
 | 	writel((old & ~mask) | (data & mask), reg); | 
 |  | 
 | 	return old & mask; | 
 | } | 
 |  | 
 | /* | 
 |  * Baikal-T1 PVT mode can be updated only when the controller is disabled. | 
 |  * So first we disable it, then set the new mode together with the controller | 
 |  * getting back enabled. The same concerns the temperature trim and | 
 |  * measurements timeout. If it is necessary the interface mutex is supposed | 
 |  * to be locked at the time the operations are performed. | 
 |  */ | 
 | static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode) | 
 | { | 
 | 	u32 old; | 
 |  | 
 | 	mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode); | 
 |  | 
 | 	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); | 
 | 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN, | 
 | 		   mode | old); | 
 | } | 
 |  | 
 | static inline u32 pvt_calc_trim(long temp) | 
 | { | 
 | 	temp = clamp_val(temp, 0, PVT_TRIM_TEMP); | 
 |  | 
 | 	return DIV_ROUND_UP(temp, PVT_TRIM_STEP); | 
 | } | 
 |  | 
 | static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim) | 
 | { | 
 | 	u32 old; | 
 |  | 
 | 	trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim); | 
 |  | 
 | 	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); | 
 | 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN, | 
 | 		   trim | old); | 
 | } | 
 |  | 
 | static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout) | 
 | { | 
 | 	u32 old; | 
 |  | 
 | 	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); | 
 | 	writel(tout, pvt->regs + PVT_TTIMEOUT); | 
 | 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old); | 
 | } | 
 |  | 
 | /* | 
 |  * This driver can optionally provide the hwmon alarms for each sensor the PVT | 
 |  * controller supports. The alarms functionality is made compile-time | 
 |  * configurable due to the hardware interface implementation peculiarity | 
 |  * described further in this comment. So in case if alarms are unnecessary in | 
 |  * your system design it's recommended to have them disabled to prevent the PVT | 
 |  * IRQs being periodically raised to get the data cache/alarms status up to | 
 |  * date. | 
 |  * | 
 |  * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor, | 
 |  * but is equipped with a dedicated control wrapper. It exposes the PVT | 
 |  * sub-block registers space via the APB3 bus. In addition the wrapper provides | 
 |  * a common interrupt vector of the sensors conversion completion events and | 
 |  * threshold value alarms. Alas the wrapper interface hasn't been fully thought | 
 |  * through. There is only one sensor can be activated at a time, for which the | 
 |  * thresholds comparator is enabled right after the data conversion is | 
 |  * completed. Due to this if alarms need to be implemented for all available | 
 |  * sensors we can't just set the thresholds and enable the interrupts. We need | 
 |  * to enable the sensors one after another and let the controller to detect | 
 |  * the alarms by itself at each conversion. This also makes pointless to handle | 
 |  * the alarms interrupts, since in occasion they happen synchronously with | 
 |  * data conversion completion. The best driver design would be to have the | 
 |  * completion interrupts enabled only and keep the converted value in the | 
 |  * driver data cache. This solution is implemented if hwmon alarms are enabled | 
 |  * in this driver. In case if the alarms are disabled, the conversion is | 
 |  * performed on demand at the time a sensors input file is read. | 
 |  */ | 
 |  | 
 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) | 
 |  | 
 | #define pvt_hard_isr NULL | 
 |  | 
 | static irqreturn_t pvt_soft_isr(int irq, void *data) | 
 | { | 
 | 	const struct pvt_sensor_info *info; | 
 | 	struct pvt_hwmon *pvt = data; | 
 | 	struct pvt_cache *cache; | 
 | 	u32 val, thres_sts, old; | 
 |  | 
 | 	/* | 
 | 	 * DVALID bit will be cleared by reading the data. We need to save the | 
 | 	 * status before the next conversion happens. Threshold events will be | 
 | 	 * handled a bit later. | 
 | 	 */ | 
 | 	thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT); | 
 |  | 
 | 	/* | 
 | 	 * Then lets recharge the PVT interface with the next sampling mode. | 
 | 	 * Lock the interface mutex to serialize trim, timeouts and alarm | 
 | 	 * thresholds settings. | 
 | 	 */ | 
 | 	cache = &pvt->cache[pvt->sensor]; | 
 | 	info = &pvt_info[pvt->sensor]; | 
 | 	pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ? | 
 | 		      PVT_SENSOR_FIRST : (pvt->sensor + 1); | 
 |  | 
 | 	/* | 
 | 	 * For some reason we have to mask the interrupt before changing the | 
 | 	 * mode, otherwise sometimes the temperature mode doesn't get | 
 | 	 * activated even though the actual mode in the ctrl register | 
 | 	 * corresponds to one. Then we read the data. By doing so we also | 
 | 	 * recharge the data conversion. After this the mode corresponding | 
 | 	 * to the next sensor in the row is set. Finally we enable the | 
 | 	 * interrupts back. | 
 | 	 */ | 
 | 	mutex_lock(&pvt->iface_mtx); | 
 |  | 
 | 	old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, | 
 | 			 PVT_INTR_DVALID); | 
 |  | 
 | 	val = readl(pvt->regs + PVT_DATA); | 
 |  | 
 | 	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode); | 
 |  | 
 | 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old); | 
 |  | 
 | 	mutex_unlock(&pvt->iface_mtx); | 
 |  | 
 | 	/* | 
 | 	 * We can now update the data cache with data just retrieved from the | 
 | 	 * sensor. Lock write-seqlock to make sure the reader has a coherent | 
 | 	 * data. | 
 | 	 */ | 
 | 	write_seqlock(&cache->data_seqlock); | 
 |  | 
 | 	cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val); | 
 |  | 
 | 	write_sequnlock(&cache->data_seqlock); | 
 |  | 
 | 	/* | 
 | 	 * While PVT core is doing the next mode data conversion, we'll check | 
 | 	 * whether the alarms were triggered for the current sensor. Note that | 
 | 	 * according to the documentation only one threshold IRQ status can be | 
 | 	 * set at a time, that's why if-else statement is utilized. | 
 | 	 */ | 
 | 	if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) { | 
 | 		WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo); | 
 | 		hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm, | 
 | 				   info->channel); | 
 | 	} else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) { | 
 | 		WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi); | 
 | 		hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm, | 
 | 				   info->channel); | 
 | 	} | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type) | 
 | { | 
 | 	return 0644; | 
 | } | 
 |  | 
 | static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type) | 
 | { | 
 | 	return 0444; | 
 | } | 
 |  | 
 | static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type, | 
 | 			 long *val) | 
 | { | 
 | 	struct pvt_cache *cache = &pvt->cache[type]; | 
 | 	unsigned int seq; | 
 | 	u32 data; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqbegin(&cache->data_seqlock); | 
 | 		data = cache->data; | 
 | 	} while (read_seqretry(&cache->data_seqlock, seq)); | 
 |  | 
 | 	if (type == PVT_TEMP) | 
 | 		*val = polynomial_calc(&poly_N_to_temp, data); | 
 | 	else | 
 | 		*val = polynomial_calc(&poly_N_to_volt, data); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, | 
 | 			  bool is_low, long *val) | 
 | { | 
 | 	u32 data; | 
 |  | 
 | 	/* No need in serialization, since it is just read from MMIO. */ | 
 | 	data = readl(pvt->regs + pvt_info[type].thres_base); | 
 |  | 
 | 	if (is_low) | 
 | 		data = FIELD_GET(PVT_THRES_LO_MASK, data); | 
 | 	else | 
 | 		data = FIELD_GET(PVT_THRES_HI_MASK, data); | 
 |  | 
 | 	if (type == PVT_TEMP) | 
 | 		*val = polynomial_calc(&poly_N_to_temp, data); | 
 | 	else | 
 | 		*val = polynomial_calc(&poly_N_to_volt, data); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, | 
 | 			   bool is_low, long val) | 
 | { | 
 | 	u32 data, limit, mask; | 
 | 	int ret; | 
 |  | 
 | 	if (type == PVT_TEMP) { | 
 | 		val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX); | 
 | 		data = polynomial_calc(&poly_temp_to_N, val); | 
 | 	} else { | 
 | 		val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX); | 
 | 		data = polynomial_calc(&poly_volt_to_N, val); | 
 | 	} | 
 |  | 
 | 	/* Serialize limit update, since a part of the register is changed. */ | 
 | 	ret = mutex_lock_interruptible(&pvt->iface_mtx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Make sure the upper and lower ranges don't intersect. */ | 
 | 	limit = readl(pvt->regs + pvt_info[type].thres_base); | 
 | 	if (is_low) { | 
 | 		limit = FIELD_GET(PVT_THRES_HI_MASK, limit); | 
 | 		data = clamp_val(data, PVT_DATA_MIN, limit); | 
 | 		data = FIELD_PREP(PVT_THRES_LO_MASK, data); | 
 | 		mask = PVT_THRES_LO_MASK; | 
 | 	} else { | 
 | 		limit = FIELD_GET(PVT_THRES_LO_MASK, limit); | 
 | 		data = clamp_val(data, limit, PVT_DATA_MAX); | 
 | 		data = FIELD_PREP(PVT_THRES_HI_MASK, data); | 
 | 		mask = PVT_THRES_HI_MASK; | 
 | 	} | 
 |  | 
 | 	pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data); | 
 |  | 
 | 	mutex_unlock(&pvt->iface_mtx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type, | 
 | 			  bool is_low, long *val) | 
 | { | 
 | 	if (is_low) | 
 | 		*val = !!READ_ONCE(pvt->cache[type].thres_sts_lo); | 
 | 	else | 
 | 		*val = !!READ_ONCE(pvt->cache[type].thres_sts_hi); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct hwmon_channel_info * const pvt_channel_info[] = { | 
 | 	HWMON_CHANNEL_INFO(chip, | 
 | 			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL), | 
 | 	HWMON_CHANNEL_INFO(temp, | 
 | 			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL | | 
 | 			   HWMON_T_MIN | HWMON_T_MIN_ALARM | | 
 | 			   HWMON_T_MAX | HWMON_T_MAX_ALARM | | 
 | 			   HWMON_T_OFFSET), | 
 | 	HWMON_CHANNEL_INFO(in, | 
 | 			   HWMON_I_INPUT | HWMON_I_LABEL | | 
 | 			   HWMON_I_MIN | HWMON_I_MIN_ALARM | | 
 | 			   HWMON_I_MAX | HWMON_I_MAX_ALARM, | 
 | 			   HWMON_I_INPUT | HWMON_I_LABEL | | 
 | 			   HWMON_I_MIN | HWMON_I_MIN_ALARM | | 
 | 			   HWMON_I_MAX | HWMON_I_MAX_ALARM, | 
 | 			   HWMON_I_INPUT | HWMON_I_LABEL | | 
 | 			   HWMON_I_MIN | HWMON_I_MIN_ALARM | | 
 | 			   HWMON_I_MAX | HWMON_I_MAX_ALARM, | 
 | 			   HWMON_I_INPUT | HWMON_I_LABEL | | 
 | 			   HWMON_I_MIN | HWMON_I_MIN_ALARM | | 
 | 			   HWMON_I_MAX | HWMON_I_MAX_ALARM), | 
 | 	NULL | 
 | }; | 
 |  | 
 | #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ | 
 |  | 
 | static irqreturn_t pvt_hard_isr(int irq, void *data) | 
 | { | 
 | 	struct pvt_hwmon *pvt = data; | 
 | 	struct pvt_cache *cache; | 
 | 	u32 val; | 
 |  | 
 | 	/* | 
 | 	 * Mask the DVALID interrupt so after exiting from the handler a | 
 | 	 * repeated conversion wouldn't happen. | 
 | 	 */ | 
 | 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, | 
 | 		   PVT_INTR_DVALID); | 
 |  | 
 | 	/* | 
 | 	 * Nothing special for alarm-less driver. Just read the data, update | 
 | 	 * the cache and notify a waiter of this event. | 
 | 	 */ | 
 | 	val = readl(pvt->regs + PVT_DATA); | 
 | 	if (!(val & PVT_DATA_VALID)) { | 
 | 		dev_err(pvt->dev, "Got IRQ when data isn't valid\n"); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	cache = &pvt->cache[pvt->sensor]; | 
 |  | 
 | 	WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val)); | 
 |  | 
 | 	complete(&cache->conversion); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | #define pvt_soft_isr NULL | 
 |  | 
 | static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type, | 
 | 			 long *val) | 
 | { | 
 | 	struct pvt_cache *cache = &pvt->cache[type]; | 
 | 	unsigned long timeout; | 
 | 	u32 data; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Lock PVT conversion interface until data cache is updated. The | 
 | 	 * data read procedure is following: set the requested PVT sensor | 
 | 	 * mode, enable IRQ and conversion, wait until conversion is finished, | 
 | 	 * then disable conversion and IRQ, and read the cached data. | 
 | 	 */ | 
 | 	ret = mutex_lock_interruptible(&pvt->iface_mtx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	pvt->sensor = type; | 
 | 	pvt_set_mode(pvt, pvt_info[type].mode); | 
 |  | 
 | 	/* | 
 | 	 * Unmask the DVALID interrupt and enable the sensors conversions. | 
 | 	 * Do the reverse procedure when conversion is done. | 
 | 	 */ | 
 | 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0); | 
 | 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN); | 
 |  | 
 | 	/* | 
 | 	 * Wait with timeout since in case if the sensor is suddenly powered | 
 | 	 * down the request won't be completed and the caller will hang up on | 
 | 	 * this procedure until the power is back up again. Multiply the | 
 | 	 * timeout by the factor of two to prevent a false timeout. | 
 | 	 */ | 
 | 	timeout = 2 * usecs_to_jiffies(ktime_to_us(pvt->timeout)); | 
 | 	ret = wait_for_completion_timeout(&cache->conversion, timeout); | 
 |  | 
 | 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); | 
 | 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, | 
 | 		   PVT_INTR_DVALID); | 
 |  | 
 | 	data = READ_ONCE(cache->data); | 
 |  | 
 | 	mutex_unlock(&pvt->iface_mtx); | 
 |  | 
 | 	if (!ret) | 
 | 		return -ETIMEDOUT; | 
 |  | 
 | 	if (type == PVT_TEMP) | 
 | 		*val = polynomial_calc(&poly_N_to_temp, data); | 
 | 	else | 
 | 		*val = polynomial_calc(&poly_N_to_volt, data); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, | 
 | 			  bool is_low, long *val) | 
 | { | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 | static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, | 
 | 			   bool is_low, long val) | 
 | { | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 | static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type, | 
 | 			  bool is_low, long *val) | 
 | { | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 | static const struct hwmon_channel_info * const pvt_channel_info[] = { | 
 | 	HWMON_CHANNEL_INFO(chip, | 
 | 			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL), | 
 | 	HWMON_CHANNEL_INFO(temp, | 
 | 			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL | | 
 | 			   HWMON_T_OFFSET), | 
 | 	HWMON_CHANNEL_INFO(in, | 
 | 			   HWMON_I_INPUT | HWMON_I_LABEL, | 
 | 			   HWMON_I_INPUT | HWMON_I_LABEL, | 
 | 			   HWMON_I_INPUT | HWMON_I_LABEL, | 
 | 			   HWMON_I_INPUT | HWMON_I_LABEL), | 
 | 	NULL | 
 | }; | 
 |  | 
 | #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ | 
 |  | 
 | static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type, | 
 | 					      int ch) | 
 | { | 
 | 	switch (type) { | 
 | 	case hwmon_temp: | 
 | 		if (ch < 0 || ch >= PVT_TEMP_CHS) | 
 | 			return false; | 
 | 		break; | 
 | 	case hwmon_in: | 
 | 		if (ch < 0 || ch >= PVT_VOLT_CHS) | 
 | 			return false; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* The rest of the types are independent from the channel number. */ | 
 | 	return true; | 
 | } | 
 |  | 
 | static umode_t pvt_hwmon_is_visible(const void *data, | 
 | 				    enum hwmon_sensor_types type, | 
 | 				    u32 attr, int ch) | 
 | { | 
 | 	if (!pvt_hwmon_channel_is_valid(type, ch)) | 
 | 		return 0; | 
 |  | 
 | 	switch (type) { | 
 | 	case hwmon_chip: | 
 | 		switch (attr) { | 
 | 		case hwmon_chip_update_interval: | 
 | 			return 0644; | 
 | 		} | 
 | 		break; | 
 | 	case hwmon_temp: | 
 | 		switch (attr) { | 
 | 		case hwmon_temp_input: | 
 | 		case hwmon_temp_type: | 
 | 		case hwmon_temp_label: | 
 | 			return 0444; | 
 | 		case hwmon_temp_min: | 
 | 		case hwmon_temp_max: | 
 | 			return pvt_limit_is_visible(ch); | 
 | 		case hwmon_temp_min_alarm: | 
 | 		case hwmon_temp_max_alarm: | 
 | 			return pvt_alarm_is_visible(ch); | 
 | 		case hwmon_temp_offset: | 
 | 			return 0644; | 
 | 		} | 
 | 		break; | 
 | 	case hwmon_in: | 
 | 		switch (attr) { | 
 | 		case hwmon_in_input: | 
 | 		case hwmon_in_label: | 
 | 			return 0444; | 
 | 		case hwmon_in_min: | 
 | 		case hwmon_in_max: | 
 | 			return pvt_limit_is_visible(PVT_VOLT + ch); | 
 | 		case hwmon_in_min_alarm: | 
 | 		case hwmon_in_max_alarm: | 
 | 			return pvt_alarm_is_visible(PVT_VOLT + ch); | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pvt_read_trim(struct pvt_hwmon *pvt, long *val) | 
 | { | 
 | 	u32 data; | 
 |  | 
 | 	data = readl(pvt->regs + PVT_CTRL); | 
 | 	*val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pvt_write_trim(struct pvt_hwmon *pvt, long val) | 
 | { | 
 | 	u32 trim; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Serialize trim update, since a part of the register is changed and | 
 | 	 * the controller is supposed to be disabled during this operation. | 
 | 	 */ | 
 | 	ret = mutex_lock_interruptible(&pvt->iface_mtx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	trim = pvt_calc_trim(val); | 
 | 	pvt_set_trim(pvt, trim); | 
 |  | 
 | 	mutex_unlock(&pvt->iface_mtx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = mutex_lock_interruptible(&pvt->iface_mtx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Return the result in msec as hwmon sysfs interface requires. */ | 
 | 	*val = ktime_to_ms(pvt->timeout); | 
 |  | 
 | 	mutex_unlock(&pvt->iface_mtx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pvt_write_timeout(struct pvt_hwmon *pvt, long val) | 
 | { | 
 | 	unsigned long rate; | 
 | 	ktime_t kt, cache; | 
 | 	u32 data; | 
 | 	int ret; | 
 |  | 
 | 	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk); | 
 | 	if (!rate) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* | 
 | 	 * If alarms are enabled, the requested timeout must be divided | 
 | 	 * between all available sensors to have the requested delay | 
 | 	 * applicable to each individual sensor. | 
 | 	 */ | 
 | 	cache = kt = ms_to_ktime(val); | 
 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) | 
 | 	kt = ktime_divns(kt, PVT_SENSORS_NUM); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Subtract a constant lag, which always persists due to the limited | 
 | 	 * PVT sampling rate. Make sure the timeout is not negative. | 
 | 	 */ | 
 | 	kt = ktime_sub_ns(kt, PVT_TOUT_MIN); | 
 | 	if (ktime_to_ns(kt) < 0) | 
 | 		kt = ktime_set(0, 0); | 
 |  | 
 | 	/* | 
 | 	 * Finally recalculate the timeout in terms of the reference clock | 
 | 	 * period. | 
 | 	 */ | 
 | 	data = ktime_divns(kt * rate, NSEC_PER_SEC); | 
 |  | 
 | 	/* | 
 | 	 * Update the measurements delay, but lock the interface first, since | 
 | 	 * we have to disable PVT in order to have the new delay actually | 
 | 	 * updated. | 
 | 	 */ | 
 | 	ret = mutex_lock_interruptible(&pvt->iface_mtx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	pvt_set_tout(pvt, data); | 
 | 	pvt->timeout = cache; | 
 |  | 
 | 	mutex_unlock(&pvt->iface_mtx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type, | 
 | 			  u32 attr, int ch, long *val) | 
 | { | 
 | 	struct pvt_hwmon *pvt = dev_get_drvdata(dev); | 
 |  | 
 | 	if (!pvt_hwmon_channel_is_valid(type, ch)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (type) { | 
 | 	case hwmon_chip: | 
 | 		switch (attr) { | 
 | 		case hwmon_chip_update_interval: | 
 | 			return pvt_read_timeout(pvt, val); | 
 | 		} | 
 | 		break; | 
 | 	case hwmon_temp: | 
 | 		switch (attr) { | 
 | 		case hwmon_temp_input: | 
 | 			return pvt_read_data(pvt, ch, val); | 
 | 		case hwmon_temp_type: | 
 | 			*val = 1; | 
 | 			return 0; | 
 | 		case hwmon_temp_min: | 
 | 			return pvt_read_limit(pvt, ch, true, val); | 
 | 		case hwmon_temp_max: | 
 | 			return pvt_read_limit(pvt, ch, false, val); | 
 | 		case hwmon_temp_min_alarm: | 
 | 			return pvt_read_alarm(pvt, ch, true, val); | 
 | 		case hwmon_temp_max_alarm: | 
 | 			return pvt_read_alarm(pvt, ch, false, val); | 
 | 		case hwmon_temp_offset: | 
 | 			return pvt_read_trim(pvt, val); | 
 | 		} | 
 | 		break; | 
 | 	case hwmon_in: | 
 | 		switch (attr) { | 
 | 		case hwmon_in_input: | 
 | 			return pvt_read_data(pvt, PVT_VOLT + ch, val); | 
 | 		case hwmon_in_min: | 
 | 			return pvt_read_limit(pvt, PVT_VOLT + ch, true, val); | 
 | 		case hwmon_in_max: | 
 | 			return pvt_read_limit(pvt, PVT_VOLT + ch, false, val); | 
 | 		case hwmon_in_min_alarm: | 
 | 			return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val); | 
 | 		case hwmon_in_max_alarm: | 
 | 			return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val); | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 | static int pvt_hwmon_read_string(struct device *dev, | 
 | 				 enum hwmon_sensor_types type, | 
 | 				 u32 attr, int ch, const char **str) | 
 | { | 
 | 	if (!pvt_hwmon_channel_is_valid(type, ch)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (type) { | 
 | 	case hwmon_temp: | 
 | 		switch (attr) { | 
 | 		case hwmon_temp_label: | 
 | 			*str = pvt_info[ch].label; | 
 | 			return 0; | 
 | 		} | 
 | 		break; | 
 | 	case hwmon_in: | 
 | 		switch (attr) { | 
 | 		case hwmon_in_label: | 
 | 			*str = pvt_info[PVT_VOLT + ch].label; | 
 | 			return 0; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 | static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type, | 
 | 			   u32 attr, int ch, long val) | 
 | { | 
 | 	struct pvt_hwmon *pvt = dev_get_drvdata(dev); | 
 |  | 
 | 	if (!pvt_hwmon_channel_is_valid(type, ch)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (type) { | 
 | 	case hwmon_chip: | 
 | 		switch (attr) { | 
 | 		case hwmon_chip_update_interval: | 
 | 			return pvt_write_timeout(pvt, val); | 
 | 		} | 
 | 		break; | 
 | 	case hwmon_temp: | 
 | 		switch (attr) { | 
 | 		case hwmon_temp_min: | 
 | 			return pvt_write_limit(pvt, ch, true, val); | 
 | 		case hwmon_temp_max: | 
 | 			return pvt_write_limit(pvt, ch, false, val); | 
 | 		case hwmon_temp_offset: | 
 | 			return pvt_write_trim(pvt, val); | 
 | 		} | 
 | 		break; | 
 | 	case hwmon_in: | 
 | 		switch (attr) { | 
 | 		case hwmon_in_min: | 
 | 			return pvt_write_limit(pvt, PVT_VOLT + ch, true, val); | 
 | 		case hwmon_in_max: | 
 | 			return pvt_write_limit(pvt, PVT_VOLT + ch, false, val); | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 | static const struct hwmon_ops pvt_hwmon_ops = { | 
 | 	.is_visible = pvt_hwmon_is_visible, | 
 | 	.read = pvt_hwmon_read, | 
 | 	.read_string = pvt_hwmon_read_string, | 
 | 	.write = pvt_hwmon_write | 
 | }; | 
 |  | 
 | static const struct hwmon_chip_info pvt_hwmon_info = { | 
 | 	.ops = &pvt_hwmon_ops, | 
 | 	.info = pvt_channel_info | 
 | }; | 
 |  | 
 | static void pvt_clear_data(void *data) | 
 | { | 
 | 	struct pvt_hwmon *pvt = data; | 
 | #if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS) | 
 | 	int idx; | 
 |  | 
 | 	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx) | 
 | 		complete_all(&pvt->cache[idx].conversion); | 
 | #endif | 
 |  | 
 | 	mutex_destroy(&pvt->iface_mtx); | 
 | } | 
 |  | 
 | static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev) | 
 | { | 
 | 	struct device *dev = &pdev->dev; | 
 | 	struct pvt_hwmon *pvt; | 
 | 	int ret, idx; | 
 |  | 
 | 	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL); | 
 | 	if (!pvt) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	ret = devm_add_action(dev, pvt_clear_data, pvt); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "Can't add PVT data clear action\n"); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	pvt->dev = dev; | 
 | 	pvt->sensor = PVT_SENSOR_FIRST; | 
 | 	mutex_init(&pvt->iface_mtx); | 
 |  | 
 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) | 
 | 	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx) | 
 | 		seqlock_init(&pvt->cache[idx].data_seqlock); | 
 | #else | 
 | 	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx) | 
 | 		init_completion(&pvt->cache[idx].conversion); | 
 | #endif | 
 |  | 
 | 	return pvt; | 
 | } | 
 |  | 
 | static int pvt_request_regs(struct pvt_hwmon *pvt) | 
 | { | 
 | 	struct platform_device *pdev = to_platform_device(pvt->dev); | 
 |  | 
 | 	pvt->regs = devm_platform_ioremap_resource(pdev, 0); | 
 | 	if (IS_ERR(pvt->regs)) | 
 | 		return PTR_ERR(pvt->regs); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void pvt_disable_clks(void *data) | 
 | { | 
 | 	struct pvt_hwmon *pvt = data; | 
 |  | 
 | 	clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks); | 
 | } | 
 |  | 
 | static int pvt_request_clks(struct pvt_hwmon *pvt) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	pvt->clks[PVT_CLOCK_APB].id = "pclk"; | 
 | 	pvt->clks[PVT_CLOCK_REF].id = "ref"; | 
 |  | 
 | 	ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks); | 
 | 	if (ret) { | 
 | 		dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks); | 
 | 	if (ret) { | 
 | 		dev_err(pvt->dev, "Couldn't enable the PVT clocks\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt); | 
 | 	if (ret) { | 
 | 		dev_err(pvt->dev, "Can't add PVT clocks disable action\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pvt_check_pwr(struct pvt_hwmon *pvt) | 
 | { | 
 | 	unsigned long tout; | 
 | 	int ret = 0; | 
 | 	u32 data; | 
 |  | 
 | 	/* | 
 | 	 * Test out the sensor conversion functionality. If it is not done on | 
 | 	 * time then the domain must have been unpowered and we won't be able | 
 | 	 * to use the device later in this driver. | 
 | 	 * Note If the power source is lost during the normal driver work the | 
 | 	 * data read procedure will either return -ETIMEDOUT (for the | 
 | 	 * alarm-less driver configuration) or just stop the repeated | 
 | 	 * conversion. In the later case alas we won't be able to detect the | 
 | 	 * problem. | 
 | 	 */ | 
 | 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL); | 
 | 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN); | 
 | 	pvt_set_tout(pvt, 0); | 
 | 	readl(pvt->regs + PVT_DATA); | 
 |  | 
 | 	tout = PVT_TOUT_MIN / NSEC_PER_USEC; | 
 | 	usleep_range(tout, 2 * tout); | 
 |  | 
 | 	data = readl(pvt->regs + PVT_DATA); | 
 | 	if (!(data & PVT_DATA_VALID)) { | 
 | 		ret = -ENODEV; | 
 | 		dev_err(pvt->dev, "Sensor is powered down\n"); | 
 | 	} | 
 |  | 
 | 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int pvt_init_iface(struct pvt_hwmon *pvt) | 
 | { | 
 | 	unsigned long rate; | 
 | 	u32 trim, temp; | 
 |  | 
 | 	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk); | 
 | 	if (!rate) { | 
 | 		dev_err(pvt->dev, "Invalid reference clock rate\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Make sure all interrupts and controller are disabled so not to | 
 | 	 * accidentally have ISR executed before the driver data is fully | 
 | 	 * initialized. Clear the IRQ status as well. | 
 | 	 */ | 
 | 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL); | 
 | 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); | 
 | 	readl(pvt->regs + PVT_CLR_INTR); | 
 | 	readl(pvt->regs + PVT_DATA); | 
 |  | 
 | 	/* Setup default sensor mode, timeout and temperature trim. */ | 
 | 	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode); | 
 | 	pvt_set_tout(pvt, PVT_TOUT_DEF); | 
 |  | 
 | 	/* | 
 | 	 * Preserve the current ref-clock based delay (Ttotal) between the | 
 | 	 * sensors data samples in the driver data so not to recalculate it | 
 | 	 * each time on the data requests and timeout reads. It consists of the | 
 | 	 * delay introduced by the internal ref-clock timer (N / Fclk) and the | 
 | 	 * constant timeout caused by each conversion latency (Tmin): | 
 | 	 *   Ttotal = N / Fclk + Tmin | 
 | 	 * If alarms are enabled the sensors are polled one after another and | 
 | 	 * in order to get the next measurement of a particular sensor the | 
 | 	 * caller will have to wait for at most until all the others are | 
 | 	 * polled. In that case the formulae will look a bit different: | 
 | 	 *   Ttotal = 5 * (N / Fclk + Tmin) | 
 | 	 */ | 
 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) | 
 | 	pvt->timeout = ktime_set(PVT_SENSORS_NUM * PVT_TOUT_DEF, 0); | 
 | 	pvt->timeout = ktime_divns(pvt->timeout, rate); | 
 | 	pvt->timeout = ktime_add_ns(pvt->timeout, PVT_SENSORS_NUM * PVT_TOUT_MIN); | 
 | #else | 
 | 	pvt->timeout = ktime_set(PVT_TOUT_DEF, 0); | 
 | 	pvt->timeout = ktime_divns(pvt->timeout, rate); | 
 | 	pvt->timeout = ktime_add_ns(pvt->timeout, PVT_TOUT_MIN); | 
 | #endif | 
 |  | 
 | 	trim = PVT_TRIM_DEF; | 
 | 	if (!of_property_read_u32(pvt->dev->of_node, | 
 | 	     "baikal,pvt-temp-offset-millicelsius", &temp)) | 
 | 		trim = pvt_calc_trim(temp); | 
 |  | 
 | 	pvt_set_trim(pvt, trim); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pvt_request_irq(struct pvt_hwmon *pvt) | 
 | { | 
 | 	struct platform_device *pdev = to_platform_device(pvt->dev); | 
 | 	int ret; | 
 |  | 
 | 	pvt->irq = platform_get_irq(pdev, 0); | 
 | 	if (pvt->irq < 0) | 
 | 		return pvt->irq; | 
 |  | 
 | 	ret = devm_request_threaded_irq(pvt->dev, pvt->irq, | 
 | 					pvt_hard_isr, pvt_soft_isr, | 
 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) | 
 | 					IRQF_SHARED | IRQF_TRIGGER_HIGH | | 
 | 					IRQF_ONESHOT, | 
 | #else | 
 | 					IRQF_SHARED | IRQF_TRIGGER_HIGH, | 
 | #endif | 
 | 					"pvt", pvt); | 
 | 	if (ret) { | 
 | 		dev_err(pvt->dev, "Couldn't request PVT IRQ\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pvt_create_hwmon(struct pvt_hwmon *pvt) | 
 | { | 
 | 	pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt, | 
 | 		&pvt_hwmon_info, NULL); | 
 | 	if (IS_ERR(pvt->hwmon)) { | 
 | 		dev_err(pvt->dev, "Couldn't create hwmon device\n"); | 
 | 		return PTR_ERR(pvt->hwmon); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) | 
 |  | 
 | static void pvt_disable_iface(void *data) | 
 | { | 
 | 	struct pvt_hwmon *pvt = data; | 
 |  | 
 | 	mutex_lock(&pvt->iface_mtx); | 
 | 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); | 
 | 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, | 
 | 		   PVT_INTR_DVALID); | 
 | 	mutex_unlock(&pvt->iface_mtx); | 
 | } | 
 |  | 
 | static int pvt_enable_iface(struct pvt_hwmon *pvt) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt); | 
 | 	if (ret) { | 
 | 		dev_err(pvt->dev, "Can't add PVT disable interface action\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Enable sensors data conversion and IRQ. We need to lock the | 
 | 	 * interface mutex since hwmon has just been created and the | 
 | 	 * corresponding sysfs files are accessible from user-space, | 
 | 	 * which theoretically may cause races. | 
 | 	 */ | 
 | 	mutex_lock(&pvt->iface_mtx); | 
 | 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0); | 
 | 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN); | 
 | 	mutex_unlock(&pvt->iface_mtx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ | 
 |  | 
 | static int pvt_enable_iface(struct pvt_hwmon *pvt) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ | 
 |  | 
 | static int pvt_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct pvt_hwmon *pvt; | 
 | 	int ret; | 
 |  | 
 | 	pvt = pvt_create_data(pdev); | 
 | 	if (IS_ERR(pvt)) | 
 | 		return PTR_ERR(pvt); | 
 |  | 
 | 	ret = pvt_request_regs(pvt); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = pvt_request_clks(pvt); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = pvt_check_pwr(pvt); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = pvt_init_iface(pvt); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = pvt_request_irq(pvt); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = pvt_create_hwmon(pvt); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = pvt_enable_iface(pvt); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct of_device_id pvt_of_match[] = { | 
 | 	{ .compatible = "baikal,bt1-pvt" }, | 
 | 	{ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, pvt_of_match); | 
 |  | 
 | static struct platform_driver pvt_driver = { | 
 | 	.probe = pvt_probe, | 
 | 	.driver = { | 
 | 		.name = "bt1-pvt", | 
 | 		.of_match_table = pvt_of_match | 
 | 	} | 
 | }; | 
 | module_platform_driver(pvt_driver); | 
 |  | 
 | MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>"); | 
 | MODULE_DESCRIPTION("Baikal-T1 PVT driver"); | 
 | MODULE_LICENSE("GPL v2"); |