|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * zswap.c - zswap driver file | 
|  | * | 
|  | * zswap is a cache that takes pages that are in the process | 
|  | * of being swapped out and attempts to compress and store them in a | 
|  | * RAM-based memory pool.  This can result in a significant I/O reduction on | 
|  | * the swap device and, in the case where decompressing from RAM is faster | 
|  | * than reading from the swap device, can also improve workload performance. | 
|  | * | 
|  | * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/mempool.h> | 
|  | #include <crypto/acompress.h> | 
|  | #include <linux/zswap.h> | 
|  | #include <linux/mm_types.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/list_lru.h> | 
|  | #include <linux/zsmalloc.h> | 
|  |  | 
|  | #include "swap.h" | 
|  | #include "internal.h" | 
|  |  | 
|  | /********************************* | 
|  | * statistics | 
|  | **********************************/ | 
|  | /* The number of pages currently stored in zswap */ | 
|  | atomic_long_t zswap_stored_pages = ATOMIC_LONG_INIT(0); | 
|  | /* The number of incompressible pages currently stored in zswap */ | 
|  | static atomic_long_t zswap_stored_incompressible_pages = ATOMIC_LONG_INIT(0); | 
|  |  | 
|  | /* | 
|  | * The statistics below are not protected from concurrent access for | 
|  | * performance reasons so they may not be a 100% accurate.  However, | 
|  | * they do provide useful information on roughly how many times a | 
|  | * certain event is occurring. | 
|  | */ | 
|  |  | 
|  | /* Pool limit was hit (see zswap_max_pool_percent) */ | 
|  | static u64 zswap_pool_limit_hit; | 
|  | /* Pages written back when pool limit was reached */ | 
|  | static u64 zswap_written_back_pages; | 
|  | /* Store failed due to a reclaim failure after pool limit was reached */ | 
|  | static u64 zswap_reject_reclaim_fail; | 
|  | /* Store failed due to compression algorithm failure */ | 
|  | static u64 zswap_reject_compress_fail; | 
|  | /* Compressed page was too big for the allocator to (optimally) store */ | 
|  | static u64 zswap_reject_compress_poor; | 
|  | /* Load or writeback failed due to decompression failure */ | 
|  | static u64 zswap_decompress_fail; | 
|  | /* Store failed because underlying allocator could not get memory */ | 
|  | static u64 zswap_reject_alloc_fail; | 
|  | /* Store failed because the entry metadata could not be allocated (rare) */ | 
|  | static u64 zswap_reject_kmemcache_fail; | 
|  |  | 
|  | /* Shrinker work queue */ | 
|  | static struct workqueue_struct *shrink_wq; | 
|  | /* Pool limit was hit, we need to calm down */ | 
|  | static bool zswap_pool_reached_full; | 
|  |  | 
|  | /********************************* | 
|  | * tunables | 
|  | **********************************/ | 
|  |  | 
|  | #define ZSWAP_PARAM_UNSET "" | 
|  |  | 
|  | static int zswap_setup(void); | 
|  |  | 
|  | /* Enable/disable zswap */ | 
|  | static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled); | 
|  | static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON); | 
|  | static int zswap_enabled_param_set(const char *, | 
|  | const struct kernel_param *); | 
|  | static const struct kernel_param_ops zswap_enabled_param_ops = { | 
|  | .set =		zswap_enabled_param_set, | 
|  | .get =		param_get_bool, | 
|  | }; | 
|  | module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644); | 
|  |  | 
|  | /* Crypto compressor to use */ | 
|  | static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; | 
|  | static int zswap_compressor_param_set(const char *, | 
|  | const struct kernel_param *); | 
|  | static const struct kernel_param_ops zswap_compressor_param_ops = { | 
|  | .set =		zswap_compressor_param_set, | 
|  | .get =		param_get_charp, | 
|  | .free =		param_free_charp, | 
|  | }; | 
|  | module_param_cb(compressor, &zswap_compressor_param_ops, | 
|  | &zswap_compressor, 0644); | 
|  |  | 
|  | /* The maximum percentage of memory that the compressed pool can occupy */ | 
|  | static unsigned int zswap_max_pool_percent = 20; | 
|  | module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644); | 
|  |  | 
|  | /* The threshold for accepting new pages after the max_pool_percent was hit */ | 
|  | static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */ | 
|  | module_param_named(accept_threshold_percent, zswap_accept_thr_percent, | 
|  | uint, 0644); | 
|  |  | 
|  | /* Enable/disable memory pressure-based shrinker. */ | 
|  | static bool zswap_shrinker_enabled = IS_ENABLED( | 
|  | CONFIG_ZSWAP_SHRINKER_DEFAULT_ON); | 
|  | module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644); | 
|  |  | 
|  | bool zswap_is_enabled(void) | 
|  | { | 
|  | return zswap_enabled; | 
|  | } | 
|  |  | 
|  | bool zswap_never_enabled(void) | 
|  | { | 
|  | return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled); | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * data structures | 
|  | **********************************/ | 
|  |  | 
|  | struct crypto_acomp_ctx { | 
|  | struct crypto_acomp *acomp; | 
|  | struct acomp_req *req; | 
|  | struct crypto_wait wait; | 
|  | u8 *buffer; | 
|  | struct mutex mutex; | 
|  | bool is_sleepable; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock. | 
|  | * The only case where lru_lock is not acquired while holding tree.lock is | 
|  | * when a zswap_entry is taken off the lru for writeback, in that case it | 
|  | * needs to be verified that it's still valid in the tree. | 
|  | */ | 
|  | struct zswap_pool { | 
|  | struct zs_pool *zs_pool; | 
|  | struct crypto_acomp_ctx __percpu *acomp_ctx; | 
|  | struct percpu_ref ref; | 
|  | struct list_head list; | 
|  | struct work_struct release_work; | 
|  | struct hlist_node node; | 
|  | char tfm_name[CRYPTO_MAX_ALG_NAME]; | 
|  | }; | 
|  |  | 
|  | /* Global LRU lists shared by all zswap pools. */ | 
|  | static struct list_lru zswap_list_lru; | 
|  |  | 
|  | /* The lock protects zswap_next_shrink updates. */ | 
|  | static DEFINE_SPINLOCK(zswap_shrink_lock); | 
|  | static struct mem_cgroup *zswap_next_shrink; | 
|  | static struct work_struct zswap_shrink_work; | 
|  | static struct shrinker *zswap_shrinker; | 
|  |  | 
|  | /* | 
|  | * struct zswap_entry | 
|  | * | 
|  | * This structure contains the metadata for tracking a single compressed | 
|  | * page within zswap. | 
|  | * | 
|  | * swpentry - associated swap entry, the offset indexes into the red-black tree | 
|  | * length - the length in bytes of the compressed page data.  Needed during | 
|  | *          decompression. | 
|  | * referenced - true if the entry recently entered the zswap pool. Unset by the | 
|  | *              writeback logic. The entry is only reclaimed by the writeback | 
|  | *              logic if referenced is unset. See comments in the shrinker | 
|  | *              section for context. | 
|  | * pool - the zswap_pool the entry's data is in | 
|  | * handle - zsmalloc allocation handle that stores the compressed page data | 
|  | * objcg - the obj_cgroup that the compressed memory is charged to | 
|  | * lru - handle to the pool's lru used to evict pages. | 
|  | */ | 
|  | struct zswap_entry { | 
|  | swp_entry_t swpentry; | 
|  | unsigned int length; | 
|  | bool referenced; | 
|  | struct zswap_pool *pool; | 
|  | unsigned long handle; | 
|  | struct obj_cgroup *objcg; | 
|  | struct list_head lru; | 
|  | }; | 
|  |  | 
|  | static struct xarray *zswap_trees[MAX_SWAPFILES]; | 
|  | static unsigned int nr_zswap_trees[MAX_SWAPFILES]; | 
|  |  | 
|  | /* RCU-protected iteration */ | 
|  | static LIST_HEAD(zswap_pools); | 
|  | /* protects zswap_pools list modification */ | 
|  | static DEFINE_SPINLOCK(zswap_pools_lock); | 
|  | /* pool counter to provide unique names to zsmalloc */ | 
|  | static atomic_t zswap_pools_count = ATOMIC_INIT(0); | 
|  |  | 
|  | enum zswap_init_type { | 
|  | ZSWAP_UNINIT, | 
|  | ZSWAP_INIT_SUCCEED, | 
|  | ZSWAP_INIT_FAILED | 
|  | }; | 
|  |  | 
|  | static enum zswap_init_type zswap_init_state; | 
|  |  | 
|  | /* used to ensure the integrity of initialization */ | 
|  | static DEFINE_MUTEX(zswap_init_lock); | 
|  |  | 
|  | /* init completed, but couldn't create the initial pool */ | 
|  | static bool zswap_has_pool; | 
|  |  | 
|  | /********************************* | 
|  | * helpers and fwd declarations | 
|  | **********************************/ | 
|  |  | 
|  | /* One swap address space for each 64M swap space */ | 
|  | #define ZSWAP_ADDRESS_SPACE_SHIFT 14 | 
|  | #define ZSWAP_ADDRESS_SPACE_PAGES (1 << ZSWAP_ADDRESS_SPACE_SHIFT) | 
|  | static inline struct xarray *swap_zswap_tree(swp_entry_t swp) | 
|  | { | 
|  | return &zswap_trees[swp_type(swp)][swp_offset(swp) | 
|  | >> ZSWAP_ADDRESS_SPACE_SHIFT]; | 
|  | } | 
|  |  | 
|  | #define zswap_pool_debug(msg, p)			\ | 
|  | pr_debug("%s pool %s\n", msg, (p)->tfm_name) | 
|  |  | 
|  | /********************************* | 
|  | * pool functions | 
|  | **********************************/ | 
|  | static void __zswap_pool_empty(struct percpu_ref *ref); | 
|  |  | 
|  | static struct zswap_pool *zswap_pool_create(char *compressor) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  | char name[38]; /* 'zswap' + 32 char (max) num + \0 */ | 
|  | int ret, cpu; | 
|  |  | 
|  | if (!zswap_has_pool && !strcmp(compressor, ZSWAP_PARAM_UNSET)) | 
|  | return NULL; | 
|  |  | 
|  | pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
|  | if (!pool) | 
|  | return NULL; | 
|  |  | 
|  | /* unique name for each pool specifically required by zsmalloc */ | 
|  | snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count)); | 
|  | pool->zs_pool = zs_create_pool(name); | 
|  | if (!pool->zs_pool) | 
|  | goto error; | 
|  |  | 
|  | strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name)); | 
|  |  | 
|  | pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx); | 
|  | if (!pool->acomp_ctx) { | 
|  | pr_err("percpu alloc failed\n"); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | mutex_init(&per_cpu_ptr(pool->acomp_ctx, cpu)->mutex); | 
|  |  | 
|  | ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE, | 
|  | &pool->node); | 
|  | if (ret) | 
|  | goto error; | 
|  |  | 
|  | /* being the current pool takes 1 ref; this func expects the | 
|  | * caller to always add the new pool as the current pool | 
|  | */ | 
|  | ret = percpu_ref_init(&pool->ref, __zswap_pool_empty, | 
|  | PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); | 
|  | if (ret) | 
|  | goto ref_fail; | 
|  | INIT_LIST_HEAD(&pool->list); | 
|  |  | 
|  | zswap_pool_debug("created", pool); | 
|  |  | 
|  | return pool; | 
|  |  | 
|  | ref_fail: | 
|  | cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); | 
|  | error: | 
|  | if (pool->acomp_ctx) | 
|  | free_percpu(pool->acomp_ctx); | 
|  | if (pool->zs_pool) | 
|  | zs_destroy_pool(pool->zs_pool); | 
|  | kfree(pool); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct zswap_pool *__zswap_pool_create_fallback(void) | 
|  | { | 
|  | if (!crypto_has_acomp(zswap_compressor, 0, 0) && | 
|  | strcmp(zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) { | 
|  | pr_err("compressor %s not available, using default %s\n", | 
|  | zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT); | 
|  | param_free_charp(&zswap_compressor); | 
|  | zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; | 
|  | } | 
|  |  | 
|  | /* Default compressor should be available. Kconfig bug? */ | 
|  | if (WARN_ON_ONCE(!crypto_has_acomp(zswap_compressor, 0, 0))) { | 
|  | zswap_compressor = ZSWAP_PARAM_UNSET; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return zswap_pool_create(zswap_compressor); | 
|  | } | 
|  |  | 
|  | static void zswap_pool_destroy(struct zswap_pool *pool) | 
|  | { | 
|  | zswap_pool_debug("destroying", pool); | 
|  |  | 
|  | cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); | 
|  | free_percpu(pool->acomp_ctx); | 
|  |  | 
|  | zs_destroy_pool(pool->zs_pool); | 
|  | kfree(pool); | 
|  | } | 
|  |  | 
|  | static void __zswap_pool_release(struct work_struct *work) | 
|  | { | 
|  | struct zswap_pool *pool = container_of(work, typeof(*pool), | 
|  | release_work); | 
|  |  | 
|  | synchronize_rcu(); | 
|  |  | 
|  | /* nobody should have been able to get a ref... */ | 
|  | WARN_ON(!percpu_ref_is_zero(&pool->ref)); | 
|  | percpu_ref_exit(&pool->ref); | 
|  |  | 
|  | /* pool is now off zswap_pools list and has no references. */ | 
|  | zswap_pool_destroy(pool); | 
|  | } | 
|  |  | 
|  | static struct zswap_pool *zswap_pool_current(void); | 
|  |  | 
|  | static void __zswap_pool_empty(struct percpu_ref *ref) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  |  | 
|  | pool = container_of(ref, typeof(*pool), ref); | 
|  |  | 
|  | spin_lock_bh(&zswap_pools_lock); | 
|  |  | 
|  | WARN_ON(pool == zswap_pool_current()); | 
|  |  | 
|  | list_del_rcu(&pool->list); | 
|  |  | 
|  | INIT_WORK(&pool->release_work, __zswap_pool_release); | 
|  | schedule_work(&pool->release_work); | 
|  |  | 
|  | spin_unlock_bh(&zswap_pools_lock); | 
|  | } | 
|  |  | 
|  | static int __must_check zswap_pool_tryget(struct zswap_pool *pool) | 
|  | { | 
|  | if (!pool) | 
|  | return 0; | 
|  |  | 
|  | return percpu_ref_tryget(&pool->ref); | 
|  | } | 
|  |  | 
|  | /* The caller must already have a reference. */ | 
|  | static void zswap_pool_get(struct zswap_pool *pool) | 
|  | { | 
|  | percpu_ref_get(&pool->ref); | 
|  | } | 
|  |  | 
|  | static void zswap_pool_put(struct zswap_pool *pool) | 
|  | { | 
|  | percpu_ref_put(&pool->ref); | 
|  | } | 
|  |  | 
|  | static struct zswap_pool *__zswap_pool_current(void) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  |  | 
|  | pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list); | 
|  | WARN_ONCE(!pool && zswap_has_pool, | 
|  | "%s: no page storage pool!\n", __func__); | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | static struct zswap_pool *zswap_pool_current(void) | 
|  | { | 
|  | assert_spin_locked(&zswap_pools_lock); | 
|  |  | 
|  | return __zswap_pool_current(); | 
|  | } | 
|  |  | 
|  | static struct zswap_pool *zswap_pool_current_get(void) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | pool = __zswap_pool_current(); | 
|  | if (!zswap_pool_tryget(pool)) | 
|  | pool = NULL; | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | /* type and compressor must be null-terminated */ | 
|  | static struct zswap_pool *zswap_pool_find_get(char *compressor) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  |  | 
|  | assert_spin_locked(&zswap_pools_lock); | 
|  |  | 
|  | list_for_each_entry_rcu(pool, &zswap_pools, list) { | 
|  | if (strcmp(pool->tfm_name, compressor)) | 
|  | continue; | 
|  | /* if we can't get it, it's about to be destroyed */ | 
|  | if (!zswap_pool_tryget(pool)) | 
|  | continue; | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static unsigned long zswap_max_pages(void) | 
|  | { | 
|  | return totalram_pages() * zswap_max_pool_percent / 100; | 
|  | } | 
|  |  | 
|  | static unsigned long zswap_accept_thr_pages(void) | 
|  | { | 
|  | return zswap_max_pages() * zswap_accept_thr_percent / 100; | 
|  | } | 
|  |  | 
|  | unsigned long zswap_total_pages(void) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  | unsigned long total = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(pool, &zswap_pools, list) | 
|  | total += zs_get_total_pages(pool->zs_pool); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return total; | 
|  | } | 
|  |  | 
|  | static bool zswap_check_limits(void) | 
|  | { | 
|  | unsigned long cur_pages = zswap_total_pages(); | 
|  | unsigned long max_pages = zswap_max_pages(); | 
|  |  | 
|  | if (cur_pages >= max_pages) { | 
|  | zswap_pool_limit_hit++; | 
|  | zswap_pool_reached_full = true; | 
|  | } else if (zswap_pool_reached_full && | 
|  | cur_pages <= zswap_accept_thr_pages()) { | 
|  | zswap_pool_reached_full = false; | 
|  | } | 
|  | return zswap_pool_reached_full; | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * param callbacks | 
|  | **********************************/ | 
|  |  | 
|  | static int zswap_compressor_param_set(const char *val, const struct kernel_param *kp) | 
|  | { | 
|  | struct zswap_pool *pool, *put_pool = NULL; | 
|  | char *s = strstrip((char *)val); | 
|  | bool create_pool = false; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&zswap_init_lock); | 
|  | switch (zswap_init_state) { | 
|  | case ZSWAP_UNINIT: | 
|  | /* Handled in zswap_setup() */ | 
|  | ret = param_set_charp(s, kp); | 
|  | break; | 
|  | case ZSWAP_INIT_SUCCEED: | 
|  | if (!zswap_has_pool || strcmp(s, *(char **)kp->arg)) | 
|  | create_pool = true; | 
|  | break; | 
|  | case ZSWAP_INIT_FAILED: | 
|  | pr_err("can't set param, initialization failed\n"); | 
|  | ret = -ENODEV; | 
|  | } | 
|  | mutex_unlock(&zswap_init_lock); | 
|  |  | 
|  | if (!create_pool) | 
|  | return ret; | 
|  |  | 
|  | if (!crypto_has_acomp(s, 0, 0)) { | 
|  | pr_err("compressor %s not available\n", s); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | spin_lock_bh(&zswap_pools_lock); | 
|  |  | 
|  | pool = zswap_pool_find_get(s); | 
|  | if (pool) { | 
|  | zswap_pool_debug("using existing", pool); | 
|  | WARN_ON(pool == zswap_pool_current()); | 
|  | list_del_rcu(&pool->list); | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&zswap_pools_lock); | 
|  |  | 
|  | if (!pool) | 
|  | pool = zswap_pool_create(s); | 
|  | else { | 
|  | /* | 
|  | * Restore the initial ref dropped by percpu_ref_kill() | 
|  | * when the pool was decommissioned and switch it again | 
|  | * to percpu mode. | 
|  | */ | 
|  | percpu_ref_resurrect(&pool->ref); | 
|  |  | 
|  | /* Drop the ref from zswap_pool_find_get(). */ | 
|  | zswap_pool_put(pool); | 
|  | } | 
|  |  | 
|  | if (pool) | 
|  | ret = param_set_charp(s, kp); | 
|  | else | 
|  | ret = -EINVAL; | 
|  |  | 
|  | spin_lock_bh(&zswap_pools_lock); | 
|  |  | 
|  | if (!ret) { | 
|  | put_pool = zswap_pool_current(); | 
|  | list_add_rcu(&pool->list, &zswap_pools); | 
|  | zswap_has_pool = true; | 
|  | } else if (pool) { | 
|  | /* | 
|  | * Add the possibly pre-existing pool to the end of the pools | 
|  | * list; if it's new (and empty) then it'll be removed and | 
|  | * destroyed by the put after we drop the lock | 
|  | */ | 
|  | list_add_tail_rcu(&pool->list, &zswap_pools); | 
|  | put_pool = pool; | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&zswap_pools_lock); | 
|  |  | 
|  | /* | 
|  | * Drop the ref from either the old current pool, | 
|  | * or the new pool we failed to add | 
|  | */ | 
|  | if (put_pool) | 
|  | percpu_ref_kill(&put_pool->ref); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int zswap_enabled_param_set(const char *val, | 
|  | const struct kernel_param *kp) | 
|  | { | 
|  | int ret = -ENODEV; | 
|  |  | 
|  | /* if this is load-time (pre-init) param setting, only set param. */ | 
|  | if (system_state != SYSTEM_RUNNING) | 
|  | return param_set_bool(val, kp); | 
|  |  | 
|  | mutex_lock(&zswap_init_lock); | 
|  | switch (zswap_init_state) { | 
|  | case ZSWAP_UNINIT: | 
|  | if (zswap_setup()) | 
|  | break; | 
|  | fallthrough; | 
|  | case ZSWAP_INIT_SUCCEED: | 
|  | if (!zswap_has_pool) | 
|  | pr_err("can't enable, no pool configured\n"); | 
|  | else | 
|  | ret = param_set_bool(val, kp); | 
|  | break; | 
|  | case ZSWAP_INIT_FAILED: | 
|  | pr_err("can't enable, initialization failed\n"); | 
|  | } | 
|  | mutex_unlock(&zswap_init_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * lru functions | 
|  | **********************************/ | 
|  |  | 
|  | /* should be called under RCU */ | 
|  | #ifdef CONFIG_MEMCG | 
|  | static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) | 
|  | { | 
|  | return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL; | 
|  | } | 
|  | #else | 
|  | static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline int entry_to_nid(struct zswap_entry *entry) | 
|  | { | 
|  | return page_to_nid(virt_to_page(entry)); | 
|  | } | 
|  |  | 
|  | static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry) | 
|  | { | 
|  | int nid = entry_to_nid(entry); | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | /* | 
|  | * Note that it is safe to use rcu_read_lock() here, even in the face of | 
|  | * concurrent memcg offlining: | 
|  | * | 
|  | * 1. list_lru_add() is called before list_lru_one is dead. The | 
|  | *    new entry will be reparented to memcg's parent's list_lru. | 
|  | * 2. list_lru_add() is called after list_lru_one is dead. The | 
|  | *    new entry will be added directly to memcg's parent's list_lru. | 
|  | * | 
|  | * Similar reasoning holds for list_lru_del(). | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_entry(entry); | 
|  | /* will always succeed */ | 
|  | list_lru_add(list_lru, &entry->lru, nid, memcg); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry) | 
|  | { | 
|  | int nid = entry_to_nid(entry); | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_entry(entry); | 
|  | /* will always succeed */ | 
|  | list_lru_del(list_lru, &entry->lru, nid, memcg); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | void zswap_lruvec_state_init(struct lruvec *lruvec) | 
|  | { | 
|  | atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0); | 
|  | } | 
|  |  | 
|  | void zswap_folio_swapin(struct folio *folio) | 
|  | { | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | if (folio) { | 
|  | lruvec = folio_lruvec(folio); | 
|  | atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function should be called when a memcg is being offlined. | 
|  | * | 
|  | * Since the global shrinker shrink_worker() may hold a reference | 
|  | * of the memcg, we must check and release the reference in | 
|  | * zswap_next_shrink. | 
|  | * | 
|  | * shrink_worker() must handle the case where this function releases | 
|  | * the reference of memcg being shrunk. | 
|  | */ | 
|  | void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg) | 
|  | { | 
|  | /* lock out zswap shrinker walking memcg tree */ | 
|  | spin_lock(&zswap_shrink_lock); | 
|  | if (zswap_next_shrink == memcg) { | 
|  | do { | 
|  | zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); | 
|  | } while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink)); | 
|  | } | 
|  | spin_unlock(&zswap_shrink_lock); | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * zswap entry functions | 
|  | **********************************/ | 
|  | static struct kmem_cache *zswap_entry_cache; | 
|  |  | 
|  | static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid) | 
|  | { | 
|  | struct zswap_entry *entry; | 
|  | entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid); | 
|  | if (!entry) | 
|  | return NULL; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static void zswap_entry_cache_free(struct zswap_entry *entry) | 
|  | { | 
|  | kmem_cache_free(zswap_entry_cache, entry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Carries out the common pattern of freeing an entry's zsmalloc allocation, | 
|  | * freeing the entry itself, and decrementing the number of stored pages. | 
|  | */ | 
|  | static void zswap_entry_free(struct zswap_entry *entry) | 
|  | { | 
|  | zswap_lru_del(&zswap_list_lru, entry); | 
|  | zs_free(entry->pool->zs_pool, entry->handle); | 
|  | zswap_pool_put(entry->pool); | 
|  | if (entry->objcg) { | 
|  | obj_cgroup_uncharge_zswap(entry->objcg, entry->length); | 
|  | obj_cgroup_put(entry->objcg); | 
|  | } | 
|  | if (entry->length == PAGE_SIZE) | 
|  | atomic_long_dec(&zswap_stored_incompressible_pages); | 
|  | zswap_entry_cache_free(entry); | 
|  | atomic_long_dec(&zswap_stored_pages); | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * compressed storage functions | 
|  | **********************************/ | 
|  | static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node) | 
|  | { | 
|  | struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); | 
|  | struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); | 
|  | struct crypto_acomp *acomp = NULL; | 
|  | struct acomp_req *req = NULL; | 
|  | u8 *buffer = NULL; | 
|  | int ret; | 
|  |  | 
|  | buffer = kmalloc_node(PAGE_SIZE, GFP_KERNEL, cpu_to_node(cpu)); | 
|  | if (!buffer) { | 
|  | ret = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu)); | 
|  | if (IS_ERR(acomp)) { | 
|  | pr_err("could not alloc crypto acomp %s : %ld\n", | 
|  | pool->tfm_name, PTR_ERR(acomp)); | 
|  | ret = PTR_ERR(acomp); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | req = acomp_request_alloc(acomp); | 
|  | if (!req) { | 
|  | pr_err("could not alloc crypto acomp_request %s\n", | 
|  | pool->tfm_name); | 
|  | ret = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only hold the mutex after completing allocations, otherwise we may | 
|  | * recurse into zswap through reclaim and attempt to hold the mutex | 
|  | * again resulting in a deadlock. | 
|  | */ | 
|  | mutex_lock(&acomp_ctx->mutex); | 
|  | crypto_init_wait(&acomp_ctx->wait); | 
|  |  | 
|  | /* | 
|  | * if the backend of acomp is async zip, crypto_req_done() will wakeup | 
|  | * crypto_wait_req(); if the backend of acomp is scomp, the callback | 
|  | * won't be called, crypto_wait_req() will return without blocking. | 
|  | */ | 
|  | acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, | 
|  | crypto_req_done, &acomp_ctx->wait); | 
|  |  | 
|  | acomp_ctx->buffer = buffer; | 
|  | acomp_ctx->acomp = acomp; | 
|  | acomp_ctx->is_sleepable = acomp_is_async(acomp); | 
|  | acomp_ctx->req = req; | 
|  | mutex_unlock(&acomp_ctx->mutex); | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | if (acomp) | 
|  | crypto_free_acomp(acomp); | 
|  | kfree(buffer); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node) | 
|  | { | 
|  | struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); | 
|  | struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); | 
|  | struct acomp_req *req; | 
|  | struct crypto_acomp *acomp; | 
|  | u8 *buffer; | 
|  |  | 
|  | if (IS_ERR_OR_NULL(acomp_ctx)) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&acomp_ctx->mutex); | 
|  | req = acomp_ctx->req; | 
|  | acomp = acomp_ctx->acomp; | 
|  | buffer = acomp_ctx->buffer; | 
|  | acomp_ctx->req = NULL; | 
|  | acomp_ctx->acomp = NULL; | 
|  | acomp_ctx->buffer = NULL; | 
|  | mutex_unlock(&acomp_ctx->mutex); | 
|  |  | 
|  | /* | 
|  | * Do the actual freeing after releasing the mutex to avoid subtle | 
|  | * locking dependencies causing deadlocks. | 
|  | */ | 
|  | if (!IS_ERR_OR_NULL(req)) | 
|  | acomp_request_free(req); | 
|  | if (!IS_ERR_OR_NULL(acomp)) | 
|  | crypto_free_acomp(acomp); | 
|  | kfree(buffer); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct crypto_acomp_ctx *acomp_ctx_get_cpu_lock(struct zswap_pool *pool) | 
|  | { | 
|  | struct crypto_acomp_ctx *acomp_ctx; | 
|  |  | 
|  | for (;;) { | 
|  | acomp_ctx = raw_cpu_ptr(pool->acomp_ctx); | 
|  | mutex_lock(&acomp_ctx->mutex); | 
|  | if (likely(acomp_ctx->req)) | 
|  | return acomp_ctx; | 
|  | /* | 
|  | * It is possible that we were migrated to a different CPU after | 
|  | * getting the per-CPU ctx but before the mutex was acquired. If | 
|  | * the old CPU got offlined, zswap_cpu_comp_dead() could have | 
|  | * already freed ctx->req (among other things) and set it to | 
|  | * NULL. Just try again on the new CPU that we ended up on. | 
|  | */ | 
|  | mutex_unlock(&acomp_ctx->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void acomp_ctx_put_unlock(struct crypto_acomp_ctx *acomp_ctx) | 
|  | { | 
|  | mutex_unlock(&acomp_ctx->mutex); | 
|  | } | 
|  |  | 
|  | static bool zswap_compress(struct page *page, struct zswap_entry *entry, | 
|  | struct zswap_pool *pool) | 
|  | { | 
|  | struct crypto_acomp_ctx *acomp_ctx; | 
|  | struct scatterlist input, output; | 
|  | int comp_ret = 0, alloc_ret = 0; | 
|  | unsigned int dlen = PAGE_SIZE; | 
|  | unsigned long handle; | 
|  | gfp_t gfp; | 
|  | u8 *dst; | 
|  | bool mapped = false; | 
|  |  | 
|  | acomp_ctx = acomp_ctx_get_cpu_lock(pool); | 
|  | dst = acomp_ctx->buffer; | 
|  | sg_init_table(&input, 1); | 
|  | sg_set_page(&input, page, PAGE_SIZE, 0); | 
|  |  | 
|  | sg_init_one(&output, dst, PAGE_SIZE); | 
|  | acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen); | 
|  |  | 
|  | /* | 
|  | * it maybe looks a little bit silly that we send an asynchronous request, | 
|  | * then wait for its completion synchronously. This makes the process look | 
|  | * synchronous in fact. | 
|  | * Theoretically, acomp supports users send multiple acomp requests in one | 
|  | * acomp instance, then get those requests done simultaneously. but in this | 
|  | * case, zswap actually does store and load page by page, there is no | 
|  | * existing method to send the second page before the first page is done | 
|  | * in one thread doing zwap. | 
|  | * but in different threads running on different cpu, we have different | 
|  | * acomp instance, so multiple threads can do (de)compression in parallel. | 
|  | */ | 
|  | comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait); | 
|  | dlen = acomp_ctx->req->dlen; | 
|  |  | 
|  | /* | 
|  | * If a page cannot be compressed into a size smaller than PAGE_SIZE, | 
|  | * save the content as is without a compression, to keep the LRU order | 
|  | * of writebacks.  If writeback is disabled, reject the page since it | 
|  | * only adds metadata overhead.  swap_writeout() will put the page back | 
|  | * to the active LRU list in the case. | 
|  | */ | 
|  | if (comp_ret || !dlen || dlen >= PAGE_SIZE) { | 
|  | dlen = PAGE_SIZE; | 
|  | if (!mem_cgroup_zswap_writeback_enabled( | 
|  | folio_memcg(page_folio(page)))) { | 
|  | comp_ret = comp_ret ? comp_ret : -EINVAL; | 
|  | goto unlock; | 
|  | } | 
|  | comp_ret = 0; | 
|  | dlen = PAGE_SIZE; | 
|  | dst = kmap_local_page(page); | 
|  | mapped = true; | 
|  | } | 
|  |  | 
|  | gfp = GFP_NOWAIT | __GFP_NORETRY | __GFP_HIGHMEM | __GFP_MOVABLE; | 
|  | handle = zs_malloc(pool->zs_pool, dlen, gfp, page_to_nid(page)); | 
|  | if (IS_ERR_VALUE(handle)) { | 
|  | alloc_ret = PTR_ERR((void *)handle); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | zs_obj_write(pool->zs_pool, handle, dst, dlen); | 
|  | entry->handle = handle; | 
|  | entry->length = dlen; | 
|  |  | 
|  | unlock: | 
|  | if (mapped) | 
|  | kunmap_local(dst); | 
|  | if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC) | 
|  | zswap_reject_compress_poor++; | 
|  | else if (comp_ret) | 
|  | zswap_reject_compress_fail++; | 
|  | else if (alloc_ret) | 
|  | zswap_reject_alloc_fail++; | 
|  |  | 
|  | acomp_ctx_put_unlock(acomp_ctx); | 
|  | return comp_ret == 0 && alloc_ret == 0; | 
|  | } | 
|  |  | 
|  | static bool zswap_decompress(struct zswap_entry *entry, struct folio *folio) | 
|  | { | 
|  | struct zswap_pool *pool = entry->pool; | 
|  | struct scatterlist input, output; | 
|  | struct crypto_acomp_ctx *acomp_ctx; | 
|  | int decomp_ret = 0, dlen = PAGE_SIZE; | 
|  | u8 *src, *obj; | 
|  |  | 
|  | acomp_ctx = acomp_ctx_get_cpu_lock(pool); | 
|  | obj = zs_obj_read_begin(pool->zs_pool, entry->handle, acomp_ctx->buffer); | 
|  |  | 
|  | /* zswap entries of length PAGE_SIZE are not compressed. */ | 
|  | if (entry->length == PAGE_SIZE) { | 
|  | memcpy_to_folio(folio, 0, obj, entry->length); | 
|  | goto read_done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * zs_obj_read_begin() might return a kmap address of highmem when | 
|  | * acomp_ctx->buffer is not used.  However, sg_init_one() does not | 
|  | * handle highmem addresses, so copy the object to acomp_ctx->buffer. | 
|  | */ | 
|  | if (virt_addr_valid(obj)) { | 
|  | src = obj; | 
|  | } else { | 
|  | WARN_ON_ONCE(obj == acomp_ctx->buffer); | 
|  | memcpy(acomp_ctx->buffer, obj, entry->length); | 
|  | src = acomp_ctx->buffer; | 
|  | } | 
|  |  | 
|  | sg_init_one(&input, src, entry->length); | 
|  | sg_init_table(&output, 1); | 
|  | sg_set_folio(&output, folio, PAGE_SIZE, 0); | 
|  | acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE); | 
|  | decomp_ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait); | 
|  | dlen = acomp_ctx->req->dlen; | 
|  |  | 
|  | read_done: | 
|  | zs_obj_read_end(pool->zs_pool, entry->handle, obj); | 
|  | acomp_ctx_put_unlock(acomp_ctx); | 
|  |  | 
|  | if (!decomp_ret && dlen == PAGE_SIZE) | 
|  | return true; | 
|  |  | 
|  | zswap_decompress_fail++; | 
|  | pr_alert_ratelimited("Decompression error from zswap (%d:%lu %s %u->%d)\n", | 
|  | swp_type(entry->swpentry), | 
|  | swp_offset(entry->swpentry), | 
|  | entry->pool->tfm_name, entry->length, dlen); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * writeback code | 
|  | **********************************/ | 
|  | /* | 
|  | * Attempts to free an entry by adding a folio to the swap cache, | 
|  | * decompressing the entry data into the folio, and issuing a | 
|  | * bio write to write the folio back to the swap device. | 
|  | * | 
|  | * This can be thought of as a "resumed writeback" of the folio | 
|  | * to the swap device.  We are basically resuming the same swap | 
|  | * writeback path that was intercepted with the zswap_store() | 
|  | * in the first place.  After the folio has been decompressed into | 
|  | * the swap cache, the compressed version stored by zswap can be | 
|  | * freed. | 
|  | */ | 
|  | static int zswap_writeback_entry(struct zswap_entry *entry, | 
|  | swp_entry_t swpentry) | 
|  | { | 
|  | struct xarray *tree; | 
|  | pgoff_t offset = swp_offset(swpentry); | 
|  | struct folio *folio; | 
|  | struct mempolicy *mpol; | 
|  | bool folio_was_allocated; | 
|  | struct swap_info_struct *si; | 
|  | int ret = 0; | 
|  |  | 
|  | /* try to allocate swap cache folio */ | 
|  | si = get_swap_device(swpentry); | 
|  | if (!si) | 
|  | return -EEXIST; | 
|  |  | 
|  | mpol = get_task_policy(current); | 
|  | folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol, | 
|  | NO_INTERLEAVE_INDEX, &folio_was_allocated, true); | 
|  | put_swap_device(si); | 
|  | if (!folio) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Found an existing folio, we raced with swapin or concurrent | 
|  | * shrinker. We generally writeback cold folios from zswap, and | 
|  | * swapin means the folio just became hot, so skip this folio. | 
|  | * For unlikely concurrent shrinker case, it will be unlinked | 
|  | * and freed when invalidated by the concurrent shrinker anyway. | 
|  | */ | 
|  | if (!folio_was_allocated) { | 
|  | ret = -EEXIST; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * folio is locked, and the swapcache is now secured against | 
|  | * concurrent swapping to and from the slot, and concurrent | 
|  | * swapoff so we can safely dereference the zswap tree here. | 
|  | * Verify that the swap entry hasn't been invalidated and recycled | 
|  | * behind our backs, to avoid overwriting a new swap folio with | 
|  | * old compressed data. Only when this is successful can the entry | 
|  | * be dereferenced. | 
|  | */ | 
|  | tree = swap_zswap_tree(swpentry); | 
|  | if (entry != xa_load(tree, offset)) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!zswap_decompress(entry, folio)) { | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | xa_erase(tree, offset); | 
|  |  | 
|  | count_vm_event(ZSWPWB); | 
|  | if (entry->objcg) | 
|  | count_objcg_events(entry->objcg, ZSWPWB, 1); | 
|  |  | 
|  | zswap_entry_free(entry); | 
|  |  | 
|  | /* folio is up to date */ | 
|  | folio_mark_uptodate(folio); | 
|  |  | 
|  | /* move it to the tail of the inactive list after end_writeback */ | 
|  | folio_set_reclaim(folio); | 
|  |  | 
|  | /* start writeback */ | 
|  | __swap_writepage(folio, NULL); | 
|  |  | 
|  | out: | 
|  | if (ret && ret != -EEXIST) { | 
|  | swap_cache_del_folio(folio); | 
|  | folio_unlock(folio); | 
|  | } | 
|  | folio_put(folio); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * shrinker functions | 
|  | **********************************/ | 
|  | /* | 
|  | * The dynamic shrinker is modulated by the following factors: | 
|  | * | 
|  | * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving | 
|  | *    the entry a second chance) before rotating it in the LRU list. If the | 
|  | *    entry is considered again by the shrinker, with its referenced bit unset, | 
|  | *    it is written back. The writeback rate as a result is dynamically | 
|  | *    adjusted by the pool activities - if the pool is dominated by new entries | 
|  | *    (i.e lots of recent zswapouts), these entries will be protected and | 
|  | *    the writeback rate will slow down. On the other hand, if the pool has a | 
|  | *    lot of stagnant entries, these entries will be reclaimed immediately, | 
|  | *    effectively increasing the writeback rate. | 
|  | * | 
|  | * 2. Swapins counter: If we observe swapins, it is a sign that we are | 
|  | *    overshrinking and should slow down. We maintain a swapins counter, which | 
|  | *    is consumed and subtract from the number of eligible objects on the LRU | 
|  | *    in zswap_shrinker_count(). | 
|  | * | 
|  | * 3. Compression ratio. The better the workload compresses, the less gains we | 
|  | *    can expect from writeback. We scale down the number of objects available | 
|  | *    for reclaim by this ratio. | 
|  | */ | 
|  | static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l, | 
|  | void *arg) | 
|  | { | 
|  | struct zswap_entry *entry = container_of(item, struct zswap_entry, lru); | 
|  | bool *encountered_page_in_swapcache = (bool *)arg; | 
|  | swp_entry_t swpentry; | 
|  | enum lru_status ret = LRU_REMOVED_RETRY; | 
|  | int writeback_result; | 
|  |  | 
|  | /* | 
|  | * Second chance algorithm: if the entry has its referenced bit set, give it | 
|  | * a second chance. Only clear the referenced bit and rotate it in the | 
|  | * zswap's LRU list. | 
|  | */ | 
|  | if (entry->referenced) { | 
|  | entry->referenced = false; | 
|  | return LRU_ROTATE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * As soon as we drop the LRU lock, the entry can be freed by | 
|  | * a concurrent invalidation. This means the following: | 
|  | * | 
|  | * 1. We extract the swp_entry_t to the stack, allowing | 
|  | *    zswap_writeback_entry() to pin the swap entry and | 
|  | *    then validate the zwap entry against that swap entry's | 
|  | *    tree using pointer value comparison. Only when that | 
|  | *    is successful can the entry be dereferenced. | 
|  | * | 
|  | * 2. Usually, objects are taken off the LRU for reclaim. In | 
|  | *    this case this isn't possible, because if reclaim fails | 
|  | *    for whatever reason, we have no means of knowing if the | 
|  | *    entry is alive to put it back on the LRU. | 
|  | * | 
|  | *    So rotate it before dropping the lock. If the entry is | 
|  | *    written back or invalidated, the free path will unlink | 
|  | *    it. For failures, rotation is the right thing as well. | 
|  | * | 
|  | *    Temporary failures, where the same entry should be tried | 
|  | *    again immediately, almost never happen for this shrinker. | 
|  | *    We don't do any trylocking; -ENOMEM comes closest, | 
|  | *    but that's extremely rare and doesn't happen spuriously | 
|  | *    either. Don't bother distinguishing this case. | 
|  | */ | 
|  | list_move_tail(item, &l->list); | 
|  |  | 
|  | /* | 
|  | * Once the lru lock is dropped, the entry might get freed. The | 
|  | * swpentry is copied to the stack, and entry isn't deref'd again | 
|  | * until the entry is verified to still be alive in the tree. | 
|  | */ | 
|  | swpentry = entry->swpentry; | 
|  |  | 
|  | /* | 
|  | * It's safe to drop the lock here because we return either | 
|  | * LRU_REMOVED_RETRY, LRU_RETRY or LRU_STOP. | 
|  | */ | 
|  | spin_unlock(&l->lock); | 
|  |  | 
|  | writeback_result = zswap_writeback_entry(entry, swpentry); | 
|  |  | 
|  | if (writeback_result) { | 
|  | zswap_reject_reclaim_fail++; | 
|  | ret = LRU_RETRY; | 
|  |  | 
|  | /* | 
|  | * Encountering a page already in swap cache is a sign that we are shrinking | 
|  | * into the warmer region. We should terminate shrinking (if we're in the dynamic | 
|  | * shrinker context). | 
|  | */ | 
|  | if (writeback_result == -EEXIST && encountered_page_in_swapcache) { | 
|  | ret = LRU_STOP; | 
|  | *encountered_page_in_swapcache = true; | 
|  | } | 
|  | } else { | 
|  | zswap_written_back_pages++; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static unsigned long zswap_shrinker_scan(struct shrinker *shrinker, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | unsigned long shrink_ret; | 
|  | bool encountered_page_in_swapcache = false; | 
|  |  | 
|  | if (!zswap_shrinker_enabled || | 
|  | !mem_cgroup_zswap_writeback_enabled(sc->memcg)) { | 
|  | sc->nr_scanned = 0; | 
|  | return SHRINK_STOP; | 
|  | } | 
|  |  | 
|  | shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb, | 
|  | &encountered_page_in_swapcache); | 
|  |  | 
|  | if (encountered_page_in_swapcache) | 
|  | return SHRINK_STOP; | 
|  |  | 
|  | return shrink_ret ? shrink_ret : SHRINK_STOP; | 
|  | } | 
|  |  | 
|  | static unsigned long zswap_shrinker_count(struct shrinker *shrinker, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | struct mem_cgroup *memcg = sc->memcg; | 
|  | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid)); | 
|  | atomic_long_t *nr_disk_swapins = | 
|  | &lruvec->zswap_lruvec_state.nr_disk_swapins; | 
|  | unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur, | 
|  | nr_remain; | 
|  |  | 
|  | if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The shrinker resumes swap writeback, which will enter block | 
|  | * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS | 
|  | * rules (may_enter_fs()), which apply on a per-folio basis. | 
|  | */ | 
|  | if (!gfp_has_io_fs(sc->gfp_mask)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * For memcg, use the cgroup-wide ZSWAP stats since we don't | 
|  | * have them per-node and thus per-lruvec. Careful if memcg is | 
|  | * runtime-disabled: we can get sc->memcg == NULL, which is ok | 
|  | * for the lruvec, but not for memcg_page_state(). | 
|  | * | 
|  | * Without memcg, use the zswap pool-wide metrics. | 
|  | */ | 
|  | if (!mem_cgroup_disabled()) { | 
|  | mem_cgroup_flush_stats(memcg); | 
|  | nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT; | 
|  | nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED); | 
|  | } else { | 
|  | nr_backing = zswap_total_pages(); | 
|  | nr_stored = atomic_long_read(&zswap_stored_pages); | 
|  | } | 
|  |  | 
|  | if (!nr_stored) | 
|  | return 0; | 
|  |  | 
|  | nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc); | 
|  | if (!nr_freeable) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Subtract from the lru size the number of pages that are recently swapped | 
|  | * in from disk. The idea is that had we protect the zswap's LRU by this | 
|  | * amount of pages, these disk swapins would not have happened. | 
|  | */ | 
|  | nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins); | 
|  | do { | 
|  | if (nr_freeable >= nr_disk_swapins_cur) | 
|  | nr_remain = 0; | 
|  | else | 
|  | nr_remain = nr_disk_swapins_cur - nr_freeable; | 
|  | } while (!atomic_long_try_cmpxchg( | 
|  | nr_disk_swapins, &nr_disk_swapins_cur, nr_remain)); | 
|  |  | 
|  | nr_freeable -= nr_disk_swapins_cur - nr_remain; | 
|  | if (!nr_freeable) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Scale the number of freeable pages by the memory saving factor. | 
|  | * This ensures that the better zswap compresses memory, the fewer | 
|  | * pages we will evict to swap (as it will otherwise incur IO for | 
|  | * relatively small memory saving). | 
|  | */ | 
|  | return mult_frac(nr_freeable, nr_backing, nr_stored); | 
|  | } | 
|  |  | 
|  | static struct shrinker *zswap_alloc_shrinker(void) | 
|  | { | 
|  | struct shrinker *shrinker; | 
|  |  | 
|  | shrinker = | 
|  | shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap"); | 
|  | if (!shrinker) | 
|  | return NULL; | 
|  |  | 
|  | shrinker->scan_objects = zswap_shrinker_scan; | 
|  | shrinker->count_objects = zswap_shrinker_count; | 
|  | shrinker->batch = 0; | 
|  | shrinker->seeks = DEFAULT_SEEKS; | 
|  | return shrinker; | 
|  | } | 
|  |  | 
|  | static int shrink_memcg(struct mem_cgroup *memcg) | 
|  | { | 
|  | int nid, shrunk = 0, scanned = 0; | 
|  |  | 
|  | if (!mem_cgroup_zswap_writeback_enabled(memcg)) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* | 
|  | * Skip zombies because their LRUs are reparented and we would be | 
|  | * reclaiming from the parent instead of the dead memcg. | 
|  | */ | 
|  | if (memcg && !mem_cgroup_online(memcg)) | 
|  | return -ENOENT; | 
|  |  | 
|  | for_each_node_state(nid, N_NORMAL_MEMORY) { | 
|  | unsigned long nr_to_walk = 1; | 
|  |  | 
|  | shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg, | 
|  | &shrink_memcg_cb, NULL, &nr_to_walk); | 
|  | scanned += 1 - nr_to_walk; | 
|  | } | 
|  |  | 
|  | if (!scanned) | 
|  | return -ENOENT; | 
|  |  | 
|  | return shrunk ? 0 : -EAGAIN; | 
|  | } | 
|  |  | 
|  | static void shrink_worker(struct work_struct *w) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | int ret, failures = 0, attempts = 0; | 
|  | unsigned long thr; | 
|  |  | 
|  | /* Reclaim down to the accept threshold */ | 
|  | thr = zswap_accept_thr_pages(); | 
|  |  | 
|  | /* | 
|  | * Global reclaim will select cgroup in a round-robin fashion from all | 
|  | * online memcgs, but memcgs that have no pages in zswap and | 
|  | * writeback-disabled memcgs (memory.zswap.writeback=0) are not | 
|  | * candidates for shrinking. | 
|  | * | 
|  | * Shrinking will be aborted if we encounter the following | 
|  | * MAX_RECLAIM_RETRIES times: | 
|  | * - No writeback-candidate memcgs found in a memcg tree walk. | 
|  | * - Shrinking a writeback-candidate memcg failed. | 
|  | * | 
|  | * We save iteration cursor memcg into zswap_next_shrink, | 
|  | * which can be modified by the offline memcg cleaner | 
|  | * zswap_memcg_offline_cleanup(). | 
|  | * | 
|  | * Since the offline cleaner is called only once, we cannot leave an | 
|  | * offline memcg reference in zswap_next_shrink. | 
|  | * We can rely on the cleaner only if we get online memcg under lock. | 
|  | * | 
|  | * If we get an offline memcg, we cannot determine if the cleaner has | 
|  | * already been called or will be called later. We must put back the | 
|  | * reference before returning from this function. Otherwise, the | 
|  | * offline memcg left in zswap_next_shrink will hold the reference | 
|  | * until the next run of shrink_worker(). | 
|  | */ | 
|  | do { | 
|  | /* | 
|  | * Start shrinking from the next memcg after zswap_next_shrink. | 
|  | * When the offline cleaner has already advanced the cursor, | 
|  | * advancing the cursor here overlooks one memcg, but this | 
|  | * should be negligibly rare. | 
|  | * | 
|  | * If we get an online memcg, keep the extra reference in case | 
|  | * the original one obtained by mem_cgroup_iter() is dropped by | 
|  | * zswap_memcg_offline_cleanup() while we are shrinking the | 
|  | * memcg. | 
|  | */ | 
|  | spin_lock(&zswap_shrink_lock); | 
|  | do { | 
|  | memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); | 
|  | zswap_next_shrink = memcg; | 
|  | } while (memcg && !mem_cgroup_tryget_online(memcg)); | 
|  | spin_unlock(&zswap_shrink_lock); | 
|  |  | 
|  | if (!memcg) { | 
|  | /* | 
|  | * Continue shrinking without incrementing failures if | 
|  | * we found candidate memcgs in the last tree walk. | 
|  | */ | 
|  | if (!attempts && ++failures == MAX_RECLAIM_RETRIES) | 
|  | break; | 
|  |  | 
|  | attempts = 0; | 
|  | goto resched; | 
|  | } | 
|  |  | 
|  | ret = shrink_memcg(memcg); | 
|  | /* drop the extra reference */ | 
|  | mem_cgroup_put(memcg); | 
|  |  | 
|  | /* | 
|  | * There are no writeback-candidate pages in the memcg. | 
|  | * This is not an issue as long as we can find another memcg | 
|  | * with pages in zswap. Skip this without incrementing attempts | 
|  | * and failures. | 
|  | */ | 
|  | if (ret == -ENOENT) | 
|  | continue; | 
|  | ++attempts; | 
|  |  | 
|  | if (ret && ++failures == MAX_RECLAIM_RETRIES) | 
|  | break; | 
|  | resched: | 
|  | cond_resched(); | 
|  | } while (zswap_total_pages() > thr); | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * main API | 
|  | **********************************/ | 
|  |  | 
|  | static bool zswap_store_page(struct page *page, | 
|  | struct obj_cgroup *objcg, | 
|  | struct zswap_pool *pool) | 
|  | { | 
|  | swp_entry_t page_swpentry = page_swap_entry(page); | 
|  | struct zswap_entry *entry, *old; | 
|  |  | 
|  | /* allocate entry */ | 
|  | entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page)); | 
|  | if (!entry) { | 
|  | zswap_reject_kmemcache_fail++; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!zswap_compress(page, entry, pool)) | 
|  | goto compress_failed; | 
|  |  | 
|  | old = xa_store(swap_zswap_tree(page_swpentry), | 
|  | swp_offset(page_swpentry), | 
|  | entry, GFP_KERNEL); | 
|  | if (xa_is_err(old)) { | 
|  | int err = xa_err(old); | 
|  |  | 
|  | WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err); | 
|  | zswap_reject_alloc_fail++; | 
|  | goto store_failed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We may have had an existing entry that became stale when | 
|  | * the folio was redirtied and now the new version is being | 
|  | * swapped out. Get rid of the old. | 
|  | */ | 
|  | if (old) | 
|  | zswap_entry_free(old); | 
|  |  | 
|  | /* | 
|  | * The entry is successfully compressed and stored in the tree, there is | 
|  | * no further possibility of failure. Grab refs to the pool and objcg, | 
|  | * charge zswap memory, and increment zswap_stored_pages. | 
|  | * The opposite actions will be performed by zswap_entry_free() | 
|  | * when the entry is removed from the tree. | 
|  | */ | 
|  | zswap_pool_get(pool); | 
|  | if (objcg) { | 
|  | obj_cgroup_get(objcg); | 
|  | obj_cgroup_charge_zswap(objcg, entry->length); | 
|  | } | 
|  | atomic_long_inc(&zswap_stored_pages); | 
|  | if (entry->length == PAGE_SIZE) | 
|  | atomic_long_inc(&zswap_stored_incompressible_pages); | 
|  |  | 
|  | /* | 
|  | * We finish initializing the entry while it's already in xarray. | 
|  | * This is safe because: | 
|  | * | 
|  | * 1. Concurrent stores and invalidations are excluded by folio lock. | 
|  | * | 
|  | * 2. Writeback is excluded by the entry not being on the LRU yet. | 
|  | *    The publishing order matters to prevent writeback from seeing | 
|  | *    an incoherent entry. | 
|  | */ | 
|  | entry->pool = pool; | 
|  | entry->swpentry = page_swpentry; | 
|  | entry->objcg = objcg; | 
|  | entry->referenced = true; | 
|  | if (entry->length) { | 
|  | INIT_LIST_HEAD(&entry->lru); | 
|  | zswap_lru_add(&zswap_list_lru, entry); | 
|  | } | 
|  |  | 
|  | return true; | 
|  |  | 
|  | store_failed: | 
|  | zs_free(pool->zs_pool, entry->handle); | 
|  | compress_failed: | 
|  | zswap_entry_cache_free(entry); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool zswap_store(struct folio *folio) | 
|  | { | 
|  | long nr_pages = folio_nr_pages(folio); | 
|  | swp_entry_t swp = folio->swap; | 
|  | struct obj_cgroup *objcg = NULL; | 
|  | struct mem_cgroup *memcg = NULL; | 
|  | struct zswap_pool *pool; | 
|  | bool ret = false; | 
|  | long index; | 
|  |  | 
|  | VM_WARN_ON_ONCE(!folio_test_locked(folio)); | 
|  | VM_WARN_ON_ONCE(!folio_test_swapcache(folio)); | 
|  |  | 
|  | if (!zswap_enabled) | 
|  | goto check_old; | 
|  |  | 
|  | objcg = get_obj_cgroup_from_folio(folio); | 
|  | if (objcg && !obj_cgroup_may_zswap(objcg)) { | 
|  | memcg = get_mem_cgroup_from_objcg(objcg); | 
|  | if (shrink_memcg(memcg)) { | 
|  | mem_cgroup_put(memcg); | 
|  | goto put_objcg; | 
|  | } | 
|  | mem_cgroup_put(memcg); | 
|  | } | 
|  |  | 
|  | if (zswap_check_limits()) | 
|  | goto put_objcg; | 
|  |  | 
|  | pool = zswap_pool_current_get(); | 
|  | if (!pool) | 
|  | goto put_objcg; | 
|  |  | 
|  | if (objcg) { | 
|  | memcg = get_mem_cgroup_from_objcg(objcg); | 
|  | if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) { | 
|  | mem_cgroup_put(memcg); | 
|  | goto put_pool; | 
|  | } | 
|  | mem_cgroup_put(memcg); | 
|  | } | 
|  |  | 
|  | for (index = 0; index < nr_pages; ++index) { | 
|  | struct page *page = folio_page(folio, index); | 
|  |  | 
|  | if (!zswap_store_page(page, objcg, pool)) | 
|  | goto put_pool; | 
|  | } | 
|  |  | 
|  | if (objcg) | 
|  | count_objcg_events(objcg, ZSWPOUT, nr_pages); | 
|  |  | 
|  | count_vm_events(ZSWPOUT, nr_pages); | 
|  |  | 
|  | ret = true; | 
|  |  | 
|  | put_pool: | 
|  | zswap_pool_put(pool); | 
|  | put_objcg: | 
|  | obj_cgroup_put(objcg); | 
|  | if (!ret && zswap_pool_reached_full) | 
|  | queue_work(shrink_wq, &zswap_shrink_work); | 
|  | check_old: | 
|  | /* | 
|  | * If the zswap store fails or zswap is disabled, we must invalidate | 
|  | * the possibly stale entries which were previously stored at the | 
|  | * offsets corresponding to each page of the folio. Otherwise, | 
|  | * writeback could overwrite the new data in the swapfile. | 
|  | */ | 
|  | if (!ret) { | 
|  | unsigned type = swp_type(swp); | 
|  | pgoff_t offset = swp_offset(swp); | 
|  | struct zswap_entry *entry; | 
|  | struct xarray *tree; | 
|  |  | 
|  | for (index = 0; index < nr_pages; ++index) { | 
|  | tree = swap_zswap_tree(swp_entry(type, offset + index)); | 
|  | entry = xa_erase(tree, offset + index); | 
|  | if (entry) | 
|  | zswap_entry_free(entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zswap_load() - load a folio from zswap | 
|  | * @folio: folio to load | 
|  | * | 
|  | * Return: 0 on success, with the folio unlocked and marked up-to-date, or one | 
|  | * of the following error codes: | 
|  | * | 
|  | *  -EIO: if the swapped out content was in zswap, but could not be loaded | 
|  | *  into the page due to a decompression failure. The folio is unlocked, but | 
|  | *  NOT marked up-to-date, so that an IO error is emitted (e.g. do_swap_page() | 
|  | *  will SIGBUS). | 
|  | * | 
|  | *  -EINVAL: if the swapped out content was in zswap, but the page belongs | 
|  | *  to a large folio, which is not supported by zswap. The folio is unlocked, | 
|  | *  but NOT marked up-to-date, so that an IO error is emitted (e.g. | 
|  | *  do_swap_page() will SIGBUS). | 
|  | * | 
|  | *  -ENOENT: if the swapped out content was not in zswap. The folio remains | 
|  | *  locked on return. | 
|  | */ | 
|  | int zswap_load(struct folio *folio) | 
|  | { | 
|  | swp_entry_t swp = folio->swap; | 
|  | pgoff_t offset = swp_offset(swp); | 
|  | bool swapcache = folio_test_swapcache(folio); | 
|  | struct xarray *tree = swap_zswap_tree(swp); | 
|  | struct zswap_entry *entry; | 
|  |  | 
|  | VM_WARN_ON_ONCE(!folio_test_locked(folio)); | 
|  |  | 
|  | if (zswap_never_enabled()) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* | 
|  | * Large folios should not be swapped in while zswap is being used, as | 
|  | * they are not properly handled. Zswap does not properly load large | 
|  | * folios, and a large folio may only be partially in zswap. | 
|  | */ | 
|  | if (WARN_ON_ONCE(folio_test_large(folio))) { | 
|  | folio_unlock(folio); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | entry = xa_load(tree, offset); | 
|  | if (!entry) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (!zswap_decompress(entry, folio)) { | 
|  | folio_unlock(folio); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | folio_mark_uptodate(folio); | 
|  |  | 
|  | count_vm_event(ZSWPIN); | 
|  | if (entry->objcg) | 
|  | count_objcg_events(entry->objcg, ZSWPIN, 1); | 
|  |  | 
|  | /* | 
|  | * When reading into the swapcache, invalidate our entry. The | 
|  | * swapcache can be the authoritative owner of the page and | 
|  | * its mappings, and the pressure that results from having two | 
|  | * in-memory copies outweighs any benefits of caching the | 
|  | * compression work. | 
|  | * | 
|  | * (Most swapins go through the swapcache. The notable | 
|  | * exception is the singleton fault on SWP_SYNCHRONOUS_IO | 
|  | * files, which reads into a private page and may free it if | 
|  | * the fault fails. We remain the primary owner of the entry.) | 
|  | */ | 
|  | if (swapcache) { | 
|  | folio_mark_dirty(folio); | 
|  | xa_erase(tree, offset); | 
|  | zswap_entry_free(entry); | 
|  | } | 
|  |  | 
|  | folio_unlock(folio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void zswap_invalidate(swp_entry_t swp) | 
|  | { | 
|  | pgoff_t offset = swp_offset(swp); | 
|  | struct xarray *tree = swap_zswap_tree(swp); | 
|  | struct zswap_entry *entry; | 
|  |  | 
|  | if (xa_empty(tree)) | 
|  | return; | 
|  |  | 
|  | entry = xa_erase(tree, offset); | 
|  | if (entry) | 
|  | zswap_entry_free(entry); | 
|  | } | 
|  |  | 
|  | int zswap_swapon(int type, unsigned long nr_pages) | 
|  | { | 
|  | struct xarray *trees, *tree; | 
|  | unsigned int nr, i; | 
|  |  | 
|  | nr = DIV_ROUND_UP(nr_pages, ZSWAP_ADDRESS_SPACE_PAGES); | 
|  | trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL); | 
|  | if (!trees) { | 
|  | pr_err("alloc failed, zswap disabled for swap type %d\n", type); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr; i++) | 
|  | xa_init(trees + i); | 
|  |  | 
|  | nr_zswap_trees[type] = nr; | 
|  | zswap_trees[type] = trees; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void zswap_swapoff(int type) | 
|  | { | 
|  | struct xarray *trees = zswap_trees[type]; | 
|  | unsigned int i; | 
|  |  | 
|  | if (!trees) | 
|  | return; | 
|  |  | 
|  | /* try_to_unuse() invalidated all the entries already */ | 
|  | for (i = 0; i < nr_zswap_trees[type]; i++) | 
|  | WARN_ON_ONCE(!xa_empty(trees + i)); | 
|  |  | 
|  | kvfree(trees); | 
|  | nr_zswap_trees[type] = 0; | 
|  | zswap_trees[type] = NULL; | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * debugfs functions | 
|  | **********************************/ | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | #include <linux/debugfs.h> | 
|  |  | 
|  | static struct dentry *zswap_debugfs_root; | 
|  |  | 
|  | static int debugfs_get_total_size(void *data, u64 *val) | 
|  | { | 
|  | *val = zswap_total_pages() * PAGE_SIZE; | 
|  | return 0; | 
|  | } | 
|  | DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n"); | 
|  |  | 
|  | static int debugfs_get_stored_pages(void *data, u64 *val) | 
|  | { | 
|  | *val = atomic_long_read(&zswap_stored_pages); | 
|  | return 0; | 
|  | } | 
|  | DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops, debugfs_get_stored_pages, NULL, "%llu\n"); | 
|  |  | 
|  | static int debugfs_get_stored_incompressible_pages(void *data, u64 *val) | 
|  | { | 
|  | *val = atomic_long_read(&zswap_stored_incompressible_pages); | 
|  | return 0; | 
|  | } | 
|  | DEFINE_DEBUGFS_ATTRIBUTE(stored_incompressible_pages_fops, | 
|  | debugfs_get_stored_incompressible_pages, NULL, "%llu\n"); | 
|  |  | 
|  | static int zswap_debugfs_init(void) | 
|  | { | 
|  | if (!debugfs_initialized()) | 
|  | return -ENODEV; | 
|  |  | 
|  | zswap_debugfs_root = debugfs_create_dir("zswap", NULL); | 
|  |  | 
|  | debugfs_create_u64("pool_limit_hit", 0444, | 
|  | zswap_debugfs_root, &zswap_pool_limit_hit); | 
|  | debugfs_create_u64("reject_reclaim_fail", 0444, | 
|  | zswap_debugfs_root, &zswap_reject_reclaim_fail); | 
|  | debugfs_create_u64("reject_alloc_fail", 0444, | 
|  | zswap_debugfs_root, &zswap_reject_alloc_fail); | 
|  | debugfs_create_u64("reject_kmemcache_fail", 0444, | 
|  | zswap_debugfs_root, &zswap_reject_kmemcache_fail); | 
|  | debugfs_create_u64("reject_compress_fail", 0444, | 
|  | zswap_debugfs_root, &zswap_reject_compress_fail); | 
|  | debugfs_create_u64("reject_compress_poor", 0444, | 
|  | zswap_debugfs_root, &zswap_reject_compress_poor); | 
|  | debugfs_create_u64("decompress_fail", 0444, | 
|  | zswap_debugfs_root, &zswap_decompress_fail); | 
|  | debugfs_create_u64("written_back_pages", 0444, | 
|  | zswap_debugfs_root, &zswap_written_back_pages); | 
|  | debugfs_create_file("pool_total_size", 0444, | 
|  | zswap_debugfs_root, NULL, &total_size_fops); | 
|  | debugfs_create_file("stored_pages", 0444, | 
|  | zswap_debugfs_root, NULL, &stored_pages_fops); | 
|  | debugfs_create_file("stored_incompressible_pages", 0444, | 
|  | zswap_debugfs_root, NULL, | 
|  | &stored_incompressible_pages_fops); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static int zswap_debugfs_init(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /********************************* | 
|  | * module init and exit | 
|  | **********************************/ | 
|  | static int zswap_setup(void) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  | int ret; | 
|  |  | 
|  | zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); | 
|  | if (!zswap_entry_cache) { | 
|  | pr_err("entry cache creation failed\n"); | 
|  | goto cache_fail; | 
|  | } | 
|  |  | 
|  | ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE, | 
|  | "mm/zswap_pool:prepare", | 
|  | zswap_cpu_comp_prepare, | 
|  | zswap_cpu_comp_dead); | 
|  | if (ret) | 
|  | goto hp_fail; | 
|  |  | 
|  | shrink_wq = alloc_workqueue("zswap-shrink", | 
|  | WQ_UNBOUND|WQ_MEM_RECLAIM, 1); | 
|  | if (!shrink_wq) | 
|  | goto shrink_wq_fail; | 
|  |  | 
|  | zswap_shrinker = zswap_alloc_shrinker(); | 
|  | if (!zswap_shrinker) | 
|  | goto shrinker_fail; | 
|  | if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker)) | 
|  | goto lru_fail; | 
|  | shrinker_register(zswap_shrinker); | 
|  |  | 
|  | INIT_WORK(&zswap_shrink_work, shrink_worker); | 
|  |  | 
|  | pool = __zswap_pool_create_fallback(); | 
|  | if (pool) { | 
|  | pr_info("loaded using pool %s\n", pool->tfm_name); | 
|  | list_add(&pool->list, &zswap_pools); | 
|  | zswap_has_pool = true; | 
|  | static_branch_enable(&zswap_ever_enabled); | 
|  | } else { | 
|  | pr_err("pool creation failed\n"); | 
|  | zswap_enabled = false; | 
|  | } | 
|  |  | 
|  | if (zswap_debugfs_init()) | 
|  | pr_warn("debugfs initialization failed\n"); | 
|  | zswap_init_state = ZSWAP_INIT_SUCCEED; | 
|  | return 0; | 
|  |  | 
|  | lru_fail: | 
|  | shrinker_free(zswap_shrinker); | 
|  | shrinker_fail: | 
|  | destroy_workqueue(shrink_wq); | 
|  | shrink_wq_fail: | 
|  | cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE); | 
|  | hp_fail: | 
|  | kmem_cache_destroy(zswap_entry_cache); | 
|  | cache_fail: | 
|  | /* if built-in, we aren't unloaded on failure; don't allow use */ | 
|  | zswap_init_state = ZSWAP_INIT_FAILED; | 
|  | zswap_enabled = false; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int __init zswap_init(void) | 
|  | { | 
|  | if (!zswap_enabled) | 
|  | return 0; | 
|  | return zswap_setup(); | 
|  | } | 
|  | /* must be late so crypto has time to come up */ | 
|  | late_initcall(zswap_init); | 
|  |  | 
|  | MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); | 
|  | MODULE_DESCRIPTION("Compressed cache for swap pages"); |