|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/semaphore.h> | 
|  | #include <linux/uuid.h> | 
|  | #include <linux/list_sort.h> | 
|  | #include <linux/namei.h> | 
|  | #include "misc.h" | 
|  | #include "disk-io.h" | 
|  | #include "extent-tree.h" | 
|  | #include "transaction.h" | 
|  | #include "volumes.h" | 
|  | #include "raid56.h" | 
|  | #include "dev-replace.h" | 
|  | #include "sysfs.h" | 
|  | #include "tree-checker.h" | 
|  | #include "space-info.h" | 
|  | #include "block-group.h" | 
|  | #include "discard.h" | 
|  | #include "zoned.h" | 
|  | #include "fs.h" | 
|  | #include "accessors.h" | 
|  | #include "uuid-tree.h" | 
|  | #include "ioctl.h" | 
|  | #include "relocation.h" | 
|  | #include "scrub.h" | 
|  | #include "super.h" | 
|  | #include "raid-stripe-tree.h" | 
|  |  | 
|  | #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \ | 
|  | BTRFS_BLOCK_GROUP_RAID10 | \ | 
|  | BTRFS_BLOCK_GROUP_RAID56_MASK) | 
|  |  | 
|  | struct btrfs_io_geometry { | 
|  | u32 stripe_index; | 
|  | u32 stripe_nr; | 
|  | int mirror_num; | 
|  | int num_stripes; | 
|  | u64 stripe_offset; | 
|  | u64 raid56_full_stripe_start; | 
|  | int max_errors; | 
|  | enum btrfs_map_op op; | 
|  | bool use_rst; | 
|  | }; | 
|  |  | 
|  | const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { | 
|  | [BTRFS_RAID_RAID10] = { | 
|  | .sub_stripes	= 2, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 0,	/* 0 == as many as possible */ | 
|  | .devs_min	= 2, | 
|  | .tolerated_failures = 1, | 
|  | .devs_increment	= 2, | 
|  | .ncopies	= 2, | 
|  | .nparity        = 0, | 
|  | .raid_name	= "raid10", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_RAID10, | 
|  | .mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, | 
|  | }, | 
|  | [BTRFS_RAID_RAID1] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 2, | 
|  | .devs_min	= 2, | 
|  | .tolerated_failures = 1, | 
|  | .devs_increment	= 2, | 
|  | .ncopies	= 2, | 
|  | .nparity        = 0, | 
|  | .raid_name	= "raid1", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_RAID1, | 
|  | .mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, | 
|  | }, | 
|  | [BTRFS_RAID_RAID1C3] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 3, | 
|  | .devs_min	= 3, | 
|  | .tolerated_failures = 2, | 
|  | .devs_increment	= 3, | 
|  | .ncopies	= 3, | 
|  | .nparity        = 0, | 
|  | .raid_name	= "raid1c3", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3, | 
|  | .mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, | 
|  | }, | 
|  | [BTRFS_RAID_RAID1C4] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 4, | 
|  | .devs_min	= 4, | 
|  | .tolerated_failures = 3, | 
|  | .devs_increment	= 4, | 
|  | .ncopies	= 4, | 
|  | .nparity        = 0, | 
|  | .raid_name	= "raid1c4", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4, | 
|  | .mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, | 
|  | }, | 
|  | [BTRFS_RAID_DUP] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 2, | 
|  | .devs_max	= 1, | 
|  | .devs_min	= 1, | 
|  | .tolerated_failures = 0, | 
|  | .devs_increment	= 1, | 
|  | .ncopies	= 2, | 
|  | .nparity        = 0, | 
|  | .raid_name	= "dup", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_DUP, | 
|  | .mindev_error	= 0, | 
|  | }, | 
|  | [BTRFS_RAID_RAID0] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 0, | 
|  | .devs_min	= 1, | 
|  | .tolerated_failures = 0, | 
|  | .devs_increment	= 1, | 
|  | .ncopies	= 1, | 
|  | .nparity        = 0, | 
|  | .raid_name	= "raid0", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_RAID0, | 
|  | .mindev_error	= 0, | 
|  | }, | 
|  | [BTRFS_RAID_SINGLE] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 1, | 
|  | .devs_min	= 1, | 
|  | .tolerated_failures = 0, | 
|  | .devs_increment	= 1, | 
|  | .ncopies	= 1, | 
|  | .nparity        = 0, | 
|  | .raid_name	= "single", | 
|  | .bg_flag	= 0, | 
|  | .mindev_error	= 0, | 
|  | }, | 
|  | [BTRFS_RAID_RAID5] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 0, | 
|  | .devs_min	= 2, | 
|  | .tolerated_failures = 1, | 
|  | .devs_increment	= 1, | 
|  | .ncopies	= 1, | 
|  | .nparity        = 1, | 
|  | .raid_name	= "raid5", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_RAID5, | 
|  | .mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, | 
|  | }, | 
|  | [BTRFS_RAID_RAID6] = { | 
|  | .sub_stripes	= 1, | 
|  | .dev_stripes	= 1, | 
|  | .devs_max	= 0, | 
|  | .devs_min	= 3, | 
|  | .tolerated_failures = 2, | 
|  | .devs_increment	= 1, | 
|  | .ncopies	= 1, | 
|  | .nparity        = 2, | 
|  | .raid_name	= "raid6", | 
|  | .bg_flag	= BTRFS_BLOCK_GROUP_RAID6, | 
|  | .mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which | 
|  | * can be used as index to access btrfs_raid_array[]. | 
|  | */ | 
|  | enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) | 
|  | { | 
|  | const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); | 
|  |  | 
|  | if (!profile) | 
|  | return BTRFS_RAID_SINGLE; | 
|  |  | 
|  | return BTRFS_BG_FLAG_TO_INDEX(profile); | 
|  | } | 
|  |  | 
|  | const char *btrfs_bg_type_to_raid_name(u64 flags) | 
|  | { | 
|  | const int index = btrfs_bg_flags_to_raid_index(flags); | 
|  |  | 
|  | if (index >= BTRFS_NR_RAID_TYPES) | 
|  | return NULL; | 
|  |  | 
|  | return btrfs_raid_array[index].raid_name; | 
|  | } | 
|  |  | 
|  | int btrfs_nr_parity_stripes(u64 type) | 
|  | { | 
|  | enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); | 
|  |  | 
|  | return btrfs_raid_array[index].nparity; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill @buf with textual description of @bg_flags, no more than @size_buf | 
|  | * bytes including terminating null byte. | 
|  | */ | 
|  | void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  | char *bp = buf; | 
|  | u64 flags = bg_flags; | 
|  | u32 size_bp = size_buf; | 
|  |  | 
|  | if (!flags) | 
|  | return; | 
|  |  | 
|  | #define DESCRIBE_FLAG(flag, desc)						\ | 
|  | do {								\ | 
|  | if (flags & (flag)) {					\ | 
|  | ret = snprintf(bp, size_bp, "%s|", (desc));	\ | 
|  | if (ret < 0 || ret >= size_bp)			\ | 
|  | goto out_overflow;			\ | 
|  | size_bp -= ret;					\ | 
|  | bp += ret;					\ | 
|  | flags &= ~(flag);				\ | 
|  | }							\ | 
|  | } while (0) | 
|  |  | 
|  | DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); | 
|  | DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); | 
|  | DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); | 
|  |  | 
|  | DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); | 
|  | for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) | 
|  | DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, | 
|  | btrfs_raid_array[i].raid_name); | 
|  | #undef DESCRIBE_FLAG | 
|  |  | 
|  | if (flags) { | 
|  | ret = snprintf(bp, size_bp, "0x%llx|", flags); | 
|  | size_bp -= ret; | 
|  | } | 
|  |  | 
|  | if (size_bp < size_buf) | 
|  | buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ | 
|  |  | 
|  | /* | 
|  | * The text is trimmed, it's up to the caller to provide sufficiently | 
|  | * large buffer | 
|  | */ | 
|  | out_overflow:; | 
|  | } | 
|  |  | 
|  | static int init_first_rw_device(struct btrfs_trans_handle *trans); | 
|  | static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); | 
|  | static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); | 
|  |  | 
|  | /* | 
|  | * Device locking | 
|  | * ============== | 
|  | * | 
|  | * There are several mutexes that protect manipulation of devices and low-level | 
|  | * structures like chunks but not block groups, extents or files | 
|  | * | 
|  | * uuid_mutex (global lock) | 
|  | * ------------------------ | 
|  | * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from | 
|  | * the SCAN_DEV ioctl registration or from mount either implicitly (the first | 
|  | * device) or requested by the device= mount option | 
|  | * | 
|  | * the mutex can be very coarse and can cover long-running operations | 
|  | * | 
|  | * protects: updates to fs_devices counters like missing devices, rw devices, | 
|  | * seeding, structure cloning, opening/closing devices at mount/umount time | 
|  | * | 
|  | * global::fs_devs - add, remove, updates to the global list | 
|  | * | 
|  | * does not protect: manipulation of the fs_devices::devices list in general | 
|  | * but in mount context it could be used to exclude list modifications by eg. | 
|  | * scan ioctl | 
|  | * | 
|  | * btrfs_device::name - renames (write side), read is RCU | 
|  | * | 
|  | * fs_devices::device_list_mutex (per-fs, with RCU) | 
|  | * ------------------------------------------------ | 
|  | * protects updates to fs_devices::devices, ie. adding and deleting | 
|  | * | 
|  | * simple list traversal with read-only actions can be done with RCU protection | 
|  | * | 
|  | * may be used to exclude some operations from running concurrently without any | 
|  | * modifications to the list (see write_all_supers) | 
|  | * | 
|  | * Is not required at mount and close times, because our device list is | 
|  | * protected by the uuid_mutex at that point. | 
|  | * | 
|  | * balance_mutex | 
|  | * ------------- | 
|  | * protects balance structures (status, state) and context accessed from | 
|  | * several places (internally, ioctl) | 
|  | * | 
|  | * chunk_mutex | 
|  | * ----------- | 
|  | * protects chunks, adding or removing during allocation, trim or when a new | 
|  | * device is added/removed. Additionally it also protects post_commit_list of | 
|  | * individual devices, since they can be added to the transaction's | 
|  | * post_commit_list only with chunk_mutex held. | 
|  | * | 
|  | * cleaner_mutex | 
|  | * ------------- | 
|  | * a big lock that is held by the cleaner thread and prevents running subvolume | 
|  | * cleaning together with relocation or delayed iputs | 
|  | * | 
|  | * | 
|  | * Lock nesting | 
|  | * ============ | 
|  | * | 
|  | * uuid_mutex | 
|  | *   device_list_mutex | 
|  | *     chunk_mutex | 
|  | *   balance_mutex | 
|  | * | 
|  | * | 
|  | * Exclusive operations | 
|  | * ==================== | 
|  | * | 
|  | * Maintains the exclusivity of the following operations that apply to the | 
|  | * whole filesystem and cannot run in parallel. | 
|  | * | 
|  | * - Balance (*) | 
|  | * - Device add | 
|  | * - Device remove | 
|  | * - Device replace (*) | 
|  | * - Resize | 
|  | * | 
|  | * The device operations (as above) can be in one of the following states: | 
|  | * | 
|  | * - Running state | 
|  | * - Paused state | 
|  | * - Completed state | 
|  | * | 
|  | * Only device operations marked with (*) can go into the Paused state for the | 
|  | * following reasons: | 
|  | * | 
|  | * - ioctl (only Balance can be Paused through ioctl) | 
|  | * - filesystem remounted as read-only | 
|  | * - filesystem unmounted and mounted as read-only | 
|  | * - system power-cycle and filesystem mounted as read-only | 
|  | * - filesystem or device errors leading to forced read-only | 
|  | * | 
|  | * The status of exclusive operation is set and cleared atomically. | 
|  | * During the course of Paused state, fs_info::exclusive_operation remains set. | 
|  | * A device operation in Paused or Running state can be canceled or resumed | 
|  | * either by ioctl (Balance only) or when remounted as read-write. | 
|  | * The exclusive status is cleared when the device operation is canceled or | 
|  | * completed. | 
|  | */ | 
|  |  | 
|  | DEFINE_MUTEX(uuid_mutex); | 
|  | static LIST_HEAD(fs_uuids); | 
|  | struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) | 
|  | { | 
|  | return &fs_uuids; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate new btrfs_fs_devices structure identified by a fsid. | 
|  | * | 
|  | * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to | 
|  | *           fs_devices::metadata_fsid | 
|  | * | 
|  | * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). | 
|  | * The returned struct is not linked onto any lists and can be destroyed with | 
|  | * kfree() right away. | 
|  | */ | 
|  | static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devs; | 
|  |  | 
|  | fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); | 
|  | if (!fs_devs) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | mutex_init(&fs_devs->device_list_mutex); | 
|  |  | 
|  | INIT_LIST_HEAD(&fs_devs->devices); | 
|  | INIT_LIST_HEAD(&fs_devs->alloc_list); | 
|  | INIT_LIST_HEAD(&fs_devs->fs_list); | 
|  | INIT_LIST_HEAD(&fs_devs->seed_list); | 
|  |  | 
|  | if (fsid) { | 
|  | memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); | 
|  | memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); | 
|  | } | 
|  |  | 
|  | return fs_devs; | 
|  | } | 
|  |  | 
|  | static void btrfs_free_device(struct btrfs_device *device) | 
|  | { | 
|  | WARN_ON(!list_empty(&device->post_commit_list)); | 
|  | /* | 
|  | * No need to call kfree_rcu() nor do RCU lock/unlock, nothing is | 
|  | * reading the device name. | 
|  | */ | 
|  | kfree(rcu_dereference_raw(device->name)); | 
|  | btrfs_extent_io_tree_release(&device->alloc_state); | 
|  | btrfs_destroy_dev_zone_info(device); | 
|  | kfree(device); | 
|  | } | 
|  |  | 
|  | static void free_fs_devices(struct btrfs_fs_devices *fs_devices) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  |  | 
|  | WARN_ON(fs_devices->opened); | 
|  | WARN_ON(fs_devices->holding); | 
|  | while (!list_empty(&fs_devices->devices)) { | 
|  | device = list_first_entry(&fs_devices->devices, | 
|  | struct btrfs_device, dev_list); | 
|  | list_del(&device->dev_list); | 
|  | btrfs_free_device(device); | 
|  | } | 
|  | kfree(fs_devices); | 
|  | } | 
|  |  | 
|  | void __exit btrfs_cleanup_fs_uuids(void) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  |  | 
|  | while (!list_empty(&fs_uuids)) { | 
|  | fs_devices = list_first_entry(&fs_uuids, struct btrfs_fs_devices, | 
|  | fs_list); | 
|  | list_del(&fs_devices->fs_list); | 
|  | free_fs_devices(fs_devices); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, | 
|  | const u8 *fsid, const u8 *metadata_fsid) | 
|  | { | 
|  | if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) | 
|  | return false; | 
|  |  | 
|  | if (!metadata_fsid) | 
|  | return true; | 
|  |  | 
|  | if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static noinline struct btrfs_fs_devices *find_fsid( | 
|  | const u8 *fsid, const u8 *metadata_fsid) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  |  | 
|  | ASSERT(fsid); | 
|  |  | 
|  | /* Handle non-split brain cases */ | 
|  | list_for_each_entry(fs_devices, &fs_uuids, fs_list) { | 
|  | if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) | 
|  | return fs_devices; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int | 
|  | btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, | 
|  | int flush, struct file **bdev_file, | 
|  | struct btrfs_super_block **disk_super) | 
|  | { | 
|  | struct block_device *bdev; | 
|  | int ret; | 
|  |  | 
|  | *bdev_file = bdev_file_open_by_path(device_path, flags, holder, &fs_holder_ops); | 
|  |  | 
|  | if (IS_ERR(*bdev_file)) { | 
|  | ret = PTR_ERR(*bdev_file); | 
|  | btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d", | 
|  | device_path, flags, ret); | 
|  | goto error; | 
|  | } | 
|  | bdev = file_bdev(*bdev_file); | 
|  |  | 
|  | if (flush) | 
|  | sync_blockdev(bdev); | 
|  | if (holder) { | 
|  | ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE); | 
|  | if (ret) { | 
|  | bdev_fput(*bdev_file); | 
|  | goto error; | 
|  | } | 
|  | } | 
|  | invalidate_bdev(bdev); | 
|  | *disk_super = btrfs_read_disk_super(bdev, 0, false); | 
|  | if (IS_ERR(*disk_super)) { | 
|  | ret = PTR_ERR(*disk_super); | 
|  | bdev_fput(*bdev_file); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | *disk_super = NULL; | 
|  | *bdev_file = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Search and remove all stale devices (which are not mounted).  When both | 
|  | *  inputs are NULL, it will search and release all stale devices. | 
|  | * | 
|  | *  @devt:         Optional. When provided will it release all unmounted devices | 
|  | *                 matching this devt only. | 
|  | *  @skip_device:  Optional. Will skip this device when searching for the stale | 
|  | *                 devices. | 
|  | * | 
|  | *  Return:	0 for success or if @devt is 0. | 
|  | *		-EBUSY if @devt is a mounted device. | 
|  | *		-ENOENT if @devt does not match any device in the list. | 
|  | */ | 
|  | static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; | 
|  | struct btrfs_device *device, *tmp_device; | 
|  | int ret; | 
|  | bool freed = false; | 
|  |  | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  |  | 
|  | /* Return good status if there is no instance of devt. */ | 
|  | ret = 0; | 
|  | list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_for_each_entry_safe(device, tmp_device, | 
|  | &fs_devices->devices, dev_list) { | 
|  | if (skip_device && skip_device == device) | 
|  | continue; | 
|  | if (devt && devt != device->devt) | 
|  | continue; | 
|  | if (fs_devices->opened || fs_devices->holding) { | 
|  | if (devt) | 
|  | ret = -EBUSY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* delete the stale device */ | 
|  | fs_devices->num_devices--; | 
|  | list_del(&device->dev_list); | 
|  | btrfs_free_device(device); | 
|  |  | 
|  | freed = true; | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | if (fs_devices->num_devices == 0) { | 
|  | btrfs_sysfs_remove_fsid(fs_devices); | 
|  | list_del(&fs_devices->fs_list); | 
|  | free_fs_devices(fs_devices); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If there is at least one freed device return 0. */ | 
|  | if (freed) | 
|  | return 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct btrfs_fs_devices *find_fsid_by_device( | 
|  | struct btrfs_super_block *disk_super, | 
|  | dev_t devt, bool *same_fsid_diff_dev) | 
|  | { | 
|  | struct btrfs_fs_devices *fsid_fs_devices; | 
|  | struct btrfs_fs_devices *devt_fs_devices; | 
|  | const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & | 
|  | BTRFS_FEATURE_INCOMPAT_METADATA_UUID); | 
|  | bool found_by_devt = false; | 
|  |  | 
|  | /* Find the fs_device by the usual method, if found use it. */ | 
|  | fsid_fs_devices = find_fsid(disk_super->fsid, | 
|  | has_metadata_uuid ? disk_super->metadata_uuid : NULL); | 
|  |  | 
|  | /* The temp_fsid feature is supported only with single device filesystem. */ | 
|  | if (btrfs_super_num_devices(disk_super) != 1) | 
|  | return fsid_fs_devices; | 
|  |  | 
|  | /* | 
|  | * A seed device is an integral component of the sprout device, which | 
|  | * functions as a multi-device filesystem. So, temp-fsid feature is | 
|  | * not supported. | 
|  | */ | 
|  | if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) | 
|  | return fsid_fs_devices; | 
|  |  | 
|  | /* Try to find a fs_devices by matching devt. */ | 
|  | list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) { | 
|  | struct btrfs_device *device; | 
|  |  | 
|  | list_for_each_entry(device, &devt_fs_devices->devices, dev_list) { | 
|  | if (device->devt == devt) { | 
|  | found_by_devt = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (found_by_devt) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (found_by_devt) { | 
|  | /* Existing device. */ | 
|  | if (fsid_fs_devices == NULL) { | 
|  | if (devt_fs_devices->opened == 0) { | 
|  | /* Stale device. */ | 
|  | return NULL; | 
|  | } else { | 
|  | /* temp_fsid is mounting a subvol. */ | 
|  | return devt_fs_devices; | 
|  | } | 
|  | } else { | 
|  | /* Regular or temp_fsid device mounting a subvol. */ | 
|  | return devt_fs_devices; | 
|  | } | 
|  | } else { | 
|  | /* New device. */ | 
|  | if (fsid_fs_devices == NULL) { | 
|  | return NULL; | 
|  | } else { | 
|  | /* sb::fsid is already used create a new temp_fsid. */ | 
|  | *same_fsid_diff_dev = true; | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Not reached. */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is only used on mount, and we are protected from competing things | 
|  | * messing with our fs_devices by the uuid_mutex, thus we do not need the | 
|  | * fs_devices->device_list_mutex here. | 
|  | */ | 
|  | static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, | 
|  | struct btrfs_device *device, blk_mode_t flags, | 
|  | void *holder) | 
|  | { | 
|  | struct file *bdev_file; | 
|  | struct btrfs_super_block *disk_super; | 
|  | u64 devid; | 
|  | int ret; | 
|  |  | 
|  | if (device->bdev) | 
|  | return -EINVAL; | 
|  | if (!device->name) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = btrfs_get_bdev_and_sb(rcu_dereference_raw(device->name), flags, holder, 1, | 
|  | &bdev_file, &disk_super); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | devid = btrfs_stack_device_id(&disk_super->dev_item); | 
|  | if (devid != device->devid) | 
|  | goto error_free_page; | 
|  |  | 
|  | if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) | 
|  | goto error_free_page; | 
|  |  | 
|  | device->generation = btrfs_super_generation(disk_super); | 
|  |  | 
|  | if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { | 
|  | if (btrfs_super_incompat_flags(disk_super) & | 
|  | BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { | 
|  | btrfs_err(NULL, | 
|  | "invalid seeding and uuid-changed device detected"); | 
|  | goto error_free_page; | 
|  | } | 
|  |  | 
|  | clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); | 
|  | fs_devices->seeding = true; | 
|  | } else { | 
|  | if (bdev_read_only(file_bdev(bdev_file))) | 
|  | clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); | 
|  | else | 
|  | set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); | 
|  | } | 
|  |  | 
|  | if (!bdev_nonrot(file_bdev(bdev_file))) | 
|  | fs_devices->rotating = true; | 
|  |  | 
|  | if (bdev_max_discard_sectors(file_bdev(bdev_file))) | 
|  | fs_devices->discardable = true; | 
|  |  | 
|  | device->bdev_file = bdev_file; | 
|  | device->bdev = file_bdev(bdev_file); | 
|  | clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); | 
|  |  | 
|  | if (device->devt != device->bdev->bd_dev) { | 
|  | btrfs_warn(NULL, | 
|  | "device %s maj:min changed from %d:%d to %d:%d", | 
|  | rcu_dereference_raw(device->name), MAJOR(device->devt), | 
|  | MINOR(device->devt), MAJOR(device->bdev->bd_dev), | 
|  | MINOR(device->bdev->bd_dev)); | 
|  |  | 
|  | device->devt = device->bdev->bd_dev; | 
|  | } | 
|  |  | 
|  | fs_devices->open_devices++; | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && | 
|  | device->devid != BTRFS_DEV_REPLACE_DEVID) { | 
|  | fs_devices->rw_devices++; | 
|  | list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); | 
|  | } | 
|  | btrfs_release_disk_super(disk_super); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error_free_page: | 
|  | btrfs_release_disk_super(disk_super); | 
|  | bdev_fput(bdev_file); | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb) | 
|  | { | 
|  | bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & | 
|  | BTRFS_FEATURE_INCOMPAT_METADATA_UUID); | 
|  |  | 
|  | return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; | 
|  | } | 
|  |  | 
|  | static bool is_same_device(struct btrfs_device *device, const char *new_path) | 
|  | { | 
|  | struct path old = { .mnt = NULL, .dentry = NULL }; | 
|  | struct path new = { .mnt = NULL, .dentry = NULL }; | 
|  | char *old_path = NULL; | 
|  | bool is_same = false; | 
|  | int ret; | 
|  |  | 
|  | if (!device->name) | 
|  | goto out; | 
|  |  | 
|  | old_path = kzalloc(PATH_MAX, GFP_NOFS); | 
|  | if (!old_path) | 
|  | goto out; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ret = strscpy(old_path, rcu_dereference(device->name), PATH_MAX); | 
|  | rcu_read_unlock(); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = kern_path(old_path, LOOKUP_FOLLOW, &old); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = kern_path(new_path, LOOKUP_FOLLOW, &new); | 
|  | if (ret) | 
|  | goto out; | 
|  | if (path_equal(&old, &new)) | 
|  | is_same = true; | 
|  | out: | 
|  | kfree(old_path); | 
|  | path_put(&old); | 
|  | path_put(&new); | 
|  | return is_same; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add new device to list of registered devices | 
|  | * | 
|  | * Returns: | 
|  | * device pointer which was just added or updated when successful | 
|  | * error pointer when failed | 
|  | */ | 
|  | static noinline struct btrfs_device *device_list_add(const char *path, | 
|  | struct btrfs_super_block *disk_super, | 
|  | bool *new_device_added) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_fs_devices *fs_devices = NULL; | 
|  | const char *name; | 
|  | u64 found_transid = btrfs_super_generation(disk_super); | 
|  | u64 devid = btrfs_stack_device_id(&disk_super->dev_item); | 
|  | dev_t path_devt; | 
|  | int ret; | 
|  | bool same_fsid_diff_dev = false; | 
|  | bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & | 
|  | BTRFS_FEATURE_INCOMPAT_METADATA_UUID); | 
|  |  | 
|  | if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { | 
|  | btrfs_err(NULL, | 
|  | "device %s has incomplete metadata_uuid change, please use btrfstune to complete", | 
|  | path); | 
|  | return ERR_PTR(-EAGAIN); | 
|  | } | 
|  |  | 
|  | ret = lookup_bdev(path, &path_devt); | 
|  | if (ret) { | 
|  | btrfs_err(NULL, "failed to lookup block device for path %s: %d", | 
|  | path, ret); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev); | 
|  |  | 
|  | if (!fs_devices) { | 
|  | fs_devices = alloc_fs_devices(disk_super->fsid); | 
|  | if (IS_ERR(fs_devices)) | 
|  | return ERR_CAST(fs_devices); | 
|  |  | 
|  | if (has_metadata_uuid) | 
|  | memcpy(fs_devices->metadata_uuid, | 
|  | disk_super->metadata_uuid, BTRFS_FSID_SIZE); | 
|  |  | 
|  | if (same_fsid_diff_dev) { | 
|  | generate_random_uuid(fs_devices->fsid); | 
|  | fs_devices->temp_fsid = true; | 
|  | btrfs_info(NULL, "device %s (%d:%d) using temp-fsid %pU", | 
|  | path, MAJOR(path_devt), MINOR(path_devt), | 
|  | fs_devices->fsid); | 
|  | } | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_add(&fs_devices->fs_list, &fs_uuids); | 
|  |  | 
|  | device = NULL; | 
|  | } else { | 
|  | struct btrfs_dev_lookup_args args = { | 
|  | .devid = devid, | 
|  | .uuid = disk_super->dev_item.uuid, | 
|  | }; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | device = btrfs_find_device(fs_devices, &args); | 
|  |  | 
|  | if (found_transid > fs_devices->latest_generation) { | 
|  | memcpy(fs_devices->fsid, disk_super->fsid, | 
|  | BTRFS_FSID_SIZE); | 
|  | memcpy(fs_devices->metadata_uuid, | 
|  | btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!device) { | 
|  | unsigned int nofs_flag; | 
|  |  | 
|  | if (fs_devices->opened) { | 
|  | btrfs_err(NULL, | 
|  | "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", | 
|  | path, MAJOR(path_devt), MINOR(path_devt), | 
|  | fs_devices->fsid, current->comm, | 
|  | task_pid_nr(current)); | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | return ERR_PTR(-EBUSY); | 
|  | } | 
|  |  | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | device = btrfs_alloc_device(NULL, &devid, | 
|  | disk_super->dev_item.uuid, path); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  | if (IS_ERR(device)) { | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | /* we can safely leave the fs_devices entry around */ | 
|  | return device; | 
|  | } | 
|  |  | 
|  | device->devt = path_devt; | 
|  |  | 
|  | list_add_rcu(&device->dev_list, &fs_devices->devices); | 
|  | fs_devices->num_devices++; | 
|  |  | 
|  | device->fs_devices = fs_devices; | 
|  | *new_device_added = true; | 
|  |  | 
|  | if (disk_super->label[0]) | 
|  | pr_info( | 
|  | "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", | 
|  | disk_super->label, devid, found_transid, path, | 
|  | MAJOR(path_devt), MINOR(path_devt), | 
|  | current->comm, task_pid_nr(current)); | 
|  | else | 
|  | pr_info( | 
|  | "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n", | 
|  | disk_super->fsid, devid, found_transid, path, | 
|  | MAJOR(path_devt), MINOR(path_devt), | 
|  | current->comm, task_pid_nr(current)); | 
|  |  | 
|  | } else if (!device->name || !is_same_device(device, path)) { | 
|  | const char *old_name; | 
|  |  | 
|  | /* | 
|  | * When FS is already mounted. | 
|  | * 1. If you are here and if the device->name is NULL that | 
|  | *    means this device was missing at time of FS mount. | 
|  | * 2. If you are here and if the device->name is different | 
|  | *    from 'path' that means either | 
|  | *      a. The same device disappeared and reappeared with | 
|  | *         different name. or | 
|  | *      b. The missing-disk-which-was-replaced, has | 
|  | *         reappeared now. | 
|  | * | 
|  | * We must allow 1 and 2a above. But 2b would be a spurious | 
|  | * and unintentional. | 
|  | * | 
|  | * Further in case of 1 and 2a above, the disk at 'path' | 
|  | * would have missed some transaction when it was away and | 
|  | * in case of 2a the stale bdev has to be updated as well. | 
|  | * 2b must not be allowed at all time. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * For now, we do allow update to btrfs_fs_device through the | 
|  | * btrfs dev scan cli after FS has been mounted.  We're still | 
|  | * tracking a problem where systems fail mount by subvolume id | 
|  | * when we reject replacement on a mounted FS. | 
|  | */ | 
|  | if (!fs_devices->opened && found_transid < device->generation) { | 
|  | /* | 
|  | * That is if the FS is _not_ mounted and if you | 
|  | * are here, that means there is more than one | 
|  | * disk with same uuid and devid.We keep the one | 
|  | * with larger generation number or the last-in if | 
|  | * generation are equal. | 
|  | */ | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | btrfs_err(NULL, | 
|  | "device %s already registered with a higher generation, found %llu expect %llu", | 
|  | path, found_transid, device->generation); | 
|  | return ERR_PTR(-EEXIST); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are going to replace the device path for a given devid, | 
|  | * make sure it's the same device if the device is mounted | 
|  | * | 
|  | * NOTE: the device->fs_info may not be reliable here so pass | 
|  | * in a NULL to message helpers instead. This avoids a possible | 
|  | * use-after-free when the fs_info and fs_info->sb are already | 
|  | * torn down. | 
|  | */ | 
|  | if (device->bdev) { | 
|  | if (device->devt != path_devt) { | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | btrfs_warn(NULL, | 
|  | "duplicate device %s devid %llu generation %llu scanned by %s (%d)", | 
|  | path, devid, found_transid, | 
|  | current->comm, | 
|  | task_pid_nr(current)); | 
|  | return ERR_PTR(-EEXIST); | 
|  | } | 
|  | btrfs_info(NULL, | 
|  | "devid %llu device path %s changed to %s scanned by %s (%d)", | 
|  | devid, btrfs_dev_name(device), | 
|  | path, current->comm, | 
|  | task_pid_nr(current)); | 
|  | } | 
|  |  | 
|  | name = kstrdup(path, GFP_NOFS); | 
|  | if (!name) { | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | rcu_read_lock(); | 
|  | old_name = rcu_dereference(device->name); | 
|  | rcu_read_unlock(); | 
|  | rcu_assign_pointer(device->name, name); | 
|  | kfree_rcu_mightsleep(old_name); | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { | 
|  | fs_devices->missing_devices--; | 
|  | clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); | 
|  | } | 
|  | device->devt = path_devt; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unmount does not free the btrfs_device struct but would zero | 
|  | * generation along with most of the other members. So just update | 
|  | * it back. We need it to pick the disk with largest generation | 
|  | * (as above). | 
|  | */ | 
|  | if (!fs_devices->opened) { | 
|  | device->generation = found_transid; | 
|  | fs_devices->latest_generation = max_t(u64, found_transid, | 
|  | fs_devices->latest_generation); | 
|  | } | 
|  |  | 
|  | fs_devices->total_devices = btrfs_super_num_devices(disk_super); | 
|  |  | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | return device; | 
|  | } | 
|  |  | 
|  | static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_device *orig_dev; | 
|  | int ret = 0; | 
|  |  | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  |  | 
|  | fs_devices = alloc_fs_devices(orig->fsid); | 
|  | if (IS_ERR(fs_devices)) | 
|  | return fs_devices; | 
|  |  | 
|  | fs_devices->total_devices = orig->total_devices; | 
|  |  | 
|  | list_for_each_entry(orig_dev, &orig->devices, dev_list) { | 
|  | const char *dev_path = NULL; | 
|  |  | 
|  | /* | 
|  | * This is ok to do without RCU read locked because we hold the | 
|  | * uuid mutex so nothing we touch in here is going to disappear. | 
|  | */ | 
|  | if (orig_dev->name) | 
|  | dev_path = rcu_dereference_raw(orig_dev->name); | 
|  |  | 
|  | device = btrfs_alloc_device(NULL, &orig_dev->devid, | 
|  | orig_dev->uuid, dev_path); | 
|  | if (IS_ERR(device)) { | 
|  | ret = PTR_ERR(device); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (orig_dev->zone_info) { | 
|  | struct btrfs_zoned_device_info *zone_info; | 
|  |  | 
|  | zone_info = btrfs_clone_dev_zone_info(orig_dev); | 
|  | if (!zone_info) { | 
|  | btrfs_free_device(device); | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  | device->zone_info = zone_info; | 
|  | } | 
|  |  | 
|  | list_add(&device->dev_list, &fs_devices->devices); | 
|  | device->fs_devices = fs_devices; | 
|  | fs_devices->num_devices++; | 
|  | } | 
|  | return fs_devices; | 
|  | error: | 
|  | free_fs_devices(fs_devices); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, | 
|  | struct btrfs_device **latest_dev) | 
|  | { | 
|  | struct btrfs_device *device, *next; | 
|  |  | 
|  | /* This is the initialized path, it is safe to release the devices. */ | 
|  | list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { | 
|  | if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { | 
|  | if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, | 
|  | &device->dev_state) && | 
|  | !test_bit(BTRFS_DEV_STATE_MISSING, | 
|  | &device->dev_state) && | 
|  | (!*latest_dev || | 
|  | device->generation > (*latest_dev)->generation)) { | 
|  | *latest_dev = device; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, | 
|  | * in btrfs_init_dev_replace() so just continue. | 
|  | */ | 
|  | if (device->devid == BTRFS_DEV_REPLACE_DEVID) | 
|  | continue; | 
|  |  | 
|  | if (device->bdev_file) { | 
|  | bdev_fput(device->bdev_file); | 
|  | device->bdev = NULL; | 
|  | device->bdev_file = NULL; | 
|  | fs_devices->open_devices--; | 
|  | } | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { | 
|  | list_del_init(&device->dev_alloc_list); | 
|  | clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); | 
|  | fs_devices->rw_devices--; | 
|  | } | 
|  | list_del_init(&device->dev_list); | 
|  | fs_devices->num_devices--; | 
|  | btrfs_free_device(device); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After we have read the system tree and know devids belonging to this | 
|  | * filesystem, remove the device which does not belong there. | 
|  | */ | 
|  | void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) | 
|  | { | 
|  | struct btrfs_device *latest_dev = NULL; | 
|  | struct btrfs_fs_devices *seed_dev; | 
|  |  | 
|  | mutex_lock(&uuid_mutex); | 
|  | __btrfs_free_extra_devids(fs_devices, &latest_dev); | 
|  |  | 
|  | list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) | 
|  | __btrfs_free_extra_devids(seed_dev, &latest_dev); | 
|  |  | 
|  | fs_devices->latest_dev = latest_dev; | 
|  |  | 
|  | mutex_unlock(&uuid_mutex); | 
|  | } | 
|  |  | 
|  | static void btrfs_close_bdev(struct btrfs_device *device) | 
|  | { | 
|  | if (!device->bdev) | 
|  | return; | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { | 
|  | sync_blockdev(device->bdev); | 
|  | invalidate_bdev(device->bdev); | 
|  | } | 
|  |  | 
|  | bdev_fput(device->bdev_file); | 
|  | } | 
|  |  | 
|  | static void btrfs_close_one_device(struct btrfs_device *device) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = device->fs_devices; | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && | 
|  | device->devid != BTRFS_DEV_REPLACE_DEVID) { | 
|  | list_del_init(&device->dev_alloc_list); | 
|  | fs_devices->rw_devices--; | 
|  | } | 
|  |  | 
|  | if (device->devid == BTRFS_DEV_REPLACE_DEVID) | 
|  | clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { | 
|  | clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); | 
|  | fs_devices->missing_devices--; | 
|  | } | 
|  |  | 
|  | btrfs_close_bdev(device); | 
|  | if (device->bdev) { | 
|  | fs_devices->open_devices--; | 
|  | device->bdev = NULL; | 
|  | device->bdev_file = NULL; | 
|  | } | 
|  | clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); | 
|  | btrfs_destroy_dev_zone_info(device); | 
|  |  | 
|  | device->fs_info = NULL; | 
|  | atomic_set(&device->dev_stats_ccnt, 0); | 
|  | btrfs_extent_io_tree_release(&device->alloc_state); | 
|  |  | 
|  | /* | 
|  | * Reset the flush error record. We might have a transient flush error | 
|  | * in this mount, and if so we aborted the current transaction and set | 
|  | * the fs to an error state, guaranteeing no super blocks can be further | 
|  | * committed. However that error might be transient and if we unmount the | 
|  | * filesystem and mount it again, we should allow the mount to succeed | 
|  | * (btrfs_check_rw_degradable() should not fail) - if after mounting the | 
|  | * filesystem again we still get flush errors, then we will again abort | 
|  | * any transaction and set the error state, guaranteeing no commits of | 
|  | * unsafe super blocks. | 
|  | */ | 
|  | device->last_flush_error = 0; | 
|  |  | 
|  | /* Verify the device is back in a pristine state  */ | 
|  | WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); | 
|  | WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); | 
|  | WARN_ON(!list_empty(&device->dev_alloc_list)); | 
|  | WARN_ON(!list_empty(&device->post_commit_list)); | 
|  | } | 
|  |  | 
|  | static void close_fs_devices(struct btrfs_fs_devices *fs_devices) | 
|  | { | 
|  | struct btrfs_device *device, *tmp; | 
|  |  | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  |  | 
|  | if (--fs_devices->opened > 0) | 
|  | return; | 
|  |  | 
|  | list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) | 
|  | btrfs_close_one_device(device); | 
|  |  | 
|  | WARN_ON(fs_devices->open_devices); | 
|  | WARN_ON(fs_devices->rw_devices); | 
|  | fs_devices->opened = 0; | 
|  | fs_devices->seeding = false; | 
|  | fs_devices->fs_info = NULL; | 
|  | } | 
|  |  | 
|  | void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | 
|  | { | 
|  | LIST_HEAD(list); | 
|  | struct btrfs_fs_devices *tmp; | 
|  |  | 
|  | mutex_lock(&uuid_mutex); | 
|  | close_fs_devices(fs_devices); | 
|  | if (!fs_devices->opened && !fs_devices->holding) { | 
|  | list_splice_init(&fs_devices->seed_list, &list); | 
|  |  | 
|  | /* | 
|  | * If the struct btrfs_fs_devices is not assembled with any | 
|  | * other device, it can be re-initialized during the next mount | 
|  | * without the needing device-scan step. Therefore, it can be | 
|  | * fully freed. | 
|  | */ | 
|  | if (fs_devices->num_devices == 1) { | 
|  | list_del(&fs_devices->fs_list); | 
|  | free_fs_devices(fs_devices); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { | 
|  | close_fs_devices(fs_devices); | 
|  | list_del(&fs_devices->seed_list); | 
|  | free_fs_devices(fs_devices); | 
|  | } | 
|  | mutex_unlock(&uuid_mutex); | 
|  | } | 
|  |  | 
|  | static int open_fs_devices(struct btrfs_fs_devices *fs_devices, | 
|  | blk_mode_t flags, void *holder) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_device *latest_dev = NULL; | 
|  | struct btrfs_device *tmp_device; | 
|  | s64 __maybe_unused value = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, | 
|  | dev_list) { | 
|  | int ret2; | 
|  |  | 
|  | ret2 = btrfs_open_one_device(fs_devices, device, flags, holder); | 
|  | if (ret2 == 0 && | 
|  | (!latest_dev || device->generation > latest_dev->generation)) { | 
|  | latest_dev = device; | 
|  | } else if (ret2 == -ENODATA) { | 
|  | fs_devices->num_devices--; | 
|  | list_del(&device->dev_list); | 
|  | btrfs_free_device(device); | 
|  | } | 
|  | if (ret == 0 && ret2 != 0) | 
|  | ret = ret2; | 
|  | } | 
|  |  | 
|  | if (fs_devices->open_devices == 0) { | 
|  | if (ret) | 
|  | return ret; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | fs_devices->opened = 1; | 
|  | fs_devices->latest_dev = latest_dev; | 
|  | fs_devices->total_rw_bytes = 0; | 
|  | fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; | 
|  | #ifdef CONFIG_BTRFS_EXPERIMENTAL | 
|  | fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ; | 
|  | fs_devices->read_devid = latest_dev->devid; | 
|  | fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(), | 
|  | &value); | 
|  | if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) | 
|  | fs_devices->collect_fs_stats = true; | 
|  |  | 
|  | if (value) { | 
|  | if (fs_devices->read_policy == BTRFS_READ_POLICY_RR) | 
|  | fs_devices->rr_min_contig_read = value; | 
|  | if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID) | 
|  | fs_devices->read_devid = value; | 
|  | } | 
|  | #else | 
|  | fs_devices->read_policy = BTRFS_READ_POLICY_PID; | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int devid_cmp(void *priv, const struct list_head *a, | 
|  | const struct list_head *b) | 
|  | { | 
|  | const struct btrfs_device *dev1, *dev2; | 
|  |  | 
|  | dev1 = list_entry(a, struct btrfs_device, dev_list); | 
|  | dev2 = list_entry(b, struct btrfs_device, dev_list); | 
|  |  | 
|  | if (dev1->devid < dev2->devid) | 
|  | return -1; | 
|  | else if (dev1->devid > dev2->devid) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | 
|  | blk_mode_t flags, void *holder) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  | /* | 
|  | * The device_list_mutex cannot be taken here in case opening the | 
|  | * underlying device takes further locks like open_mutex. | 
|  | * | 
|  | * We also don't need the lock here as this is called during mount and | 
|  | * exclusion is provided by uuid_mutex | 
|  | */ | 
|  |  | 
|  | if (fs_devices->opened) { | 
|  | fs_devices->opened++; | 
|  | ret = 0; | 
|  | } else { | 
|  | list_sort(NULL, &fs_devices->devices, devid_cmp); | 
|  | ret = open_fs_devices(fs_devices, flags, holder); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_release_disk_super(struct btrfs_super_block *super) | 
|  | { | 
|  | struct page *page = virt_to_page(super); | 
|  |  | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, | 
|  | int copy_num, bool drop_cache) | 
|  | { | 
|  | struct btrfs_super_block *super; | 
|  | struct page *page; | 
|  | u64 bytenr, bytenr_orig; | 
|  | struct address_space *mapping = bdev->bd_mapping; | 
|  | int ret; | 
|  |  | 
|  | bytenr_orig = btrfs_sb_offset(copy_num); | 
|  | ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); | 
|  | if (ret < 0) { | 
|  | if (ret == -ENOENT) | 
|  | ret = -EINVAL; | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (drop_cache) { | 
|  | /* This should only be called with the primary sb. */ | 
|  | ASSERT(copy_num == 0); | 
|  |  | 
|  | /* | 
|  | * Drop the page of the primary superblock, so later read will | 
|  | * always read from the device. | 
|  | */ | 
|  | invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT, | 
|  | (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); | 
|  | if (IS_ERR(page)) | 
|  | return ERR_CAST(page); | 
|  |  | 
|  | super = page_address(page); | 
|  | if (btrfs_super_magic(super) != BTRFS_MAGIC || | 
|  | btrfs_super_bytenr(super) != bytenr_orig) { | 
|  | btrfs_release_disk_super(super); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure the last byte of label is properly NUL terminated.  We use | 
|  | * '%s' to print the label, if not properly NUL terminated we can access | 
|  | * beyond the label. | 
|  | */ | 
|  | if (super->label[0] && super->label[BTRFS_LABEL_SIZE - 1]) | 
|  | super->label[BTRFS_LABEL_SIZE - 1] = 0; | 
|  |  | 
|  | return super; | 
|  | } | 
|  |  | 
|  | int btrfs_forget_devices(dev_t devt) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&uuid_mutex); | 
|  | ret = btrfs_free_stale_devices(devt, NULL); | 
|  | mutex_unlock(&uuid_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool btrfs_skip_registration(struct btrfs_super_block *disk_super, | 
|  | const char *path, dev_t devt, | 
|  | bool mount_arg_dev) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  |  | 
|  | /* | 
|  | * Do not skip device registration for mounted devices with matching | 
|  | * maj:min but different paths. Booting without initrd relies on | 
|  | * /dev/root initially, later replaced with the actual root device. | 
|  | * A successful scan ensures grub2-probe selects the correct device. | 
|  | */ | 
|  | list_for_each_entry(fs_devices, &fs_uuids, fs_list) { | 
|  | struct btrfs_device *device; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | if (!fs_devices->opened) { | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | if (device->bdev && (device->bdev->bd_dev == devt) && | 
|  | strcmp(rcu_dereference_raw(device->name), path) != 0) { | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | /* Do not skip registration. */ | 
|  | return false; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | } | 
|  |  | 
|  | if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 && | 
|  | !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look for a btrfs signature on a device. This may be called out of the mount path | 
|  | * and we are not allowed to call set_blocksize during the scan. The superblock | 
|  | * is read via pagecache. | 
|  | * | 
|  | * With @mount_arg_dev it's a scan during mount time that will always register | 
|  | * the device or return an error. Multi-device and seeding devices are registered | 
|  | * in both cases. | 
|  | */ | 
|  | struct btrfs_device *btrfs_scan_one_device(const char *path, | 
|  | bool mount_arg_dev) | 
|  | { | 
|  | struct btrfs_super_block *disk_super; | 
|  | bool new_device_added = false; | 
|  | struct btrfs_device *device = NULL; | 
|  | struct file *bdev_file; | 
|  | dev_t devt; | 
|  |  | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  |  | 
|  | /* | 
|  | * Avoid an exclusive open here, as the systemd-udev may initiate the | 
|  | * device scan which may race with the user's mount or mkfs command, | 
|  | * resulting in failure. | 
|  | * Since the device scan is solely for reading purposes, there is no | 
|  | * need for an exclusive open. Additionally, the devices are read again | 
|  | * during the mount process. It is ok to get some inconsistent | 
|  | * values temporarily, as the device paths of the fsid are the only | 
|  | * required information for assembling the volume. | 
|  | */ | 
|  | bdev_file = bdev_file_open_by_path(path, BLK_OPEN_READ, NULL, NULL); | 
|  | if (IS_ERR(bdev_file)) | 
|  | return ERR_CAST(bdev_file); | 
|  |  | 
|  | disk_super = btrfs_read_disk_super(file_bdev(bdev_file), 0, false); | 
|  | if (IS_ERR(disk_super)) { | 
|  | device = ERR_CAST(disk_super); | 
|  | goto error_bdev_put; | 
|  | } | 
|  |  | 
|  | devt = file_bdev(bdev_file)->bd_dev; | 
|  | if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) { | 
|  | btrfs_debug(NULL, "skip registering single non-seed device %s (%d:%d)", | 
|  | path, MAJOR(devt), MINOR(devt)); | 
|  |  | 
|  | btrfs_free_stale_devices(devt, NULL); | 
|  |  | 
|  | device = NULL; | 
|  | goto free_disk_super; | 
|  | } | 
|  |  | 
|  | device = device_list_add(path, disk_super, &new_device_added); | 
|  | if (!IS_ERR(device) && new_device_added) | 
|  | btrfs_free_stale_devices(device->devt, device); | 
|  |  | 
|  | free_disk_super: | 
|  | btrfs_release_disk_super(disk_super); | 
|  |  | 
|  | error_bdev_put: | 
|  | bdev_fput(bdev_file); | 
|  |  | 
|  | return device; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to find a chunk that intersects [start, start + len] range and when one | 
|  | * such is found, record the end of it in *start | 
|  | */ | 
|  | static bool contains_pending_extent(struct btrfs_device *device, u64 *start, | 
|  | u64 len) | 
|  | { | 
|  | u64 physical_start, physical_end; | 
|  |  | 
|  | lockdep_assert_held(&device->fs_info->chunk_mutex); | 
|  |  | 
|  | if (btrfs_find_first_extent_bit(&device->alloc_state, *start, | 
|  | &physical_start, &physical_end, | 
|  | CHUNK_ALLOCATED, NULL)) { | 
|  |  | 
|  | if (in_range(physical_start, *start, len) || | 
|  | in_range(*start, physical_start, | 
|  | physical_end + 1 - physical_start)) { | 
|  | *start = physical_end + 1; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static u64 dev_extent_search_start(struct btrfs_device *device) | 
|  | { | 
|  | switch (device->fs_devices->chunk_alloc_policy) { | 
|  | default: | 
|  | btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); | 
|  | fallthrough; | 
|  | case BTRFS_CHUNK_ALLOC_REGULAR: | 
|  | return BTRFS_DEVICE_RANGE_RESERVED; | 
|  | case BTRFS_CHUNK_ALLOC_ZONED: | 
|  | /* | 
|  | * We don't care about the starting region like regular | 
|  | * allocator, because we anyway use/reserve the first two zones | 
|  | * for superblock logging. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool dev_extent_hole_check_zoned(struct btrfs_device *device, | 
|  | u64 *hole_start, u64 *hole_size, | 
|  | u64 num_bytes) | 
|  | { | 
|  | u64 zone_size = device->zone_info->zone_size; | 
|  | u64 pos; | 
|  | int ret; | 
|  | bool changed = false; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(*hole_start, zone_size), | 
|  | "hole_start=%llu zone_size=%llu", *hole_start, zone_size); | 
|  |  | 
|  | while (*hole_size > 0) { | 
|  | pos = btrfs_find_allocatable_zones(device, *hole_start, | 
|  | *hole_start + *hole_size, | 
|  | num_bytes); | 
|  | if (pos != *hole_start) { | 
|  | *hole_size = *hole_start + *hole_size - pos; | 
|  | *hole_start = pos; | 
|  | changed = true; | 
|  | if (*hole_size < num_bytes) | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = btrfs_ensure_empty_zones(device, pos, num_bytes); | 
|  |  | 
|  | /* Range is ensured to be empty */ | 
|  | if (!ret) | 
|  | return changed; | 
|  |  | 
|  | /* Given hole range was invalid (outside of device) */ | 
|  | if (ret == -ERANGE) { | 
|  | *hole_start += *hole_size; | 
|  | *hole_size = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | *hole_start += zone_size; | 
|  | *hole_size -= zone_size; | 
|  | changed = true; | 
|  | } | 
|  |  | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if specified hole is suitable for allocation. | 
|  | * | 
|  | * @device:	the device which we have the hole | 
|  | * @hole_start: starting position of the hole | 
|  | * @hole_size:	the size of the hole | 
|  | * @num_bytes:	the size of the free space that we need | 
|  | * | 
|  | * This function may modify @hole_start and @hole_size to reflect the suitable | 
|  | * position for allocation. Returns 1 if hole position is updated, 0 otherwise. | 
|  | */ | 
|  | static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, | 
|  | u64 *hole_size, u64 num_bytes) | 
|  | { | 
|  | bool changed = false; | 
|  | u64 hole_end = *hole_start + *hole_size; | 
|  |  | 
|  | for (;;) { | 
|  | /* | 
|  | * Check before we set max_hole_start, otherwise we could end up | 
|  | * sending back this offset anyway. | 
|  | */ | 
|  | if (contains_pending_extent(device, hole_start, *hole_size)) { | 
|  | if (hole_end >= *hole_start) | 
|  | *hole_size = hole_end - *hole_start; | 
|  | else | 
|  | *hole_size = 0; | 
|  | changed = true; | 
|  | } | 
|  |  | 
|  | switch (device->fs_devices->chunk_alloc_policy) { | 
|  | default: | 
|  | btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy); | 
|  | fallthrough; | 
|  | case BTRFS_CHUNK_ALLOC_REGULAR: | 
|  | /* No extra check */ | 
|  | break; | 
|  | case BTRFS_CHUNK_ALLOC_ZONED: | 
|  | if (dev_extent_hole_check_zoned(device, hole_start, | 
|  | hole_size, num_bytes)) { | 
|  | changed = true; | 
|  | /* | 
|  | * The changed hole can contain pending extent. | 
|  | * Loop again to check that. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find free space in the specified device. | 
|  | * | 
|  | * @device:	  the device which we search the free space in | 
|  | * @num_bytes:	  the size of the free space that we need | 
|  | * @search_start: the position from which to begin the search | 
|  | * @start:	  store the start of the free space. | 
|  | * @len:	  the size of the free space. that we find, or the size | 
|  | *		  of the max free space if we don't find suitable free space | 
|  | * | 
|  | * This does a pretty simple search, the expectation is that it is called very | 
|  | * infrequently and that a given device has a small number of extents. | 
|  | * | 
|  | * @start is used to store the start of the free space if we find. But if we | 
|  | * don't find suitable free space, it will be used to store the start position | 
|  | * of the max free space. | 
|  | * | 
|  | * @len is used to store the size of the free space that we find. | 
|  | * But if we don't find suitable free space, it is used to store the size of | 
|  | * the max free space. | 
|  | * | 
|  | * NOTE: This function will search *commit* root of device tree, and does extra | 
|  | * check to ensure dev extents are not double allocated. | 
|  | * This makes the function safe to allocate dev extents but may not report | 
|  | * correct usable device space, as device extent freed in current transaction | 
|  | * is not reported as available. | 
|  | */ | 
|  | static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, | 
|  | u64 *start, u64 *len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  | struct btrfs_root *root = fs_info->dev_root; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_dev_extent *dev_extent; | 
|  | struct btrfs_path *path; | 
|  | u64 search_start; | 
|  | u64 hole_size; | 
|  | u64 max_hole_start; | 
|  | u64 max_hole_size = 0; | 
|  | u64 extent_end; | 
|  | u64 search_end = device->total_bytes; | 
|  | int ret; | 
|  | int slot; | 
|  | struct extent_buffer *l; | 
|  |  | 
|  | search_start = dev_extent_search_start(device); | 
|  | max_hole_start = search_start; | 
|  |  | 
|  | WARN_ON(device->zone_info && | 
|  | !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | again: | 
|  | if (search_start >= search_end || | 
|  | test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { | 
|  | ret = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | path->reada = READA_FORWARD; | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  |  | 
|  | key.objectid = device->devid; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  | key.offset = search_start; | 
|  |  | 
|  | ret = btrfs_search_backwards(root, &key, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | while (search_start < search_end) { | 
|  | l = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | if (slot >= btrfs_header_nritems(l)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret == 0) | 
|  | continue; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | break; | 
|  | } | 
|  | btrfs_item_key_to_cpu(l, &key, slot); | 
|  |  | 
|  | if (key.objectid < device->devid) | 
|  | goto next; | 
|  |  | 
|  | if (key.objectid > device->devid) | 
|  | break; | 
|  |  | 
|  | if (key.type != BTRFS_DEV_EXTENT_KEY) | 
|  | goto next; | 
|  |  | 
|  | if (key.offset > search_end) | 
|  | break; | 
|  |  | 
|  | if (key.offset > search_start) { | 
|  | hole_size = key.offset - search_start; | 
|  | dev_extent_hole_check(device, &search_start, &hole_size, | 
|  | num_bytes); | 
|  |  | 
|  | if (hole_size > max_hole_size) { | 
|  | max_hole_start = search_start; | 
|  | max_hole_size = hole_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this free space is greater than which we need, | 
|  | * it must be the max free space that we have found | 
|  | * until now, so max_hole_start must point to the start | 
|  | * of this free space and the length of this free space | 
|  | * is stored in max_hole_size. Thus, we return | 
|  | * max_hole_start and max_hole_size and go back to the | 
|  | * caller. | 
|  | */ | 
|  | if (hole_size >= num_bytes) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
|  | extent_end = key.offset + btrfs_dev_extent_length(l, | 
|  | dev_extent); | 
|  | if (extent_end > search_start) | 
|  | search_start = extent_end; | 
|  | next: | 
|  | path->slots[0]++; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At this point, search_start should be the end of | 
|  | * allocated dev extents, and when shrinking the device, | 
|  | * search_end may be smaller than search_start. | 
|  | */ | 
|  | if (search_end > search_start) { | 
|  | hole_size = search_end - search_start; | 
|  | if (dev_extent_hole_check(device, &search_start, &hole_size, | 
|  | num_bytes)) { | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (hole_size > max_hole_size) { | 
|  | max_hole_start = search_start; | 
|  | max_hole_size = hole_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* See above. */ | 
|  | if (max_hole_size < num_bytes) | 
|  | ret = -ENOSPC; | 
|  | else | 
|  | ret = 0; | 
|  |  | 
|  | ASSERT(max_hole_start + max_hole_size <= search_end, | 
|  | "max_hole_start=%llu max_hole_size=%llu search_end=%llu", | 
|  | max_hole_start, max_hole_size, search_end); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | *start = max_hole_start; | 
|  | if (len) | 
|  | *len = max_hole_size; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device, | 
|  | u64 start, u64 *dev_extent_len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  | struct btrfs_root *root = fs_info->dev_root; | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *leaf = NULL; | 
|  | struct btrfs_dev_extent *extent = NULL; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = device->devid; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  | key.offset = start; | 
|  | again: | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) { | 
|  | ret = btrfs_previous_item(root, path, key.objectid, | 
|  | BTRFS_DEV_EXTENT_KEY); | 
|  | if (ret) | 
|  | goto out; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | extent = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_dev_extent); | 
|  | BUG_ON(found_key.offset > start || found_key.offset + | 
|  | btrfs_dev_extent_length(leaf, extent) < start); | 
|  | key = found_key; | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } else if (ret == 0) { | 
|  | leaf = path->nodes[0]; | 
|  | extent = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_dev_extent); | 
|  | } else { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | *dev_extent_len = btrfs_dev_extent_length(leaf, extent); | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | if (ret == 0) | 
|  | set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 find_next_chunk(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct rb_node *n; | 
|  | u64 ret = 0; | 
|  |  | 
|  | read_lock(&fs_info->mapping_tree_lock); | 
|  | n = rb_last(&fs_info->mapping_tree.rb_root); | 
|  | if (n) { | 
|  | struct btrfs_chunk_map *map; | 
|  |  | 
|  | map = rb_entry(n, struct btrfs_chunk_map, rb_node); | 
|  | ret = map->start + map->chunk_len; | 
|  | } | 
|  | read_unlock(&fs_info->mapping_tree_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int find_next_devid(struct btrfs_fs_info *fs_info, | 
|  | u64 *devid_ret) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_path *path; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | if (unlikely(ret == 0)) { | 
|  | /* Corruption */ | 
|  | btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); | 
|  | ret = -EUCLEAN; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | ret = btrfs_previous_item(fs_info->chunk_root, path, | 
|  | BTRFS_DEV_ITEMS_OBJECTID, | 
|  | BTRFS_DEV_ITEM_KEY); | 
|  | if (ret) { | 
|  | *devid_ret = 1; | 
|  | } else { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  | *devid_ret = found_key.offset + 1; | 
|  | } | 
|  | ret = 0; | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the device information is stored in the chunk root | 
|  | * the btrfs_device struct should be fully filled in | 
|  | */ | 
|  | static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_dev_item *dev_item; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | unsigned long ptr; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  | key.offset = device->devid; | 
|  |  | 
|  | btrfs_reserve_chunk_metadata(trans, true); | 
|  | ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, | 
|  | &key, sizeof(*dev_item)); | 
|  | btrfs_trans_release_chunk_metadata(trans); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | 
|  |  | 
|  | btrfs_set_device_id(leaf, dev_item, device->devid); | 
|  | btrfs_set_device_generation(leaf, dev_item, 0); | 
|  | btrfs_set_device_type(leaf, dev_item, device->type); | 
|  | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | 
|  | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | 
|  | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | 
|  | btrfs_set_device_total_bytes(leaf, dev_item, | 
|  | btrfs_device_get_disk_total_bytes(device)); | 
|  | btrfs_set_device_bytes_used(leaf, dev_item, | 
|  | btrfs_device_get_bytes_used(device)); | 
|  | btrfs_set_device_group(leaf, dev_item, 0); | 
|  | btrfs_set_device_seek_speed(leaf, dev_item, 0); | 
|  | btrfs_set_device_bandwidth(leaf, dev_item, 0); | 
|  | btrfs_set_device_start_offset(leaf, dev_item, 0); | 
|  |  | 
|  | ptr = btrfs_device_uuid(dev_item); | 
|  | write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | 
|  | ptr = btrfs_device_fsid(dev_item); | 
|  | write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, | 
|  | ptr, BTRFS_FSID_SIZE); | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function to update ctime/mtime for a given device path. | 
|  | * Mainly used for ctime/mtime based probe like libblkid. | 
|  | * | 
|  | * We don't care about errors here, this is just to be kind to userspace. | 
|  | */ | 
|  | static void update_dev_time(const char *device_path) | 
|  | { | 
|  | struct path path; | 
|  | int ret; | 
|  |  | 
|  | ret = kern_path(device_path, LOOKUP_FOLLOW, &path); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); | 
|  | path_put(&path); | 
|  | } | 
|  |  | 
|  | static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device) | 
|  | { | 
|  | struct btrfs_root *root = device->fs_info->chunk_root; | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  | key.offset = device->devid; | 
|  |  | 
|  | btrfs_reserve_chunk_metadata(trans, false); | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | btrfs_trans_release_chunk_metadata(trans); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify that @num_devices satisfies the RAID profile constraints in the whole | 
|  | * filesystem. It's up to the caller to adjust that number regarding eg. device | 
|  | * replace. | 
|  | */ | 
|  | static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, | 
|  | u64 num_devices) | 
|  | { | 
|  | u64 all_avail; | 
|  | unsigned seq; | 
|  | int i; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&fs_info->profiles_lock); | 
|  |  | 
|  | all_avail = fs_info->avail_data_alloc_bits | | 
|  | fs_info->avail_system_alloc_bits | | 
|  | fs_info->avail_metadata_alloc_bits; | 
|  | } while (read_seqretry(&fs_info->profiles_lock, seq)); | 
|  |  | 
|  | for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { | 
|  | if (!(all_avail & btrfs_raid_array[i].bg_flag)) | 
|  | continue; | 
|  |  | 
|  | if (num_devices < btrfs_raid_array[i].devs_min) | 
|  | return btrfs_raid_array[i].mindev_error; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct btrfs_device * btrfs_find_next_active_device( | 
|  | struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) | 
|  | { | 
|  | struct btrfs_device *next_device; | 
|  |  | 
|  | list_for_each_entry(next_device, &fs_devs->devices, dev_list) { | 
|  | if (next_device != device && | 
|  | !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) | 
|  | && next_device->bdev) | 
|  | return next_device; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function to check if the given device is part of s_bdev / latest_dev | 
|  | * and replace it with the provided or the next active device, in the context | 
|  | * where this function called, there should be always be another device (or | 
|  | * this_dev) which is active. | 
|  | */ | 
|  | void __cold btrfs_assign_next_active_device(struct btrfs_device *device, | 
|  | struct btrfs_device *next_device) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  |  | 
|  | if (!next_device) | 
|  | next_device = btrfs_find_next_active_device(fs_info->fs_devices, | 
|  | device); | 
|  | ASSERT(next_device); | 
|  |  | 
|  | if (fs_info->sb->s_bdev && | 
|  | (fs_info->sb->s_bdev == device->bdev)) | 
|  | fs_info->sb->s_bdev = next_device->bdev; | 
|  |  | 
|  | if (fs_info->fs_devices->latest_dev->bdev == device->bdev) | 
|  | fs_info->fs_devices->latest_dev = next_device; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return btrfs_fs_devices::num_devices excluding the device that's being | 
|  | * currently replaced. | 
|  | */ | 
|  | static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | u64 num_devices = fs_info->fs_devices->num_devices; | 
|  |  | 
|  | down_read(&fs_info->dev_replace.rwsem); | 
|  | if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { | 
|  | ASSERT(num_devices > 1, "num_devices=%llu", num_devices); | 
|  | num_devices--; | 
|  | } | 
|  | up_read(&fs_info->dev_replace.rwsem); | 
|  |  | 
|  | return num_devices; | 
|  | } | 
|  |  | 
|  | static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, | 
|  | struct block_device *bdev, int copy_num) | 
|  | { | 
|  | struct btrfs_super_block *disk_super; | 
|  | const size_t len = sizeof(disk_super->magic); | 
|  | const u64 bytenr = btrfs_sb_offset(copy_num); | 
|  | int ret; | 
|  |  | 
|  | disk_super = btrfs_read_disk_super(bdev, copy_num, false); | 
|  | if (IS_ERR(disk_super)) | 
|  | return; | 
|  |  | 
|  | memset(&disk_super->magic, 0, len); | 
|  | folio_mark_dirty(virt_to_folio(disk_super)); | 
|  | btrfs_release_disk_super(disk_super); | 
|  |  | 
|  | ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); | 
|  | if (ret) | 
|  | btrfs_warn(fs_info, "error clearing superblock number %d (%d)", | 
|  | copy_num, ret); | 
|  | } | 
|  |  | 
|  | void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device) | 
|  | { | 
|  | int copy_num; | 
|  | struct block_device *bdev = device->bdev; | 
|  |  | 
|  | if (!bdev) | 
|  | return; | 
|  |  | 
|  | for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { | 
|  | if (bdev_is_zoned(bdev)) | 
|  | btrfs_reset_sb_log_zones(bdev, copy_num); | 
|  | else | 
|  | btrfs_scratch_superblock(fs_info, bdev, copy_num); | 
|  | } | 
|  |  | 
|  | /* Notify udev that device has changed */ | 
|  | btrfs_kobject_uevent(bdev, KOBJ_CHANGE); | 
|  |  | 
|  | /* Update ctime/mtime for device path for libblkid */ | 
|  | update_dev_time(rcu_dereference_raw(device->name)); | 
|  | } | 
|  |  | 
|  | int btrfs_rm_device(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_dev_lookup_args *args, | 
|  | struct file **bdev_file) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_fs_devices *cur_devices; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | u64 num_devices; | 
|  | int ret = 0; | 
|  |  | 
|  | if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { | 
|  | btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The device list in fs_devices is accessed without locks (neither | 
|  | * uuid_mutex nor device_list_mutex) as it won't change on a mounted | 
|  | * filesystem and another device rm cannot run. | 
|  | */ | 
|  | num_devices = btrfs_num_devices(fs_info); | 
|  |  | 
|  | ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | device = btrfs_find_device(fs_info->fs_devices, args); | 
|  | if (!device) { | 
|  | if (args->missing) | 
|  | ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; | 
|  | else | 
|  | ret = -ENOENT; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (btrfs_pinned_by_swapfile(fs_info, device)) { | 
|  | btrfs_warn(fs_info, | 
|  | "cannot remove device %s (devid %llu) due to active swapfile", | 
|  | btrfs_dev_name(device), device->devid); | 
|  | return -ETXTBSY; | 
|  | } | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) | 
|  | return BTRFS_ERROR_DEV_TGT_REPLACE; | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && | 
|  | fs_info->fs_devices->rw_devices == 1) | 
|  | return BTRFS_ERROR_DEV_ONLY_WRITABLE; | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | list_del_init(&device->dev_alloc_list); | 
|  | device->fs_devices->rw_devices--; | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | } | 
|  |  | 
|  | ret = btrfs_shrink_device(device, 0); | 
|  | if (ret) | 
|  | goto error_undo; | 
|  |  | 
|  | trans = btrfs_start_transaction(fs_info->chunk_root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto error_undo; | 
|  | } | 
|  |  | 
|  | ret = btrfs_rm_dev_item(trans, device); | 
|  | if (unlikely(ret)) { | 
|  | /* Any error in dev item removal is critical */ | 
|  | btrfs_crit(fs_info, | 
|  | "failed to remove device item for devid %llu: %d", | 
|  | device->devid, ret); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | btrfs_end_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); | 
|  | btrfs_scrub_cancel_dev(device); | 
|  |  | 
|  | /* | 
|  | * the device list mutex makes sure that we don't change | 
|  | * the device list while someone else is writing out all | 
|  | * the device supers. Whoever is writing all supers, should | 
|  | * lock the device list mutex before getting the number of | 
|  | * devices in the super block (super_copy). Conversely, | 
|  | * whoever updates the number of devices in the super block | 
|  | * (super_copy) should hold the device list mutex. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * In normal cases the cur_devices == fs_devices. But in case | 
|  | * of deleting a seed device, the cur_devices should point to | 
|  | * its own fs_devices listed under the fs_devices->seed_list. | 
|  | */ | 
|  | cur_devices = device->fs_devices; | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_del_rcu(&device->dev_list); | 
|  |  | 
|  | cur_devices->num_devices--; | 
|  | cur_devices->total_devices--; | 
|  | /* Update total_devices of the parent fs_devices if it's seed */ | 
|  | if (cur_devices != fs_devices) | 
|  | fs_devices->total_devices--; | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) | 
|  | cur_devices->missing_devices--; | 
|  |  | 
|  | btrfs_assign_next_active_device(device, NULL); | 
|  |  | 
|  | if (device->bdev_file) { | 
|  | cur_devices->open_devices--; | 
|  | /* remove sysfs entry */ | 
|  | btrfs_sysfs_remove_device(device); | 
|  | } | 
|  |  | 
|  | num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; | 
|  | btrfs_set_super_num_devices(fs_info->super_copy, num_devices); | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | /* | 
|  | * At this point, the device is zero sized and detached from the | 
|  | * devices list.  All that's left is to zero out the old supers and | 
|  | * free the device. | 
|  | * | 
|  | * We cannot call btrfs_close_bdev() here because we're holding the sb | 
|  | * write lock, and bdev_fput() on the block device will pull in the | 
|  | * ->open_mutex on the block device and it's dependencies.  Instead | 
|  | *  just flush the device and let the caller do the final bdev_release. | 
|  | */ | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { | 
|  | btrfs_scratch_superblocks(fs_info, device); | 
|  | if (device->bdev) { | 
|  | sync_blockdev(device->bdev); | 
|  | invalidate_bdev(device->bdev); | 
|  | } | 
|  | } | 
|  |  | 
|  | *bdev_file = device->bdev_file; | 
|  | synchronize_rcu(); | 
|  | btrfs_free_device(device); | 
|  |  | 
|  | /* | 
|  | * This can happen if cur_devices is the private seed devices list.  We | 
|  | * cannot call close_fs_devices() here because it expects the uuid_mutex | 
|  | * to be held, but in fact we don't need that for the private | 
|  | * seed_devices, we can simply decrement cur_devices->opened and then | 
|  | * remove it from our list and free the fs_devices. | 
|  | */ | 
|  | if (cur_devices->num_devices == 0) { | 
|  | list_del_init(&cur_devices->seed_list); | 
|  | ASSERT(cur_devices->opened == 1, "opened=%d", cur_devices->opened); | 
|  | cur_devices->opened--; | 
|  | free_fs_devices(cur_devices); | 
|  | } | 
|  |  | 
|  | ret = btrfs_commit_transaction(trans); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | error_undo: | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | list_add(&device->dev_alloc_list, | 
|  | &fs_devices->alloc_list); | 
|  | device->fs_devices->rw_devices++; | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  |  | 
|  | lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); | 
|  |  | 
|  | /* | 
|  | * in case of fs with no seed, srcdev->fs_devices will point | 
|  | * to fs_devices of fs_info. However when the dev being replaced is | 
|  | * a seed dev it will point to the seed's local fs_devices. In short | 
|  | * srcdev will have its correct fs_devices in both the cases. | 
|  | */ | 
|  | fs_devices = srcdev->fs_devices; | 
|  |  | 
|  | list_del_rcu(&srcdev->dev_list); | 
|  | list_del(&srcdev->dev_alloc_list); | 
|  | fs_devices->num_devices--; | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) | 
|  | fs_devices->missing_devices--; | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) | 
|  | fs_devices->rw_devices--; | 
|  |  | 
|  | if (srcdev->bdev) | 
|  | fs_devices->open_devices--; | 
|  | } | 
|  |  | 
|  | void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; | 
|  |  | 
|  | mutex_lock(&uuid_mutex); | 
|  |  | 
|  | btrfs_close_bdev(srcdev); | 
|  | synchronize_rcu(); | 
|  | btrfs_free_device(srcdev); | 
|  |  | 
|  | /* if this is no devs we rather delete the fs_devices */ | 
|  | if (!fs_devices->num_devices) { | 
|  | /* | 
|  | * On a mounted FS, num_devices can't be zero unless it's a | 
|  | * seed. In case of a seed device being replaced, the replace | 
|  | * target added to the sprout FS, so there will be no more | 
|  | * device left under the seed FS. | 
|  | */ | 
|  | ASSERT(fs_devices->seeding); | 
|  |  | 
|  | list_del_init(&fs_devices->seed_list); | 
|  | close_fs_devices(fs_devices); | 
|  | free_fs_devices(fs_devices); | 
|  | } | 
|  | mutex_unlock(&uuid_mutex); | 
|  | } | 
|  |  | 
|  | void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | btrfs_sysfs_remove_device(tgtdev); | 
|  |  | 
|  | if (tgtdev->bdev) | 
|  | fs_devices->open_devices--; | 
|  |  | 
|  | fs_devices->num_devices--; | 
|  |  | 
|  | btrfs_assign_next_active_device(tgtdev, NULL); | 
|  |  | 
|  | list_del_rcu(&tgtdev->dev_list); | 
|  |  | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev); | 
|  |  | 
|  | btrfs_close_bdev(tgtdev); | 
|  | synchronize_rcu(); | 
|  | btrfs_free_device(tgtdev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Populate args from device at path. | 
|  | * | 
|  | * @fs_info:	the filesystem | 
|  | * @args:	the args to populate | 
|  | * @path:	the path to the device | 
|  | * | 
|  | * This will read the super block of the device at @path and populate @args with | 
|  | * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to | 
|  | * lookup a device to operate on, but need to do it before we take any locks. | 
|  | * This properly handles the special case of "missing" that a user may pass in, | 
|  | * and does some basic sanity checks.  The caller must make sure that @path is | 
|  | * properly NUL terminated before calling in, and must call | 
|  | * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and | 
|  | * uuid buffers. | 
|  | * | 
|  | * Return: 0 for success, -errno for failure | 
|  | */ | 
|  | int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_dev_lookup_args *args, | 
|  | const char *path) | 
|  | { | 
|  | struct btrfs_super_block *disk_super; | 
|  | struct file *bdev_file; | 
|  | int ret; | 
|  |  | 
|  | if (!path || !path[0]) | 
|  | return -EINVAL; | 
|  | if (!strcmp(path, "missing")) { | 
|  | args->missing = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); | 
|  | args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); | 
|  | if (!args->uuid || !args->fsid) { | 
|  | btrfs_put_dev_args_from_path(args); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, | 
|  | &bdev_file, &disk_super); | 
|  | if (ret) { | 
|  | btrfs_put_dev_args_from_path(args); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | args->devid = btrfs_stack_device_id(&disk_super->dev_item); | 
|  | memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); | 
|  | if (btrfs_fs_incompat(fs_info, METADATA_UUID)) | 
|  | memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); | 
|  | else | 
|  | memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); | 
|  | btrfs_release_disk_super(disk_super); | 
|  | bdev_fput(bdev_file); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only use this jointly with btrfs_get_dev_args_from_path() because we will | 
|  | * allocate our ->uuid and ->fsid pointers, everybody else uses local variables | 
|  | * that don't need to be freed. | 
|  | */ | 
|  | void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) | 
|  | { | 
|  | kfree(args->uuid); | 
|  | kfree(args->fsid); | 
|  | args->uuid = NULL; | 
|  | args->fsid = NULL; | 
|  | } | 
|  |  | 
|  | struct btrfs_device *btrfs_find_device_by_devspec( | 
|  | struct btrfs_fs_info *fs_info, u64 devid, | 
|  | const char *device_path) | 
|  | { | 
|  | BTRFS_DEV_LOOKUP_ARGS(args); | 
|  | struct btrfs_device *device; | 
|  | int ret; | 
|  |  | 
|  | if (devid) { | 
|  | args.devid = devid; | 
|  | device = btrfs_find_device(fs_info->fs_devices, &args); | 
|  | if (!device) | 
|  | return ERR_PTR(-ENOENT); | 
|  | return device; | 
|  | } | 
|  |  | 
|  | ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  | device = btrfs_find_device(fs_info->fs_devices, &args); | 
|  | btrfs_put_dev_args_from_path(&args); | 
|  | if (!device) | 
|  | return ERR_PTR(-ENOENT); | 
|  | return device; | 
|  | } | 
|  |  | 
|  | static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_fs_devices *old_devices; | 
|  | struct btrfs_fs_devices *seed_devices; | 
|  |  | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  | if (!fs_devices->seeding) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* | 
|  | * Private copy of the seed devices, anchored at | 
|  | * fs_info->fs_devices->seed_list | 
|  | */ | 
|  | seed_devices = alloc_fs_devices(NULL); | 
|  | if (IS_ERR(seed_devices)) | 
|  | return seed_devices; | 
|  |  | 
|  | /* | 
|  | * It's necessary to retain a copy of the original seed fs_devices in | 
|  | * fs_uuids so that filesystems which have been seeded can successfully | 
|  | * reference the seed device from open_seed_devices. This also supports | 
|  | * multiple fs seed. | 
|  | */ | 
|  | old_devices = clone_fs_devices(fs_devices); | 
|  | if (IS_ERR(old_devices)) { | 
|  | kfree(seed_devices); | 
|  | return old_devices; | 
|  | } | 
|  |  | 
|  | list_add(&old_devices->fs_list, &fs_uuids); | 
|  |  | 
|  | memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); | 
|  | seed_devices->opened = 1; | 
|  | INIT_LIST_HEAD(&seed_devices->devices); | 
|  | INIT_LIST_HEAD(&seed_devices->alloc_list); | 
|  | mutex_init(&seed_devices->device_list_mutex); | 
|  |  | 
|  | return seed_devices; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Splice seed devices into the sprout fs_devices. | 
|  | * Generate a new fsid for the sprouted read-write filesystem. | 
|  | */ | 
|  | static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_fs_devices *seed_devices) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_super_block *disk_super = fs_info->super_copy; | 
|  | struct btrfs_device *device; | 
|  | u64 super_flags; | 
|  |  | 
|  | /* | 
|  | * We are updating the fsid, the thread leading to device_list_add() | 
|  | * could race, so uuid_mutex is needed. | 
|  | */ | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  |  | 
|  | /* | 
|  | * The threads listed below may traverse dev_list but can do that without | 
|  | * device_list_mutex: | 
|  | * - All device ops and balance - as we are in btrfs_exclop_start. | 
|  | * - Various dev_list readers - are using RCU. | 
|  | * - btrfs_ioctl_fitrim() - is using RCU. | 
|  | * | 
|  | * For-read threads as below are using device_list_mutex: | 
|  | * - Readonly scrub btrfs_scrub_dev() | 
|  | * - Readonly scrub btrfs_scrub_progress() | 
|  | * - btrfs_get_dev_stats() | 
|  | */ | 
|  | lockdep_assert_held(&fs_devices->device_list_mutex); | 
|  |  | 
|  | list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, | 
|  | synchronize_rcu); | 
|  | list_for_each_entry(device, &seed_devices->devices, dev_list) | 
|  | device->fs_devices = seed_devices; | 
|  |  | 
|  | fs_devices->seeding = false; | 
|  | fs_devices->num_devices = 0; | 
|  | fs_devices->open_devices = 0; | 
|  | fs_devices->missing_devices = 0; | 
|  | fs_devices->rotating = false; | 
|  | list_add(&seed_devices->seed_list, &fs_devices->seed_list); | 
|  |  | 
|  | generate_random_uuid(fs_devices->fsid); | 
|  | memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); | 
|  | memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | 
|  |  | 
|  | super_flags = btrfs_super_flags(disk_super) & | 
|  | ~BTRFS_SUPER_FLAG_SEEDING; | 
|  | btrfs_set_super_flags(disk_super, super_flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Store the expected generation for seed devices in device items. | 
|  | */ | 
|  | static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | BTRFS_DEV_LOOKUP_ARGS(args); | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *root = fs_info->chunk_root; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_dev_item *dev_item; | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_key key; | 
|  | u8 fs_uuid[BTRFS_FSID_SIZE]; | 
|  | u8 dev_uuid[BTRFS_UUID_SIZE]; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | while (1) { | 
|  | btrfs_reserve_chunk_metadata(trans, false); | 
|  | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
|  | btrfs_trans_release_chunk_metadata(trans); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | next_slot: | 
|  | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret > 0) | 
|  | break; | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | btrfs_release_path(path); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || | 
|  | key.type != BTRFS_DEV_ITEM_KEY) | 
|  | break; | 
|  |  | 
|  | dev_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_dev_item); | 
|  | args.devid = btrfs_device_id(leaf, dev_item); | 
|  | read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), | 
|  | BTRFS_UUID_SIZE); | 
|  | read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), | 
|  | BTRFS_FSID_SIZE); | 
|  | args.uuid = dev_uuid; | 
|  | args.fsid = fs_uuid; | 
|  | device = btrfs_find_device(fs_info->fs_devices, &args); | 
|  | BUG_ON(!device); /* Logic error */ | 
|  |  | 
|  | if (device->fs_devices->seeding) | 
|  | btrfs_set_device_generation(leaf, dev_item, | 
|  | device->generation); | 
|  |  | 
|  | path->slots[0]++; | 
|  | goto next_slot; | 
|  | } | 
|  | ret = 0; | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->dev_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_device *device; | 
|  | struct file *bdev_file; | 
|  | struct super_block *sb = fs_info->sb; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_fs_devices *seed_devices = NULL; | 
|  | u64 orig_super_total_bytes; | 
|  | u64 orig_super_num_devices; | 
|  | int ret = 0; | 
|  | bool seeding_dev = false; | 
|  | bool locked = false; | 
|  |  | 
|  | if (sb_rdonly(sb) && !fs_devices->seeding) | 
|  | return -EROFS; | 
|  |  | 
|  | bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE, | 
|  | fs_info->sb, &fs_holder_ops); | 
|  | if (IS_ERR(bdev_file)) | 
|  | return PTR_ERR(bdev_file); | 
|  |  | 
|  | if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) { | 
|  | ret = -EINVAL; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (bdev_nr_bytes(file_bdev(bdev_file)) <= BTRFS_DEVICE_RANGE_RESERVED) { | 
|  | ret = -EINVAL; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (fs_devices->seeding) { | 
|  | seeding_dev = true; | 
|  | down_write(&sb->s_umount); | 
|  | mutex_lock(&uuid_mutex); | 
|  | locked = true; | 
|  | } | 
|  |  | 
|  | sync_blockdev(file_bdev(bdev_file)); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { | 
|  | if (device->bdev == file_bdev(bdev_file)) { | 
|  | ret = -EEXIST; | 
|  | rcu_read_unlock(); | 
|  | goto error; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); | 
|  | if (IS_ERR(device)) { | 
|  | /* we can safely leave the fs_devices entry around */ | 
|  | ret = PTR_ERR(device); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | device->fs_info = fs_info; | 
|  | device->bdev_file = bdev_file; | 
|  | device->bdev = file_bdev(bdev_file); | 
|  | ret = lookup_bdev(device_path, &device->devt); | 
|  | if (ret) | 
|  | goto error_free_device; | 
|  |  | 
|  | ret = btrfs_get_dev_zone_info(device, false); | 
|  | if (ret) | 
|  | goto error_free_device; | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto error_free_zone; | 
|  | } | 
|  |  | 
|  | set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); | 
|  | device->generation = trans->transid; | 
|  | device->io_width = fs_info->sectorsize; | 
|  | device->io_align = fs_info->sectorsize; | 
|  | device->sector_size = fs_info->sectorsize; | 
|  | device->total_bytes = | 
|  | round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize); | 
|  | device->disk_total_bytes = device->total_bytes; | 
|  | device->commit_total_bytes = device->total_bytes; | 
|  | set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); | 
|  | clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); | 
|  | device->dev_stats_valid = 1; | 
|  | set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE); | 
|  |  | 
|  | if (seeding_dev) { | 
|  | /* GFP_KERNEL allocation must not be under device_list_mutex */ | 
|  | seed_devices = btrfs_init_sprout(fs_info); | 
|  | if (IS_ERR(seed_devices)) { | 
|  | ret = PTR_ERR(seed_devices); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto error_trans; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | if (seeding_dev) { | 
|  | btrfs_setup_sprout(fs_info, seed_devices); | 
|  | btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, | 
|  | device); | 
|  | } | 
|  |  | 
|  | device->fs_devices = fs_devices; | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | list_add_rcu(&device->dev_list, &fs_devices->devices); | 
|  | list_add(&device->dev_alloc_list, &fs_devices->alloc_list); | 
|  | fs_devices->num_devices++; | 
|  | fs_devices->open_devices++; | 
|  | fs_devices->rw_devices++; | 
|  | fs_devices->total_devices++; | 
|  | fs_devices->total_rw_bytes += device->total_bytes; | 
|  |  | 
|  | atomic64_add(device->total_bytes, &fs_info->free_chunk_space); | 
|  |  | 
|  | if (!bdev_nonrot(device->bdev)) | 
|  | fs_devices->rotating = true; | 
|  |  | 
|  | orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); | 
|  | btrfs_set_super_total_bytes(fs_info->super_copy, | 
|  | round_down(orig_super_total_bytes + device->total_bytes, | 
|  | fs_info->sectorsize)); | 
|  |  | 
|  | orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); | 
|  | btrfs_set_super_num_devices(fs_info->super_copy, | 
|  | orig_super_num_devices + 1); | 
|  |  | 
|  | /* | 
|  | * we've got more storage, clear any full flags on the space | 
|  | * infos | 
|  | */ | 
|  | btrfs_clear_space_info_full(fs_info); | 
|  |  | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  |  | 
|  | /* Add sysfs device entry */ | 
|  | btrfs_sysfs_add_device(device); | 
|  |  | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | if (seeding_dev) { | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | ret = init_first_rw_device(trans); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto error_sysfs; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_add_dev_item(trans, device); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto error_sysfs; | 
|  | } | 
|  |  | 
|  | if (seeding_dev) { | 
|  | ret = btrfs_finish_sprout(trans); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto error_sysfs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fs_devices now represents the newly sprouted filesystem and | 
|  | * its fsid has been changed by btrfs_sprout_splice(). | 
|  | */ | 
|  | btrfs_sysfs_update_sprout_fsid(fs_devices); | 
|  | } | 
|  |  | 
|  | ret = btrfs_commit_transaction(trans); | 
|  |  | 
|  | if (seeding_dev) { | 
|  | mutex_unlock(&uuid_mutex); | 
|  | up_write(&sb->s_umount); | 
|  | locked = false; | 
|  |  | 
|  | if (ret) /* transaction commit */ | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_relocate_sys_chunks(fs_info); | 
|  | if (ret < 0) | 
|  | btrfs_handle_fs_error(fs_info, ret, | 
|  | "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); | 
|  | trans = btrfs_attach_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | if (PTR_ERR(trans) == -ENOENT) | 
|  | return 0; | 
|  | ret = PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | goto error_sysfs; | 
|  | } | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that we have written a new super block to this device, check all | 
|  | * other fs_devices list if device_path alienates any other scanned | 
|  | * device. | 
|  | * We can ignore the return value as it typically returns -EINVAL and | 
|  | * only succeeds if the device was an alien. | 
|  | */ | 
|  | btrfs_forget_devices(device->devt); | 
|  |  | 
|  | /* Update ctime/mtime for blkid or udev */ | 
|  | update_dev_time(device_path); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | error_sysfs: | 
|  | btrfs_sysfs_remove_device(device); | 
|  | mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | list_del_rcu(&device->dev_list); | 
|  | list_del(&device->dev_alloc_list); | 
|  | fs_info->fs_devices->num_devices--; | 
|  | fs_info->fs_devices->open_devices--; | 
|  | fs_info->fs_devices->rw_devices--; | 
|  | fs_info->fs_devices->total_devices--; | 
|  | fs_info->fs_devices->total_rw_bytes -= device->total_bytes; | 
|  | atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); | 
|  | btrfs_set_super_total_bytes(fs_info->super_copy, | 
|  | orig_super_total_bytes); | 
|  | btrfs_set_super_num_devices(fs_info->super_copy, | 
|  | orig_super_num_devices); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | error_trans: | 
|  | if (trans) | 
|  | btrfs_end_transaction(trans); | 
|  | error_free_zone: | 
|  | btrfs_destroy_dev_zone_info(device); | 
|  | error_free_device: | 
|  | btrfs_free_device(device); | 
|  | error: | 
|  | bdev_fput(bdev_file); | 
|  | if (locked) { | 
|  | mutex_unlock(&uuid_mutex); | 
|  | up_write(&sb->s_umount); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = device->fs_info->chunk_root; | 
|  | struct btrfs_dev_item *dev_item; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  | key.offset = device->devid; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ret > 0) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | 
|  |  | 
|  | btrfs_set_device_id(leaf, dev_item, device->devid); | 
|  | btrfs_set_device_type(leaf, dev_item, device->type); | 
|  | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | 
|  | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | 
|  | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | 
|  | btrfs_set_device_total_bytes(leaf, dev_item, | 
|  | btrfs_device_get_disk_total_bytes(device)); | 
|  | btrfs_set_device_bytes_used(leaf, dev_item, | 
|  | btrfs_device_get_bytes_used(device)); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_grow_device(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device, u64 new_size) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  | struct btrfs_super_block *super_copy = fs_info->super_copy; | 
|  | u64 old_total; | 
|  | u64 diff; | 
|  | int ret; | 
|  |  | 
|  | if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) | 
|  | return -EACCES; | 
|  |  | 
|  | new_size = round_down(new_size, fs_info->sectorsize); | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | old_total = btrfs_super_total_bytes(super_copy); | 
|  | diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); | 
|  |  | 
|  | if (new_size <= device->total_bytes || | 
|  | test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | btrfs_set_super_total_bytes(super_copy, | 
|  | round_down(old_total + diff, fs_info->sectorsize)); | 
|  | device->fs_devices->total_rw_bytes += diff; | 
|  | atomic64_add(diff, &fs_info->free_chunk_space); | 
|  |  | 
|  | btrfs_device_set_total_bytes(device, new_size); | 
|  | btrfs_device_set_disk_total_bytes(device, new_size); | 
|  | btrfs_clear_space_info_full(device->fs_info); | 
|  | if (list_empty(&device->post_commit_list)) | 
|  | list_add_tail(&device->post_commit_list, | 
|  | &trans->transaction->dev_update_list); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  |  | 
|  | btrfs_reserve_chunk_metadata(trans, false); | 
|  | ret = btrfs_update_device(trans, device); | 
|  | btrfs_trans_release_chunk_metadata(trans); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *root = fs_info->chunk_root; | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
|  | key.type = BTRFS_CHUNK_ITEM_KEY; | 
|  | key.offset = chunk_offset; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | else if (unlikely(ret > 0)) { /* Logic error or corruption */ | 
|  | btrfs_err(fs_info, "failed to lookup chunk %llu when freeing", | 
|  | chunk_offset); | 
|  | btrfs_abort_transaction(trans, -ENOENT); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | if (unlikely(ret < 0)) { | 
|  | btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) | 
|  | { | 
|  | struct btrfs_super_block *super_copy = fs_info->super_copy; | 
|  | struct btrfs_disk_key *disk_key; | 
|  | struct btrfs_chunk *chunk; | 
|  | u8 *ptr; | 
|  | int ret = 0; | 
|  | u32 num_stripes; | 
|  | u32 array_size; | 
|  | u32 len = 0; | 
|  | u32 cur; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | lockdep_assert_held(&fs_info->chunk_mutex); | 
|  | array_size = btrfs_super_sys_array_size(super_copy); | 
|  |  | 
|  | ptr = super_copy->sys_chunk_array; | 
|  | cur = 0; | 
|  |  | 
|  | while (cur < array_size) { | 
|  | disk_key = (struct btrfs_disk_key *)ptr; | 
|  | btrfs_disk_key_to_cpu(&key, disk_key); | 
|  |  | 
|  | len = sizeof(*disk_key); | 
|  |  | 
|  | if (key.type == BTRFS_CHUNK_ITEM_KEY) { | 
|  | chunk = (struct btrfs_chunk *)(ptr + len); | 
|  | num_stripes = btrfs_stack_chunk_num_stripes(chunk); | 
|  | len += btrfs_chunk_item_size(num_stripes); | 
|  | } else { | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  | if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && | 
|  | key.offset == chunk_offset) { | 
|  | memmove(ptr, ptr + len, array_size - (cur + len)); | 
|  | array_size -= len; | 
|  | btrfs_set_super_sys_array_size(super_copy, array_size); | 
|  | } else { | 
|  | ptr += len; | 
|  | cur += len; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, | 
|  | u64 logical, u64 length) | 
|  | { | 
|  | struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node; | 
|  | struct rb_node *prev = NULL; | 
|  | struct rb_node *orig_prev; | 
|  | struct btrfs_chunk_map *map; | 
|  | struct btrfs_chunk_map *prev_map = NULL; | 
|  |  | 
|  | while (node) { | 
|  | map = rb_entry(node, struct btrfs_chunk_map, rb_node); | 
|  | prev = node; | 
|  | prev_map = map; | 
|  |  | 
|  | if (logical < map->start) { | 
|  | node = node->rb_left; | 
|  | } else if (logical >= map->start + map->chunk_len) { | 
|  | node = node->rb_right; | 
|  | } else { | 
|  | refcount_inc(&map->refs); | 
|  | return map; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!prev) | 
|  | return NULL; | 
|  |  | 
|  | orig_prev = prev; | 
|  | while (prev && logical >= prev_map->start + prev_map->chunk_len) { | 
|  | prev = rb_next(prev); | 
|  | prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); | 
|  | } | 
|  |  | 
|  | if (!prev) { | 
|  | prev = orig_prev; | 
|  | prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); | 
|  | while (prev && logical < prev_map->start) { | 
|  | prev = rb_prev(prev); | 
|  | prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (prev) { | 
|  | u64 end = logical + length; | 
|  |  | 
|  | /* | 
|  | * Caller can pass a U64_MAX length when it wants to get any | 
|  | * chunk starting at an offset of 'logical' or higher, so deal | 
|  | * with underflow by resetting the end offset to U64_MAX. | 
|  | */ | 
|  | if (end < logical) | 
|  | end = U64_MAX; | 
|  |  | 
|  | if (end > prev_map->start && | 
|  | logical < prev_map->start + prev_map->chunk_len) { | 
|  | refcount_inc(&prev_map->refs); | 
|  | return prev_map; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, | 
|  | u64 logical, u64 length) | 
|  | { | 
|  | struct btrfs_chunk_map *map; | 
|  |  | 
|  | read_lock(&fs_info->mapping_tree_lock); | 
|  | map = btrfs_find_chunk_map_nolock(fs_info, logical, length); | 
|  | read_unlock(&fs_info->mapping_tree_lock); | 
|  |  | 
|  | return map; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the mapping containing the given logical extent. | 
|  | * | 
|  | * @logical: Logical block offset in bytes. | 
|  | * @length: Length of extent in bytes. | 
|  | * | 
|  | * Return: Chunk mapping or ERR_PTR. | 
|  | */ | 
|  | struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, | 
|  | u64 logical, u64 length) | 
|  | { | 
|  | struct btrfs_chunk_map *map; | 
|  |  | 
|  | map = btrfs_find_chunk_map(fs_info, logical, length); | 
|  |  | 
|  | if (unlikely(!map)) { | 
|  | btrfs_crit(fs_info, | 
|  | "unable to find chunk map for logical %llu length %llu", | 
|  | logical, length); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) { | 
|  | btrfs_crit(fs_info, | 
|  | "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", | 
|  | logical, logical + length, map->start, | 
|  | map->start + map->chunk_len); | 
|  | btrfs_free_chunk_map(map); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | /* Callers are responsible for dropping the reference. */ | 
|  | return map; | 
|  | } | 
|  |  | 
|  | static int remove_chunk_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_chunk_map *map, u64 chunk_offset) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Removing chunk items and updating the device items in the chunks btree | 
|  | * requires holding the chunk_mutex. | 
|  | * See the comment at btrfs_chunk_alloc() for the details. | 
|  | */ | 
|  | lockdep_assert_held(&trans->fs_info->chunk_mutex); | 
|  |  | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_update_device(trans, map->stripes[i].dev); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return btrfs_free_chunk(trans, chunk_offset); | 
|  | } | 
|  |  | 
|  | int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_chunk_map *map; | 
|  | u64 dev_extent_len = 0; | 
|  | int i, ret = 0; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  |  | 
|  | map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); | 
|  | if (IS_ERR(map)) { | 
|  | /* | 
|  | * This is a logic error, but we don't want to just rely on the | 
|  | * user having built with ASSERT enabled, so if ASSERT doesn't | 
|  | * do anything we still error out. | 
|  | */ | 
|  | DEBUG_WARN("errr %ld reading chunk map at offset %llu", | 
|  | PTR_ERR(map), chunk_offset); | 
|  | return PTR_ERR(map); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First delete the device extent items from the devices btree. | 
|  | * We take the device_list_mutex to avoid racing with the finishing phase | 
|  | * of a device replace operation. See the comment below before acquiring | 
|  | * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex | 
|  | * because that can result in a deadlock when deleting the device extent | 
|  | * items from the devices btree - COWing an extent buffer from the btree | 
|  | * may result in allocating a new metadata chunk, which would attempt to | 
|  | * lock again fs_info->chunk_mutex. | 
|  | */ | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | struct btrfs_device *device = map->stripes[i].dev; | 
|  | ret = btrfs_free_dev_extent(trans, device, | 
|  | map->stripes[i].physical, | 
|  | &dev_extent_len); | 
|  | if (unlikely(ret)) { | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (device->bytes_used > 0) { | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | btrfs_device_set_bytes_used(device, | 
|  | device->bytes_used - dev_extent_len); | 
|  | atomic64_add(dev_extent_len, &fs_info->free_chunk_space); | 
|  | btrfs_clear_space_info_full(fs_info); | 
|  |  | 
|  | if (list_empty(&device->post_commit_list)) { | 
|  | list_add_tail(&device->post_commit_list, | 
|  | &trans->transaction->dev_update_list); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | } | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | /* | 
|  | * We acquire fs_info->chunk_mutex for 2 reasons: | 
|  | * | 
|  | * 1) Just like with the first phase of the chunk allocation, we must | 
|  | *    reserve system space, do all chunk btree updates and deletions, and | 
|  | *    update the system chunk array in the superblock while holding this | 
|  | *    mutex. This is for similar reasons as explained on the comment at | 
|  | *    the top of btrfs_chunk_alloc(); | 
|  | * | 
|  | * 2) Prevent races with the final phase of a device replace operation | 
|  | *    that replaces the device object associated with the map's stripes, | 
|  | *    because the device object's id can change at any time during that | 
|  | *    final phase of the device replace operation | 
|  | *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the | 
|  | *    replaced device and then see it with an ID of | 
|  | *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating | 
|  | *    the device item, which does not exists on the chunk btree. | 
|  | *    The finishing phase of device replace acquires both the | 
|  | *    device_list_mutex and the chunk_mutex, in that order, so we are | 
|  | *    safe by just acquiring the chunk_mutex. | 
|  | */ | 
|  | trans->removing_chunk = true; | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  |  | 
|  | check_system_chunk(trans, map->type); | 
|  |  | 
|  | ret = remove_chunk_item(trans, map, chunk_offset); | 
|  | /* | 
|  | * Normally we should not get -ENOSPC since we reserved space before | 
|  | * through the call to check_system_chunk(). | 
|  | * | 
|  | * Despite our system space_info having enough free space, we may not | 
|  | * be able to allocate extents from its block groups, because all have | 
|  | * an incompatible profile, which will force us to allocate a new system | 
|  | * block group with the right profile, or right after we called | 
|  | * check_system_space() above, a scrub turned the only system block group | 
|  | * with enough free space into RO mode. | 
|  | * This is explained with more detail at do_chunk_alloc(). | 
|  | * | 
|  | * So if we get -ENOSPC, allocate a new system chunk and retry once. | 
|  | */ | 
|  | if (ret == -ENOSPC) { | 
|  | const u64 sys_flags = btrfs_system_alloc_profile(fs_info); | 
|  | struct btrfs_block_group *sys_bg; | 
|  | struct btrfs_space_info *space_info; | 
|  |  | 
|  | space_info = btrfs_find_space_info(fs_info, sys_flags); | 
|  | if (unlikely(!space_info)) { | 
|  | ret = -EINVAL; | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | sys_bg = btrfs_create_chunk(trans, space_info, sys_flags); | 
|  | if (IS_ERR(sys_bg)) { | 
|  | ret = PTR_ERR(sys_bg); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = remove_chunk_item(trans, map, chunk_offset); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | } else if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len); | 
|  |  | 
|  | if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
|  | ret = btrfs_del_sys_chunk(fs_info, chunk_offset); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | trans->removing_chunk = false; | 
|  |  | 
|  | /* | 
|  | * We are done with chunk btree updates and deletions, so release the | 
|  | * system space we previously reserved (with check_system_chunk()). | 
|  | */ | 
|  | btrfs_trans_release_chunk_metadata(trans); | 
|  |  | 
|  | ret = btrfs_remove_block_group(trans, map); | 
|  | if (unlikely(ret)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (trans->removing_chunk) { | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | trans->removing_chunk = false; | 
|  | } | 
|  | /* once for us */ | 
|  | btrfs_free_chunk_map(map); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset, | 
|  | bool verbose) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->chunk_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_block_group *block_group; | 
|  | u64 length; | 
|  | int ret; | 
|  |  | 
|  | if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { | 
|  | btrfs_err(fs_info, | 
|  | "relocate: not supported on extent tree v2 yet"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prevent races with automatic removal of unused block groups. | 
|  | * After we relocate and before we remove the chunk with offset | 
|  | * chunk_offset, automatic removal of the block group can kick in, | 
|  | * resulting in a failure when calling btrfs_remove_chunk() below. | 
|  | * | 
|  | * Make sure to acquire this mutex before doing a tree search (dev | 
|  | * or chunk trees) to find chunks. Otherwise the cleaner kthread might | 
|  | * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after | 
|  | * we release the path used to search the chunk/dev tree and before | 
|  | * the current task acquires this mutex and calls us. | 
|  | */ | 
|  | lockdep_assert_held(&fs_info->reclaim_bgs_lock); | 
|  |  | 
|  | /* step one, relocate all the extents inside this chunk */ | 
|  | btrfs_scrub_pause(fs_info); | 
|  | ret = btrfs_relocate_block_group(fs_info, chunk_offset, true); | 
|  | btrfs_scrub_continue(fs_info); | 
|  | if (ret) { | 
|  | /* | 
|  | * If we had a transaction abort, stop all running scrubs. | 
|  | * See transaction.c:cleanup_transaction() why we do it here. | 
|  | */ | 
|  | if (BTRFS_FS_ERROR(fs_info)) | 
|  | btrfs_scrub_cancel(fs_info); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(fs_info, chunk_offset); | 
|  | if (!block_group) | 
|  | return -ENOENT; | 
|  | btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); | 
|  | length = block_group->length; | 
|  | btrfs_put_block_group(block_group); | 
|  |  | 
|  | /* | 
|  | * On a zoned file system, discard the whole block group, this will | 
|  | * trigger a REQ_OP_ZONE_RESET operation on the device zone. If | 
|  | * resetting the zone fails, don't treat it as a fatal problem from the | 
|  | * filesystem's point of view. | 
|  | */ | 
|  | if (btrfs_is_zoned(fs_info)) { | 
|  | ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); | 
|  | if (ret) | 
|  | btrfs_info(fs_info, | 
|  | "failed to reset zone %llu after relocation", | 
|  | chunk_offset); | 
|  | } | 
|  |  | 
|  | trans = btrfs_start_trans_remove_block_group(root->fs_info, | 
|  | chunk_offset); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | btrfs_handle_fs_error(root->fs_info, ret, NULL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * step two, delete the device extents and the | 
|  | * chunk tree entries | 
|  | */ | 
|  | ret = btrfs_remove_chunk(trans, chunk_offset); | 
|  | btrfs_end_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *chunk_root = fs_info->chunk_root; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_chunk *chunk; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | u64 chunk_type; | 
|  | bool retried = false; | 
|  | int failed = 0; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | again: | 
|  | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
|  | key.type = BTRFS_CHUNK_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | while (1) { | 
|  | mutex_lock(&fs_info->reclaim_bgs_lock); | 
|  | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | goto error; | 
|  | } | 
|  | if (unlikely(ret == 0)) { | 
|  | /* | 
|  | * On the first search we would find chunk tree with | 
|  | * offset -1, which is not possible. On subsequent | 
|  | * loops this would find an existing item on an invalid | 
|  | * offset (one less than the previous one, wrong | 
|  | * alignment and size). | 
|  | */ | 
|  | ret = -EUCLEAN; | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | ret = btrfs_previous_item(chunk_root, path, key.objectid, | 
|  | key.type); | 
|  | if (ret) | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | if (ret > 0) | 
|  | break; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  |  | 
|  | chunk = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_chunk); | 
|  | chunk_type = btrfs_chunk_type(leaf, chunk); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
|  | ret = btrfs_relocate_chunk(fs_info, found_key.offset, | 
|  | true); | 
|  | if (ret == -ENOSPC) | 
|  | failed++; | 
|  | else | 
|  | BUG_ON(ret); | 
|  | } | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  |  | 
|  | if (found_key.offset == 0) | 
|  | break; | 
|  | key.offset = found_key.offset - 1; | 
|  | } | 
|  | ret = 0; | 
|  | if (failed && !retried) { | 
|  | failed = 0; | 
|  | retried = true; | 
|  | goto again; | 
|  | } else if (WARN_ON(failed && retried)) { | 
|  | ret = -ENOSPC; | 
|  | } | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return 1 : allocate a data chunk successfully, | 
|  | * return <0: errors during allocating a data chunk, | 
|  | * return 0 : no need to allocate a data chunk. | 
|  | */ | 
|  | static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, | 
|  | u64 chunk_offset) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  | u64 bytes_used; | 
|  | u64 chunk_type; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, chunk_offset); | 
|  | ASSERT(cache); | 
|  | chunk_type = cache->flags; | 
|  | btrfs_put_block_group(cache); | 
|  |  | 
|  | if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) | 
|  | return 0; | 
|  |  | 
|  | spin_lock(&fs_info->data_sinfo->lock); | 
|  | bytes_used = fs_info->data_sinfo->bytes_used; | 
|  | spin_unlock(&fs_info->data_sinfo->lock); | 
|  |  | 
|  | if (!bytes_used) { | 
|  | struct btrfs_trans_handle *trans; | 
|  | int ret; | 
|  |  | 
|  | trans =	btrfs_join_transaction(fs_info->tree_root); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); | 
|  | btrfs_end_transaction(trans); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, | 
|  | const struct btrfs_disk_balance_args *disk) | 
|  | { | 
|  | memset(cpu, 0, sizeof(*cpu)); | 
|  |  | 
|  | cpu->profiles = le64_to_cpu(disk->profiles); | 
|  | cpu->usage = le64_to_cpu(disk->usage); | 
|  | cpu->devid = le64_to_cpu(disk->devid); | 
|  | cpu->pstart = le64_to_cpu(disk->pstart); | 
|  | cpu->pend = le64_to_cpu(disk->pend); | 
|  | cpu->vstart = le64_to_cpu(disk->vstart); | 
|  | cpu->vend = le64_to_cpu(disk->vend); | 
|  | cpu->target = le64_to_cpu(disk->target); | 
|  | cpu->flags = le64_to_cpu(disk->flags); | 
|  | cpu->limit = le64_to_cpu(disk->limit); | 
|  | cpu->stripes_min = le32_to_cpu(disk->stripes_min); | 
|  | cpu->stripes_max = le32_to_cpu(disk->stripes_max); | 
|  | } | 
|  |  | 
|  | static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, | 
|  | const struct btrfs_balance_args *cpu) | 
|  | { | 
|  | memset(disk, 0, sizeof(*disk)); | 
|  |  | 
|  | disk->profiles = cpu_to_le64(cpu->profiles); | 
|  | disk->usage = cpu_to_le64(cpu->usage); | 
|  | disk->devid = cpu_to_le64(cpu->devid); | 
|  | disk->pstart = cpu_to_le64(cpu->pstart); | 
|  | disk->pend = cpu_to_le64(cpu->pend); | 
|  | disk->vstart = cpu_to_le64(cpu->vstart); | 
|  | disk->vend = cpu_to_le64(cpu->vend); | 
|  | disk->target = cpu_to_le64(cpu->target); | 
|  | disk->flags = cpu_to_le64(cpu->flags); | 
|  | disk->limit = cpu_to_le64(cpu->limit); | 
|  | disk->stripes_min = cpu_to_le32(cpu->stripes_min); | 
|  | disk->stripes_max = cpu_to_le32(cpu->stripes_max); | 
|  | } | 
|  |  | 
|  | static int insert_balance_item(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_balance_control *bctl) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->tree_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_balance_item *item; | 
|  | struct btrfs_disk_balance_args disk_bargs; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | int ret, err; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | btrfs_free_path(path); | 
|  | return PTR_ERR(trans); | 
|  | } | 
|  |  | 
|  | key.objectid = BTRFS_BALANCE_OBJECTID; | 
|  | key.type = BTRFS_TEMPORARY_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, | 
|  | sizeof(*item)); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); | 
|  |  | 
|  | memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); | 
|  |  | 
|  | btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); | 
|  | btrfs_set_balance_data(leaf, item, &disk_bargs); | 
|  | btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); | 
|  | btrfs_set_balance_meta(leaf, item, &disk_bargs); | 
|  | btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); | 
|  | btrfs_set_balance_sys(leaf, item, &disk_bargs); | 
|  | btrfs_set_balance_flags(leaf, item, bctl->flags); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | err = btrfs_commit_transaction(trans); | 
|  | if (err && !ret) | 
|  | ret = err; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int del_balance_item(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->tree_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | int ret, err; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | trans = btrfs_start_transaction_fallback_global_rsv(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | btrfs_free_path(path); | 
|  | return PTR_ERR(trans); | 
|  | } | 
|  |  | 
|  | key.objectid = BTRFS_BALANCE_OBJECTID; | 
|  | key.type = BTRFS_TEMPORARY_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | err = btrfs_commit_transaction(trans); | 
|  | if (err && !ret) | 
|  | ret = err; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a heuristic used to reduce the number of chunks balanced on | 
|  | * resume after balance was interrupted. | 
|  | */ | 
|  | static void update_balance_args(struct btrfs_balance_control *bctl) | 
|  | { | 
|  | /* | 
|  | * Turn on soft mode for chunk types that were being converted. | 
|  | */ | 
|  | if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) | 
|  | bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; | 
|  | if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) | 
|  | bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; | 
|  | if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) | 
|  | bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; | 
|  |  | 
|  | /* | 
|  | * Turn on usage filter if is not already used.  The idea is | 
|  | * that chunks that we have already balanced should be | 
|  | * reasonably full.  Don't do it for chunks that are being | 
|  | * converted - that will keep us from relocating unconverted | 
|  | * (albeit full) chunks. | 
|  | */ | 
|  | if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && | 
|  | !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && | 
|  | !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { | 
|  | bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; | 
|  | bctl->data.usage = 90; | 
|  | } | 
|  | if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && | 
|  | !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && | 
|  | !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { | 
|  | bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; | 
|  | bctl->sys.usage = 90; | 
|  | } | 
|  | if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && | 
|  | !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && | 
|  | !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { | 
|  | bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; | 
|  | bctl->meta.usage = 90; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear the balance status in fs_info and delete the balance item from disk. | 
|  | */ | 
|  | static void reset_balance_state(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_balance_control *bctl = fs_info->balance_ctl; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(fs_info->balance_ctl); | 
|  |  | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | fs_info->balance_ctl = NULL; | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  |  | 
|  | kfree(bctl); | 
|  | ret = del_balance_item(fs_info); | 
|  | if (ret) | 
|  | btrfs_handle_fs_error(fs_info, ret, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Balance filters.  Return 1 if chunk should be filtered out | 
|  | * (should not be balanced). | 
|  | */ | 
|  | static bool chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs) | 
|  | { | 
|  | chunk_type = chunk_to_extended(chunk_type) & | 
|  | BTRFS_EXTENDED_PROFILE_MASK; | 
|  |  | 
|  | if (bargs->profiles & chunk_type) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, | 
|  | struct btrfs_balance_args *bargs) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  | u64 chunk_used; | 
|  | u64 user_thresh_min; | 
|  | u64 user_thresh_max; | 
|  | bool ret = true; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, chunk_offset); | 
|  | chunk_used = cache->used; | 
|  |  | 
|  | if (bargs->usage_min == 0) | 
|  | user_thresh_min = 0; | 
|  | else | 
|  | user_thresh_min = mult_perc(cache->length, bargs->usage_min); | 
|  |  | 
|  | if (bargs->usage_max == 0) | 
|  | user_thresh_max = 1; | 
|  | else if (bargs->usage_max > 100) | 
|  | user_thresh_max = cache->length; | 
|  | else | 
|  | user_thresh_max = mult_perc(cache->length, bargs->usage_max); | 
|  |  | 
|  | if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) | 
|  | ret = false; | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, | 
|  | struct btrfs_balance_args *bargs) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  | u64 chunk_used, user_thresh; | 
|  | bool ret = true; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, chunk_offset); | 
|  | chunk_used = cache->used; | 
|  |  | 
|  | if (bargs->usage_min == 0) | 
|  | user_thresh = 1; | 
|  | else if (bargs->usage > 100) | 
|  | user_thresh = cache->length; | 
|  | else | 
|  | user_thresh = mult_perc(cache->length, bargs->usage); | 
|  |  | 
|  | if (chunk_used < user_thresh) | 
|  | ret = false; | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, | 
|  | struct btrfs_balance_args *bargs) | 
|  | { | 
|  | struct btrfs_stripe *stripe; | 
|  | int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | stripe = btrfs_stripe_nr(chunk, i); | 
|  | if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static u64 calc_data_stripes(u64 type, int num_stripes) | 
|  | { | 
|  | const int index = btrfs_bg_flags_to_raid_index(type); | 
|  | const int ncopies = btrfs_raid_array[index].ncopies; | 
|  | const int nparity = btrfs_raid_array[index].nparity; | 
|  |  | 
|  | return (num_stripes - nparity) / ncopies; | 
|  | } | 
|  |  | 
|  | /* [pstart, pend) */ | 
|  | static bool chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, | 
|  | struct btrfs_balance_args *bargs) | 
|  | { | 
|  | struct btrfs_stripe *stripe; | 
|  | int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | 
|  | u64 stripe_offset; | 
|  | u64 stripe_length; | 
|  | u64 type; | 
|  | int factor; | 
|  | int i; | 
|  |  | 
|  | if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) | 
|  | return false; | 
|  |  | 
|  | type = btrfs_chunk_type(leaf, chunk); | 
|  | factor = calc_data_stripes(type, num_stripes); | 
|  |  | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | stripe = btrfs_stripe_nr(chunk, i); | 
|  | if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) | 
|  | continue; | 
|  |  | 
|  | stripe_offset = btrfs_stripe_offset(leaf, stripe); | 
|  | stripe_length = btrfs_chunk_length(leaf, chunk); | 
|  | stripe_length = div_u64(stripe_length, factor); | 
|  |  | 
|  | if (stripe_offset < bargs->pend && | 
|  | stripe_offset + stripe_length > bargs->pstart) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* [vstart, vend) */ | 
|  | static bool chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk, | 
|  | u64 chunk_offset, struct btrfs_balance_args *bargs) | 
|  | { | 
|  | if (chunk_offset < bargs->vend && | 
|  | chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) | 
|  | /* at least part of the chunk is inside this vrange */ | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool chunk_stripes_range_filter(struct extent_buffer *leaf, | 
|  | struct btrfs_chunk *chunk, | 
|  | struct btrfs_balance_args *bargs) | 
|  | { | 
|  | int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | 
|  |  | 
|  | if (bargs->stripes_min <= num_stripes | 
|  | && num_stripes <= bargs->stripes_max) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs) | 
|  | { | 
|  | if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) | 
|  | return false; | 
|  |  | 
|  | chunk_type = chunk_to_extended(chunk_type) & | 
|  | BTRFS_EXTENDED_PROFILE_MASK; | 
|  |  | 
|  | if (bargs->target == chunk_type) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk, | 
|  | u64 chunk_offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = leaf->fs_info; | 
|  | struct btrfs_balance_control *bctl = fs_info->balance_ctl; | 
|  | struct btrfs_balance_args *bargs = NULL; | 
|  | u64 chunk_type = btrfs_chunk_type(leaf, chunk); | 
|  |  | 
|  | /* type filter */ | 
|  | if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & | 
|  | (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (chunk_type & BTRFS_BLOCK_GROUP_DATA) | 
|  | bargs = &bctl->data; | 
|  | else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) | 
|  | bargs = &bctl->sys; | 
|  | else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) | 
|  | bargs = &bctl->meta; | 
|  |  | 
|  | /* profiles filter */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && | 
|  | chunk_profiles_filter(chunk_type, bargs)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* usage filter */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && | 
|  | chunk_usage_filter(fs_info, chunk_offset, bargs)) { | 
|  | return false; | 
|  | } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && | 
|  | chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* devid filter */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && | 
|  | chunk_devid_filter(leaf, chunk, bargs)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* drange filter, makes sense only with devid filter */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && | 
|  | chunk_drange_filter(leaf, chunk, bargs)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* vrange filter */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && | 
|  | chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* stripes filter */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && | 
|  | chunk_stripes_range_filter(leaf, chunk, bargs)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* soft profile changing mode */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && | 
|  | chunk_soft_convert_filter(chunk_type, bargs)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * limited by count, must be the last filter | 
|  | */ | 
|  | if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { | 
|  | if (bargs->limit == 0) | 
|  | return false; | 
|  | else | 
|  | bargs->limit--; | 
|  | } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { | 
|  | /* | 
|  | * Same logic as the 'limit' filter; the minimum cannot be | 
|  | * determined here because we do not have the global information | 
|  | * about the count of all chunks that satisfy the filters. | 
|  | */ | 
|  | if (bargs->limit_max == 0) | 
|  | return false; | 
|  | else | 
|  | bargs->limit_max--; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int __btrfs_balance(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_balance_control *bctl = fs_info->balance_ctl; | 
|  | struct btrfs_root *chunk_root = fs_info->chunk_root; | 
|  | u64 chunk_type; | 
|  | struct btrfs_chunk *chunk; | 
|  | struct btrfs_path *path = NULL; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *leaf; | 
|  | int slot; | 
|  | int ret; | 
|  | int enospc_errors = 0; | 
|  | bool counting = true; | 
|  | /* The single value limit and min/max limits use the same bytes in the */ | 
|  | u64 limit_data = bctl->data.limit; | 
|  | u64 limit_meta = bctl->meta.limit; | 
|  | u64 limit_sys = bctl->sys.limit; | 
|  | u32 count_data = 0; | 
|  | u32 count_meta = 0; | 
|  | u32 count_sys = 0; | 
|  | int chunk_reserved = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* zero out stat counters */ | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | memset(&bctl->stat, 0, sizeof(bctl->stat)); | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  | again: | 
|  | if (!counting) { | 
|  | /* | 
|  | * The single value limit and min/max limits use the same bytes | 
|  | * in the | 
|  | */ | 
|  | bctl->data.limit = limit_data; | 
|  | bctl->meta.limit = limit_meta; | 
|  | bctl->sys.limit = limit_sys; | 
|  | } | 
|  | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
|  | key.type = BTRFS_CHUNK_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | while (1) { | 
|  | if ((!counting && atomic_read(&fs_info->balance_pause_req)) || | 
|  | atomic_read(&fs_info->balance_cancel_req)) { | 
|  | ret = -ECANCELED; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | mutex_lock(&fs_info->reclaim_bgs_lock); | 
|  | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this shouldn't happen, it means the last relocate | 
|  | * failed | 
|  | */ | 
|  | if (ret == 0) | 
|  | BUG(); /* FIXME break ? */ | 
|  |  | 
|  | ret = btrfs_previous_item(chunk_root, path, 0, | 
|  | BTRFS_CHUNK_ITEM_KEY); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  |  | 
|  | if (found_key.objectid != key.objectid) { | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); | 
|  | chunk_type = btrfs_chunk_type(leaf, chunk); | 
|  |  | 
|  | if (!counting) { | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | bctl->stat.considered++; | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  | } | 
|  |  | 
|  | ret = should_balance_chunk(leaf, chunk, found_key.offset); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | if (!ret) { | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | if (counting) { | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | bctl->stat.expected++; | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  |  | 
|  | if (chunk_type & BTRFS_BLOCK_GROUP_DATA) | 
|  | count_data++; | 
|  | else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) | 
|  | count_sys++; | 
|  | else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) | 
|  | count_meta++; | 
|  |  | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Apply limit_min filter, no need to check if the LIMITS | 
|  | * filter is used, limit_min is 0 by default | 
|  | */ | 
|  | if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && | 
|  | count_data < bctl->data.limit_min) | 
|  | || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && | 
|  | count_meta < bctl->meta.limit_min) | 
|  | || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && | 
|  | count_sys < bctl->sys.limit_min)) { | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | if (!chunk_reserved) { | 
|  | /* | 
|  | * We may be relocating the only data chunk we have, | 
|  | * which could potentially end up with losing data's | 
|  | * raid profile, so lets allocate an empty one in | 
|  | * advance. | 
|  | */ | 
|  | ret = btrfs_may_alloc_data_chunk(fs_info, | 
|  | found_key.offset); | 
|  | if (ret < 0) { | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | goto error; | 
|  | } else if (ret == 1) { | 
|  | chunk_reserved = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_relocate_chunk(fs_info, found_key.offset, true); | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | if (ret == -ENOSPC) { | 
|  | enospc_errors++; | 
|  | } else if (ret == -ETXTBSY) { | 
|  | btrfs_info(fs_info, | 
|  | "skipping relocation of block group %llu due to active swapfile", | 
|  | found_key.offset); | 
|  | ret = 0; | 
|  | } else if (ret) { | 
|  | goto error; | 
|  | } else { | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | bctl->stat.completed++; | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  | } | 
|  | loop: | 
|  | if (found_key.offset == 0) | 
|  | break; | 
|  | key.offset = found_key.offset - 1; | 
|  | } | 
|  |  | 
|  | if (counting) { | 
|  | btrfs_release_path(path); | 
|  | counting = false; | 
|  | goto again; | 
|  | } | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | if (enospc_errors) { | 
|  | btrfs_info(fs_info, "%d enospc errors during balance", | 
|  | enospc_errors); | 
|  | if (!ret) | 
|  | ret = -ENOSPC; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See if a given profile is valid and reduced. | 
|  | * | 
|  | * @flags:     profile to validate | 
|  | * @extended:  if true @flags is treated as an extended profile | 
|  | */ | 
|  | static int alloc_profile_is_valid(u64 flags, bool extended) | 
|  | { | 
|  | u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : | 
|  | BTRFS_BLOCK_GROUP_PROFILE_MASK); | 
|  |  | 
|  | flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; | 
|  |  | 
|  | /* 1) check that all other bits are zeroed */ | 
|  | if (flags & ~mask) | 
|  | return 0; | 
|  |  | 
|  | /* 2) see if profile is reduced */ | 
|  | if (flags == 0) | 
|  | return !extended; /* "0" is valid for usual profiles */ | 
|  |  | 
|  | return has_single_bit_set(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate target profile against allowed profiles and return true if it's OK. | 
|  | * Otherwise print the error message and return false. | 
|  | */ | 
|  | static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, | 
|  | const struct btrfs_balance_args *bargs, | 
|  | u64 allowed, const char *type) | 
|  | { | 
|  | if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) | 
|  | return true; | 
|  |  | 
|  | /* Profile is valid and does not have bits outside of the allowed set */ | 
|  | if (alloc_profile_is_valid(bargs->target, 1) && | 
|  | (bargs->target & ~allowed) == 0) | 
|  | return true; | 
|  |  | 
|  | btrfs_err(fs_info, "balance: invalid convert %s profile %s", | 
|  | type, btrfs_bg_type_to_raid_name(bargs->target)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill @buf with textual description of balance filter flags @bargs, up to | 
|  | * @size_buf including the terminating null. The output may be trimmed if it | 
|  | * does not fit into the provided buffer. | 
|  | */ | 
|  | static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, | 
|  | u32 size_buf) | 
|  | { | 
|  | int ret; | 
|  | u32 size_bp = size_buf; | 
|  | char *bp = buf; | 
|  | u64 flags = bargs->flags; | 
|  | char tmp_buf[128] = {'\0'}; | 
|  |  | 
|  | if (!flags) | 
|  | return; | 
|  |  | 
|  | #define CHECK_APPEND_NOARG(a)						\ | 
|  | do {								\ | 
|  | ret = snprintf(bp, size_bp, (a));			\ | 
|  | if (ret < 0 || ret >= size_bp)				\ | 
|  | goto out_overflow;				\ | 
|  | size_bp -= ret;						\ | 
|  | bp += ret;						\ | 
|  | } while (0) | 
|  |  | 
|  | #define CHECK_APPEND_1ARG(a, v1)					\ | 
|  | do {								\ | 
|  | ret = snprintf(bp, size_bp, (a), (v1));			\ | 
|  | if (ret < 0 || ret >= size_bp)				\ | 
|  | goto out_overflow;				\ | 
|  | size_bp -= ret;						\ | 
|  | bp += ret;						\ | 
|  | } while (0) | 
|  |  | 
|  | #define CHECK_APPEND_2ARG(a, v1, v2)					\ | 
|  | do {								\ | 
|  | ret = snprintf(bp, size_bp, (a), (v1), (v2));		\ | 
|  | if (ret < 0 || ret >= size_bp)				\ | 
|  | goto out_overflow;				\ | 
|  | size_bp -= ret;						\ | 
|  | bp += ret;						\ | 
|  | } while (0) | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_CONVERT) | 
|  | CHECK_APPEND_1ARG("convert=%s,", | 
|  | btrfs_bg_type_to_raid_name(bargs->target)); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_SOFT) | 
|  | CHECK_APPEND_NOARG("soft,"); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_PROFILES) { | 
|  | btrfs_describe_block_groups(bargs->profiles, tmp_buf, | 
|  | sizeof(tmp_buf)); | 
|  | CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); | 
|  | } | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_USAGE) | 
|  | CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) | 
|  | CHECK_APPEND_2ARG("usage=%u..%u,", | 
|  | bargs->usage_min, bargs->usage_max); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_DEVID) | 
|  | CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_DRANGE) | 
|  | CHECK_APPEND_2ARG("drange=%llu..%llu,", | 
|  | bargs->pstart, bargs->pend); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_VRANGE) | 
|  | CHECK_APPEND_2ARG("vrange=%llu..%llu,", | 
|  | bargs->vstart, bargs->vend); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_LIMIT) | 
|  | CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) | 
|  | CHECK_APPEND_2ARG("limit=%u..%u,", | 
|  | bargs->limit_min, bargs->limit_max); | 
|  |  | 
|  | if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) | 
|  | CHECK_APPEND_2ARG("stripes=%u..%u,", | 
|  | bargs->stripes_min, bargs->stripes_max); | 
|  |  | 
|  | #undef CHECK_APPEND_2ARG | 
|  | #undef CHECK_APPEND_1ARG | 
|  | #undef CHECK_APPEND_NOARG | 
|  |  | 
|  | out_overflow: | 
|  |  | 
|  | if (size_bp < size_buf) | 
|  | buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ | 
|  | else | 
|  | buf[0] = '\0'; | 
|  | } | 
|  |  | 
|  | static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | u32 size_buf = 1024; | 
|  | char tmp_buf[192] = {'\0'}; | 
|  | char *buf; | 
|  | char *bp; | 
|  | u32 size_bp = size_buf; | 
|  | int ret; | 
|  | struct btrfs_balance_control *bctl = fs_info->balance_ctl; | 
|  |  | 
|  | buf = kzalloc(size_buf, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return; | 
|  |  | 
|  | bp = buf; | 
|  |  | 
|  | #define CHECK_APPEND_1ARG(a, v1)					\ | 
|  | do {								\ | 
|  | ret = snprintf(bp, size_bp, (a), (v1));			\ | 
|  | if (ret < 0 || ret >= size_bp)				\ | 
|  | goto out_overflow;				\ | 
|  | size_bp -= ret;						\ | 
|  | bp += ret;						\ | 
|  | } while (0) | 
|  |  | 
|  | if (bctl->flags & BTRFS_BALANCE_FORCE) | 
|  | CHECK_APPEND_1ARG("%s", "-f "); | 
|  |  | 
|  | if (bctl->flags & BTRFS_BALANCE_DATA) { | 
|  | describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); | 
|  | CHECK_APPEND_1ARG("-d%s ", tmp_buf); | 
|  | } | 
|  |  | 
|  | if (bctl->flags & BTRFS_BALANCE_METADATA) { | 
|  | describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); | 
|  | CHECK_APPEND_1ARG("-m%s ", tmp_buf); | 
|  | } | 
|  |  | 
|  | if (bctl->flags & BTRFS_BALANCE_SYSTEM) { | 
|  | describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); | 
|  | CHECK_APPEND_1ARG("-s%s ", tmp_buf); | 
|  | } | 
|  |  | 
|  | #undef CHECK_APPEND_1ARG | 
|  |  | 
|  | out_overflow: | 
|  |  | 
|  | if (size_bp < size_buf) | 
|  | buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ | 
|  | btrfs_info(fs_info, "balance: %s %s", | 
|  | (bctl->flags & BTRFS_BALANCE_RESUME) ? | 
|  | "resume" : "start", buf); | 
|  |  | 
|  | kfree(buf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Should be called with balance mutex held | 
|  | */ | 
|  | int btrfs_balance(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_balance_control *bctl, | 
|  | struct btrfs_ioctl_balance_args *bargs) | 
|  | { | 
|  | u64 meta_target, data_target; | 
|  | u64 allowed; | 
|  | int mixed = 0; | 
|  | int ret; | 
|  | u64 num_devices; | 
|  | unsigned seq; | 
|  | bool reducing_redundancy; | 
|  | bool paused = false; | 
|  | int i; | 
|  |  | 
|  | if (btrfs_fs_closing(fs_info) || | 
|  | atomic_read(&fs_info->balance_pause_req) || | 
|  | btrfs_should_cancel_balance(fs_info)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | allowed = btrfs_super_incompat_flags(fs_info->super_copy); | 
|  | if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) | 
|  | mixed = 1; | 
|  |  | 
|  | /* | 
|  | * In case of mixed groups both data and meta should be picked, | 
|  | * and identical options should be given for both of them. | 
|  | */ | 
|  | allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; | 
|  | if (mixed && (bctl->flags & allowed)) { | 
|  | if (!(bctl->flags & BTRFS_BALANCE_DATA) || | 
|  | !(bctl->flags & BTRFS_BALANCE_METADATA) || | 
|  | memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { | 
|  | btrfs_err(fs_info, | 
|  | "balance: mixed groups data and metadata options must be the same"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rw_devices will not change at the moment, device add/delete/replace | 
|  | * are exclusive | 
|  | */ | 
|  | num_devices = fs_info->fs_devices->rw_devices; | 
|  |  | 
|  | /* | 
|  | * SINGLE profile on-disk has no profile bit, but in-memory we have a | 
|  | * special bit for it, to make it easier to distinguish.  Thus we need | 
|  | * to set it manually, or balance would refuse the profile. | 
|  | */ | 
|  | allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; | 
|  | for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) | 
|  | if (num_devices >= btrfs_raid_array[i].devs_min) | 
|  | allowed |= btrfs_raid_array[i].bg_flag; | 
|  |  | 
|  | if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || | 
|  | !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || | 
|  | !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allow to reduce metadata or system integrity only if force set for | 
|  | * profiles with redundancy (copies, parity) | 
|  | */ | 
|  | allowed = 0; | 
|  | for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { | 
|  | if (btrfs_raid_array[i].ncopies >= 2 || | 
|  | btrfs_raid_array[i].tolerated_failures >= 1) | 
|  | allowed |= btrfs_raid_array[i].bg_flag; | 
|  | } | 
|  | do { | 
|  | seq = read_seqbegin(&fs_info->profiles_lock); | 
|  |  | 
|  | if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && | 
|  | (fs_info->avail_system_alloc_bits & allowed) && | 
|  | !(bctl->sys.target & allowed)) || | 
|  | ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && | 
|  | (fs_info->avail_metadata_alloc_bits & allowed) && | 
|  | !(bctl->meta.target & allowed))) | 
|  | reducing_redundancy = true; | 
|  | else | 
|  | reducing_redundancy = false; | 
|  |  | 
|  | /* if we're not converting, the target field is uninitialized */ | 
|  | meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? | 
|  | bctl->meta.target : fs_info->avail_metadata_alloc_bits; | 
|  | data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? | 
|  | bctl->data.target : fs_info->avail_data_alloc_bits; | 
|  | } while (read_seqretry(&fs_info->profiles_lock, seq)); | 
|  |  | 
|  | if (reducing_redundancy) { | 
|  | if (bctl->flags & BTRFS_BALANCE_FORCE) { | 
|  | btrfs_info(fs_info, | 
|  | "balance: force reducing metadata redundancy"); | 
|  | } else { | 
|  | btrfs_err(fs_info, | 
|  | "balance: reduces metadata redundancy, use --force if you want this"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < | 
|  | btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { | 
|  | btrfs_warn(fs_info, | 
|  | "balance: metadata profile %s has lower redundancy than data profile %s", | 
|  | btrfs_bg_type_to_raid_name(meta_target), | 
|  | btrfs_bg_type_to_raid_name(data_target)); | 
|  | } | 
|  |  | 
|  | ret = insert_balance_item(fs_info, bctl); | 
|  | if (ret && ret != -EEXIST) | 
|  | goto out; | 
|  |  | 
|  | if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { | 
|  | BUG_ON(ret == -EEXIST); | 
|  | BUG_ON(fs_info->balance_ctl); | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | fs_info->balance_ctl = bctl; | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  | } else { | 
|  | BUG_ON(ret != -EEXIST); | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | update_balance_args(bctl); | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  | } | 
|  |  | 
|  | ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); | 
|  | set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); | 
|  | describe_balance_start_or_resume(fs_info); | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  |  | 
|  | ret = __btrfs_balance(fs_info); | 
|  |  | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { | 
|  | btrfs_info(fs_info, "balance: paused"); | 
|  | btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); | 
|  | paused = true; | 
|  | } | 
|  | /* | 
|  | * Balance can be canceled by: | 
|  | * | 
|  | * - Regular cancel request | 
|  | *   Then ret == -ECANCELED and balance_cancel_req > 0 | 
|  | * | 
|  | * - Fatal signal to "btrfs" process | 
|  | *   Either the signal caught by wait_reserve_ticket() and callers | 
|  | *   got -EINTR, or caught by btrfs_should_cancel_balance() and | 
|  | *   got -ECANCELED. | 
|  | *   Either way, in this case balance_cancel_req = 0, and | 
|  | *   ret == -EINTR or ret == -ECANCELED. | 
|  | * | 
|  | * So here we only check the return value to catch canceled balance. | 
|  | */ | 
|  | else if (ret == -ECANCELED || ret == -EINTR) | 
|  | btrfs_info(fs_info, "balance: canceled"); | 
|  | else | 
|  | btrfs_info(fs_info, "balance: ended with status: %d", ret); | 
|  |  | 
|  | clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); | 
|  |  | 
|  | if (bargs) { | 
|  | memset(bargs, 0, sizeof(*bargs)); | 
|  | btrfs_update_ioctl_balance_args(fs_info, bargs); | 
|  | } | 
|  |  | 
|  | /* We didn't pause, we can clean everything up. */ | 
|  | if (!paused) { | 
|  | reset_balance_state(fs_info); | 
|  | btrfs_exclop_finish(fs_info); | 
|  | } | 
|  |  | 
|  | wake_up(&fs_info->balance_wait_q); | 
|  |  | 
|  | return ret; | 
|  | out: | 
|  | if (bctl->flags & BTRFS_BALANCE_RESUME) | 
|  | reset_balance_state(fs_info); | 
|  | else | 
|  | kfree(bctl); | 
|  | btrfs_exclop_finish(fs_info); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int balance_kthread(void *data) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = data; | 
|  | int ret = 0; | 
|  |  | 
|  | sb_start_write(fs_info->sb); | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | if (fs_info->balance_ctl) | 
|  | ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | sb_end_write(fs_info->sb); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  |  | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | if (!fs_info->balance_ctl) { | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | return 0; | 
|  | } | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  |  | 
|  | if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { | 
|  | btrfs_info(fs_info, "balance: resume skipped"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | spin_lock(&fs_info->super_lock); | 
|  | ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, | 
|  | "exclusive_operation=%d", fs_info->exclusive_operation); | 
|  | fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; | 
|  | spin_unlock(&fs_info->super_lock); | 
|  | /* | 
|  | * A ro->rw remount sequence should continue with the paused balance | 
|  | * regardless of who pauses it, system or the user as of now, so set | 
|  | * the resume flag. | 
|  | */ | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  |  | 
|  | tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); | 
|  | return PTR_ERR_OR_ZERO(tsk); | 
|  | } | 
|  |  | 
|  | int btrfs_recover_balance(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_balance_control *bctl; | 
|  | struct btrfs_balance_item *item; | 
|  | struct btrfs_disk_balance_args disk_bargs; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_BALANCE_OBJECTID; | 
|  | key.type = BTRFS_TEMPORARY_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { /* ret = -ENOENT; */ | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bctl = kzalloc(sizeof(*bctl), GFP_NOFS); | 
|  | if (!bctl) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); | 
|  |  | 
|  | bctl->flags = btrfs_balance_flags(leaf, item); | 
|  | bctl->flags |= BTRFS_BALANCE_RESUME; | 
|  |  | 
|  | btrfs_balance_data(leaf, item, &disk_bargs); | 
|  | btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); | 
|  | btrfs_balance_meta(leaf, item, &disk_bargs); | 
|  | btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); | 
|  | btrfs_balance_sys(leaf, item, &disk_bargs); | 
|  | btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); | 
|  |  | 
|  | /* | 
|  | * This should never happen, as the paused balance state is recovered | 
|  | * during mount without any chance of other exclusive ops to collide. | 
|  | * | 
|  | * This gives the exclusive op status to balance and keeps in paused | 
|  | * state until user intervention (cancel or umount). If the ownership | 
|  | * cannot be assigned, show a message but do not fail. The balance | 
|  | * is in a paused state and must have fs_info::balance_ctl properly | 
|  | * set up. | 
|  | */ | 
|  | if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) | 
|  | btrfs_warn(fs_info, | 
|  | "balance: cannot set exclusive op status, resume manually"); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | BUG_ON(fs_info->balance_ctl); | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | fs_info->balance_ctl = bctl; | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_pause_balance(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | if (!fs_info->balance_ctl) { | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | return -ENOTCONN; | 
|  | } | 
|  |  | 
|  | if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { | 
|  | atomic_inc(&fs_info->balance_pause_req); | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  |  | 
|  | wait_event(fs_info->balance_wait_q, | 
|  | !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); | 
|  |  | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | /* we are good with balance_ctl ripped off from under us */ | 
|  | BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); | 
|  | atomic_dec(&fs_info->balance_pause_req); | 
|  | } else { | 
|  | ret = -ENOTCONN; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | if (!fs_info->balance_ctl) { | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | return -ENOTCONN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A paused balance with the item stored on disk can be resumed at | 
|  | * mount time if the mount is read-write. Otherwise it's still paused | 
|  | * and we must not allow cancelling as it deletes the item. | 
|  | */ | 
|  | if (sb_rdonly(fs_info->sb)) { | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | return -EROFS; | 
|  | } | 
|  |  | 
|  | atomic_inc(&fs_info->balance_cancel_req); | 
|  | /* | 
|  | * if we are running just wait and return, balance item is | 
|  | * deleted in btrfs_balance in this case | 
|  | */ | 
|  | if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | wait_event(fs_info->balance_wait_q, | 
|  | !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  | } else { | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | /* | 
|  | * Lock released to allow other waiters to continue, we'll | 
|  | * reexamine the status again. | 
|  | */ | 
|  | mutex_lock(&fs_info->balance_mutex); | 
|  |  | 
|  | if (fs_info->balance_ctl) { | 
|  | reset_balance_state(fs_info); | 
|  | btrfs_exclop_finish(fs_info); | 
|  | btrfs_info(fs_info, "balance: canceled"); | 
|  | } | 
|  | } | 
|  |  | 
|  | ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); | 
|  | atomic_dec(&fs_info->balance_cancel_req); | 
|  | mutex_unlock(&fs_info->balance_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * shrinking a device means finding all of the device extents past | 
|  | * the new size, and then following the back refs to the chunks. | 
|  | * The chunk relocation code actually frees the device extent | 
|  | */ | 
|  | int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  | struct btrfs_root *root = fs_info->dev_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_dev_extent *dev_extent = NULL; | 
|  | struct btrfs_path *path; | 
|  | u64 length; | 
|  | u64 chunk_offset; | 
|  | int ret; | 
|  | int slot; | 
|  | int failed = 0; | 
|  | bool retried = false; | 
|  | struct extent_buffer *l; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_super_block *super_copy = fs_info->super_copy; | 
|  | u64 old_total = btrfs_super_total_bytes(super_copy); | 
|  | u64 old_size = btrfs_device_get_total_bytes(device); | 
|  | u64 diff; | 
|  | u64 start; | 
|  | u64 free_diff = 0; | 
|  |  | 
|  | new_size = round_down(new_size, fs_info->sectorsize); | 
|  | start = new_size; | 
|  | diff = round_down(old_size - new_size, fs_info->sectorsize); | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) | 
|  | return -EINVAL; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->reada = READA_BACK; | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | btrfs_free_path(path); | 
|  | return PTR_ERR(trans); | 
|  | } | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  |  | 
|  | btrfs_device_set_total_bytes(device, new_size); | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { | 
|  | device->fs_devices->total_rw_bytes -= diff; | 
|  |  | 
|  | /* | 
|  | * The new free_chunk_space is new_size - used, so we have to | 
|  | * subtract the delta of the old free_chunk_space which included | 
|  | * old_size - used.  If used > new_size then just subtract this | 
|  | * entire device's free space. | 
|  | */ | 
|  | if (device->bytes_used < new_size) | 
|  | free_diff = (old_size - device->bytes_used) - | 
|  | (new_size - device->bytes_used); | 
|  | else | 
|  | free_diff = old_size - device->bytes_used; | 
|  | atomic64_sub(free_diff, &fs_info->free_chunk_space); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Once the device's size has been set to the new size, ensure all | 
|  | * in-memory chunks are synced to disk so that the loop below sees them | 
|  | * and relocates them accordingly. | 
|  | */ | 
|  | if (contains_pending_extent(device, &start, diff)) { | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | if (ret) | 
|  | goto done; | 
|  | } else { | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | btrfs_end_transaction(trans); | 
|  | } | 
|  |  | 
|  | again: | 
|  | key.objectid = device->devid; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | do { | 
|  | mutex_lock(&fs_info->reclaim_bgs_lock); | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | ret = btrfs_previous_item(root, path, 0, key.type); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | if (ret < 0) | 
|  | goto done; | 
|  | ret = 0; | 
|  | btrfs_release_path(path); | 
|  | break; | 
|  | } | 
|  |  | 
|  | l = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | 
|  |  | 
|  | if (key.objectid != device->devid) { | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | btrfs_release_path(path); | 
|  | break; | 
|  | } | 
|  |  | 
|  | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
|  | length = btrfs_dev_extent_length(l, dev_extent); | 
|  |  | 
|  | if (key.offset + length <= new_size) { | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | btrfs_release_path(path); | 
|  | break; | 
|  | } | 
|  |  | 
|  | chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * We may be relocating the only data chunk we have, | 
|  | * which could potentially end up with losing data's | 
|  | * raid profile, so lets allocate an empty one in | 
|  | * advance. | 
|  | */ | 
|  | ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); | 
|  | if (ret < 0) { | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | ret = btrfs_relocate_chunk(fs_info, chunk_offset, true); | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | if (ret == -ENOSPC) { | 
|  | failed++; | 
|  | } else if (ret) { | 
|  | if (ret == -ETXTBSY) { | 
|  | btrfs_warn(fs_info, | 
|  | "could not shrink block group %llu due to active swapfile", | 
|  | chunk_offset); | 
|  | } | 
|  | goto done; | 
|  | } | 
|  | } while (key.offset-- > 0); | 
|  |  | 
|  | if (failed && !retried) { | 
|  | failed = 0; | 
|  | retried = true; | 
|  | goto again; | 
|  | } else if (failed && retried) { | 
|  | ret = -ENOSPC; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Shrinking succeeded, else we would be at "done". */ | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | /* Clear all state bits beyond the shrunk device size */ | 
|  | btrfs_clear_extent_bit(&device->alloc_state, new_size, (u64)-1, | 
|  | CHUNK_STATE_MASK, NULL); | 
|  |  | 
|  | btrfs_device_set_disk_total_bytes(device, new_size); | 
|  | if (list_empty(&device->post_commit_list)) | 
|  | list_add_tail(&device->post_commit_list, | 
|  | &trans->transaction->dev_update_list); | 
|  |  | 
|  | WARN_ON(diff > old_total); | 
|  | btrfs_set_super_total_bytes(super_copy, | 
|  | round_down(old_total - diff, fs_info->sectorsize)); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  |  | 
|  | btrfs_reserve_chunk_metadata(trans, false); | 
|  | /* Now btrfs_update_device() will change the on-disk size. */ | 
|  | ret = btrfs_update_device(trans, device); | 
|  | btrfs_trans_release_chunk_metadata(trans); | 
|  | if (unlikely(ret < 0)) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | btrfs_end_transaction(trans); | 
|  | } else { | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | } | 
|  | done: | 
|  | btrfs_free_path(path); | 
|  | if (ret) { | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | btrfs_device_set_total_bytes(device, old_size); | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { | 
|  | device->fs_devices->total_rw_bytes += diff; | 
|  | atomic64_add(free_diff, &fs_info->free_chunk_space); | 
|  | } | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_key *key, | 
|  | struct btrfs_chunk *chunk, int item_size) | 
|  | { | 
|  | struct btrfs_super_block *super_copy = fs_info->super_copy; | 
|  | struct btrfs_disk_key disk_key; | 
|  | u32 array_size; | 
|  | u8 *ptr; | 
|  |  | 
|  | lockdep_assert_held(&fs_info->chunk_mutex); | 
|  |  | 
|  | array_size = btrfs_super_sys_array_size(super_copy); | 
|  | if (array_size + item_size + sizeof(disk_key) | 
|  | > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) | 
|  | return -EFBIG; | 
|  |  | 
|  | ptr = super_copy->sys_chunk_array + array_size; | 
|  | btrfs_cpu_key_to_disk(&disk_key, key); | 
|  | memcpy(ptr, &disk_key, sizeof(disk_key)); | 
|  | ptr += sizeof(disk_key); | 
|  | memcpy(ptr, chunk, item_size); | 
|  | item_size += sizeof(disk_key); | 
|  | btrfs_set_super_sys_array_size(super_copy, array_size + item_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sort the devices in descending order by max_avail, total_avail | 
|  | */ | 
|  | static int btrfs_cmp_device_info(const void *a, const void *b) | 
|  | { | 
|  | const struct btrfs_device_info *di_a = a; | 
|  | const struct btrfs_device_info *di_b = b; | 
|  |  | 
|  | if (di_a->max_avail > di_b->max_avail) | 
|  | return -1; | 
|  | if (di_a->max_avail < di_b->max_avail) | 
|  | return 1; | 
|  | if (di_a->total_avail > di_b->total_avail) | 
|  | return -1; | 
|  | if (di_a->total_avail < di_b->total_avail) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) | 
|  | { | 
|  | if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) | 
|  | return; | 
|  |  | 
|  | btrfs_set_fs_incompat(info, RAID56); | 
|  | } | 
|  |  | 
|  | static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) | 
|  | { | 
|  | if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) | 
|  | return; | 
|  |  | 
|  | btrfs_set_fs_incompat(info, RAID1C34); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Structure used internally for btrfs_create_chunk() function. | 
|  | * Wraps needed parameters. | 
|  | */ | 
|  | struct alloc_chunk_ctl { | 
|  | u64 start; | 
|  | u64 type; | 
|  | /* Total number of stripes to allocate */ | 
|  | int num_stripes; | 
|  | /* sub_stripes info for map */ | 
|  | int sub_stripes; | 
|  | /* Stripes per device */ | 
|  | int dev_stripes; | 
|  | /* Maximum number of devices to use */ | 
|  | int devs_max; | 
|  | /* Minimum number of devices to use */ | 
|  | int devs_min; | 
|  | /* ndevs has to be a multiple of this */ | 
|  | int devs_increment; | 
|  | /* Number of copies */ | 
|  | int ncopies; | 
|  | /* Number of stripes worth of bytes to store parity information */ | 
|  | int nparity; | 
|  | u64 max_stripe_size; | 
|  | u64 max_chunk_size; | 
|  | u64 dev_extent_min; | 
|  | u64 stripe_size; | 
|  | u64 chunk_size; | 
|  | int ndevs; | 
|  | /* Space_info the block group is going to belong. */ | 
|  | struct btrfs_space_info *space_info; | 
|  | }; | 
|  |  | 
|  | static void init_alloc_chunk_ctl_policy_regular( | 
|  | struct btrfs_fs_devices *fs_devices, | 
|  | struct alloc_chunk_ctl *ctl) | 
|  | { | 
|  | struct btrfs_space_info *space_info; | 
|  |  | 
|  | space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); | 
|  | ASSERT(space_info); | 
|  |  | 
|  | ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); | 
|  | ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); | 
|  |  | 
|  | if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) | 
|  | ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); | 
|  |  | 
|  | /* We don't want a chunk larger than 10% of writable space */ | 
|  | ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), | 
|  | ctl->max_chunk_size); | 
|  | ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); | 
|  | } | 
|  |  | 
|  | static void init_alloc_chunk_ctl_policy_zoned( | 
|  | struct btrfs_fs_devices *fs_devices, | 
|  | struct alloc_chunk_ctl *ctl) | 
|  | { | 
|  | u64 zone_size = fs_devices->fs_info->zone_size; | 
|  | u64 limit; | 
|  | int min_num_stripes = ctl->devs_min * ctl->dev_stripes; | 
|  | int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; | 
|  | u64 min_chunk_size = min_data_stripes * zone_size; | 
|  | u64 type = ctl->type; | 
|  |  | 
|  | ctl->max_stripe_size = zone_size; | 
|  | if (type & BTRFS_BLOCK_GROUP_DATA) { | 
|  | ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, | 
|  | zone_size); | 
|  | } else if (type & BTRFS_BLOCK_GROUP_METADATA) { | 
|  | ctl->max_chunk_size = ctl->max_stripe_size; | 
|  | } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
|  | ctl->max_chunk_size = 2 * ctl->max_stripe_size; | 
|  | ctl->devs_max = min_t(int, ctl->devs_max, | 
|  | BTRFS_MAX_DEVS_SYS_CHUNK); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* We don't want a chunk larger than 10% of writable space */ | 
|  | limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), | 
|  | zone_size), | 
|  | min_chunk_size); | 
|  | ctl->max_chunk_size = min(limit, ctl->max_chunk_size); | 
|  | ctl->dev_extent_min = zone_size * ctl->dev_stripes; | 
|  | } | 
|  |  | 
|  | static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, | 
|  | struct alloc_chunk_ctl *ctl) | 
|  | { | 
|  | int index = btrfs_bg_flags_to_raid_index(ctl->type); | 
|  |  | 
|  | ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; | 
|  | ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; | 
|  | ctl->devs_max = btrfs_raid_array[index].devs_max; | 
|  | if (!ctl->devs_max) | 
|  | ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); | 
|  | ctl->devs_min = btrfs_raid_array[index].devs_min; | 
|  | ctl->devs_increment = btrfs_raid_array[index].devs_increment; | 
|  | ctl->ncopies = btrfs_raid_array[index].ncopies; | 
|  | ctl->nparity = btrfs_raid_array[index].nparity; | 
|  | ctl->ndevs = 0; | 
|  |  | 
|  | switch (fs_devices->chunk_alloc_policy) { | 
|  | default: | 
|  | btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); | 
|  | fallthrough; | 
|  | case BTRFS_CHUNK_ALLOC_REGULAR: | 
|  | init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); | 
|  | break; | 
|  | case BTRFS_CHUNK_ALLOC_ZONED: | 
|  | init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int gather_device_info(struct btrfs_fs_devices *fs_devices, | 
|  | struct alloc_chunk_ctl *ctl, | 
|  | struct btrfs_device_info *devices_info) | 
|  | { | 
|  | struct btrfs_fs_info *info = fs_devices->fs_info; | 
|  | struct btrfs_device *device; | 
|  | u64 total_avail; | 
|  | u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; | 
|  | int ret; | 
|  | int ndevs = 0; | 
|  | u64 max_avail; | 
|  | u64 dev_offset; | 
|  |  | 
|  | /* | 
|  | * in the first pass through the devices list, we gather information | 
|  | * about the available holes on each device. | 
|  | */ | 
|  | list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { | 
|  | if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { | 
|  | WARN(1, KERN_ERR | 
|  | "BTRFS: read-only device in alloc_list\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, | 
|  | &device->dev_state) || | 
|  | test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) | 
|  | continue; | 
|  |  | 
|  | if (device->total_bytes > device->bytes_used) | 
|  | total_avail = device->total_bytes - device->bytes_used; | 
|  | else | 
|  | total_avail = 0; | 
|  |  | 
|  | /* If there is no space on this device, skip it. */ | 
|  | if (total_avail < ctl->dev_extent_min) | 
|  | continue; | 
|  |  | 
|  | ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, | 
|  | &max_avail); | 
|  | if (ret && ret != -ENOSPC) | 
|  | return ret; | 
|  |  | 
|  | if (ret == 0) | 
|  | max_avail = dev_extent_want; | 
|  |  | 
|  | if (max_avail < ctl->dev_extent_min) { | 
|  | if (btrfs_test_opt(info, ENOSPC_DEBUG)) | 
|  | btrfs_debug(info, | 
|  | "%s: devid %llu has no free space, have=%llu want=%llu", | 
|  | __func__, device->devid, max_avail, | 
|  | ctl->dev_extent_min); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (ndevs == fs_devices->rw_devices) { | 
|  | WARN(1, "%s: found more than %llu devices\n", | 
|  | __func__, fs_devices->rw_devices); | 
|  | break; | 
|  | } | 
|  | devices_info[ndevs].dev_offset = dev_offset; | 
|  | devices_info[ndevs].max_avail = max_avail; | 
|  | devices_info[ndevs].total_avail = total_avail; | 
|  | devices_info[ndevs].dev = device; | 
|  | ++ndevs; | 
|  | } | 
|  | ctl->ndevs = ndevs; | 
|  |  | 
|  | /* | 
|  | * now sort the devices by hole size / available space | 
|  | */ | 
|  | sort(devices_info, ndevs, sizeof(struct btrfs_device_info), | 
|  | btrfs_cmp_device_info, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, | 
|  | struct btrfs_device_info *devices_info) | 
|  | { | 
|  | /* Number of stripes that count for block group size */ | 
|  | int data_stripes; | 
|  |  | 
|  | /* | 
|  | * The primary goal is to maximize the number of stripes, so use as | 
|  | * many devices as possible, even if the stripes are not maximum sized. | 
|  | * | 
|  | * The DUP profile stores more than one stripe per device, the | 
|  | * max_avail is the total size so we have to adjust. | 
|  | */ | 
|  | ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, | 
|  | ctl->dev_stripes); | 
|  | ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; | 
|  |  | 
|  | /* This will have to be fixed for RAID1 and RAID10 over more drives */ | 
|  | data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; | 
|  |  | 
|  | /* | 
|  | * Use the number of data stripes to figure out how big this chunk is | 
|  | * really going to be in terms of logical address space, and compare | 
|  | * that answer with the max chunk size. If it's higher, we try to | 
|  | * reduce stripe_size. | 
|  | */ | 
|  | if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { | 
|  | /* | 
|  | * Reduce stripe_size, round it up to a 16MB boundary again and | 
|  | * then use it, unless it ends up being even bigger than the | 
|  | * previous value we had already. | 
|  | */ | 
|  | ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, | 
|  | data_stripes), SZ_16M), | 
|  | ctl->stripe_size); | 
|  | } | 
|  |  | 
|  | /* Stripe size should not go beyond 1G. */ | 
|  | ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); | 
|  |  | 
|  | /* Align to BTRFS_STRIPE_LEN */ | 
|  | ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); | 
|  | ctl->chunk_size = ctl->stripe_size * data_stripes; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, | 
|  | struct btrfs_device_info *devices_info) | 
|  | { | 
|  | u64 zone_size = devices_info[0].dev->zone_info->zone_size; | 
|  | /* Number of stripes that count for block group size */ | 
|  | int data_stripes; | 
|  |  | 
|  | /* | 
|  | * It should hold because: | 
|  | *    dev_extent_min == dev_extent_want == zone_size * dev_stripes | 
|  | */ | 
|  | ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min, | 
|  | "ndevs=%d max_avail=%llu dev_extent_min=%llu", ctl->ndevs, | 
|  | devices_info[ctl->ndevs - 1].max_avail, ctl->dev_extent_min); | 
|  |  | 
|  | ctl->stripe_size = zone_size; | 
|  | ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; | 
|  | data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; | 
|  |  | 
|  | /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */ | 
|  | if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { | 
|  | ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, | 
|  | ctl->stripe_size) + ctl->nparity, | 
|  | ctl->dev_stripes); | 
|  | ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; | 
|  | data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; | 
|  | ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size, | 
|  | "stripe_size=%llu data_stripes=%d max_chunk_size=%llu", | 
|  | ctl->stripe_size, data_stripes, ctl->max_chunk_size); | 
|  | } | 
|  |  | 
|  | ctl->chunk_size = ctl->stripe_size * data_stripes; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, | 
|  | struct alloc_chunk_ctl *ctl, | 
|  | struct btrfs_device_info *devices_info) | 
|  | { | 
|  | struct btrfs_fs_info *info = fs_devices->fs_info; | 
|  |  | 
|  | /* | 
|  | * Round down to number of usable stripes, devs_increment can be any | 
|  | * number so we can't use round_down() that requires power of 2, while | 
|  | * rounddown is safe. | 
|  | */ | 
|  | ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); | 
|  |  | 
|  | if (ctl->ndevs < ctl->devs_min) { | 
|  | if (btrfs_test_opt(info, ENOSPC_DEBUG)) { | 
|  | btrfs_debug(info, | 
|  | "%s: not enough devices with free space: have=%d minimum required=%d", | 
|  | __func__, ctl->ndevs, ctl->devs_min); | 
|  | } | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | ctl->ndevs = min(ctl->ndevs, ctl->devs_max); | 
|  |  | 
|  | switch (fs_devices->chunk_alloc_policy) { | 
|  | default: | 
|  | btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy); | 
|  | fallthrough; | 
|  | case BTRFS_CHUNK_ALLOC_REGULAR: | 
|  | return decide_stripe_size_regular(ctl, devices_info); | 
|  | case BTRFS_CHUNK_ALLOC_ZONED: | 
|  | return decide_stripe_size_zoned(ctl, devices_info); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits) | 
|  | { | 
|  | for (int i = 0; i < map->num_stripes; i++) { | 
|  | struct btrfs_io_stripe *stripe = &map->stripes[i]; | 
|  | struct btrfs_device *device = stripe->dev; | 
|  |  | 
|  | btrfs_set_extent_bit(&device->alloc_state, stripe->physical, | 
|  | stripe->physical + map->stripe_size - 1, | 
|  | bits | EXTENT_NOWAIT, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits) | 
|  | { | 
|  | for (int i = 0; i < map->num_stripes; i++) { | 
|  | struct btrfs_io_stripe *stripe = &map->stripes[i]; | 
|  | struct btrfs_device *device = stripe->dev; | 
|  |  | 
|  | btrfs_clear_extent_bit(&device->alloc_state, stripe->physical, | 
|  | stripe->physical + map->stripe_size - 1, | 
|  | bits | EXTENT_NOWAIT, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) | 
|  | { | 
|  | write_lock(&fs_info->mapping_tree_lock); | 
|  | rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); | 
|  | RB_CLEAR_NODE(&map->rb_node); | 
|  | chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); | 
|  | write_unlock(&fs_info->mapping_tree_lock); | 
|  |  | 
|  | /* Once for the tree reference. */ | 
|  | btrfs_free_chunk_map(map); | 
|  | } | 
|  |  | 
|  | static int btrfs_chunk_map_cmp(const struct rb_node *new, | 
|  | const struct rb_node *exist) | 
|  | { | 
|  | const struct btrfs_chunk_map *new_map = | 
|  | rb_entry(new, struct btrfs_chunk_map, rb_node); | 
|  | const struct btrfs_chunk_map *exist_map = | 
|  | rb_entry(exist, struct btrfs_chunk_map, rb_node); | 
|  |  | 
|  | if (new_map->start == exist_map->start) | 
|  | return 0; | 
|  | if (new_map->start < exist_map->start) | 
|  | return -1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | EXPORT_FOR_TESTS | 
|  | int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map) | 
|  | { | 
|  | struct rb_node *exist; | 
|  |  | 
|  | write_lock(&fs_info->mapping_tree_lock); | 
|  | exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree, | 
|  | btrfs_chunk_map_cmp); | 
|  |  | 
|  | if (exist) { | 
|  | write_unlock(&fs_info->mapping_tree_lock); | 
|  | return -EEXIST; | 
|  | } | 
|  | chunk_map_device_set_bits(map, CHUNK_ALLOCATED); | 
|  | chunk_map_device_clear_bits(map, CHUNK_TRIMMED); | 
|  | write_unlock(&fs_info->mapping_tree_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_FOR_TESTS | 
|  | struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp) | 
|  | { | 
|  | struct btrfs_chunk_map *map; | 
|  |  | 
|  | map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp); | 
|  | if (!map) | 
|  | return NULL; | 
|  |  | 
|  | refcount_set(&map->refs, 1); | 
|  | RB_CLEAR_NODE(&map->rb_node); | 
|  |  | 
|  | return map; | 
|  | } | 
|  |  | 
|  | static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, | 
|  | struct alloc_chunk_ctl *ctl, | 
|  | struct btrfs_device_info *devices_info) | 
|  | { | 
|  | struct btrfs_fs_info *info = trans->fs_info; | 
|  | struct btrfs_chunk_map *map; | 
|  | struct btrfs_block_group *block_group; | 
|  | u64 start = ctl->start; | 
|  | u64 type = ctl->type; | 
|  | int ret; | 
|  |  | 
|  | map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS); | 
|  | if (!map) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | map->start = start; | 
|  | map->chunk_len = ctl->chunk_size; | 
|  | map->stripe_size = ctl->stripe_size; | 
|  | map->type = type; | 
|  | map->io_align = BTRFS_STRIPE_LEN; | 
|  | map->io_width = BTRFS_STRIPE_LEN; | 
|  | map->sub_stripes = ctl->sub_stripes; | 
|  | map->num_stripes = ctl->num_stripes; | 
|  |  | 
|  | for (int i = 0; i < ctl->ndevs; i++) { | 
|  | for (int j = 0; j < ctl->dev_stripes; j++) { | 
|  | int s = i * ctl->dev_stripes + j; | 
|  | map->stripes[s].dev = devices_info[i].dev; | 
|  | map->stripes[s].physical = devices_info[i].dev_offset + | 
|  | j * ctl->stripe_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); | 
|  |  | 
|  | ret = btrfs_add_chunk_map(info, map); | 
|  | if (ret) { | 
|  | btrfs_free_chunk_map(map); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | block_group = btrfs_make_block_group(trans, ctl->space_info, type, start, | 
|  | ctl->chunk_size); | 
|  | if (IS_ERR(block_group)) { | 
|  | btrfs_remove_chunk_map(info, map); | 
|  | return block_group; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < map->num_stripes; i++) { | 
|  | struct btrfs_device *dev = map->stripes[i].dev; | 
|  |  | 
|  | btrfs_device_set_bytes_used(dev, | 
|  | dev->bytes_used + ctl->stripe_size); | 
|  | if (list_empty(&dev->post_commit_list)) | 
|  | list_add_tail(&dev->post_commit_list, | 
|  | &trans->transaction->dev_update_list); | 
|  | } | 
|  |  | 
|  | atomic64_sub(ctl->stripe_size * map->num_stripes, | 
|  | &info->free_chunk_space); | 
|  |  | 
|  | check_raid56_incompat_flag(info, type); | 
|  | check_raid1c34_incompat_flag(info, type); | 
|  |  | 
|  | return block_group; | 
|  | } | 
|  |  | 
|  | struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_space_info *space_info, | 
|  | u64 type) | 
|  | { | 
|  | struct btrfs_fs_info *info = trans->fs_info; | 
|  | struct btrfs_fs_devices *fs_devices = info->fs_devices; | 
|  | struct btrfs_device_info *devices_info = NULL; | 
|  | struct alloc_chunk_ctl ctl; | 
|  | struct btrfs_block_group *block_group; | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held(&info->chunk_mutex); | 
|  |  | 
|  | if (!alloc_profile_is_valid(type, 0)) { | 
|  | DEBUG_WARN("invalid alloc profile for type %llu", type); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | if (list_empty(&fs_devices->alloc_list)) { | 
|  | if (btrfs_test_opt(info, ENOSPC_DEBUG)) | 
|  | btrfs_debug(info, "%s: no writable device", __func__); | 
|  | return ERR_PTR(-ENOSPC); | 
|  | } | 
|  |  | 
|  | if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { | 
|  | btrfs_err(info, "invalid chunk type 0x%llx requested", type); | 
|  | DEBUG_WARN(); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | ctl.start = find_next_chunk(info); | 
|  | ctl.type = type; | 
|  | ctl.space_info = space_info; | 
|  | init_alloc_chunk_ctl(fs_devices, &ctl); | 
|  |  | 
|  | devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), | 
|  | GFP_NOFS); | 
|  | if (!devices_info) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | ret = gather_device_info(fs_devices, &ctl, devices_info); | 
|  | if (ret < 0) { | 
|  | block_group = ERR_PTR(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = decide_stripe_size(fs_devices, &ctl, devices_info); | 
|  | if (ret < 0) { | 
|  | block_group = ERR_PTR(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | block_group = create_chunk(trans, &ctl, devices_info); | 
|  |  | 
|  | out: | 
|  | kfree(devices_info); | 
|  | return block_group; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the | 
|  | * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system | 
|  | * chunks. | 
|  | * | 
|  | * See the comment at btrfs_chunk_alloc() for details about the chunk allocation | 
|  | * phases. | 
|  | */ | 
|  | int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_block_group *bg) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *chunk_root = fs_info->chunk_root; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_chunk *chunk; | 
|  | struct btrfs_stripe *stripe; | 
|  | struct btrfs_chunk_map *map; | 
|  | size_t item_size; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * We take the chunk_mutex for 2 reasons: | 
|  | * | 
|  | * 1) Updates and insertions in the chunk btree must be done while holding | 
|  | *    the chunk_mutex, as well as updating the system chunk array in the | 
|  | *    superblock. See the comment on top of btrfs_chunk_alloc() for the | 
|  | *    details; | 
|  | * | 
|  | * 2) To prevent races with the final phase of a device replace operation | 
|  | *    that replaces the device object associated with the map's stripes, | 
|  | *    because the device object's id can change at any time during that | 
|  | *    final phase of the device replace operation | 
|  | *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the | 
|  | *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, | 
|  | *    which would cause a failure when updating the device item, which does | 
|  | *    not exists, or persisting a stripe of the chunk item with such ID. | 
|  | *    Here we can't use the device_list_mutex because our caller already | 
|  | *    has locked the chunk_mutex, and the final phase of device replace | 
|  | *    acquires both mutexes - first the device_list_mutex and then the | 
|  | *    chunk_mutex. Using any of those two mutexes protects us from a | 
|  | *    concurrent device replace. | 
|  | */ | 
|  | lockdep_assert_held(&fs_info->chunk_mutex); | 
|  |  | 
|  | map = btrfs_get_chunk_map(fs_info, bg->start, bg->length); | 
|  | if (IS_ERR(map)) { | 
|  | ret = PTR_ERR(map); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | item_size = btrfs_chunk_item_size(map->num_stripes); | 
|  |  | 
|  | chunk = kzalloc(item_size, GFP_NOFS); | 
|  | if (unlikely(!chunk)) { | 
|  | ret = -ENOMEM; | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | struct btrfs_device *device = map->stripes[i].dev; | 
|  |  | 
|  | ret = btrfs_update_device(trans, device); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | stripe = &chunk->stripe; | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | struct btrfs_device *device = map->stripes[i].dev; | 
|  | const u64 dev_offset = map->stripes[i].physical; | 
|  |  | 
|  | btrfs_set_stack_stripe_devid(stripe, device->devid); | 
|  | btrfs_set_stack_stripe_offset(stripe, dev_offset); | 
|  | memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); | 
|  | stripe++; | 
|  | } | 
|  |  | 
|  | btrfs_set_stack_chunk_length(chunk, bg->length); | 
|  | btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); | 
|  | btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); | 
|  | btrfs_set_stack_chunk_type(chunk, map->type); | 
|  | btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); | 
|  | btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); | 
|  | btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); | 
|  | btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); | 
|  | btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); | 
|  |  | 
|  | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
|  | key.type = BTRFS_CHUNK_ITEM_KEY; | 
|  | key.offset = bg->start; | 
|  |  | 
|  | ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); | 
|  |  | 
|  | if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
|  | ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | kfree(chunk); | 
|  | btrfs_free_chunk_map(map); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | u64 alloc_profile; | 
|  | struct btrfs_block_group *meta_bg; | 
|  | struct btrfs_space_info *meta_space_info; | 
|  | struct btrfs_block_group *sys_bg; | 
|  | struct btrfs_space_info *sys_space_info; | 
|  |  | 
|  | /* | 
|  | * When adding a new device for sprouting, the seed device is read-only | 
|  | * so we must first allocate a metadata and a system chunk. But before | 
|  | * adding the block group items to the extent, device and chunk btrees, | 
|  | * we must first: | 
|  | * | 
|  | * 1) Create both chunks without doing any changes to the btrees, as | 
|  | *    otherwise we would get -ENOSPC since the block groups from the | 
|  | *    seed device are read-only; | 
|  | * | 
|  | * 2) Add the device item for the new sprout device - finishing the setup | 
|  | *    of a new block group requires updating the device item in the chunk | 
|  | *    btree, so it must exist when we attempt to do it. The previous step | 
|  | *    ensures this does not fail with -ENOSPC. | 
|  | * | 
|  | * After that we can add the block group items to their btrees: | 
|  | * update existing device item in the chunk btree, add a new block group | 
|  | * item to the extent btree, add a new chunk item to the chunk btree and | 
|  | * finally add the new device extent items to the devices btree. | 
|  | */ | 
|  |  | 
|  | alloc_profile = btrfs_metadata_alloc_profile(fs_info); | 
|  | meta_space_info = btrfs_find_space_info(fs_info, alloc_profile); | 
|  | if (!meta_space_info) { | 
|  | DEBUG_WARN(); | 
|  | return -EINVAL; | 
|  | } | 
|  | meta_bg = btrfs_create_chunk(trans, meta_space_info, alloc_profile); | 
|  | if (IS_ERR(meta_bg)) | 
|  | return PTR_ERR(meta_bg); | 
|  |  | 
|  | alloc_profile = btrfs_system_alloc_profile(fs_info); | 
|  | sys_space_info = btrfs_find_space_info(fs_info, alloc_profile); | 
|  | if (!sys_space_info) { | 
|  | DEBUG_WARN(); | 
|  | return -EINVAL; | 
|  | } | 
|  | sys_bg = btrfs_create_chunk(trans, sys_space_info, alloc_profile); | 
|  | if (IS_ERR(sys_bg)) | 
|  | return PTR_ERR(sys_bg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map) | 
|  | { | 
|  | const int index = btrfs_bg_flags_to_raid_index(map->type); | 
|  |  | 
|  | return btrfs_raid_array[index].tolerated_failures; | 
|  | } | 
|  |  | 
|  | bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) | 
|  | { | 
|  | struct btrfs_chunk_map *map; | 
|  | int miss_ndevs = 0; | 
|  | int i; | 
|  | bool ret = true; | 
|  |  | 
|  | map = btrfs_get_chunk_map(fs_info, chunk_offset, 1); | 
|  | if (IS_ERR(map)) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, | 
|  | &map->stripes[i].dev->dev_state)) { | 
|  | miss_ndevs++; | 
|  | continue; | 
|  | } | 
|  | if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, | 
|  | &map->stripes[i].dev->dev_state)) { | 
|  | ret = false; | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the number of missing devices is larger than max errors, we can | 
|  | * not write the data into that chunk successfully. | 
|  | */ | 
|  | if (miss_ndevs > btrfs_chunk_max_errors(map)) | 
|  | ret = false; | 
|  | end: | 
|  | btrfs_free_chunk_map(map); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | write_lock(&fs_info->mapping_tree_lock); | 
|  | while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) { | 
|  | struct btrfs_chunk_map *map; | 
|  | struct rb_node *node; | 
|  |  | 
|  | node = rb_first_cached(&fs_info->mapping_tree); | 
|  | map = rb_entry(node, struct btrfs_chunk_map, rb_node); | 
|  | rb_erase_cached(&map->rb_node, &fs_info->mapping_tree); | 
|  | RB_CLEAR_NODE(&map->rb_node); | 
|  | chunk_map_device_clear_bits(map, CHUNK_ALLOCATED); | 
|  | /* Once for the tree ref. */ | 
|  | btrfs_free_chunk_map(map); | 
|  | cond_resched_rwlock_write(&fs_info->mapping_tree_lock); | 
|  | } | 
|  | write_unlock(&fs_info->mapping_tree_lock); | 
|  | } | 
|  |  | 
|  | static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map) | 
|  | { | 
|  | enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type); | 
|  |  | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID5) | 
|  | return 2; | 
|  |  | 
|  | /* | 
|  | * There could be two corrupted data stripes, we need to loop retry in | 
|  | * order to rebuild the correct data. | 
|  | * | 
|  | * Fail a stripe at a time on every retry except the stripe under | 
|  | * reconstruction. | 
|  | */ | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID6) | 
|  | return map->num_stripes; | 
|  |  | 
|  | /* Non-RAID56, use their ncopies from btrfs_raid_array. */ | 
|  | return btrfs_raid_array[index].ncopies; | 
|  | } | 
|  |  | 
|  | int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) | 
|  | { | 
|  | struct btrfs_chunk_map *map; | 
|  | int ret; | 
|  |  | 
|  | map = btrfs_get_chunk_map(fs_info, logical, len); | 
|  | if (IS_ERR(map)) | 
|  | /* | 
|  | * We could return errors for these cases, but that could get | 
|  | * ugly and we'd probably do the same thing which is just not do | 
|  | * anything else and exit, so return 1 so the callers don't try | 
|  | * to use other copies. | 
|  | */ | 
|  | return 1; | 
|  |  | 
|  | ret = btrfs_chunk_map_num_copies(map); | 
|  | btrfs_free_chunk_map(map); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, | 
|  | u64 logical) | 
|  | { | 
|  | struct btrfs_chunk_map *map; | 
|  | unsigned long len = fs_info->sectorsize; | 
|  |  | 
|  | if (!btrfs_fs_incompat(fs_info, RAID56)) | 
|  | return len; | 
|  |  | 
|  | map = btrfs_get_chunk_map(fs_info, logical, len); | 
|  |  | 
|  | if (!WARN_ON(IS_ERR(map))) { | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) | 
|  | len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); | 
|  | btrfs_free_chunk_map(map); | 
|  | } | 
|  | return len; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_EXPERIMENTAL | 
|  | static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes) | 
|  | { | 
|  | for (int index = first; index < first + num_stripes; index++) { | 
|  | const struct btrfs_device *device = map->stripes[index].dev; | 
|  |  | 
|  | if (device->devid == READ_ONCE(device->fs_devices->read_devid)) | 
|  | return index; | 
|  | } | 
|  |  | 
|  | /* If no read-preferred device is set use the first stripe. */ | 
|  | return first; | 
|  | } | 
|  |  | 
|  | struct stripe_mirror { | 
|  | u64 devid; | 
|  | int num; | 
|  | }; | 
|  |  | 
|  | static int btrfs_cmp_devid(const void *a, const void *b) | 
|  | { | 
|  | const struct stripe_mirror *s1 = (const struct stripe_mirror *)a; | 
|  | const struct stripe_mirror *s2 = (const struct stripe_mirror *)b; | 
|  |  | 
|  | if (s1->devid < s2->devid) | 
|  | return -1; | 
|  | if (s1->devid > s2->devid) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Select a stripe for reading using the round-robin algorithm. | 
|  | * | 
|  | *  1. Compute the read cycle as the total sectors read divided by the minimum | 
|  | *     sectors per device. | 
|  | *  2. Determine the stripe number for the current read by taking the modulus | 
|  | *     of the read cycle with the total number of stripes: | 
|  | * | 
|  | *      stripe index = (total sectors / min sectors per dev) % num stripes | 
|  | * | 
|  | * The calculated stripe index is then used to select the corresponding device | 
|  | * from the list of devices, which is ordered by devid. | 
|  | */ | 
|  | static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes) | 
|  | { | 
|  | struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 }; | 
|  | struct btrfs_device *device  = map->stripes[first].dev; | 
|  | struct btrfs_fs_info *fs_info = device->fs_devices->fs_info; | 
|  | unsigned int read_cycle; | 
|  | unsigned int total_reads; | 
|  | unsigned int min_reads_per_dev; | 
|  |  | 
|  | total_reads = percpu_counter_sum(&fs_info->stats_read_blocks); | 
|  | min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >> | 
|  | fs_info->sectorsize_bits; | 
|  |  | 
|  | for (int index = 0, i = first; i < first + num_stripes; i++) { | 
|  | stripes[index].devid = map->stripes[i].dev->devid; | 
|  | stripes[index].num = i; | 
|  | index++; | 
|  | } | 
|  | sort(stripes, num_stripes, sizeof(struct stripe_mirror), | 
|  | btrfs_cmp_devid, NULL); | 
|  |  | 
|  | read_cycle = total_reads / min_reads_per_dev; | 
|  | return stripes[read_cycle % num_stripes].num; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int find_live_mirror(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_chunk_map *map, int first, | 
|  | bool dev_replace_is_ongoing) | 
|  | { | 
|  | const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy); | 
|  | int i; | 
|  | int num_stripes; | 
|  | int preferred_mirror; | 
|  | int tolerance; | 
|  | struct btrfs_device *srcdev; | 
|  |  | 
|  | ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)), | 
|  | "type=%llu", map->type); | 
|  |  | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID10) | 
|  | num_stripes = map->sub_stripes; | 
|  | else | 
|  | num_stripes = map->num_stripes; | 
|  |  | 
|  | switch (policy) { | 
|  | default: | 
|  | /* Shouldn't happen, just warn and use pid instead of failing */ | 
|  | btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid", | 
|  | policy); | 
|  | WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID); | 
|  | fallthrough; | 
|  | case BTRFS_READ_POLICY_PID: | 
|  | preferred_mirror = first + (current->pid % num_stripes); | 
|  | break; | 
|  | #ifdef CONFIG_BTRFS_EXPERIMENTAL | 
|  | case BTRFS_READ_POLICY_RR: | 
|  | preferred_mirror = btrfs_read_rr(map, first, num_stripes); | 
|  | break; | 
|  | case BTRFS_READ_POLICY_DEVID: | 
|  | preferred_mirror = btrfs_read_preferred(map, first, num_stripes); | 
|  | break; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (dev_replace_is_ongoing && | 
|  | fs_info->dev_replace.cont_reading_from_srcdev_mode == | 
|  | BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) | 
|  | srcdev = fs_info->dev_replace.srcdev; | 
|  | else | 
|  | srcdev = NULL; | 
|  |  | 
|  | /* | 
|  | * try to avoid the drive that is the source drive for a | 
|  | * dev-replace procedure, only choose it if no other non-missing | 
|  | * mirror is available | 
|  | */ | 
|  | for (tolerance = 0; tolerance < 2; tolerance++) { | 
|  | if (map->stripes[preferred_mirror].dev->bdev && | 
|  | (tolerance || map->stripes[preferred_mirror].dev != srcdev)) | 
|  | return preferred_mirror; | 
|  | for (i = first; i < first + num_stripes; i++) { | 
|  | if (map->stripes[i].dev->bdev && | 
|  | (tolerance || map->stripes[i].dev != srcdev)) | 
|  | return i; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* we couldn't find one that doesn't fail.  Just return something | 
|  | * and the io error handling code will clean up eventually | 
|  | */ | 
|  | return preferred_mirror; | 
|  | } | 
|  |  | 
|  | EXPORT_FOR_TESTS | 
|  | struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, | 
|  | u64 logical, u16 total_stripes) | 
|  | { | 
|  | struct btrfs_io_context *bioc; | 
|  |  | 
|  | bioc = kzalloc( | 
|  | /* The size of btrfs_io_context */ | 
|  | sizeof(struct btrfs_io_context) + | 
|  | /* Plus the variable array for the stripes */ | 
|  | sizeof(struct btrfs_io_stripe) * (total_stripes), | 
|  | GFP_NOFS); | 
|  |  | 
|  | if (!bioc) | 
|  | return NULL; | 
|  |  | 
|  | refcount_set(&bioc->refs, 1); | 
|  |  | 
|  | bioc->fs_info = fs_info; | 
|  | bioc->replace_stripe_src = -1; | 
|  | bioc->full_stripe_logical = (u64)-1; | 
|  | bioc->logical = logical; | 
|  |  | 
|  | return bioc; | 
|  | } | 
|  |  | 
|  | void btrfs_get_bioc(struct btrfs_io_context *bioc) | 
|  | { | 
|  | WARN_ON(!refcount_read(&bioc->refs)); | 
|  | refcount_inc(&bioc->refs); | 
|  | } | 
|  |  | 
|  | void btrfs_put_bioc(struct btrfs_io_context *bioc) | 
|  | { | 
|  | if (!bioc) | 
|  | return; | 
|  | if (refcount_dec_and_test(&bioc->refs)) | 
|  | kfree(bioc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Please note that, discard won't be sent to target device of device | 
|  | * replace. | 
|  | */ | 
|  | struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, | 
|  | u64 logical, u64 *length_ret, | 
|  | u32 *num_stripes) | 
|  | { | 
|  | struct btrfs_chunk_map *map; | 
|  | struct btrfs_discard_stripe *stripes; | 
|  | u64 length = *length_ret; | 
|  | u64 offset; | 
|  | u32 stripe_nr; | 
|  | u32 stripe_nr_end; | 
|  | u32 stripe_cnt; | 
|  | u64 stripe_end_offset; | 
|  | u64 stripe_offset; | 
|  | u32 stripe_index; | 
|  | u32 factor = 0; | 
|  | u32 sub_stripes = 0; | 
|  | u32 stripes_per_dev = 0; | 
|  | u32 remaining_stripes = 0; | 
|  | u32 last_stripe = 0; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | map = btrfs_get_chunk_map(fs_info, logical, length); | 
|  | if (IS_ERR(map)) | 
|  | return ERR_CAST(map); | 
|  |  | 
|  | /* we don't discard raid56 yet */ | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { | 
|  | ret = -EOPNOTSUPP; | 
|  | goto out_free_map; | 
|  | } | 
|  |  | 
|  | offset = logical - map->start; | 
|  | length = min_t(u64, map->start + map->chunk_len - logical, length); | 
|  | *length_ret = length; | 
|  |  | 
|  | /* | 
|  | * stripe_nr counts the total number of stripes we have to stride | 
|  | * to get to this block | 
|  | */ | 
|  | stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; | 
|  |  | 
|  | /* stripe_offset is the offset of this block in its stripe */ | 
|  | stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); | 
|  |  | 
|  | stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> | 
|  | BTRFS_STRIPE_LEN_SHIFT; | 
|  | stripe_cnt = stripe_nr_end - stripe_nr; | 
|  | stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - | 
|  | (offset + length); | 
|  | /* | 
|  | * after this, stripe_nr is the number of stripes on this | 
|  | * device we have to walk to find the data, and stripe_index is | 
|  | * the number of our device in the stripe array | 
|  | */ | 
|  | *num_stripes = 1; | 
|  | stripe_index = 0; | 
|  | if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) { | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID0) | 
|  | sub_stripes = 1; | 
|  | else | 
|  | sub_stripes = map->sub_stripes; | 
|  |  | 
|  | factor = map->num_stripes / sub_stripes; | 
|  | *num_stripes = min_t(u64, map->num_stripes, | 
|  | sub_stripes * stripe_cnt); | 
|  | stripe_index = stripe_nr % factor; | 
|  | stripe_nr /= factor; | 
|  | stripe_index *= sub_stripes; | 
|  |  | 
|  | remaining_stripes = stripe_cnt % factor; | 
|  | stripes_per_dev = stripe_cnt / factor; | 
|  | last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; | 
|  | } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | | 
|  | BTRFS_BLOCK_GROUP_DUP)) { | 
|  | *num_stripes = map->num_stripes; | 
|  | } else { | 
|  | stripe_index = stripe_nr % map->num_stripes; | 
|  | stripe_nr /= map->num_stripes; | 
|  | } | 
|  |  | 
|  | stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); | 
|  | if (!stripes) { | 
|  | ret = -ENOMEM; | 
|  | goto out_free_map; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < *num_stripes; i++) { | 
|  | stripes[i].physical = | 
|  | map->stripes[stripe_index].physical + | 
|  | stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); | 
|  | stripes[i].dev = map->stripes[stripe_index].dev; | 
|  |  | 
|  | if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) { | 
|  | stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); | 
|  |  | 
|  | if (i / sub_stripes < remaining_stripes) | 
|  | stripes[i].length += BTRFS_STRIPE_LEN; | 
|  |  | 
|  | /* | 
|  | * Special for the first stripe and | 
|  | * the last stripe: | 
|  | * | 
|  | * |-------|...|-------| | 
|  | *     |----------| | 
|  | *    off     end_off | 
|  | */ | 
|  | if (i < sub_stripes) | 
|  | stripes[i].length -= stripe_offset; | 
|  |  | 
|  | if (stripe_index >= last_stripe && | 
|  | stripe_index <= (last_stripe + | 
|  | sub_stripes - 1)) | 
|  | stripes[i].length -= stripe_end_offset; | 
|  |  | 
|  | if (i == sub_stripes - 1) | 
|  | stripe_offset = 0; | 
|  | } else { | 
|  | stripes[i].length = length; | 
|  | } | 
|  |  | 
|  | stripe_index++; | 
|  | if (stripe_index == map->num_stripes) { | 
|  | stripe_index = 0; | 
|  | stripe_nr++; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_free_chunk_map(map); | 
|  | return stripes; | 
|  | out_free_map: | 
|  | btrfs_free_chunk_map(map); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  | bool ret; | 
|  |  | 
|  | /* Non zoned filesystem does not use "to_copy" flag */ | 
|  | if (!btrfs_is_zoned(fs_info)) | 
|  | return false; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, logical); | 
|  |  | 
|  | ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc, | 
|  | struct btrfs_dev_replace *dev_replace, | 
|  | u64 logical, | 
|  | struct btrfs_io_geometry *io_geom) | 
|  | { | 
|  | u64 srcdev_devid = dev_replace->srcdev->devid; | 
|  | /* | 
|  | * At this stage, num_stripes is still the real number of stripes, | 
|  | * excluding the duplicated stripes. | 
|  | */ | 
|  | int num_stripes = io_geom->num_stripes; | 
|  | int max_errors = io_geom->max_errors; | 
|  | int nr_extra_stripes = 0; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * A block group which has "to_copy" set will eventually be copied by | 
|  | * the dev-replace process. We can avoid cloning IO here. | 
|  | */ | 
|  | if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Duplicate the write operations while the dev-replace procedure is | 
|  | * running. Since the copying of the old disk to the new disk takes | 
|  | * place at run time while the filesystem is mounted writable, the | 
|  | * regular write operations to the old disk have to be duplicated to go | 
|  | * to the new disk as well. | 
|  | * | 
|  | * Note that device->missing is handled by the caller, and that the | 
|  | * write to the old disk is already set up in the stripes array. | 
|  | */ | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | struct btrfs_io_stripe *old = &bioc->stripes[i]; | 
|  | struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; | 
|  |  | 
|  | if (old->dev->devid != srcdev_devid) | 
|  | continue; | 
|  |  | 
|  | new->physical = old->physical; | 
|  | new->dev = dev_replace->tgtdev; | 
|  | if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) | 
|  | bioc->replace_stripe_src = i; | 
|  | nr_extra_stripes++; | 
|  | } | 
|  |  | 
|  | /* We can only have at most 2 extra nr_stripes (for DUP). */ | 
|  | ASSERT(nr_extra_stripes <= 2, "nr_extra_stripes=%d", nr_extra_stripes); | 
|  | /* | 
|  | * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for | 
|  | * replace. | 
|  | * If we have 2 extra stripes, only choose the one with smaller physical. | 
|  | */ | 
|  | if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { | 
|  | struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; | 
|  | struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; | 
|  |  | 
|  | /* Only DUP can have two extra stripes. */ | 
|  | ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP, | 
|  | "map_type=%llu", bioc->map_type); | 
|  |  | 
|  | /* | 
|  | * Swap the last stripe stripes and reduce @nr_extra_stripes. | 
|  | * The extra stripe would still be there, but won't be accessed. | 
|  | */ | 
|  | if (first->physical > second->physical) { | 
|  | swap(second->physical, first->physical); | 
|  | swap(second->dev, first->dev); | 
|  | nr_extra_stripes--; | 
|  | } | 
|  | } | 
|  |  | 
|  | io_geom->num_stripes = num_stripes + nr_extra_stripes; | 
|  | io_geom->max_errors = max_errors + nr_extra_stripes; | 
|  | bioc->replace_nr_stripes = nr_extra_stripes; | 
|  | } | 
|  |  | 
|  | static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset, | 
|  | struct btrfs_io_geometry *io_geom) | 
|  | { | 
|  | /* | 
|  | * Stripe_nr is the stripe where this block falls.  stripe_offset is | 
|  | * the offset of this block in its stripe. | 
|  | */ | 
|  | io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; | 
|  | io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; | 
|  | ASSERT(io_geom->stripe_offset < U32_MAX, | 
|  | "stripe_offset=%llu", io_geom->stripe_offset); | 
|  |  | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { | 
|  | unsigned long full_stripe_len = | 
|  | btrfs_stripe_nr_to_offset(nr_data_stripes(map)); | 
|  |  | 
|  | /* | 
|  | * For full stripe start, we use previously calculated | 
|  | * @stripe_nr. Align it to nr_data_stripes, then multiply with | 
|  | * STRIPE_LEN. | 
|  | * | 
|  | * By this we can avoid u64 division completely.  And we have | 
|  | * to go rounddown(), not round_down(), as nr_data_stripes is | 
|  | * not ensured to be power of 2. | 
|  | */ | 
|  | io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset( | 
|  | rounddown(io_geom->stripe_nr, nr_data_stripes(map))); | 
|  |  | 
|  | ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset, | 
|  | "raid56_full_stripe_start=%llu full_stripe_len=%lu offset=%llu", | 
|  | io_geom->raid56_full_stripe_start, full_stripe_len, offset); | 
|  | ASSERT(io_geom->raid56_full_stripe_start <= offset, | 
|  | "raid56_full_stripe_start=%llu offset=%llu", | 
|  | io_geom->raid56_full_stripe_start, offset); | 
|  | /* | 
|  | * For writes to RAID56, allow to write a full stripe set, but | 
|  | * no straddling of stripe sets. | 
|  | */ | 
|  | if (io_geom->op == BTRFS_MAP_WRITE) | 
|  | return full_stripe_len - (offset - io_geom->raid56_full_stripe_start); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For other RAID types and for RAID56 reads, allow a single stripe (on | 
|  | * a single disk). | 
|  | */ | 
|  | if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) | 
|  | return BTRFS_STRIPE_LEN - io_geom->stripe_offset; | 
|  | return U64_MAX; | 
|  | } | 
|  |  | 
|  | static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical, | 
|  | u64 *length, struct btrfs_io_stripe *dst, | 
|  | struct btrfs_chunk_map *map, | 
|  | struct btrfs_io_geometry *io_geom) | 
|  | { | 
|  | dst->dev = map->stripes[io_geom->stripe_index].dev; | 
|  |  | 
|  | if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst) | 
|  | return btrfs_get_raid_extent_offset(fs_info, logical, length, | 
|  | map->type, | 
|  | io_geom->stripe_index, dst); | 
|  |  | 
|  | dst->physical = map->stripes[io_geom->stripe_index].physical + | 
|  | io_geom->stripe_offset + | 
|  | btrfs_stripe_nr_to_offset(io_geom->stripe_nr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_single_device_io(struct btrfs_fs_info *fs_info, | 
|  | const struct btrfs_io_stripe *smap, | 
|  | const struct btrfs_chunk_map *map, | 
|  | int num_alloc_stripes, | 
|  | struct btrfs_io_geometry *io_geom) | 
|  | { | 
|  | if (!smap) | 
|  | return false; | 
|  |  | 
|  | if (num_alloc_stripes != 1) | 
|  | return false; | 
|  |  | 
|  | if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ) | 
|  | return false; | 
|  |  | 
|  | if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void map_blocks_raid0(const struct btrfs_chunk_map *map, | 
|  | struct btrfs_io_geometry *io_geom) | 
|  | { | 
|  | io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; | 
|  | io_geom->stripe_nr /= map->num_stripes; | 
|  | if (io_geom->op == BTRFS_MAP_READ) | 
|  | io_geom->mirror_num = 1; | 
|  | } | 
|  |  | 
|  | static void map_blocks_raid1(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_chunk_map *map, | 
|  | struct btrfs_io_geometry *io_geom, | 
|  | bool dev_replace_is_ongoing) | 
|  | { | 
|  | if (io_geom->op != BTRFS_MAP_READ) { | 
|  | io_geom->num_stripes = map->num_stripes; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (io_geom->mirror_num) { | 
|  | io_geom->stripe_index = io_geom->mirror_num - 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | io_geom->stripe_index = find_live_mirror(fs_info, map, 0, | 
|  | dev_replace_is_ongoing); | 
|  | io_geom->mirror_num = io_geom->stripe_index + 1; | 
|  | } | 
|  |  | 
|  | static void map_blocks_dup(const struct btrfs_chunk_map *map, | 
|  | struct btrfs_io_geometry *io_geom) | 
|  | { | 
|  | if (io_geom->op != BTRFS_MAP_READ) { | 
|  | io_geom->num_stripes = map->num_stripes; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (io_geom->mirror_num) { | 
|  | io_geom->stripe_index = io_geom->mirror_num - 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | io_geom->mirror_num = 1; | 
|  | } | 
|  |  | 
|  | static void map_blocks_raid10(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_chunk_map *map, | 
|  | struct btrfs_io_geometry *io_geom, | 
|  | bool dev_replace_is_ongoing) | 
|  | { | 
|  | u32 factor = map->num_stripes / map->sub_stripes; | 
|  | int old_stripe_index; | 
|  |  | 
|  | io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes; | 
|  | io_geom->stripe_nr /= factor; | 
|  |  | 
|  | if (io_geom->op != BTRFS_MAP_READ) { | 
|  | io_geom->num_stripes = map->sub_stripes; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (io_geom->mirror_num) { | 
|  | io_geom->stripe_index += io_geom->mirror_num - 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | old_stripe_index = io_geom->stripe_index; | 
|  | io_geom->stripe_index = find_live_mirror(fs_info, map, | 
|  | io_geom->stripe_index, | 
|  | dev_replace_is_ongoing); | 
|  | io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1; | 
|  | } | 
|  |  | 
|  | static void map_blocks_raid56_write(struct btrfs_chunk_map *map, | 
|  | struct btrfs_io_geometry *io_geom, | 
|  | u64 logical, u64 *length) | 
|  | { | 
|  | int data_stripes = nr_data_stripes(map); | 
|  |  | 
|  | /* | 
|  | * Needs full stripe mapping. | 
|  | * | 
|  | * Push stripe_nr back to the start of the full stripe For those cases | 
|  | * needing a full stripe, @stripe_nr is the full stripe number. | 
|  | * | 
|  | * Originally we go raid56_full_stripe_start / full_stripe_len, but | 
|  | * that can be expensive.  Here we just divide @stripe_nr with | 
|  | * @data_stripes. | 
|  | */ | 
|  | io_geom->stripe_nr /= data_stripes; | 
|  |  | 
|  | /* RAID[56] write or recovery. Return all stripes */ | 
|  | io_geom->num_stripes = map->num_stripes; | 
|  | io_geom->max_errors = btrfs_chunk_max_errors(map); | 
|  |  | 
|  | /* Return the length to the full stripe end. */ | 
|  | *length = min(logical + *length, | 
|  | io_geom->raid56_full_stripe_start + map->start + | 
|  | btrfs_stripe_nr_to_offset(data_stripes)) - | 
|  | logical; | 
|  | io_geom->stripe_index = 0; | 
|  | io_geom->stripe_offset = 0; | 
|  | } | 
|  |  | 
|  | static void map_blocks_raid56_read(struct btrfs_chunk_map *map, | 
|  | struct btrfs_io_geometry *io_geom) | 
|  | { | 
|  | int data_stripes = nr_data_stripes(map); | 
|  |  | 
|  | ASSERT(io_geom->mirror_num <= 1, "mirror_num=%d", io_geom->mirror_num); | 
|  | /* Just grab the data stripe directly. */ | 
|  | io_geom->stripe_index = io_geom->stripe_nr % data_stripes; | 
|  | io_geom->stripe_nr /= data_stripes; | 
|  |  | 
|  | /* We distribute the parity blocks across stripes. */ | 
|  | io_geom->stripe_index = | 
|  | (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes; | 
|  |  | 
|  | if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1) | 
|  | io_geom->mirror_num = 1; | 
|  | } | 
|  |  | 
|  | static void map_blocks_single(const struct btrfs_chunk_map *map, | 
|  | struct btrfs_io_geometry *io_geom) | 
|  | { | 
|  | io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes; | 
|  | io_geom->stripe_nr /= map->num_stripes; | 
|  | io_geom->mirror_num = io_geom->stripe_index + 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map one logical range to one or more physical ranges. | 
|  | * | 
|  | * @length:		(Mandatory) mapped length of this run. | 
|  | *			One logical range can be split into different segments | 
|  | *			due to factors like zones and RAID0/5/6/10 stripe | 
|  | *			boundaries. | 
|  | * | 
|  | * @bioc_ret:		(Mandatory) returned btrfs_io_context structure. | 
|  | *			which has one or more physical ranges (btrfs_io_stripe) | 
|  | *			recorded inside. | 
|  | *			Caller should call btrfs_put_bioc() to free it after use. | 
|  | * | 
|  | * @smap:		(Optional) single physical range optimization. | 
|  | *			If the map request can be fulfilled by one single | 
|  | *			physical range, and this is parameter is not NULL, | 
|  | *			then @bioc_ret would be NULL, and @smap would be | 
|  | *			updated. | 
|  | * | 
|  | * @mirror_num_ret:	(Mandatory) returned mirror number if the original | 
|  | *			value is 0. | 
|  | * | 
|  | *			Mirror number 0 means to choose any live mirrors. | 
|  | * | 
|  | *			For non-RAID56 profiles, non-zero mirror_num means | 
|  | *			the Nth mirror. (e.g. mirror_num 1 means the first | 
|  | *			copy). | 
|  | * | 
|  | *			For RAID56 profile, mirror 1 means rebuild from P and | 
|  | *			the remaining data stripes. | 
|  | * | 
|  | *			For RAID6 profile, mirror > 2 means mark another | 
|  | *			data/P stripe error and rebuild from the remaining | 
|  | *			stripes.. | 
|  | */ | 
|  | int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, | 
|  | u64 logical, u64 *length, | 
|  | struct btrfs_io_context **bioc_ret, | 
|  | struct btrfs_io_stripe *smap, int *mirror_num_ret) | 
|  | { | 
|  | struct btrfs_chunk_map *map; | 
|  | struct btrfs_io_geometry io_geom = { 0 }; | 
|  | u64 map_offset; | 
|  | int ret = 0; | 
|  | int num_copies; | 
|  | struct btrfs_io_context *bioc = NULL; | 
|  | struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; | 
|  | bool dev_replace_is_ongoing = false; | 
|  | u16 num_alloc_stripes; | 
|  | u64 max_len; | 
|  |  | 
|  | ASSERT(bioc_ret); | 
|  |  | 
|  | io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); | 
|  | io_geom.num_stripes = 1; | 
|  | io_geom.stripe_index = 0; | 
|  | io_geom.op = op; | 
|  |  | 
|  | map = btrfs_get_chunk_map(fs_info, logical, *length); | 
|  | if (IS_ERR(map)) | 
|  | return PTR_ERR(map); | 
|  |  | 
|  | num_copies = btrfs_chunk_map_num_copies(map); | 
|  | if (io_geom.mirror_num > num_copies) | 
|  | return -EINVAL; | 
|  |  | 
|  | map_offset = logical - map->start; | 
|  | io_geom.raid56_full_stripe_start = (u64)-1; | 
|  | max_len = btrfs_max_io_len(map, map_offset, &io_geom); | 
|  | *length = min_t(u64, map->chunk_len - map_offset, max_len); | 
|  | io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type); | 
|  |  | 
|  | if (dev_replace->replace_task != current) | 
|  | down_read(&dev_replace->rwsem); | 
|  |  | 
|  | dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); | 
|  | /* | 
|  | * Hold the semaphore for read during the whole operation, write is | 
|  | * requested at commit time but must wait. | 
|  | */ | 
|  | if (!dev_replace_is_ongoing && dev_replace->replace_task != current) | 
|  | up_read(&dev_replace->rwsem); | 
|  |  | 
|  | switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { | 
|  | case BTRFS_BLOCK_GROUP_RAID0: | 
|  | map_blocks_raid0(map, &io_geom); | 
|  | break; | 
|  | case BTRFS_BLOCK_GROUP_RAID1: | 
|  | case BTRFS_BLOCK_GROUP_RAID1C3: | 
|  | case BTRFS_BLOCK_GROUP_RAID1C4: | 
|  | map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing); | 
|  | break; | 
|  | case BTRFS_BLOCK_GROUP_DUP: | 
|  | map_blocks_dup(map, &io_geom); | 
|  | break; | 
|  | case BTRFS_BLOCK_GROUP_RAID10: | 
|  | map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing); | 
|  | break; | 
|  | case BTRFS_BLOCK_GROUP_RAID5: | 
|  | case BTRFS_BLOCK_GROUP_RAID6: | 
|  | if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1) | 
|  | map_blocks_raid56_write(map, &io_geom, logical, length); | 
|  | else | 
|  | map_blocks_raid56_read(map, &io_geom); | 
|  | break; | 
|  | default: | 
|  | /* | 
|  | * After this, stripe_nr is the number of stripes on this | 
|  | * device we have to walk to find the data, and stripe_index is | 
|  | * the number of our device in the stripe array | 
|  | */ | 
|  | map_blocks_single(map, &io_geom); | 
|  | break; | 
|  | } | 
|  | if (io_geom.stripe_index >= map->num_stripes) { | 
|  | btrfs_crit(fs_info, | 
|  | "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", | 
|  | io_geom.stripe_index, map->num_stripes); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | num_alloc_stripes = io_geom.num_stripes; | 
|  | if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && | 
|  | op != BTRFS_MAP_READ) | 
|  | /* | 
|  | * For replace case, we need to add extra stripes for extra | 
|  | * duplicated stripes. | 
|  | * | 
|  | * For both WRITE and GET_READ_MIRRORS, we may have at most | 
|  | * 2 more stripes (DUP types, otherwise 1). | 
|  | */ | 
|  | num_alloc_stripes += 2; | 
|  |  | 
|  | /* | 
|  | * If this I/O maps to a single device, try to return the device and | 
|  | * physical block information on the stack instead of allocating an | 
|  | * I/O context structure. | 
|  | */ | 
|  | if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) { | 
|  | ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom); | 
|  | if (mirror_num_ret) | 
|  | *mirror_num_ret = io_geom.mirror_num; | 
|  | *bioc_ret = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes); | 
|  | if (!bioc) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | bioc->map_type = map->type; | 
|  | bioc->use_rst = io_geom.use_rst; | 
|  |  | 
|  | /* | 
|  | * For RAID56 full map, we need to make sure the stripes[] follows the | 
|  | * rule that data stripes are all ordered, then followed with P and Q | 
|  | * (if we have). | 
|  | * | 
|  | * It's still mostly the same as other profiles, just with extra rotation. | 
|  | */ | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && | 
|  | (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) { | 
|  | /* | 
|  | * For RAID56 @stripe_nr is already the number of full stripes | 
|  | * before us, which is also the rotation value (needs to modulo | 
|  | * with num_stripes). | 
|  | * | 
|  | * In this case, we just add @stripe_nr with @i, then do the | 
|  | * modulo, to reduce one modulo call. | 
|  | */ | 
|  | bioc->full_stripe_logical = map->start + | 
|  | btrfs_stripe_nr_to_offset(io_geom.stripe_nr * | 
|  | nr_data_stripes(map)); | 
|  | for (int i = 0; i < io_geom.num_stripes; i++) { | 
|  | struct btrfs_io_stripe *dst = &bioc->stripes[i]; | 
|  | u32 stripe_index; | 
|  |  | 
|  | stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes; | 
|  | dst->dev = map->stripes[stripe_index].dev; | 
|  | dst->physical = | 
|  | map->stripes[stripe_index].physical + | 
|  | io_geom.stripe_offset + | 
|  | btrfs_stripe_nr_to_offset(io_geom.stripe_nr); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * For all other non-RAID56 profiles, just copy the target | 
|  | * stripe into the bioc. | 
|  | */ | 
|  | for (int i = 0; i < io_geom.num_stripes; i++) { | 
|  | ret = set_io_stripe(fs_info, logical, length, | 
|  | &bioc->stripes[i], map, &io_geom); | 
|  | if (ret < 0) | 
|  | break; | 
|  | io_geom.stripe_index++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | *bioc_ret = NULL; | 
|  | btrfs_put_bioc(bioc); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (op != BTRFS_MAP_READ) | 
|  | io_geom.max_errors = btrfs_chunk_max_errors(map); | 
|  |  | 
|  | if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && | 
|  | op != BTRFS_MAP_READ) { | 
|  | handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom); | 
|  | } | 
|  |  | 
|  | *bioc_ret = bioc; | 
|  | bioc->num_stripes = io_geom.num_stripes; | 
|  | bioc->max_errors = io_geom.max_errors; | 
|  | bioc->mirror_num = io_geom.mirror_num; | 
|  |  | 
|  | out: | 
|  | if (dev_replace_is_ongoing && dev_replace->replace_task != current) { | 
|  | lockdep_assert_held(&dev_replace->rwsem); | 
|  | /* Unlock and let waiting writers proceed */ | 
|  | up_read(&dev_replace->rwsem); | 
|  | } | 
|  | btrfs_free_chunk_map(map); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, | 
|  | const struct btrfs_fs_devices *fs_devices) | 
|  | { | 
|  | if (args->fsid == NULL) | 
|  | return true; | 
|  | if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, | 
|  | const struct btrfs_device *device) | 
|  | { | 
|  | if (args->missing) { | 
|  | if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && | 
|  | !device->bdev) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (device->devid != args->devid) | 
|  | return false; | 
|  | if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a device specified by @devid or @uuid in the list of @fs_devices, or | 
|  | * return NULL. | 
|  | * | 
|  | * If devid and uuid are both specified, the match must be exact, otherwise | 
|  | * only devid is used. | 
|  | */ | 
|  | struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, | 
|  | const struct btrfs_dev_lookup_args *args) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_fs_devices *seed_devs; | 
|  |  | 
|  | if (dev_args_match_fs_devices(args, fs_devices)) { | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | if (dev_args_match_device(args, device)) | 
|  | return device; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { | 
|  | if (!dev_args_match_fs_devices(args, seed_devs)) | 
|  | continue; | 
|  | list_for_each_entry(device, &seed_devs->devices, dev_list) { | 
|  | if (dev_args_match_device(args, device)) | 
|  | return device; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, | 
|  | u64 devid, u8 *dev_uuid) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | unsigned int nofs_flag; | 
|  |  | 
|  | /* | 
|  | * We call this under the chunk_mutex, so we want to use NOFS for this | 
|  | * allocation, however we don't want to change btrfs_alloc_device() to | 
|  | * always do NOFS because we use it in a lot of other GFP_KERNEL safe | 
|  | * places. | 
|  | */ | 
|  |  | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  | if (IS_ERR(device)) | 
|  | return device; | 
|  |  | 
|  | list_add(&device->dev_list, &fs_devices->devices); | 
|  | device->fs_devices = fs_devices; | 
|  | fs_devices->num_devices++; | 
|  |  | 
|  | set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); | 
|  | fs_devices->missing_devices++; | 
|  |  | 
|  | return device; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate new device struct, set up devid and UUID. | 
|  | * | 
|  | * @fs_info:	used only for generating a new devid, can be NULL if | 
|  | *		devid is provided (i.e. @devid != NULL). | 
|  | * @devid:	a pointer to devid for this device.  If NULL a new devid | 
|  | *		is generated. | 
|  | * @uuid:	a pointer to UUID for this device.  If NULL a new UUID | 
|  | *		is generated. | 
|  | * @path:	a pointer to device path if available, NULL otherwise. | 
|  | * | 
|  | * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() | 
|  | * on error.  Returned struct is not linked onto any lists and must be | 
|  | * destroyed with btrfs_free_device. | 
|  | */ | 
|  | struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, | 
|  | const u64 *devid, const u8 *uuid, | 
|  | const char *path) | 
|  | { | 
|  | struct btrfs_device *dev; | 
|  | u64 tmp; | 
|  |  | 
|  | if (WARN_ON(!devid && !fs_info)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | dev = kzalloc(sizeof(*dev), GFP_KERNEL); | 
|  | if (!dev) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | INIT_LIST_HEAD(&dev->dev_list); | 
|  | INIT_LIST_HEAD(&dev->dev_alloc_list); | 
|  | INIT_LIST_HEAD(&dev->post_commit_list); | 
|  |  | 
|  | atomic_set(&dev->dev_stats_ccnt, 0); | 
|  | btrfs_device_data_ordered_init(dev); | 
|  | btrfs_extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); | 
|  |  | 
|  | if (devid) | 
|  | tmp = *devid; | 
|  | else { | 
|  | int ret; | 
|  |  | 
|  | ret = find_next_devid(fs_info, &tmp); | 
|  | if (ret) { | 
|  | btrfs_free_device(dev); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | } | 
|  | dev->devid = tmp; | 
|  |  | 
|  | if (uuid) | 
|  | memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); | 
|  | else | 
|  | generate_random_uuid(dev->uuid); | 
|  |  | 
|  | if (path) { | 
|  | const char *name; | 
|  |  | 
|  | name = kstrdup(path, GFP_KERNEL); | 
|  | if (!name) { | 
|  | btrfs_free_device(dev); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | rcu_assign_pointer(dev->name, name); | 
|  | } | 
|  |  | 
|  | return dev; | 
|  | } | 
|  |  | 
|  | static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, | 
|  | u64 devid, u8 *uuid, bool error) | 
|  | { | 
|  | if (error) | 
|  | btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", | 
|  | devid, uuid); | 
|  | else | 
|  | btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", | 
|  | devid, uuid); | 
|  | } | 
|  |  | 
|  | u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map) | 
|  | { | 
|  | const int data_stripes = calc_data_stripes(map->type, map->num_stripes); | 
|  |  | 
|  | return div_u64(map->chunk_len, data_stripes); | 
|  | } | 
|  |  | 
|  | #if BITS_PER_LONG == 32 | 
|  | /* | 
|  | * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE | 
|  | * can't be accessed on 32bit systems. | 
|  | * | 
|  | * This function do mount time check to reject the fs if it already has | 
|  | * metadata chunk beyond that limit. | 
|  | */ | 
|  | static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, | 
|  | u64 logical, u64 length, u64 type) | 
|  | { | 
|  | if (!(type & BTRFS_BLOCK_GROUP_METADATA)) | 
|  | return 0; | 
|  |  | 
|  | if (logical + length < MAX_LFS_FILESIZE) | 
|  | return 0; | 
|  |  | 
|  | btrfs_err_32bit_limit(fs_info); | 
|  | return -EOVERFLOW; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is to give early warning for any metadata chunk reaching | 
|  | * BTRFS_32BIT_EARLY_WARN_THRESHOLD. | 
|  | * Although we can still access the metadata, it's not going to be possible | 
|  | * once the limit is reached. | 
|  | */ | 
|  | static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, | 
|  | u64 logical, u64 length, u64 type) | 
|  | { | 
|  | if (!(type & BTRFS_BLOCK_GROUP_METADATA)) | 
|  | return; | 
|  |  | 
|  | if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) | 
|  | return; | 
|  |  | 
|  | btrfs_warn_32bit_limit(fs_info); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, | 
|  | u64 devid, u8 *uuid) | 
|  | { | 
|  | struct btrfs_device *dev; | 
|  |  | 
|  | if (!btrfs_test_opt(fs_info, DEGRADED)) { | 
|  | btrfs_report_missing_device(fs_info, devid, uuid, true); | 
|  | return ERR_PTR(-ENOENT); | 
|  | } | 
|  |  | 
|  | dev = add_missing_dev(fs_info->fs_devices, devid, uuid); | 
|  | if (IS_ERR(dev)) { | 
|  | btrfs_err(fs_info, "failed to init missing device %llu: %ld", | 
|  | devid, PTR_ERR(dev)); | 
|  | return dev; | 
|  | } | 
|  | btrfs_report_missing_device(fs_info, devid, uuid, false); | 
|  |  | 
|  | return dev; | 
|  | } | 
|  |  | 
|  | static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, | 
|  | struct btrfs_chunk *chunk) | 
|  | { | 
|  | BTRFS_DEV_LOOKUP_ARGS(args); | 
|  | struct btrfs_fs_info *fs_info = leaf->fs_info; | 
|  | struct btrfs_chunk_map *map; | 
|  | u64 logical; | 
|  | u64 length; | 
|  | u64 devid; | 
|  | u64 type; | 
|  | u8 uuid[BTRFS_UUID_SIZE]; | 
|  | int index; | 
|  | int num_stripes; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | logical = key->offset; | 
|  | length = btrfs_chunk_length(leaf, chunk); | 
|  | type = btrfs_chunk_type(leaf, chunk); | 
|  | index = btrfs_bg_flags_to_raid_index(type); | 
|  | num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | 
|  |  | 
|  | #if BITS_PER_LONG == 32 | 
|  | ret = check_32bit_meta_chunk(fs_info, logical, length, type); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | warn_32bit_meta_chunk(fs_info, logical, length, type); | 
|  | #endif | 
|  |  | 
|  | map = btrfs_find_chunk_map(fs_info, logical, 1); | 
|  |  | 
|  | /* already mapped? */ | 
|  | if (map && map->start <= logical && map->start + map->chunk_len > logical) { | 
|  | btrfs_free_chunk_map(map); | 
|  | return 0; | 
|  | } else if (map) { | 
|  | btrfs_free_chunk_map(map); | 
|  | } | 
|  |  | 
|  | map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS); | 
|  | if (!map) | 
|  | return -ENOMEM; | 
|  |  | 
|  | map->start = logical; | 
|  | map->chunk_len = length; | 
|  | map->num_stripes = num_stripes; | 
|  | map->io_width = btrfs_chunk_io_width(leaf, chunk); | 
|  | map->io_align = btrfs_chunk_io_align(leaf, chunk); | 
|  | map->type = type; | 
|  | /* | 
|  | * We can't use the sub_stripes value, as for profiles other than | 
|  | * RAID10, they may have 0 as sub_stripes for filesystems created by | 
|  | * older mkfs (<v5.4). | 
|  | * In that case, it can cause divide-by-zero errors later. | 
|  | * Since currently sub_stripes is fixed for each profile, let's | 
|  | * use the trusted value instead. | 
|  | */ | 
|  | map->sub_stripes = btrfs_raid_array[index].sub_stripes; | 
|  | map->verified_stripes = 0; | 
|  | map->stripe_size = btrfs_calc_stripe_length(map); | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | map->stripes[i].physical = | 
|  | btrfs_stripe_offset_nr(leaf, chunk, i); | 
|  | devid = btrfs_stripe_devid_nr(leaf, chunk, i); | 
|  | args.devid = devid; | 
|  | read_extent_buffer(leaf, uuid, (unsigned long) | 
|  | btrfs_stripe_dev_uuid_nr(chunk, i), | 
|  | BTRFS_UUID_SIZE); | 
|  | args.uuid = uuid; | 
|  | map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); | 
|  | if (!map->stripes[i].dev) { | 
|  | map->stripes[i].dev = handle_missing_device(fs_info, | 
|  | devid, uuid); | 
|  | if (IS_ERR(map->stripes[i].dev)) { | 
|  | ret = PTR_ERR(map->stripes[i].dev); | 
|  | btrfs_free_chunk_map(map); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, | 
|  | &(map->stripes[i].dev->dev_state)); | 
|  | } | 
|  |  | 
|  | ret = btrfs_add_chunk_map(fs_info, map); | 
|  | if (ret < 0) { | 
|  | btrfs_err(fs_info, | 
|  | "failed to add chunk map, start=%llu len=%llu: %d", | 
|  | map->start, map->chunk_len, ret); | 
|  | btrfs_free_chunk_map(map); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void fill_device_from_item(struct extent_buffer *leaf, | 
|  | struct btrfs_dev_item *dev_item, | 
|  | struct btrfs_device *device) | 
|  | { | 
|  | unsigned long ptr; | 
|  |  | 
|  | device->devid = btrfs_device_id(leaf, dev_item); | 
|  | device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); | 
|  | device->total_bytes = device->disk_total_bytes; | 
|  | device->commit_total_bytes = device->disk_total_bytes; | 
|  | device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); | 
|  | device->commit_bytes_used = device->bytes_used; | 
|  | device->type = btrfs_device_type(leaf, dev_item); | 
|  | device->io_align = btrfs_device_io_align(leaf, dev_item); | 
|  | device->io_width = btrfs_device_io_width(leaf, dev_item); | 
|  | device->sector_size = btrfs_device_sector_size(leaf, dev_item); | 
|  | WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); | 
|  | clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); | 
|  |  | 
|  | ptr = btrfs_device_uuid(dev_item); | 
|  | read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | 
|  | } | 
|  |  | 
|  | static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, | 
|  | u8 *fsid) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held(&uuid_mutex); | 
|  | ASSERT(fsid); | 
|  |  | 
|  | /* This will match only for multi-device seed fs */ | 
|  | list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) | 
|  | if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) | 
|  | return fs_devices; | 
|  |  | 
|  |  | 
|  | fs_devices = find_fsid(fsid, NULL); | 
|  | if (!fs_devices) { | 
|  | if (!btrfs_test_opt(fs_info, DEGRADED)) { | 
|  | btrfs_err(fs_info, | 
|  | "failed to find fsid %pU when attempting to open seed devices", | 
|  | fsid); | 
|  | return ERR_PTR(-ENOENT); | 
|  | } | 
|  |  | 
|  | fs_devices = alloc_fs_devices(fsid); | 
|  | if (IS_ERR(fs_devices)) | 
|  | return fs_devices; | 
|  |  | 
|  | fs_devices->seeding = true; | 
|  | fs_devices->opened = 1; | 
|  | return fs_devices; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Upon first call for a seed fs fsid, just create a private copy of the | 
|  | * respective fs_devices and anchor it at fs_info->fs_devices->seed_list | 
|  | */ | 
|  | fs_devices = clone_fs_devices(fs_devices); | 
|  | if (IS_ERR(fs_devices)) | 
|  | return fs_devices; | 
|  |  | 
|  | ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->sb); | 
|  | if (ret) { | 
|  | free_fs_devices(fs_devices); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | if (!fs_devices->seeding) { | 
|  | close_fs_devices(fs_devices); | 
|  | free_fs_devices(fs_devices); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); | 
|  |  | 
|  | return fs_devices; | 
|  | } | 
|  |  | 
|  | static int read_one_dev(struct extent_buffer *leaf, | 
|  | struct btrfs_dev_item *dev_item) | 
|  | { | 
|  | BTRFS_DEV_LOOKUP_ARGS(args); | 
|  | struct btrfs_fs_info *fs_info = leaf->fs_info; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_device *device; | 
|  | u64 devid; | 
|  | int ret; | 
|  | u8 fs_uuid[BTRFS_FSID_SIZE]; | 
|  | u8 dev_uuid[BTRFS_UUID_SIZE]; | 
|  |  | 
|  | devid = btrfs_device_id(leaf, dev_item); | 
|  | args.devid = devid; | 
|  | read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), | 
|  | BTRFS_UUID_SIZE); | 
|  | read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), | 
|  | BTRFS_FSID_SIZE); | 
|  | args.uuid = dev_uuid; | 
|  | args.fsid = fs_uuid; | 
|  |  | 
|  | if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { | 
|  | fs_devices = open_seed_devices(fs_info, fs_uuid); | 
|  | if (IS_ERR(fs_devices)) | 
|  | return PTR_ERR(fs_devices); | 
|  | } | 
|  |  | 
|  | device = btrfs_find_device(fs_info->fs_devices, &args); | 
|  | if (!device) { | 
|  | if (!btrfs_test_opt(fs_info, DEGRADED)) { | 
|  | btrfs_report_missing_device(fs_info, devid, | 
|  | dev_uuid, true); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | device = add_missing_dev(fs_devices, devid, dev_uuid); | 
|  | if (IS_ERR(device)) { | 
|  | btrfs_err(fs_info, | 
|  | "failed to add missing dev %llu: %ld", | 
|  | devid, PTR_ERR(device)); | 
|  | return PTR_ERR(device); | 
|  | } | 
|  | btrfs_report_missing_device(fs_info, devid, dev_uuid, false); | 
|  | } else { | 
|  | if (!device->bdev) { | 
|  | if (!btrfs_test_opt(fs_info, DEGRADED)) { | 
|  | btrfs_report_missing_device(fs_info, | 
|  | devid, dev_uuid, true); | 
|  | return -ENOENT; | 
|  | } | 
|  | btrfs_report_missing_device(fs_info, devid, | 
|  | dev_uuid, false); | 
|  | } | 
|  |  | 
|  | if (!device->bdev && | 
|  | !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { | 
|  | /* | 
|  | * this happens when a device that was properly setup | 
|  | * in the device info lists suddenly goes bad. | 
|  | * device->bdev is NULL, and so we have to set | 
|  | * device->missing to one here | 
|  | */ | 
|  | device->fs_devices->missing_devices++; | 
|  | set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); | 
|  | } | 
|  |  | 
|  | /* Move the device to its own fs_devices */ | 
|  | if (device->fs_devices != fs_devices) { | 
|  | ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, | 
|  | &device->dev_state)); | 
|  |  | 
|  | list_move(&device->dev_list, &fs_devices->devices); | 
|  | device->fs_devices->num_devices--; | 
|  | fs_devices->num_devices++; | 
|  |  | 
|  | device->fs_devices->missing_devices--; | 
|  | fs_devices->missing_devices++; | 
|  |  | 
|  | device->fs_devices = fs_devices; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (device->fs_devices != fs_info->fs_devices) { | 
|  | BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); | 
|  | if (device->generation != | 
|  | btrfs_device_generation(leaf, dev_item)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | fill_device_from_item(leaf, dev_item, device); | 
|  | if (device->bdev) { | 
|  | u64 max_total_bytes = bdev_nr_bytes(device->bdev); | 
|  |  | 
|  | if (device->total_bytes > max_total_bytes) { | 
|  | btrfs_err(fs_info, | 
|  | "device total_bytes should be at most %llu but found %llu", | 
|  | max_total_bytes, device->total_bytes); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); | 
|  | if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && | 
|  | !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { | 
|  | device->fs_devices->total_rw_bytes += device->total_bytes; | 
|  | atomic64_add(device->total_bytes - device->bytes_used, | 
|  | &fs_info->free_chunk_space); | 
|  | } | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_super_block *super_copy = fs_info->super_copy; | 
|  | struct extent_buffer *sb; | 
|  | u8 *array_ptr; | 
|  | unsigned long sb_array_offset; | 
|  | int ret = 0; | 
|  | u32 array_size; | 
|  | u32 cur_offset; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); | 
|  |  | 
|  | /* | 
|  | * We allocated a dummy extent, just to use extent buffer accessors. | 
|  | * There will be unused space after BTRFS_SUPER_INFO_SIZE, but | 
|  | * that's fine, we will not go beyond system chunk array anyway. | 
|  | */ | 
|  | sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); | 
|  | if (!sb) | 
|  | return -ENOMEM; | 
|  | set_extent_buffer_uptodate(sb); | 
|  |  | 
|  | write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); | 
|  | array_size = btrfs_super_sys_array_size(super_copy); | 
|  |  | 
|  | array_ptr = super_copy->sys_chunk_array; | 
|  | sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); | 
|  | cur_offset = 0; | 
|  |  | 
|  | while (cur_offset < array_size) { | 
|  | struct btrfs_chunk *chunk; | 
|  | struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr; | 
|  | u32 len = sizeof(*disk_key); | 
|  |  | 
|  | /* | 
|  | * The sys_chunk_array has been already verified at super block | 
|  | * read time.  Only do ASSERT()s for basic checks. | 
|  | */ | 
|  | ASSERT(cur_offset + len <= array_size); | 
|  |  | 
|  | btrfs_disk_key_to_cpu(&key, disk_key); | 
|  |  | 
|  | array_ptr += len; | 
|  | sb_array_offset += len; | 
|  | cur_offset += len; | 
|  |  | 
|  | ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY); | 
|  |  | 
|  | chunk = (struct btrfs_chunk *)sb_array_offset; | 
|  | ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM); | 
|  |  | 
|  | len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk)); | 
|  |  | 
|  | ASSERT(cur_offset + len <= array_size); | 
|  |  | 
|  | ret = read_one_chunk(&key, sb, chunk); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | array_ptr += len; | 
|  | sb_array_offset += len; | 
|  | cur_offset += len; | 
|  | } | 
|  | clear_extent_buffer_uptodate(sb); | 
|  | free_extent_buffer_stale(sb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if all chunks in the fs are OK for read-write degraded mount | 
|  | * | 
|  | * If the @failing_dev is specified, it's accounted as missing. | 
|  | * | 
|  | * Return true if all chunks meet the minimal RW mount requirements. | 
|  | * Return false if any chunk doesn't meet the minimal RW mount requirements. | 
|  | */ | 
|  | bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_device *failing_dev) | 
|  | { | 
|  | struct btrfs_chunk_map *map; | 
|  | u64 next_start; | 
|  | bool ret = true; | 
|  |  | 
|  | map = btrfs_find_chunk_map(fs_info, 0, U64_MAX); | 
|  | /* No chunk at all? Return false anyway */ | 
|  | if (!map) { | 
|  | ret = false; | 
|  | goto out; | 
|  | } | 
|  | while (map) { | 
|  | int missing = 0; | 
|  | int max_tolerated; | 
|  | int i; | 
|  |  | 
|  | max_tolerated = | 
|  | btrfs_get_num_tolerated_disk_barrier_failures( | 
|  | map->type); | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | struct btrfs_device *dev = map->stripes[i].dev; | 
|  |  | 
|  | if (!dev || !dev->bdev || | 
|  | test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || | 
|  | dev->last_flush_error) | 
|  | missing++; | 
|  | else if (failing_dev && failing_dev == dev) | 
|  | missing++; | 
|  | } | 
|  | if (missing > max_tolerated) { | 
|  | if (!failing_dev) | 
|  | btrfs_warn(fs_info, | 
|  | "chunk %llu missing %d devices, max tolerance is %d for writable mount", | 
|  | map->start, missing, max_tolerated); | 
|  | btrfs_free_chunk_map(map); | 
|  | ret = false; | 
|  | goto out; | 
|  | } | 
|  | next_start = map->start + map->chunk_len; | 
|  | btrfs_free_chunk_map(map); | 
|  |  | 
|  | map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void readahead_tree_node_children(struct extent_buffer *node) | 
|  | { | 
|  | int i; | 
|  | const int nr_items = btrfs_header_nritems(node); | 
|  |  | 
|  | for (i = 0; i < nr_items; i++) | 
|  | btrfs_readahead_node_child(node, i); | 
|  | } | 
|  |  | 
|  | int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->chunk_root; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | int ret; | 
|  | int slot; | 
|  | int iter_ret = 0; | 
|  | u64 total_dev = 0; | 
|  | u64 last_ra_node = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * uuid_mutex is needed only if we are mounting a sprout FS | 
|  | * otherwise we don't need it. | 
|  | */ | 
|  | mutex_lock(&uuid_mutex); | 
|  |  | 
|  | /* | 
|  | * It is possible for mount and umount to race in such a way that | 
|  | * we execute this code path, but open_fs_devices failed to clear | 
|  | * total_rw_bytes. We certainly want it cleared before reading the | 
|  | * device items, so clear it here. | 
|  | */ | 
|  | fs_info->fs_devices->total_rw_bytes = 0; | 
|  |  | 
|  | /* | 
|  | * Lockdep complains about possible circular locking dependency between | 
|  | * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores | 
|  | * used for freeze protection of a fs (struct super_block.s_writers), | 
|  | * which we take when starting a transaction, and extent buffers of the | 
|  | * chunk tree if we call read_one_dev() while holding a lock on an | 
|  | * extent buffer of the chunk tree. Since we are mounting the filesystem | 
|  | * and at this point there can't be any concurrent task modifying the | 
|  | * chunk tree, to keep it simple, just skip locking on the chunk tree. | 
|  | */ | 
|  | ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); | 
|  | path->skip_locking = 1; | 
|  |  | 
|  | /* | 
|  | * Read all device items, and then all the chunk items. All | 
|  | * device items are found before any chunk item (their object id | 
|  | * is smaller than the lowest possible object id for a chunk | 
|  | * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). | 
|  | */ | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.type = 0; | 
|  | key.offset = 0; | 
|  | btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { | 
|  | struct extent_buffer *node = path->nodes[1]; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  |  | 
|  | if (node) { | 
|  | if (last_ra_node != node->start) { | 
|  | readahead_tree_node_children(node); | 
|  | last_ra_node = node->start; | 
|  | } | 
|  | } | 
|  | if (found_key.type == BTRFS_DEV_ITEM_KEY) { | 
|  | struct btrfs_dev_item *dev_item; | 
|  | dev_item = btrfs_item_ptr(leaf, slot, | 
|  | struct btrfs_dev_item); | 
|  | ret = read_one_dev(leaf, dev_item); | 
|  | if (ret) | 
|  | goto error; | 
|  | total_dev++; | 
|  | } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { | 
|  | struct btrfs_chunk *chunk; | 
|  |  | 
|  | /* | 
|  | * We are only called at mount time, so no need to take | 
|  | * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, | 
|  | * we always lock first fs_info->chunk_mutex before | 
|  | * acquiring any locks on the chunk tree. This is a | 
|  | * requirement for chunk allocation, see the comment on | 
|  | * top of btrfs_chunk_alloc() for details. | 
|  | */ | 
|  | chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); | 
|  | ret = read_one_chunk(&found_key, leaf, chunk); | 
|  | if (ret) | 
|  | goto error; | 
|  | } | 
|  | } | 
|  | /* Catch error found during iteration */ | 
|  | if (iter_ret < 0) { | 
|  | ret = iter_ret; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After loading chunk tree, we've got all device information, | 
|  | * do another round of validation checks. | 
|  | */ | 
|  | if (total_dev != fs_info->fs_devices->total_devices) { | 
|  | btrfs_warn(fs_info, | 
|  | "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", | 
|  | btrfs_super_num_devices(fs_info->super_copy), | 
|  | total_dev); | 
|  | fs_info->fs_devices->total_devices = total_dev; | 
|  | btrfs_set_super_num_devices(fs_info->super_copy, total_dev); | 
|  | } | 
|  | if (btrfs_super_total_bytes(fs_info->super_copy) < | 
|  | fs_info->fs_devices->total_rw_bytes) { | 
|  | btrfs_err(fs_info, | 
|  | "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", | 
|  | btrfs_super_total_bytes(fs_info->super_copy), | 
|  | fs_info->fs_devices->total_rw_bytes); | 
|  | ret = -EINVAL; | 
|  | goto error; | 
|  | } | 
|  | ret = 0; | 
|  | error: | 
|  | mutex_unlock(&uuid_mutex); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; | 
|  | struct btrfs_device *device; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) | 
|  | device->fs_info = fs_info; | 
|  |  | 
|  | list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { | 
|  | list_for_each_entry(device, &seed_devs->devices, dev_list) { | 
|  | device->fs_info = fs_info; | 
|  | ret = btrfs_get_dev_zone_info(device, false); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | seed_devs->fs_info = fs_info; | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, | 
|  | const struct btrfs_dev_stats_item *ptr, | 
|  | int index) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | read_extent_buffer(eb, &val, | 
|  | offsetof(struct btrfs_dev_stats_item, values) + | 
|  | ((unsigned long)ptr) + (index * sizeof(u64)), | 
|  | sizeof(val)); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static void btrfs_set_dev_stats_value(struct extent_buffer *eb, | 
|  | struct btrfs_dev_stats_item *ptr, | 
|  | int index, u64 val) | 
|  | { | 
|  | write_extent_buffer(eb, &val, | 
|  | offsetof(struct btrfs_dev_stats_item, values) + | 
|  | ((unsigned long)ptr) + (index * sizeof(u64)), | 
|  | sizeof(val)); | 
|  | } | 
|  |  | 
|  | static int btrfs_device_init_dev_stats(struct btrfs_device *device, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_dev_stats_item *ptr; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_key key; | 
|  | int item_size; | 
|  | int i, ret, slot; | 
|  |  | 
|  | if (!device->fs_info->dev_root) | 
|  | return 0; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_STATS_OBJECTID; | 
|  | key.type = BTRFS_PERSISTENT_ITEM_KEY; | 
|  | key.offset = device->devid; | 
|  | ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); | 
|  | if (ret) { | 
|  | for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) | 
|  | btrfs_dev_stat_set(device, i, 0); | 
|  | device->dev_stats_valid = 1; | 
|  | btrfs_release_path(path); | 
|  | return ret < 0 ? ret : 0; | 
|  | } | 
|  | slot = path->slots[0]; | 
|  | eb = path->nodes[0]; | 
|  | item_size = btrfs_item_size(eb, slot); | 
|  |  | 
|  | ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); | 
|  |  | 
|  | for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { | 
|  | if (item_size >= (1 + i) * sizeof(__le64)) | 
|  | btrfs_dev_stat_set(device, i, | 
|  | btrfs_dev_stats_value(eb, ptr, i)); | 
|  | else | 
|  | btrfs_dev_stat_set(device, i, 0); | 
|  | } | 
|  |  | 
|  | device->dev_stats_valid = 1; | 
|  | btrfs_dev_stat_print_on_load(device); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_path *path = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | ret = btrfs_device_init_dev_stats(device, path); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { | 
|  | list_for_each_entry(device, &seed_devs->devices, dev_list) { | 
|  | ret = btrfs_device_init_dev_stats(device, path); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int update_dev_stat_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *dev_root = fs_info->dev_root; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_dev_stats_item *ptr; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_STATS_OBJECTID; | 
|  | key.type = BTRFS_PERSISTENT_ITEM_KEY; | 
|  | key.offset = device->devid; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); | 
|  | if (ret < 0) { | 
|  | btrfs_warn(fs_info, | 
|  | "error %d while searching for dev_stats item for device %s", | 
|  | ret, btrfs_dev_name(device)); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ret == 0 && | 
|  | btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { | 
|  | /* need to delete old one and insert a new one */ | 
|  | ret = btrfs_del_item(trans, dev_root, path); | 
|  | if (ret != 0) { | 
|  | btrfs_warn(fs_info, | 
|  | "delete too small dev_stats item for device %s failed %d", | 
|  | btrfs_dev_name(device), ret); | 
|  | goto out; | 
|  | } | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (ret == 1) { | 
|  | /* need to insert a new item */ | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_insert_empty_item(trans, dev_root, path, | 
|  | &key, sizeof(*ptr)); | 
|  | if (ret < 0) { | 
|  | btrfs_warn(fs_info, | 
|  | "insert dev_stats item for device %s failed %d", | 
|  | btrfs_dev_name(device), ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | eb = path->nodes[0]; | 
|  | ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); | 
|  | for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) | 
|  | btrfs_set_dev_stats_value(eb, ptr, i, | 
|  | btrfs_dev_stat_read(device, i)); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called from commit_transaction. Writes all changed device stats to disk. | 
|  | */ | 
|  | int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_device *device; | 
|  | int stats_cnt; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | stats_cnt = atomic_read(&device->dev_stats_ccnt); | 
|  | if (!device->dev_stats_valid || stats_cnt == 0) | 
|  | continue; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * There is a LOAD-LOAD control dependency between the value of | 
|  | * dev_stats_ccnt and updating the on-disk values which requires | 
|  | * reading the in-memory counters. Such control dependencies | 
|  | * require explicit read memory barriers. | 
|  | * | 
|  | * This memory barriers pairs with smp_mb__before_atomic in | 
|  | * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full | 
|  | * barrier implied by atomic_xchg in | 
|  | * btrfs_dev_stats_read_and_reset | 
|  | */ | 
|  | smp_rmb(); | 
|  |  | 
|  | ret = update_dev_stat_item(trans, device); | 
|  | if (!ret) | 
|  | atomic_sub(stats_cnt, &device->dev_stats_ccnt); | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) | 
|  | { | 
|  | btrfs_dev_stat_inc(dev, index); | 
|  |  | 
|  | if (!dev->dev_stats_valid) | 
|  | return; | 
|  | btrfs_err_rl(dev->fs_info, | 
|  | "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", | 
|  | btrfs_dev_name(dev), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); | 
|  | } | 
|  |  | 
|  | static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) | 
|  | if (btrfs_dev_stat_read(dev, i) != 0) | 
|  | break; | 
|  | if (i == BTRFS_DEV_STAT_VALUES_MAX) | 
|  | return; /* all values == 0, suppress message */ | 
|  |  | 
|  | btrfs_info(dev->fs_info, | 
|  | "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", | 
|  | btrfs_dev_name(dev), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), | 
|  | btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); | 
|  | } | 
|  |  | 
|  | int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_ioctl_get_dev_stats *stats) | 
|  | { | 
|  | BTRFS_DEV_LOOKUP_ARGS(args); | 
|  | struct btrfs_device *dev; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | int i; | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | args.devid = stats->devid; | 
|  | dev = btrfs_find_device(fs_info->fs_devices, &args); | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | if (!dev) { | 
|  | btrfs_warn(fs_info, "get dev_stats failed, device not found"); | 
|  | return -ENODEV; | 
|  | } else if (!dev->dev_stats_valid) { | 
|  | btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); | 
|  | return -ENODEV; | 
|  | } else if (stats->flags & BTRFS_DEV_STATS_RESET) { | 
|  | for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { | 
|  | if (stats->nr_items > i) | 
|  | stats->values[i] = | 
|  | btrfs_dev_stat_read_and_reset(dev, i); | 
|  | else | 
|  | btrfs_dev_stat_set(dev, i, 0); | 
|  | } | 
|  | btrfs_info(fs_info, "device stats zeroed by %s (%d)", | 
|  | current->comm, task_pid_nr(current)); | 
|  | } else { | 
|  | for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) | 
|  | if (stats->nr_items > i) | 
|  | stats->values[i] = btrfs_dev_stat_read(dev, i); | 
|  | } | 
|  | if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) | 
|  | stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the size and bytes used for each device where it changed.  This is | 
|  | * delayed since we would otherwise get errors while writing out the | 
|  | * superblocks. | 
|  | * | 
|  | * Must be invoked during transaction commit. | 
|  | */ | 
|  | void btrfs_commit_device_sizes(struct btrfs_transaction *trans) | 
|  | { | 
|  | struct btrfs_device *curr, *next; | 
|  |  | 
|  | ASSERT(trans->state == TRANS_STATE_COMMIT_DOING, "state=%d" , trans->state); | 
|  |  | 
|  | if (list_empty(&trans->dev_update_list)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We don't need the device_list_mutex here.  This list is owned by the | 
|  | * transaction and the transaction must complete before the device is | 
|  | * released. | 
|  | */ | 
|  | mutex_lock(&trans->fs_info->chunk_mutex); | 
|  | list_for_each_entry_safe(curr, next, &trans->dev_update_list, | 
|  | post_commit_list) { | 
|  | list_del_init(&curr->post_commit_list); | 
|  | curr->commit_total_bytes = curr->disk_total_bytes; | 
|  | curr->commit_bytes_used = curr->bytes_used; | 
|  | } | 
|  | mutex_unlock(&trans->fs_info->chunk_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. | 
|  | */ | 
|  | int btrfs_bg_type_to_factor(u64 flags) | 
|  | { | 
|  | const int index = btrfs_bg_flags_to_raid_index(flags); | 
|  |  | 
|  | return btrfs_raid_array[index].ncopies; | 
|  | } | 
|  |  | 
|  | static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, | 
|  | u64 chunk_offset, u64 devid, | 
|  | u64 physical_offset, u64 physical_len) | 
|  | { | 
|  | struct btrfs_dev_lookup_args args = { .devid = devid }; | 
|  | struct btrfs_chunk_map *map; | 
|  | struct btrfs_device *dev; | 
|  | u64 stripe_len; | 
|  | bool found = false; | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | map = btrfs_find_chunk_map(fs_info, chunk_offset, 1); | 
|  | if (unlikely(!map)) { | 
|  | btrfs_err(fs_info, | 
|  | "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", | 
|  | physical_offset, devid); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | stripe_len = btrfs_calc_stripe_length(map); | 
|  | if (unlikely(physical_len != stripe_len)) { | 
|  | btrfs_err(fs_info, | 
|  | "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", | 
|  | physical_offset, devid, map->start, physical_len, | 
|  | stripe_len); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Very old mkfs.btrfs (before v4.15) will not respect the reserved | 
|  | * space. Although kernel can handle it without problem, better to warn | 
|  | * the users. | 
|  | */ | 
|  | if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) | 
|  | btrfs_warn(fs_info, | 
|  | "devid %llu physical %llu len %llu inside the reserved space", | 
|  | devid, physical_offset, physical_len); | 
|  |  | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | if (unlikely(map->stripes[i].dev->devid == devid && | 
|  | map->stripes[i].physical == physical_offset)) { | 
|  | found = true; | 
|  | if (map->verified_stripes >= map->num_stripes) { | 
|  | btrfs_err(fs_info, | 
|  | "too many dev extents for chunk %llu found", | 
|  | map->start); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | map->verified_stripes++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (unlikely(!found)) { | 
|  | btrfs_err(fs_info, | 
|  | "dev extent physical offset %llu devid %llu has no corresponding chunk", | 
|  | physical_offset, devid); | 
|  | ret = -EUCLEAN; | 
|  | } | 
|  |  | 
|  | /* Make sure no dev extent is beyond device boundary */ | 
|  | dev = btrfs_find_device(fs_info->fs_devices, &args); | 
|  | if (unlikely(!dev)) { | 
|  | btrfs_err(fs_info, "failed to find devid %llu", devid); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (unlikely(physical_offset + physical_len > dev->disk_total_bytes)) { | 
|  | btrfs_err(fs_info, | 
|  | "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", | 
|  | devid, physical_offset, physical_len, | 
|  | dev->disk_total_bytes); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (dev->zone_info) { | 
|  | u64 zone_size = dev->zone_info->zone_size; | 
|  |  | 
|  | if (unlikely(!IS_ALIGNED(physical_offset, zone_size) || | 
|  | !IS_ALIGNED(physical_len, zone_size))) { | 
|  | btrfs_err(fs_info, | 
|  | "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", | 
|  | devid, physical_offset, physical_len); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | btrfs_free_chunk_map(map); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct rb_node *node; | 
|  | int ret = 0; | 
|  |  | 
|  | read_lock(&fs_info->mapping_tree_lock); | 
|  | for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) { | 
|  | struct btrfs_chunk_map *map; | 
|  |  | 
|  | map = rb_entry(node, struct btrfs_chunk_map, rb_node); | 
|  | if (unlikely(map->num_stripes != map->verified_stripes)) { | 
|  | btrfs_err(fs_info, | 
|  | "chunk %llu has missing dev extent, have %d expect %d", | 
|  | map->start, map->verified_stripes, map->num_stripes); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | read_unlock(&fs_info->mapping_tree_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure that all dev extents are mapped to correct chunk, otherwise | 
|  | * later chunk allocation/free would cause unexpected behavior. | 
|  | * | 
|  | * NOTE: This will iterate through the whole device tree, which should be of | 
|  | * the same size level as the chunk tree.  This slightly increases mount time. | 
|  | */ | 
|  | int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = fs_info->dev_root; | 
|  | struct btrfs_key key; | 
|  | u64 prev_devid = 0; | 
|  | u64 prev_dev_ext_end = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * We don't have a dev_root because we mounted with ignorebadroots and | 
|  | * failed to load the root, so we want to skip the verification in this | 
|  | * case for sure. | 
|  | * | 
|  | * However if the dev root is fine, but the tree itself is corrupted | 
|  | * we'd still fail to mount.  This verification is only to make sure | 
|  | * writes can happen safely, so instead just bypass this check | 
|  | * completely in the case of IGNOREBADROOTS. | 
|  | */ | 
|  | if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) | 
|  | return 0; | 
|  |  | 
|  | key.objectid = 1; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->reada = READA_FORWARD; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | /* No dev extents at all? Not good */ | 
|  | if (unlikely(ret > 0)) { | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | while (1) { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | struct btrfs_dev_extent *dext; | 
|  | int slot = path->slots[0]; | 
|  | u64 chunk_offset; | 
|  | u64 physical_offset; | 
|  | u64 physical_len; | 
|  | u64 devid; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.type != BTRFS_DEV_EXTENT_KEY) | 
|  | break; | 
|  | devid = key.objectid; | 
|  | physical_offset = key.offset; | 
|  |  | 
|  | dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); | 
|  | chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); | 
|  | physical_len = btrfs_dev_extent_length(leaf, dext); | 
|  |  | 
|  | /* Check if this dev extent overlaps with the previous one */ | 
|  | if (unlikely(devid == prev_devid && physical_offset < prev_dev_ext_end)) { | 
|  | btrfs_err(fs_info, | 
|  | "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", | 
|  | devid, physical_offset, prev_dev_ext_end); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = verify_one_dev_extent(fs_info, chunk_offset, devid, | 
|  | physical_offset, physical_len); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | prev_devid = devid; | 
|  | prev_dev_ext_end = physical_offset + physical_len; | 
|  |  | 
|  | ret = btrfs_next_item(root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ensure all chunks have corresponding dev extents */ | 
|  | ret = verify_chunk_dev_extent_mapping(fs_info); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether the given block group or device is pinned by any inode being | 
|  | * used as a swapfile. | 
|  | */ | 
|  | bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) | 
|  | { | 
|  | struct btrfs_swapfile_pin *sp; | 
|  | struct rb_node *node; | 
|  |  | 
|  | spin_lock(&fs_info->swapfile_pins_lock); | 
|  | node = fs_info->swapfile_pins.rb_node; | 
|  | while (node) { | 
|  | sp = rb_entry(node, struct btrfs_swapfile_pin, node); | 
|  | if (ptr < sp->ptr) | 
|  | node = node->rb_left; | 
|  | else if (ptr > sp->ptr) | 
|  | node = node->rb_right; | 
|  | else | 
|  | break; | 
|  | } | 
|  | spin_unlock(&fs_info->swapfile_pins_lock); | 
|  | return node != NULL; | 
|  | } | 
|  |  | 
|  | static int relocating_repair_kthread(void *data) | 
|  | { | 
|  | struct btrfs_block_group *cache = data; | 
|  | struct btrfs_fs_info *fs_info = cache->fs_info; | 
|  | u64 target; | 
|  | int ret = 0; | 
|  |  | 
|  | target = cache->start; | 
|  | btrfs_put_block_group(cache); | 
|  |  | 
|  | sb_start_write(fs_info->sb); | 
|  | if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { | 
|  | btrfs_info(fs_info, | 
|  | "zoned: skip relocating block group %llu to repair: EBUSY", | 
|  | target); | 
|  | sb_end_write(fs_info->sb); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | mutex_lock(&fs_info->reclaim_bgs_lock); | 
|  |  | 
|  | /* Ensure block group still exists */ | 
|  | cache = btrfs_lookup_block_group(fs_info, target); | 
|  | if (!cache) | 
|  | goto out; | 
|  |  | 
|  | if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_may_alloc_data_chunk(fs_info, target); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | btrfs_info(fs_info, | 
|  | "zoned: relocating block group %llu to repair IO failure", | 
|  | target); | 
|  | ret = btrfs_relocate_chunk(fs_info, target, true); | 
|  |  | 
|  | out: | 
|  | if (cache) | 
|  | btrfs_put_block_group(cache); | 
|  | mutex_unlock(&fs_info->reclaim_bgs_lock); | 
|  | btrfs_exclop_finish(fs_info); | 
|  | sb_end_write(fs_info->sb); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  |  | 
|  | if (!btrfs_is_zoned(fs_info)) | 
|  | return false; | 
|  |  | 
|  | /* Do not attempt to repair in degraded state */ | 
|  | if (btrfs_test_opt(fs_info, DEGRADED)) | 
|  | return true; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, logical); | 
|  | if (!cache) | 
|  | return true; | 
|  |  | 
|  | if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { | 
|  | btrfs_put_block_group(cache); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | kthread_run(relocating_repair_kthread, cache, | 
|  | "btrfs-relocating-repair"); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void map_raid56_repair_block(struct btrfs_io_context *bioc, | 
|  | struct btrfs_io_stripe *smap, | 
|  | u64 logical) | 
|  | { | 
|  | int data_stripes = nr_bioc_data_stripes(bioc); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < data_stripes; i++) { | 
|  | u64 stripe_start = bioc->full_stripe_logical + | 
|  | btrfs_stripe_nr_to_offset(i); | 
|  |  | 
|  | if (logical >= stripe_start && | 
|  | logical < stripe_start + BTRFS_STRIPE_LEN) | 
|  | break; | 
|  | } | 
|  | ASSERT(i < data_stripes, "i=%d data_stripes=%d", i, data_stripes); | 
|  | smap->dev = bioc->stripes[i].dev; | 
|  | smap->physical = bioc->stripes[i].physical + | 
|  | ((logical - bioc->full_stripe_logical) & | 
|  | BTRFS_STRIPE_LEN_MASK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map a repair write into a single device. | 
|  | * | 
|  | * A repair write is triggered by read time repair or scrub, which would only | 
|  | * update the contents of a single device. | 
|  | * Not update any other mirrors nor go through RMW path. | 
|  | * | 
|  | * Callers should ensure: | 
|  | * | 
|  | * - Call btrfs_bio_counter_inc_blocked() first | 
|  | * - The range does not cross stripe boundary | 
|  | * - Has a valid @mirror_num passed in. | 
|  | */ | 
|  | int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_io_stripe *smap, u64 logical, | 
|  | u32 length, int mirror_num) | 
|  | { | 
|  | struct btrfs_io_context *bioc = NULL; | 
|  | u64 map_length = length; | 
|  | int mirror_ret = mirror_num; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(mirror_num > 0, "mirror_num=%d", mirror_num); | 
|  |  | 
|  | ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, | 
|  | &bioc, smap, &mirror_ret); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* The map range should not cross stripe boundary. */ | 
|  | ASSERT(map_length >= length, "map_length=%llu length=%u", map_length, length); | 
|  |  | 
|  | /* Already mapped to single stripe. */ | 
|  | if (!bioc) | 
|  | goto out; | 
|  |  | 
|  | /* Map the RAID56 multi-stripe writes to a single one. */ | 
|  | if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { | 
|  | map_raid56_repair_block(bioc, smap, logical); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ASSERT(mirror_num <= bioc->num_stripes, | 
|  | "mirror_num=%d num_stripes=%d", mirror_num,  bioc->num_stripes); | 
|  | smap->dev = bioc->stripes[mirror_num - 1].dev; | 
|  | smap->physical = bioc->stripes[mirror_num - 1].physical; | 
|  | out: | 
|  | btrfs_put_bioc(bioc); | 
|  | ASSERT(smap->dev); | 
|  | return 0; | 
|  | } |