|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2020-2023 Loongson Technology Corporation Limited | 
|  | */ | 
|  |  | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/kvm_mmu.h> | 
|  |  | 
|  | static inline bool kvm_hugepage_capable(struct kvm_memory_slot *slot) | 
|  | { | 
|  | return slot->arch.flags & KVM_MEM_HUGEPAGE_CAPABLE; | 
|  | } | 
|  |  | 
|  | static inline bool kvm_hugepage_incapable(struct kvm_memory_slot *slot) | 
|  | { | 
|  | return slot->arch.flags & KVM_MEM_HUGEPAGE_INCAPABLE; | 
|  | } | 
|  |  | 
|  | static inline void kvm_ptw_prepare(struct kvm *kvm, kvm_ptw_ctx *ctx) | 
|  | { | 
|  | ctx->level = kvm->arch.root_level; | 
|  | /* pte table */ | 
|  | ctx->invalid_ptes  = kvm->arch.invalid_ptes; | 
|  | ctx->pte_shifts    = kvm->arch.pte_shifts; | 
|  | ctx->pgtable_shift = ctx->pte_shifts[ctx->level]; | 
|  | ctx->invalid_entry = ctx->invalid_ptes[ctx->level]; | 
|  | ctx->opaque        = kvm; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark a range of guest physical address space old (all accesses fault) in the | 
|  | * VM's GPA page table to allow detection of commonly used pages. | 
|  | */ | 
|  | static int kvm_mkold_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx) | 
|  | { | 
|  | if (kvm_pte_young(*pte)) { | 
|  | *pte = kvm_pte_mkold(*pte); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark a range of guest physical address space clean (writes fault) in the VM's | 
|  | * GPA page table to allow dirty page tracking. | 
|  | */ | 
|  | static int kvm_mkclean_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx) | 
|  | { | 
|  | gfn_t offset; | 
|  | kvm_pte_t val; | 
|  |  | 
|  | val = *pte; | 
|  | /* | 
|  | * For kvm_arch_mmu_enable_log_dirty_pt_masked with mask, start and end | 
|  | * may cross hugepage, for first huge page parameter addr is equal to | 
|  | * start, however for the second huge page addr is base address of | 
|  | * this huge page, rather than start or end address | 
|  | */ | 
|  | if ((ctx->flag & _KVM_HAS_PGMASK) && !kvm_pte_huge(val)) { | 
|  | offset = (addr >> PAGE_SHIFT) - ctx->gfn; | 
|  | if (!(BIT(offset) & ctx->mask)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Need not split huge page now, just set write-proect pte bit | 
|  | * Split huge page until next write fault | 
|  | */ | 
|  | if (kvm_pte_dirty(val)) { | 
|  | *pte = kvm_pte_mkclean(val); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear pte entry | 
|  | */ | 
|  | static int kvm_flush_pte(kvm_pte_t *pte, phys_addr_t addr, kvm_ptw_ctx *ctx) | 
|  | { | 
|  | struct kvm *kvm; | 
|  |  | 
|  | kvm = ctx->opaque; | 
|  | if (ctx->level) | 
|  | kvm->stat.hugepages--; | 
|  | else | 
|  | kvm->stat.pages--; | 
|  |  | 
|  | *pte = ctx->invalid_entry; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. | 
|  | * | 
|  | * Allocate a blank KVM GPA page directory (PGD) for representing guest physical | 
|  | * to host physical page mappings. | 
|  | * | 
|  | * Returns:	Pointer to new KVM GPA page directory. | 
|  | *		NULL on allocation failure. | 
|  | */ | 
|  | kvm_pte_t *kvm_pgd_alloc(void) | 
|  | { | 
|  | kvm_pte_t *pgd; | 
|  |  | 
|  | pgd = (kvm_pte_t *)__get_free_pages(GFP_KERNEL, 0); | 
|  | if (pgd) | 
|  | pgd_init((void *)pgd); | 
|  |  | 
|  | return pgd; | 
|  | } | 
|  |  | 
|  | static void _kvm_pte_init(void *addr, unsigned long val) | 
|  | { | 
|  | unsigned long *p, *end; | 
|  |  | 
|  | p = (unsigned long *)addr; | 
|  | end = p + PTRS_PER_PTE; | 
|  | do { | 
|  | p[0] = val; | 
|  | p[1] = val; | 
|  | p[2] = val; | 
|  | p[3] = val; | 
|  | p[4] = val; | 
|  | p += 8; | 
|  | p[-3] = val; | 
|  | p[-2] = val; | 
|  | p[-1] = val; | 
|  | } while (p != end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caller must hold kvm->mm_lock | 
|  | * | 
|  | * Walk the page tables of kvm to find the PTE corresponding to the | 
|  | * address @addr. If page tables don't exist for @addr, they will be created | 
|  | * from the MMU cache if @cache is not NULL. | 
|  | */ | 
|  | static kvm_pte_t *kvm_populate_gpa(struct kvm *kvm, | 
|  | struct kvm_mmu_memory_cache *cache, | 
|  | unsigned long addr, int level) | 
|  | { | 
|  | kvm_ptw_ctx ctx; | 
|  | kvm_pte_t *entry, *child; | 
|  |  | 
|  | kvm_ptw_prepare(kvm, &ctx); | 
|  | child = kvm->arch.pgd; | 
|  | while (ctx.level > level) { | 
|  | entry = kvm_pgtable_offset(&ctx, child, addr); | 
|  | if (kvm_pte_none(&ctx, entry)) { | 
|  | if (!cache) | 
|  | return NULL; | 
|  |  | 
|  | child = kvm_mmu_memory_cache_alloc(cache); | 
|  | _kvm_pte_init(child, ctx.invalid_ptes[ctx.level - 1]); | 
|  | smp_wmb(); /* Make pte visible before pmd */ | 
|  | kvm_set_pte(entry, __pa(child)); | 
|  | } else if (kvm_pte_huge(*entry)) { | 
|  | return entry; | 
|  | } else | 
|  | child = (kvm_pte_t *)__va(PHYSADDR(*entry)); | 
|  | kvm_ptw_enter(&ctx); | 
|  | } | 
|  |  | 
|  | entry = kvm_pgtable_offset(&ctx, child, addr); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Page walker for VM shadow mmu at last level | 
|  | * The last level is small pte page or huge pmd page | 
|  | */ | 
|  | static int kvm_ptw_leaf(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx) | 
|  | { | 
|  | int ret; | 
|  | phys_addr_t next, start, size; | 
|  | struct list_head *list; | 
|  | kvm_pte_t *entry, *child; | 
|  |  | 
|  | ret = 0; | 
|  | start = addr; | 
|  | child = (kvm_pte_t *)__va(PHYSADDR(*dir)); | 
|  | entry = kvm_pgtable_offset(ctx, child, addr); | 
|  | do { | 
|  | next = addr + (0x1UL << ctx->pgtable_shift); | 
|  | if (!kvm_pte_present(ctx, entry)) | 
|  | continue; | 
|  |  | 
|  | ret |= ctx->ops(entry, addr, ctx); | 
|  | } while (entry++, addr = next, addr < end); | 
|  |  | 
|  | if (kvm_need_flush(ctx)) { | 
|  | size = 0x1UL << (ctx->pgtable_shift + PAGE_SHIFT - 3); | 
|  | if (start + size == end) { | 
|  | list = (struct list_head *)child; | 
|  | list_add_tail(list, &ctx->list); | 
|  | *dir = ctx->invalid_ptes[ctx->level + 1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Page walker for VM shadow mmu at page table dir level | 
|  | */ | 
|  | static int kvm_ptw_dir(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx) | 
|  | { | 
|  | int ret; | 
|  | phys_addr_t next, start, size; | 
|  | struct list_head *list; | 
|  | kvm_pte_t *entry, *child; | 
|  |  | 
|  | ret = 0; | 
|  | start = addr; | 
|  | child = (kvm_pte_t *)__va(PHYSADDR(*dir)); | 
|  | entry = kvm_pgtable_offset(ctx, child, addr); | 
|  | do { | 
|  | next = kvm_pgtable_addr_end(ctx, addr, end); | 
|  | if (!kvm_pte_present(ctx, entry)) | 
|  | continue; | 
|  |  | 
|  | if (kvm_pte_huge(*entry)) { | 
|  | ret |= ctx->ops(entry, addr, ctx); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | kvm_ptw_enter(ctx); | 
|  | if (ctx->level == 0) | 
|  | ret |= kvm_ptw_leaf(entry, addr, next, ctx); | 
|  | else | 
|  | ret |= kvm_ptw_dir(entry, addr, next, ctx); | 
|  | kvm_ptw_exit(ctx); | 
|  | }  while (entry++, addr = next, addr < end); | 
|  |  | 
|  | if (kvm_need_flush(ctx)) { | 
|  | size = 0x1UL << (ctx->pgtable_shift + PAGE_SHIFT - 3); | 
|  | if (start + size == end) { | 
|  | list = (struct list_head *)child; | 
|  | list_add_tail(list, &ctx->list); | 
|  | *dir = ctx->invalid_ptes[ctx->level + 1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Page walker for VM shadow mmu at page root table | 
|  | */ | 
|  | static int kvm_ptw_top(kvm_pte_t *dir, phys_addr_t addr, phys_addr_t end, kvm_ptw_ctx *ctx) | 
|  | { | 
|  | int ret; | 
|  | phys_addr_t next; | 
|  | kvm_pte_t *entry; | 
|  |  | 
|  | ret = 0; | 
|  | entry = kvm_pgtable_offset(ctx, dir, addr); | 
|  | do { | 
|  | next = kvm_pgtable_addr_end(ctx, addr, end); | 
|  | if (!kvm_pte_present(ctx, entry)) | 
|  | continue; | 
|  |  | 
|  | kvm_ptw_enter(ctx); | 
|  | ret |= kvm_ptw_dir(entry, addr, next, ctx); | 
|  | kvm_ptw_exit(ctx); | 
|  | }  while (entry++, addr = next, addr < end); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kvm_flush_range() - Flush a range of guest physical addresses. | 
|  | * @kvm:	KVM pointer. | 
|  | * @start_gfn:	Guest frame number of first page in GPA range to flush. | 
|  | * @end_gfn:	Guest frame number of last page in GPA range to flush. | 
|  | * @lock:	Whether to hold mmu_lock or not | 
|  | * | 
|  | * Flushes a range of GPA mappings from the GPA page tables. | 
|  | */ | 
|  | static void kvm_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn, int lock) | 
|  | { | 
|  | int ret; | 
|  | kvm_ptw_ctx ctx; | 
|  | struct list_head *pos, *temp; | 
|  |  | 
|  | ctx.ops = kvm_flush_pte; | 
|  | ctx.flag = _KVM_FLUSH_PGTABLE; | 
|  | kvm_ptw_prepare(kvm, &ctx); | 
|  | INIT_LIST_HEAD(&ctx.list); | 
|  |  | 
|  | if (lock) { | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | ret = kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT, | 
|  | end_gfn << PAGE_SHIFT, &ctx); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } else | 
|  | ret = kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT, | 
|  | end_gfn << PAGE_SHIFT, &ctx); | 
|  |  | 
|  | /* Flush vpid for each vCPU individually */ | 
|  | if (ret) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  |  | 
|  | /* | 
|  | * free pte table page after mmu_lock | 
|  | * the pte table page is linked together with ctx.list | 
|  | */ | 
|  | list_for_each_safe(pos, temp, &ctx.list) { | 
|  | list_del(pos); | 
|  | free_page((unsigned long)pos); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean. | 
|  | * @kvm:	KVM pointer. | 
|  | * @start_gfn:	Guest frame number of first page in GPA range to flush. | 
|  | * @end_gfn:	Guest frame number of last page in GPA range to flush. | 
|  | * | 
|  | * Make a range of GPA mappings clean so that guest writes will fault and | 
|  | * trigger dirty page logging. | 
|  | * | 
|  | * The caller must hold the @kvm->mmu_lock spinlock. | 
|  | * | 
|  | * Returns:	Whether any GPA mappings were modified, which would require | 
|  | *		derived mappings (GVA page tables & TLB enties) to be | 
|  | *		invalidated. | 
|  | */ | 
|  | static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) | 
|  | { | 
|  | kvm_ptw_ctx ctx; | 
|  |  | 
|  | ctx.ops = kvm_mkclean_pte; | 
|  | ctx.flag = 0; | 
|  | kvm_ptw_prepare(kvm, &ctx); | 
|  | return kvm_ptw_top(kvm->arch.pgd, start_gfn << PAGE_SHIFT, end_gfn << PAGE_SHIFT, &ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages | 
|  | * @kvm:	The KVM pointer | 
|  | * @slot:	The memory slot associated with mask | 
|  | * @gfn_offset:	The gfn offset in memory slot | 
|  | * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory | 
|  | *		slot to be write protected | 
|  | * | 
|  | * Walks bits set in mask write protects the associated pte's. Caller must | 
|  | * acquire @kvm->mmu_lock. | 
|  | */ | 
|  | void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, | 
|  | struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask) | 
|  | { | 
|  | kvm_ptw_ctx ctx; | 
|  | gfn_t base_gfn = slot->base_gfn + gfn_offset; | 
|  | gfn_t start = base_gfn + __ffs(mask); | 
|  | gfn_t end = base_gfn + __fls(mask) + 1; | 
|  |  | 
|  | ctx.ops = kvm_mkclean_pte; | 
|  | ctx.flag = _KVM_HAS_PGMASK; | 
|  | ctx.mask = mask; | 
|  | ctx.gfn = base_gfn; | 
|  | kvm_ptw_prepare(kvm, &ctx); | 
|  |  | 
|  | kvm_ptw_top(kvm->arch.pgd, start << PAGE_SHIFT, end << PAGE_SHIFT, &ctx); | 
|  | } | 
|  |  | 
|  | int kvm_arch_prepare_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old, | 
|  | struct kvm_memory_slot *new, enum kvm_mr_change change) | 
|  | { | 
|  | gpa_t gpa_start; | 
|  | hva_t hva_start; | 
|  | size_t size, gpa_offset, hva_offset; | 
|  |  | 
|  | if ((change != KVM_MR_MOVE) && (change != KVM_MR_CREATE)) | 
|  | return 0; | 
|  | /* | 
|  | * Prevent userspace from creating a memory region outside of the | 
|  | * VM GPA address space | 
|  | */ | 
|  | if ((new->base_gfn + new->npages) > (kvm->arch.gpa_size >> PAGE_SHIFT)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | new->arch.flags = 0; | 
|  | size = new->npages * PAGE_SIZE; | 
|  | gpa_start = new->base_gfn << PAGE_SHIFT; | 
|  | hva_start = new->userspace_addr; | 
|  | if (IS_ALIGNED(size, PMD_SIZE) && IS_ALIGNED(gpa_start, PMD_SIZE) | 
|  | && IS_ALIGNED(hva_start, PMD_SIZE)) | 
|  | new->arch.flags |= KVM_MEM_HUGEPAGE_CAPABLE; | 
|  | else { | 
|  | /* | 
|  | * Pages belonging to memslots that don't have the same | 
|  | * alignment within a PMD for userspace and GPA cannot be | 
|  | * mapped with PMD entries, because we'll end up mapping | 
|  | * the wrong pages. | 
|  | * | 
|  | * Consider a layout like the following: | 
|  | * | 
|  | *    memslot->userspace_addr: | 
|  | *    +-----+--------------------+--------------------+---+ | 
|  | *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz| | 
|  | *    +-----+--------------------+--------------------+---+ | 
|  | * | 
|  | *    memslot->base_gfn << PAGE_SIZE: | 
|  | *      +---+--------------------+--------------------+-----+ | 
|  | *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz| | 
|  | *      +---+--------------------+--------------------+-----+ | 
|  | * | 
|  | * If we create those stage-2 blocks, we'll end up with this | 
|  | * incorrect mapping: | 
|  | *   d -> f | 
|  | *   e -> g | 
|  | *   f -> h | 
|  | */ | 
|  | gpa_offset = gpa_start & (PMD_SIZE - 1); | 
|  | hva_offset = hva_start & (PMD_SIZE - 1); | 
|  | if (gpa_offset != hva_offset) { | 
|  | new->arch.flags |= KVM_MEM_HUGEPAGE_INCAPABLE; | 
|  | } else { | 
|  | if (gpa_offset == 0) | 
|  | gpa_offset = PMD_SIZE; | 
|  | if ((size + gpa_offset) < (PMD_SIZE * 2)) | 
|  | new->arch.flags |= KVM_MEM_HUGEPAGE_INCAPABLE; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_arch_commit_memory_region(struct kvm *kvm, | 
|  | struct kvm_memory_slot *old, | 
|  | const struct kvm_memory_slot *new, | 
|  | enum kvm_mr_change change) | 
|  | { | 
|  | int needs_flush; | 
|  | u32 old_flags = old ? old->flags : 0; | 
|  | u32 new_flags = new ? new->flags : 0; | 
|  | bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; | 
|  |  | 
|  | /* Only track memslot flags changed */ | 
|  | if (change != KVM_MR_FLAGS_ONLY) | 
|  | return; | 
|  |  | 
|  | /* Discard dirty page tracking on readonly memslot */ | 
|  | if ((old_flags & new_flags) & KVM_MEM_READONLY) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If dirty page logging is enabled, write protect all pages in the slot | 
|  | * ready for dirty logging. | 
|  | * | 
|  | * There is no need to do this in any of the following cases: | 
|  | * CREATE:	No dirty mappings will already exist. | 
|  | * MOVE/DELETE:	The old mappings will already have been cleaned up by | 
|  | *		kvm_arch_flush_shadow_memslot() | 
|  | */ | 
|  | if (!(old_flags & KVM_MEM_LOG_DIRTY_PAGES) && log_dirty_pages) { | 
|  | /* | 
|  | * Initially-all-set does not require write protecting any page | 
|  | * because they're all assumed to be dirty. | 
|  | */ | 
|  | if (kvm_dirty_log_manual_protect_and_init_set(kvm)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | /* Write protect GPA page table entries */ | 
|  | needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn, | 
|  | new->base_gfn + new->npages); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | if (needs_flush) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_arch_flush_shadow_all(struct kvm *kvm) | 
|  | { | 
|  | kvm_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT, 0); | 
|  | } | 
|  |  | 
|  | void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) | 
|  | { | 
|  | /* | 
|  | * The slot has been made invalid (ready for moving or deletion), so we | 
|  | * need to ensure that it can no longer be accessed by any guest vCPUs. | 
|  | */ | 
|  | kvm_flush_range(kvm, slot->base_gfn, slot->base_gfn + slot->npages, 1); | 
|  | } | 
|  |  | 
|  | bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) | 
|  | { | 
|  | kvm_ptw_ctx ctx; | 
|  |  | 
|  | ctx.flag = 0; | 
|  | ctx.ops = kvm_flush_pte; | 
|  | kvm_ptw_prepare(kvm, &ctx); | 
|  | INIT_LIST_HEAD(&ctx.list); | 
|  |  | 
|  | return kvm_ptw_top(kvm->arch.pgd, range->start << PAGE_SHIFT, | 
|  | range->end << PAGE_SHIFT, &ctx); | 
|  | } | 
|  |  | 
|  | bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) | 
|  | { | 
|  | kvm_ptw_ctx ctx; | 
|  |  | 
|  | ctx.flag = 0; | 
|  | ctx.ops = kvm_mkold_pte; | 
|  | kvm_ptw_prepare(kvm, &ctx); | 
|  |  | 
|  | return kvm_ptw_top(kvm->arch.pgd, range->start << PAGE_SHIFT, | 
|  | range->end << PAGE_SHIFT, &ctx); | 
|  | } | 
|  |  | 
|  | bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) | 
|  | { | 
|  | gpa_t gpa = range->start << PAGE_SHIFT; | 
|  | kvm_pte_t *ptep = kvm_populate_gpa(kvm, NULL, gpa, 0); | 
|  |  | 
|  | if (ptep && kvm_pte_present(NULL, ptep) && kvm_pte_young(*ptep)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kvm_map_page_fast() - Fast path GPA fault handler. | 
|  | * @vcpu:		vCPU pointer. | 
|  | * @gpa:		Guest physical address of fault. | 
|  | * @write:	Whether the fault was due to a write. | 
|  | * | 
|  | * Perform fast path GPA fault handling, doing all that can be done without | 
|  | * calling into KVM. This handles marking old pages young (for idle page | 
|  | * tracking), and dirtying of clean pages (for dirty page logging). | 
|  | * | 
|  | * Returns:	0 on success, in which case we can update derived mappings and | 
|  | *		resume guest execution. | 
|  | *		-EFAULT on failure due to absent GPA mapping or write to | 
|  | *		read-only page, in which case KVM must be consulted. | 
|  | */ | 
|  | static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) | 
|  | { | 
|  | int ret = 0; | 
|  | kvm_pte_t *ptep, changed, new; | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | struct kvm_memory_slot *slot; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | /* Fast path - just check GPA page table for an existing entry */ | 
|  | ptep = kvm_populate_gpa(kvm, NULL, gpa, 0); | 
|  | if (!ptep || !kvm_pte_present(NULL, ptep)) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Track access to pages marked old */ | 
|  | new = kvm_pte_mkyoung(*ptep); | 
|  | if (write && !kvm_pte_dirty(new)) { | 
|  | if (!kvm_pte_writeable(new)) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (kvm_pte_huge(new)) { | 
|  | /* | 
|  | * Do not set write permission when dirty logging is | 
|  | * enabled for HugePages | 
|  | */ | 
|  | slot = gfn_to_memslot(kvm, gfn); | 
|  | if (kvm_slot_dirty_track_enabled(slot)) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Track dirtying of writeable pages */ | 
|  | new = kvm_pte_mkdirty(new); | 
|  | } | 
|  |  | 
|  | changed = new ^ (*ptep); | 
|  | if (changed) | 
|  | kvm_set_pte(ptep, new); | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | if (kvm_pte_dirty(changed)) | 
|  | mark_page_dirty(kvm, gfn); | 
|  |  | 
|  | return ret; | 
|  | out: | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool fault_supports_huge_mapping(struct kvm_memory_slot *memslot, | 
|  | unsigned long hva, bool write) | 
|  | { | 
|  | hva_t start, end; | 
|  |  | 
|  | /* Disable dirty logging on HugePages */ | 
|  | if (kvm_slot_dirty_track_enabled(memslot) && write) | 
|  | return false; | 
|  |  | 
|  | if (kvm_hugepage_capable(memslot)) | 
|  | return true; | 
|  |  | 
|  | if (kvm_hugepage_incapable(memslot)) | 
|  | return false; | 
|  |  | 
|  | start = memslot->userspace_addr; | 
|  | end = start + memslot->npages * PAGE_SIZE; | 
|  |  | 
|  | /* | 
|  | * Next, let's make sure we're not trying to map anything not covered | 
|  | * by the memslot. This means we have to prohibit block size mappings | 
|  | * for the beginning and end of a non-block aligned and non-block sized | 
|  | * memory slot (illustrated by the head and tail parts of the | 
|  | * userspace view above containing pages 'abcde' and 'xyz', | 
|  | * respectively). | 
|  | * | 
|  | * Note that it doesn't matter if we do the check using the | 
|  | * userspace_addr or the base_gfn, as both are equally aligned (per | 
|  | * the check above) and equally sized. | 
|  | */ | 
|  | return (hva >= ALIGN(start, PMD_SIZE)) && (hva < ALIGN_DOWN(end, PMD_SIZE)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup the mapping level for @gfn in the current mm. | 
|  | * | 
|  | * WARNING!  Use of host_pfn_mapping_level() requires the caller and the end | 
|  | * consumer to be tied into KVM's handlers for MMU notifier events! | 
|  | * | 
|  | * There are several ways to safely use this helper: | 
|  | * | 
|  | * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before | 
|  | *   consuming it.  In this case, mmu_lock doesn't need to be held during the | 
|  | *   lookup, but it does need to be held while checking the MMU notifier. | 
|  | * | 
|  | * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation | 
|  | *   event for the hva.  This can be done by explicit checking the MMU notifier | 
|  | *   or by ensuring that KVM already has a valid mapping that covers the hva. | 
|  | * | 
|  | * - Do not use the result to install new mappings, e.g. use the host mapping | 
|  | *   level only to decide whether or not to zap an entry.  In this case, it's | 
|  | *   not required to hold mmu_lock (though it's highly likely the caller will | 
|  | *   want to hold mmu_lock anyways, e.g. to modify SPTEs). | 
|  | * | 
|  | * Note!  The lookup can still race with modifications to host page tables, but | 
|  | * the above "rules" ensure KVM will not _consume_ the result of the walk if a | 
|  | * race with the primary MMU occurs. | 
|  | */ | 
|  | static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, | 
|  | const struct kvm_memory_slot *slot) | 
|  | { | 
|  | int level = 0; | 
|  | unsigned long hva; | 
|  | unsigned long flags; | 
|  | pgd_t pgd; | 
|  | p4d_t p4d; | 
|  | pud_t pud; | 
|  | pmd_t pmd; | 
|  |  | 
|  | /* | 
|  | * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() | 
|  | * is not solely for performance, it's also necessary to avoid the | 
|  | * "writable" check in __gfn_to_hva_many(), which will always fail on | 
|  | * read-only memslots due to gfn_to_hva() assuming writes.  Earlier | 
|  | * page fault steps have already verified the guest isn't writing a | 
|  | * read-only memslot. | 
|  | */ | 
|  | hva = __gfn_to_hva_memslot(slot, gfn); | 
|  |  | 
|  | /* | 
|  | * Disable IRQs to prevent concurrent tear down of host page tables, | 
|  | * e.g. if the primary MMU promotes a P*D to a huge page and then frees | 
|  | * the original page table. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  |  | 
|  | /* | 
|  | * Read each entry once.  As above, a non-leaf entry can be promoted to | 
|  | * a huge page _during_ this walk.  Re-reading the entry could send the | 
|  | * walk into the weeks, e.g. p*d_leaf() returns false (sees the old | 
|  | * value) and then p*d_offset() walks into the target huge page instead | 
|  | * of the old page table (sees the new value). | 
|  | */ | 
|  | pgd = pgdp_get(pgd_offset(kvm->mm, hva)); | 
|  | if (pgd_none(pgd)) | 
|  | goto out; | 
|  |  | 
|  | p4d = p4dp_get(p4d_offset(&pgd, hva)); | 
|  | if (p4d_none(p4d) || !p4d_present(p4d)) | 
|  | goto out; | 
|  |  | 
|  | pud = pudp_get(pud_offset(&p4d, hva)); | 
|  | if (pud_none(pud) || !pud_present(pud)) | 
|  | goto out; | 
|  |  | 
|  | pmd = pmdp_get(pmd_offset(&pud, hva)); | 
|  | if (pmd_none(pmd) || !pmd_present(pmd)) | 
|  | goto out; | 
|  |  | 
|  | if (kvm_pte_huge(pmd_val(pmd))) | 
|  | level = 1; | 
|  |  | 
|  | out: | 
|  | local_irq_restore(flags); | 
|  | return level; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Split huge page | 
|  | */ | 
|  | static kvm_pte_t *kvm_split_huge(struct kvm_vcpu *vcpu, kvm_pte_t *ptep, gfn_t gfn) | 
|  | { | 
|  | int i; | 
|  | kvm_pte_t val, *child; | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | struct kvm_mmu_memory_cache *memcache; | 
|  |  | 
|  | memcache = &vcpu->arch.mmu_page_cache; | 
|  | child = kvm_mmu_memory_cache_alloc(memcache); | 
|  | val = kvm_pte_mksmall(*ptep); | 
|  | for (i = 0; i < PTRS_PER_PTE; i++) { | 
|  | kvm_set_pte(child + i, val); | 
|  | val += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | smp_wmb(); /* Make pte visible before pmd */ | 
|  | /* The later kvm_flush_tlb_gpa() will flush hugepage tlb */ | 
|  | kvm_set_pte(ptep, __pa(child)); | 
|  |  | 
|  | kvm->stat.hugepages--; | 
|  | kvm->stat.pages += PTRS_PER_PTE; | 
|  |  | 
|  | return child + (gfn & (PTRS_PER_PTE - 1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kvm_map_page() - Map a guest physical page. | 
|  | * @vcpu:		vCPU pointer. | 
|  | * @gpa:		Guest physical address of fault. | 
|  | * @write:	Whether the fault was due to a write. | 
|  | * | 
|  | * Handle GPA faults by creating a new GPA mapping (or updating an existing | 
|  | * one). | 
|  | * | 
|  | * This takes care of marking pages young or dirty (idle/dirty page tracking), | 
|  | * asking KVM for the corresponding PFN, and creating a mapping in the GPA page | 
|  | * tables. Derived mappings (GVA page tables and TLBs) must be handled by the | 
|  | * caller. | 
|  | * | 
|  | * Returns:	0 on success | 
|  | *		-EFAULT if there is no memory region at @gpa or a write was | 
|  | *		attempted to a read-only memory region. This is usually handled | 
|  | *		as an MMIO access. | 
|  | */ | 
|  | static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) | 
|  | { | 
|  | bool writeable; | 
|  | int srcu_idx, err, retry_no = 0, level; | 
|  | unsigned long hva, mmu_seq, prot_bits; | 
|  | kvm_pfn_t pfn; | 
|  | kvm_pte_t *ptep, new_pte; | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | struct kvm_memory_slot *memslot; | 
|  | struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; | 
|  | struct page *page; | 
|  |  | 
|  | /* Try the fast path to handle old / clean pages */ | 
|  | srcu_idx = srcu_read_lock(&kvm->srcu); | 
|  | err = kvm_map_page_fast(vcpu, gpa, write); | 
|  | if (!err) | 
|  | goto out; | 
|  |  | 
|  | memslot = gfn_to_memslot(kvm, gfn); | 
|  | hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable); | 
|  | if (kvm_is_error_hva(hva) || (write && !writeable)) { | 
|  | err = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* We need a minimum of cached pages ready for page table creation */ | 
|  | err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | retry: | 
|  | /* | 
|  | * Used to check for invalidations in progress, of the pfn that is | 
|  | * returned by pfn_to_pfn_prot below. | 
|  | */ | 
|  | mmu_seq = kvm->mmu_invalidate_seq; | 
|  | /* | 
|  | * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in | 
|  | * kvm_faultin_pfn() (which calls get_user_pages()), so that we don't | 
|  | * risk the page we get a reference to getting unmapped before we have a | 
|  | * chance to grab the mmu_lock without mmu_invalidate_retry() noticing. | 
|  | * | 
|  | * This smp_rmb() pairs with the effective smp_wmb() of the combination | 
|  | * of the pte_unmap_unlock() after the PTE is zapped, and the | 
|  | * spin_lock() in kvm_mmu_invalidate_invalidate_<page|range_end>() before | 
|  | * mmu_invalidate_seq is incremented. | 
|  | */ | 
|  | smp_rmb(); | 
|  |  | 
|  | /* Slow path - ask KVM core whether we can access this GPA */ | 
|  | pfn = kvm_faultin_pfn(vcpu, gfn, write, &writeable, &page); | 
|  | if (is_error_noslot_pfn(pfn)) { | 
|  | err = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Check if an invalidation has taken place since we got pfn */ | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) { | 
|  | /* | 
|  | * This can happen when mappings are changed asynchronously, but | 
|  | * also synchronously if a COW is triggered by | 
|  | * kvm_faultin_pfn(). | 
|  | */ | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | kvm_release_page_unused(page); | 
|  | if (retry_no > 100) { | 
|  | retry_no = 0; | 
|  | schedule(); | 
|  | } | 
|  | retry_no++; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For emulated devices such virtio device, actual cache attribute is | 
|  | * determined by physical machine. | 
|  | * For pass through physical device, it should be uncachable | 
|  | */ | 
|  | prot_bits = _PAGE_PRESENT | __READABLE; | 
|  | if (pfn_valid(pfn)) | 
|  | prot_bits |= _CACHE_CC; | 
|  | else | 
|  | prot_bits |= _CACHE_SUC; | 
|  |  | 
|  | if (writeable) { | 
|  | prot_bits = kvm_pte_mkwriteable(prot_bits); | 
|  | if (write) | 
|  | prot_bits = kvm_pte_mkdirty(prot_bits); | 
|  | } | 
|  |  | 
|  | /* Disable dirty logging on HugePages */ | 
|  | level = 0; | 
|  | if (fault_supports_huge_mapping(memslot, hva, write)) { | 
|  | /* Check page level about host mmu*/ | 
|  | level = host_pfn_mapping_level(kvm, gfn, memslot); | 
|  | if (level == 1) { | 
|  | /* | 
|  | * Check page level about secondary mmu | 
|  | * Disable hugepage if it is normal page on | 
|  | * secondary mmu already | 
|  | */ | 
|  | ptep = kvm_populate_gpa(kvm, NULL, gpa, 0); | 
|  | if (ptep && !kvm_pte_huge(*ptep)) | 
|  | level = 0; | 
|  | } | 
|  |  | 
|  | if (level == 1) { | 
|  | gfn = gfn & ~(PTRS_PER_PTE - 1); | 
|  | pfn = pfn & ~(PTRS_PER_PTE - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ensure page tables are allocated */ | 
|  | ptep = kvm_populate_gpa(kvm, memcache, gpa, level); | 
|  | new_pte = kvm_pfn_pte(pfn, __pgprot(prot_bits)); | 
|  | if (level == 1) { | 
|  | new_pte = kvm_pte_mkhuge(new_pte); | 
|  | /* | 
|  | * previous pmd entry is invalid_pte_table | 
|  | * there is invalid tlb with small page | 
|  | * need flush these invalid tlbs for current vcpu | 
|  | */ | 
|  | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | 
|  | ++kvm->stat.hugepages; | 
|  | }  else if (kvm_pte_huge(*ptep) && write) | 
|  | ptep = kvm_split_huge(vcpu, ptep, gfn); | 
|  | else | 
|  | ++kvm->stat.pages; | 
|  | kvm_set_pte(ptep, new_pte); | 
|  |  | 
|  | kvm_release_faultin_page(kvm, page, false, writeable); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | if (kvm_pte_dirty(prot_bits)) | 
|  | mark_page_dirty_in_slot(kvm, memslot, gfn); | 
|  |  | 
|  | out: | 
|  | srcu_read_unlock(&kvm->srcu, srcu_idx); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write, int ecode) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = kvm_map_page(vcpu, gpa, write); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Invalidate this entry in the TLB */ | 
|  | if (!cpu_has_ptw || (ecode == EXCCODE_TLBM)) { | 
|  | /* | 
|  | * With HW PTW, invalid TLB is not added when page fault. But | 
|  | * for EXCCODE_TLBM exception, stale TLB may exist because of | 
|  | * the last read access. | 
|  | * | 
|  | * With SW PTW, invalid TLB is added in TLB refill exception. | 
|  | */ | 
|  | vcpu->arch.flush_gpa = gpa; | 
|  | kvm_make_request(KVM_REQ_TLB_FLUSH_GPA, vcpu); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) | 
|  | { | 
|  | } | 
|  |  | 
|  | void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, | 
|  | const struct kvm_memory_slot *memslot) | 
|  | { | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | } |