|  | // SPDX-License-Identifier: GPL-2.0 | 
|  |  | 
|  | /* | 
|  | * fs/ext4/fast_commit.c | 
|  | * | 
|  | * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> | 
|  | * | 
|  | * Ext4 fast commits routines. | 
|  | */ | 
|  | #include "ext4.h" | 
|  | #include "ext4_jbd2.h" | 
|  | #include "ext4_extents.h" | 
|  | #include "mballoc.h" | 
|  |  | 
|  | #include <linux/lockdep.h> | 
|  | /* | 
|  | * Ext4 Fast Commits | 
|  | * ----------------- | 
|  | * | 
|  | * Ext4 fast commits implement fine grained journalling for Ext4. | 
|  | * | 
|  | * Fast commits are organized as a log of tag-length-value (TLV) structs. (See | 
|  | * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by | 
|  | * TLV during the recovery phase. For the scenarios for which we currently | 
|  | * don't have replay code, fast commit falls back to full commits. | 
|  | * Fast commits record delta in one of the following three categories. | 
|  | * | 
|  | * (A) Directory entry updates: | 
|  | * | 
|  | * - EXT4_FC_TAG_UNLINK		- records directory entry unlink | 
|  | * - EXT4_FC_TAG_LINK		- records directory entry link | 
|  | * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation | 
|  | * | 
|  | * (B) File specific data range updates: | 
|  | * | 
|  | * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode | 
|  | * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode | 
|  | * | 
|  | * (C) Inode metadata (mtime / ctime etc): | 
|  | * | 
|  | * - EXT4_FC_TAG_INODE		- record the inode that should be replayed | 
|  | *				  during recovery. Note that iblocks field is | 
|  | *				  not replayed and instead derived during | 
|  | *				  replay. | 
|  | * Commit Operation | 
|  | * ---------------- | 
|  | * With fast commits, we maintain all the directory entry operations in the | 
|  | * order in which they are issued in an in-memory queue. This queue is flushed | 
|  | * to disk during the commit operation. We also maintain a list of inodes | 
|  | * that need to be committed during a fast commit in another in memory queue of | 
|  | * inodes. During the commit operation, we commit in the following order: | 
|  | * | 
|  | * [1] Prepare all the inodes to write out their data by setting | 
|  | *     "EXT4_STATE_FC_FLUSHING_DATA". This ensures that inode cannot be | 
|  | *     deleted while it is being flushed. | 
|  | * [2] Flush data buffers to disk and clear "EXT4_STATE_FC_FLUSHING_DATA" | 
|  | *     state. | 
|  | * [3] Lock the journal by calling jbd2_journal_lock_updates. This ensures that | 
|  | *     all the exsiting handles finish and no new handles can start. | 
|  | * [4] Mark all the fast commit eligible inodes as undergoing fast commit | 
|  | *     by setting "EXT4_STATE_FC_COMMITTING" state. | 
|  | * [5] Unlock the journal by calling jbd2_journal_unlock_updates. This allows | 
|  | *     starting of new handles. If new handles try to start an update on | 
|  | *     any of the inodes that are being committed, ext4_fc_track_inode() | 
|  | *     will block until those inodes have finished the fast commit. | 
|  | * [6] Commit all the directory entry updates in the fast commit space. | 
|  | * [7] Commit all the changed inodes in the fast commit space and clear | 
|  | *     "EXT4_STATE_FC_COMMITTING" for these inodes. | 
|  | * [8] Write tail tag (this tag ensures the atomicity, please read the following | 
|  | *     section for more details). | 
|  | * | 
|  | * All the inode updates must be enclosed within jbd2_jounrnal_start() | 
|  | * and jbd2_journal_stop() similar to JBD2 journaling. | 
|  | * | 
|  | * Fast Commit Ineligibility | 
|  | * ------------------------- | 
|  | * | 
|  | * Not all operations are supported by fast commits today (e.g extended | 
|  | * attributes). Fast commit ineligibility is marked by calling | 
|  | * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back | 
|  | * to full commit. | 
|  | * | 
|  | * Atomicity of commits | 
|  | * -------------------- | 
|  | * In order to guarantee atomicity during the commit operation, fast commit | 
|  | * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail | 
|  | * tag contains CRC of the contents and TID of the transaction after which | 
|  | * this fast commit should be applied. Recovery code replays fast commit | 
|  | * logs only if there's at least 1 valid tail present. For every fast commit | 
|  | * operation, there is 1 tail. This means, we may end up with multiple tails | 
|  | * in the fast commit space. Here's an example: | 
|  | * | 
|  | * - Create a new file A and remove existing file B | 
|  | * - fsync() | 
|  | * - Append contents to file A | 
|  | * - Truncate file A | 
|  | * - fsync() | 
|  | * | 
|  | * The fast commit space at the end of above operations would look like this: | 
|  | *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] | 
|  | *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->| | 
|  | * | 
|  | * Replay code should thus check for all the valid tails in the FC area. | 
|  | * | 
|  | * Fast Commit Replay Idempotence | 
|  | * ------------------------------ | 
|  | * | 
|  | * Fast commits tags are idempotent in nature provided the recovery code follows | 
|  | * certain rules. The guiding principle that the commit path follows while | 
|  | * committing is that it stores the result of a particular operation instead of | 
|  | * storing the procedure. | 
|  | * | 
|  | * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a' | 
|  | * was associated with inode 10. During fast commit, instead of storing this | 
|  | * operation as a procedure "rename a to b", we store the resulting file system | 
|  | * state as a "series" of outcomes: | 
|  | * | 
|  | * - Link dirent b to inode 10 | 
|  | * - Unlink dirent a | 
|  | * - Inode <10> with valid refcount | 
|  | * | 
|  | * Now when recovery code runs, it needs "enforce" this state on the file | 
|  | * system. This is what guarantees idempotence of fast commit replay. | 
|  | * | 
|  | * Let's take an example of a procedure that is not idempotent and see how fast | 
|  | * commits make it idempotent. Consider following sequence of operations: | 
|  | * | 
|  | *     rm A;    mv B A;    read A | 
|  | *  (x)     (y)        (z) | 
|  | * | 
|  | * (x), (y) and (z) are the points at which we can crash. If we store this | 
|  | * sequence of operations as is then the replay is not idempotent. Let's say | 
|  | * while in replay, we crash at (z). During the second replay, file A (which was | 
|  | * actually created as a result of "mv B A" operation) would get deleted. Thus, | 
|  | * file named A would be absent when we try to read A. So, this sequence of | 
|  | * operations is not idempotent. However, as mentioned above, instead of storing | 
|  | * the procedure fast commits store the outcome of each procedure. Thus the fast | 
|  | * commit log for above procedure would be as follows: | 
|  | * | 
|  | * (Let's assume dirent A was linked to inode 10 and dirent B was linked to | 
|  | * inode 11 before the replay) | 
|  | * | 
|  | *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11] | 
|  | * (w)          (x)                    (y)          (z) | 
|  | * | 
|  | * If we crash at (z), we will have file A linked to inode 11. During the second | 
|  | * replay, we will remove file A (inode 11). But we will create it back and make | 
|  | * it point to inode 11. We won't find B, so we'll just skip that step. At this | 
|  | * point, the refcount for inode 11 is not reliable, but that gets fixed by the | 
|  | * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled | 
|  | * similarly. Thus, by converting a non-idempotent procedure into a series of | 
|  | * idempotent outcomes, fast commits ensured idempotence during the replay. | 
|  | * | 
|  | * Locking | 
|  | * ------- | 
|  | * sbi->s_fc_lock protects the fast commit inodes queue and the fast commit | 
|  | * dentry queue. ei->i_fc_lock protects the fast commit related info in a given | 
|  | * inode. Most of the code avoids acquiring both the locks, but if one must do | 
|  | * that then sbi->s_fc_lock must be acquired before ei->i_fc_lock. | 
|  | * | 
|  | * TODOs | 
|  | * ----- | 
|  | * | 
|  | * 0) Fast commit replay path hardening: Fast commit replay code should use | 
|  | *    journal handles to make sure all the updates it does during the replay | 
|  | *    path are atomic. With that if we crash during fast commit replay, after | 
|  | *    trying to do recovery again, we will find a file system where fast commit | 
|  | *    area is invalid (because new full commit would be found). In order to deal | 
|  | *    with that, fast commit replay code should ensure that the "FC_REPLAY" | 
|  | *    superblock state is persisted before starting the replay, so that after | 
|  | *    the crash, fast commit recovery code can look at that flag and perform | 
|  | *    fast commit recovery even if that area is invalidated by later full | 
|  | *    commits. | 
|  | * | 
|  | * 1) Handle more ineligible cases. | 
|  | * | 
|  | * 2) Change ext4_fc_commit() to lookup logical to physical mapping using extent | 
|  | *    status tree. This would get rid of the need to call ext4_fc_track_inode() | 
|  | *    before acquiring i_data_sem. To do that we would need to ensure that | 
|  | *    modified extents from the extent status tree are not evicted from memory. | 
|  | */ | 
|  |  | 
|  | #include <trace/events/ext4.h> | 
|  | static struct kmem_cache *ext4_fc_dentry_cachep; | 
|  |  | 
|  | static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) | 
|  | { | 
|  | BUFFER_TRACE(bh, ""); | 
|  | if (uptodate) { | 
|  | ext4_debug("%s: Block %lld up-to-date", | 
|  | __func__, bh->b_blocknr); | 
|  | set_buffer_uptodate(bh); | 
|  | } else { | 
|  | ext4_debug("%s: Block %lld not up-to-date", | 
|  | __func__, bh->b_blocknr); | 
|  | clear_buffer_uptodate(bh); | 
|  | } | 
|  |  | 
|  | unlock_buffer(bh); | 
|  | } | 
|  |  | 
|  | static inline void ext4_fc_reset_inode(struct inode *inode) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  |  | 
|  | ei->i_fc_lblk_start = 0; | 
|  | ei->i_fc_lblk_len = 0; | 
|  | } | 
|  |  | 
|  | void ext4_fc_init_inode(struct inode *inode) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  |  | 
|  | ext4_fc_reset_inode(inode); | 
|  | ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); | 
|  | INIT_LIST_HEAD(&ei->i_fc_list); | 
|  | INIT_LIST_HEAD(&ei->i_fc_dilist); | 
|  | init_waitqueue_head(&ei->i_fc_wait); | 
|  | } | 
|  |  | 
|  | static bool ext4_fc_disabled(struct super_block *sb) | 
|  | { | 
|  | return (!test_opt2(sb, JOURNAL_FAST_COMMIT) || | 
|  | (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove inode from fast commit list. If the inode is being committed | 
|  | * we wait until inode commit is done. | 
|  | */ | 
|  | void ext4_fc_del(struct inode *inode) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | struct ext4_fc_dentry_update *fc_dentry; | 
|  | wait_queue_head_t *wq; | 
|  |  | 
|  | if (ext4_fc_disabled(inode->i_sb)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&sbi->s_fc_lock); | 
|  | if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) { | 
|  | mutex_unlock(&sbi->s_fc_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since ext4_fc_del is called from ext4_evict_inode while having a | 
|  | * handle open, there is no need for us to wait here even if a fast | 
|  | * commit is going on. That is because, if this inode is being | 
|  | * committed, ext4_mark_inode_dirty would have waited for inode commit | 
|  | * operation to finish before we come here. So, by the time we come | 
|  | * here, inode's EXT4_STATE_FC_COMMITTING would have been cleared. So, | 
|  | * we shouldn't see EXT4_STATE_FC_COMMITTING to be set on this inode | 
|  | * here. | 
|  | * | 
|  | * We may come here without any handles open in the "no_delete" case of | 
|  | * ext4_evict_inode as well. However, if that happens, we first mark the | 
|  | * file system as fast commit ineligible anyway. So, even in that case, | 
|  | * it is okay to remove the inode from the fc list. | 
|  | */ | 
|  | WARN_ON(ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING) | 
|  | && !ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)); | 
|  | while (ext4_test_inode_state(inode, EXT4_STATE_FC_FLUSHING_DATA)) { | 
|  | #if (BITS_PER_LONG < 64) | 
|  | DEFINE_WAIT_BIT(wait, &ei->i_state_flags, | 
|  | EXT4_STATE_FC_FLUSHING_DATA); | 
|  | wq = bit_waitqueue(&ei->i_state_flags, | 
|  | EXT4_STATE_FC_FLUSHING_DATA); | 
|  | #else | 
|  | DEFINE_WAIT_BIT(wait, &ei->i_flags, | 
|  | EXT4_STATE_FC_FLUSHING_DATA); | 
|  | wq = bit_waitqueue(&ei->i_flags, | 
|  | EXT4_STATE_FC_FLUSHING_DATA); | 
|  | #endif | 
|  | prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_FC_FLUSHING_DATA)) { | 
|  | mutex_unlock(&sbi->s_fc_lock); | 
|  | schedule(); | 
|  | mutex_lock(&sbi->s_fc_lock); | 
|  | } | 
|  | finish_wait(wq, &wait.wq_entry); | 
|  | } | 
|  | list_del_init(&ei->i_fc_list); | 
|  |  | 
|  | /* | 
|  | * Since this inode is getting removed, let's also remove all FC | 
|  | * dentry create references, since it is not needed to log it anyways. | 
|  | */ | 
|  | if (list_empty(&ei->i_fc_dilist)) { | 
|  | mutex_unlock(&sbi->s_fc_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist); | 
|  | WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT); | 
|  | list_del_init(&fc_dentry->fcd_list); | 
|  | list_del_init(&fc_dentry->fcd_dilist); | 
|  |  | 
|  | WARN_ON(!list_empty(&ei->i_fc_dilist)); | 
|  | mutex_unlock(&sbi->s_fc_lock); | 
|  |  | 
|  | release_dentry_name_snapshot(&fc_dentry->fcd_name); | 
|  | kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark file system as fast commit ineligible, and record latest | 
|  | * ineligible transaction tid. This means until the recorded | 
|  | * transaction, commit operation would result in a full jbd2 commit. | 
|  | */ | 
|  | void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | tid_t tid; | 
|  | bool has_transaction = true; | 
|  | bool is_ineligible; | 
|  |  | 
|  | if (ext4_fc_disabled(sb)) | 
|  | return; | 
|  |  | 
|  | if (handle && !IS_ERR(handle)) | 
|  | tid = handle->h_transaction->t_tid; | 
|  | else { | 
|  | read_lock(&sbi->s_journal->j_state_lock); | 
|  | if (sbi->s_journal->j_running_transaction) | 
|  | tid = sbi->s_journal->j_running_transaction->t_tid; | 
|  | else | 
|  | has_transaction = false; | 
|  | read_unlock(&sbi->s_journal->j_state_lock); | 
|  | } | 
|  | mutex_lock(&sbi->s_fc_lock); | 
|  | is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); | 
|  | if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid))) | 
|  | sbi->s_fc_ineligible_tid = tid; | 
|  | ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); | 
|  | mutex_unlock(&sbi->s_fc_lock); | 
|  | WARN_ON(reason >= EXT4_FC_REASON_MAX); | 
|  | sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generic fast commit tracking function. If this is the first time this we are | 
|  | * called after a full commit, we initialize fast commit fields and then call | 
|  | * __fc_track_fn() with update = 0. If we have already been called after a full | 
|  | * commit, we pass update = 1. Based on that, the track function can determine | 
|  | * if it needs to track a field for the first time or if it needs to just | 
|  | * update the previously tracked value. | 
|  | * | 
|  | * If enqueue is set, this function enqueues the inode in fast commit list. | 
|  | */ | 
|  | static int ext4_fc_track_template( | 
|  | handle_t *handle, struct inode *inode, | 
|  | int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool), | 
|  | void *args, int enqueue) | 
|  | { | 
|  | bool update = false; | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | tid_t tid = 0; | 
|  | int ret; | 
|  |  | 
|  | tid = handle->h_transaction->t_tid; | 
|  | spin_lock(&ei->i_fc_lock); | 
|  | if (tid == ei->i_sync_tid) { | 
|  | update = true; | 
|  | } else { | 
|  | ext4_fc_reset_inode(inode); | 
|  | ei->i_sync_tid = tid; | 
|  | } | 
|  | ret = __fc_track_fn(handle, inode, args, update); | 
|  | spin_unlock(&ei->i_fc_lock); | 
|  | if (!enqueue) | 
|  | return ret; | 
|  |  | 
|  | mutex_lock(&sbi->s_fc_lock); | 
|  | if (list_empty(&EXT4_I(inode)->i_fc_list)) | 
|  | list_add_tail(&EXT4_I(inode)->i_fc_list, | 
|  | (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || | 
|  | sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ? | 
|  | &sbi->s_fc_q[FC_Q_STAGING] : | 
|  | &sbi->s_fc_q[FC_Q_MAIN]); | 
|  | mutex_unlock(&sbi->s_fc_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct __track_dentry_update_args { | 
|  | struct dentry *dentry; | 
|  | int op; | 
|  | }; | 
|  |  | 
|  | /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ | 
|  | static int __track_dentry_update(handle_t *handle, struct inode *inode, | 
|  | void *arg, bool update) | 
|  | { | 
|  | struct ext4_fc_dentry_update *node; | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | struct __track_dentry_update_args *dentry_update = | 
|  | (struct __track_dentry_update_args *)arg; | 
|  | struct dentry *dentry = dentry_update->dentry; | 
|  | struct inode *dir = dentry->d_parent->d_inode; | 
|  | struct super_block *sb = inode->i_sb; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  |  | 
|  | spin_unlock(&ei->i_fc_lock); | 
|  |  | 
|  | if (IS_ENCRYPTED(dir)) { | 
|  | ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME, | 
|  | handle); | 
|  | spin_lock(&ei->i_fc_lock); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); | 
|  | if (!node) { | 
|  | ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle); | 
|  | spin_lock(&ei->i_fc_lock); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | node->fcd_op = dentry_update->op; | 
|  | node->fcd_parent = dir->i_ino; | 
|  | node->fcd_ino = inode->i_ino; | 
|  | take_dentry_name_snapshot(&node->fcd_name, dentry); | 
|  | INIT_LIST_HEAD(&node->fcd_dilist); | 
|  | INIT_LIST_HEAD(&node->fcd_list); | 
|  | mutex_lock(&sbi->s_fc_lock); | 
|  | if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || | 
|  | sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) | 
|  | list_add_tail(&node->fcd_list, | 
|  | &sbi->s_fc_dentry_q[FC_Q_STAGING]); | 
|  | else | 
|  | list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); | 
|  |  | 
|  | /* | 
|  | * This helps us keep a track of all fc_dentry updates which is part of | 
|  | * this ext4 inode. So in case the inode is getting unlinked, before | 
|  | * even we get a chance to fsync, we could remove all fc_dentry | 
|  | * references while evicting the inode in ext4_fc_del(). | 
|  | * Also with this, we don't need to loop over all the inodes in | 
|  | * sbi->s_fc_q to get the corresponding inode in | 
|  | * ext4_fc_commit_dentry_updates(). | 
|  | */ | 
|  | if (dentry_update->op == EXT4_FC_TAG_CREAT) { | 
|  | WARN_ON(!list_empty(&ei->i_fc_dilist)); | 
|  | list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist); | 
|  | } | 
|  | mutex_unlock(&sbi->s_fc_lock); | 
|  | spin_lock(&ei->i_fc_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __ext4_fc_track_unlink(handle_t *handle, | 
|  | struct inode *inode, struct dentry *dentry) | 
|  | { | 
|  | struct __track_dentry_update_args args; | 
|  | int ret; | 
|  |  | 
|  | args.dentry = dentry; | 
|  | args.op = EXT4_FC_TAG_UNLINK; | 
|  |  | 
|  | ret = ext4_fc_track_template(handle, inode, __track_dentry_update, | 
|  | (void *)&args, 0); | 
|  | trace_ext4_fc_track_unlink(handle, inode, dentry, ret); | 
|  | } | 
|  |  | 
|  | void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) | 
|  | { | 
|  | struct inode *inode = d_inode(dentry); | 
|  |  | 
|  | if (ext4_fc_disabled(inode->i_sb)) | 
|  | return; | 
|  |  | 
|  | if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) | 
|  | return; | 
|  |  | 
|  | __ext4_fc_track_unlink(handle, inode, dentry); | 
|  | } | 
|  |  | 
|  | void __ext4_fc_track_link(handle_t *handle, | 
|  | struct inode *inode, struct dentry *dentry) | 
|  | { | 
|  | struct __track_dentry_update_args args; | 
|  | int ret; | 
|  |  | 
|  | args.dentry = dentry; | 
|  | args.op = EXT4_FC_TAG_LINK; | 
|  |  | 
|  | ret = ext4_fc_track_template(handle, inode, __track_dentry_update, | 
|  | (void *)&args, 0); | 
|  | trace_ext4_fc_track_link(handle, inode, dentry, ret); | 
|  | } | 
|  |  | 
|  | void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) | 
|  | { | 
|  | struct inode *inode = d_inode(dentry); | 
|  |  | 
|  | if (ext4_fc_disabled(inode->i_sb)) | 
|  | return; | 
|  |  | 
|  | if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) | 
|  | return; | 
|  |  | 
|  | __ext4_fc_track_link(handle, inode, dentry); | 
|  | } | 
|  |  | 
|  | void __ext4_fc_track_create(handle_t *handle, struct inode *inode, | 
|  | struct dentry *dentry) | 
|  | { | 
|  | struct __track_dentry_update_args args; | 
|  | int ret; | 
|  |  | 
|  | args.dentry = dentry; | 
|  | args.op = EXT4_FC_TAG_CREAT; | 
|  |  | 
|  | ret = ext4_fc_track_template(handle, inode, __track_dentry_update, | 
|  | (void *)&args, 0); | 
|  | trace_ext4_fc_track_create(handle, inode, dentry, ret); | 
|  | } | 
|  |  | 
|  | void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) | 
|  | { | 
|  | struct inode *inode = d_inode(dentry); | 
|  |  | 
|  | if (ext4_fc_disabled(inode->i_sb)) | 
|  | return; | 
|  |  | 
|  | if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) | 
|  | return; | 
|  |  | 
|  | __ext4_fc_track_create(handle, inode, dentry); | 
|  | } | 
|  |  | 
|  | /* __track_fn for inode tracking */ | 
|  | static int __track_inode(handle_t *handle, struct inode *inode, void *arg, | 
|  | bool update) | 
|  | { | 
|  | if (update) | 
|  | return -EEXIST; | 
|  |  | 
|  | EXT4_I(inode)->i_fc_lblk_len = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ext4_fc_track_inode(handle_t *handle, struct inode *inode) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | wait_queue_head_t *wq; | 
|  | int ret; | 
|  |  | 
|  | if (S_ISDIR(inode->i_mode)) | 
|  | return; | 
|  |  | 
|  | if (ext4_fc_disabled(inode->i_sb)) | 
|  | return; | 
|  |  | 
|  | if (ext4_should_journal_data(inode)) { | 
|  | ext4_fc_mark_ineligible(inode->i_sb, | 
|  | EXT4_FC_REASON_INODE_JOURNAL_DATA, handle); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If we come here, we may sleep while waiting for the inode to | 
|  | * commit. We shouldn't be holding i_data_sem when we go to sleep since | 
|  | * the commit path needs to grab the lock while committing the inode. | 
|  | */ | 
|  | lockdep_assert_not_held(&ei->i_data_sem); | 
|  |  | 
|  | while (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { | 
|  | #if (BITS_PER_LONG < 64) | 
|  | DEFINE_WAIT_BIT(wait, &ei->i_state_flags, | 
|  | EXT4_STATE_FC_COMMITTING); | 
|  | wq = bit_waitqueue(&ei->i_state_flags, | 
|  | EXT4_STATE_FC_COMMITTING); | 
|  | #else | 
|  | DEFINE_WAIT_BIT(wait, &ei->i_flags, | 
|  | EXT4_STATE_FC_COMMITTING); | 
|  | wq = bit_waitqueue(&ei->i_flags, | 
|  | EXT4_STATE_FC_COMMITTING); | 
|  | #endif | 
|  | prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) | 
|  | schedule(); | 
|  | finish_wait(wq, &wait.wq_entry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * From this point on, this inode will not be committed either | 
|  | * by fast or full commit as long as the handle is open. | 
|  | */ | 
|  | ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); | 
|  | trace_ext4_fc_track_inode(handle, inode, ret); | 
|  | } | 
|  |  | 
|  | struct __track_range_args { | 
|  | ext4_lblk_t start, end; | 
|  | }; | 
|  |  | 
|  | /* __track_fn for tracking data updates */ | 
|  | static int __track_range(handle_t *handle, struct inode *inode, void *arg, | 
|  | bool update) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | ext4_lblk_t oldstart; | 
|  | struct __track_range_args *__arg = | 
|  | (struct __track_range_args *)arg; | 
|  |  | 
|  | if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { | 
|  | ext4_debug("Special inode %ld being modified\n", inode->i_ino); | 
|  | return -ECANCELED; | 
|  | } | 
|  |  | 
|  | oldstart = ei->i_fc_lblk_start; | 
|  |  | 
|  | if (update && ei->i_fc_lblk_len > 0) { | 
|  | ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); | 
|  | ei->i_fc_lblk_len = | 
|  | max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - | 
|  | ei->i_fc_lblk_start + 1; | 
|  | } else { | 
|  | ei->i_fc_lblk_start = __arg->start; | 
|  | ei->i_fc_lblk_len = __arg->end - __arg->start + 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, | 
|  | ext4_lblk_t end) | 
|  | { | 
|  | struct __track_range_args args; | 
|  | int ret; | 
|  |  | 
|  | if (S_ISDIR(inode->i_mode)) | 
|  | return; | 
|  |  | 
|  | if (ext4_fc_disabled(inode->i_sb)) | 
|  | return; | 
|  |  | 
|  | if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) | 
|  | return; | 
|  |  | 
|  | if (ext4_has_inline_data(inode)) { | 
|  | ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR, | 
|  | handle); | 
|  | return; | 
|  | } | 
|  |  | 
|  | args.start = start; | 
|  | args.end = end; | 
|  |  | 
|  | ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1); | 
|  |  | 
|  | trace_ext4_fc_track_range(handle, inode, start, end, ret); | 
|  | } | 
|  |  | 
|  | static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail) | 
|  | { | 
|  | blk_opf_t write_flags = REQ_SYNC; | 
|  | struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; | 
|  |  | 
|  | /* Add REQ_FUA | REQ_PREFLUSH only its tail */ | 
|  | if (test_opt(sb, BARRIER) && is_tail) | 
|  | write_flags |= REQ_FUA | REQ_PREFLUSH; | 
|  | lock_buffer(bh); | 
|  | set_buffer_dirty(bh); | 
|  | set_buffer_uptodate(bh); | 
|  | bh->b_end_io = ext4_end_buffer_io_sync; | 
|  | submit_bh(REQ_OP_WRITE | write_flags, bh); | 
|  | EXT4_SB(sb)->s_fc_bh = NULL; | 
|  | } | 
|  |  | 
|  | /* Ext4 commit path routines */ | 
|  |  | 
|  | /* | 
|  | * Allocate len bytes on a fast commit buffer. | 
|  | * | 
|  | * During the commit time this function is used to manage fast commit | 
|  | * block space. We don't split a fast commit log onto different | 
|  | * blocks. So this function makes sure that if there's not enough space | 
|  | * on the current block, the remaining space in the current block is | 
|  | * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, | 
|  | * new block is from jbd2 and CRC is updated to reflect the padding | 
|  | * we added. | 
|  | */ | 
|  | static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) | 
|  | { | 
|  | struct ext4_fc_tl tl; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct buffer_head *bh; | 
|  | int bsize = sbi->s_journal->j_blocksize; | 
|  | int ret, off = sbi->s_fc_bytes % bsize; | 
|  | int remaining; | 
|  | u8 *dst; | 
|  |  | 
|  | /* | 
|  | * If 'len' is too long to fit in any block alongside a PAD tlv, then we | 
|  | * cannot fulfill the request. | 
|  | */ | 
|  | if (len > bsize - EXT4_FC_TAG_BASE_LEN) | 
|  | return NULL; | 
|  |  | 
|  | if (!sbi->s_fc_bh) { | 
|  | ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); | 
|  | if (ret) | 
|  | return NULL; | 
|  | sbi->s_fc_bh = bh; | 
|  | } | 
|  | dst = sbi->s_fc_bh->b_data + off; | 
|  |  | 
|  | /* | 
|  | * Allocate the bytes in the current block if we can do so while still | 
|  | * leaving enough space for a PAD tlv. | 
|  | */ | 
|  | remaining = bsize - EXT4_FC_TAG_BASE_LEN - off; | 
|  | if (len <= remaining) { | 
|  | sbi->s_fc_bytes += len; | 
|  | return dst; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Else, terminate the current block with a PAD tlv, then allocate a new | 
|  | * block and allocate the bytes at the start of that new block. | 
|  | */ | 
|  |  | 
|  | tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); | 
|  | tl.fc_len = cpu_to_le16(remaining); | 
|  | memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); | 
|  | memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining); | 
|  | *crc = ext4_chksum(*crc, sbi->s_fc_bh->b_data, bsize); | 
|  |  | 
|  | ext4_fc_submit_bh(sb, false); | 
|  |  | 
|  | ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); | 
|  | if (ret) | 
|  | return NULL; | 
|  | sbi->s_fc_bh = bh; | 
|  | sbi->s_fc_bytes += bsize - off + len; | 
|  | return sbi->s_fc_bh->b_data; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Complete a fast commit by writing tail tag. | 
|  | * | 
|  | * Writing tail tag marks the end of a fast commit. In order to guarantee | 
|  | * atomicity, after writing tail tag, even if there's space remaining | 
|  | * in the block, next commit shouldn't use it. That's why tail tag | 
|  | * has the length as that of the remaining space on the block. | 
|  | */ | 
|  | static int ext4_fc_write_tail(struct super_block *sb, u32 crc) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct ext4_fc_tl tl; | 
|  | struct ext4_fc_tail tail; | 
|  | int off, bsize = sbi->s_journal->j_blocksize; | 
|  | u8 *dst; | 
|  |  | 
|  | /* | 
|  | * ext4_fc_reserve_space takes care of allocating an extra block if | 
|  | * there's no enough space on this block for accommodating this tail. | 
|  | */ | 
|  | dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc); | 
|  | if (!dst) | 
|  | return -ENOSPC; | 
|  |  | 
|  | off = sbi->s_fc_bytes % bsize; | 
|  |  | 
|  | tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); | 
|  | tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail)); | 
|  | sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); | 
|  |  | 
|  | memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); | 
|  | dst += EXT4_FC_TAG_BASE_LEN; | 
|  | tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); | 
|  | memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid)); | 
|  | dst += sizeof(tail.fc_tid); | 
|  | crc = ext4_chksum(crc, sbi->s_fc_bh->b_data, | 
|  | dst - (u8 *)sbi->s_fc_bh->b_data); | 
|  | tail.fc_crc = cpu_to_le32(crc); | 
|  | memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc)); | 
|  | dst += sizeof(tail.fc_crc); | 
|  | memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */ | 
|  |  | 
|  | ext4_fc_submit_bh(sb, true); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adds tag, length, value and updates CRC. Returns true if tlv was added. | 
|  | * Returns false if there's not enough space. | 
|  | */ | 
|  | static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, | 
|  | u32 *crc) | 
|  | { | 
|  | struct ext4_fc_tl tl; | 
|  | u8 *dst; | 
|  |  | 
|  | dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc); | 
|  | if (!dst) | 
|  | return false; | 
|  |  | 
|  | tl.fc_tag = cpu_to_le16(tag); | 
|  | tl.fc_len = cpu_to_le16(len); | 
|  |  | 
|  | memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); | 
|  | memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Same as above, but adds dentry tlv. */ | 
|  | static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc, | 
|  | struct ext4_fc_dentry_update *fc_dentry) | 
|  | { | 
|  | struct ext4_fc_dentry_info fcd; | 
|  | struct ext4_fc_tl tl; | 
|  | int dlen = fc_dentry->fcd_name.name.len; | 
|  | u8 *dst = ext4_fc_reserve_space(sb, | 
|  | EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc); | 
|  |  | 
|  | if (!dst) | 
|  | return false; | 
|  |  | 
|  | fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent); | 
|  | fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino); | 
|  | tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op); | 
|  | tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); | 
|  | memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); | 
|  | dst += EXT4_FC_TAG_BASE_LEN; | 
|  | memcpy(dst, &fcd, sizeof(fcd)); | 
|  | dst += sizeof(fcd); | 
|  | memcpy(dst, fc_dentry->fcd_name.name.name, dlen); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writes inode in the fast commit space under TLV with tag @tag. | 
|  | * Returns 0 on success, error on failure. | 
|  | */ | 
|  | static int ext4_fc_write_inode(struct inode *inode, u32 *crc) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | int inode_len = EXT4_GOOD_OLD_INODE_SIZE; | 
|  | int ret; | 
|  | struct ext4_iloc iloc; | 
|  | struct ext4_fc_inode fc_inode; | 
|  | struct ext4_fc_tl tl; | 
|  | u8 *dst; | 
|  |  | 
|  | ret = ext4_get_inode_loc(inode, &iloc); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) | 
|  | inode_len = EXT4_INODE_SIZE(inode->i_sb); | 
|  | else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) | 
|  | inode_len += ei->i_extra_isize; | 
|  |  | 
|  | fc_inode.fc_ino = cpu_to_le32(inode->i_ino); | 
|  | tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); | 
|  | tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); | 
|  |  | 
|  | ret = -ECANCELED; | 
|  | dst = ext4_fc_reserve_space(inode->i_sb, | 
|  | EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc); | 
|  | if (!dst) | 
|  | goto err; | 
|  |  | 
|  | memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); | 
|  | dst += EXT4_FC_TAG_BASE_LEN; | 
|  | memcpy(dst, &fc_inode, sizeof(fc_inode)); | 
|  | dst += sizeof(fc_inode); | 
|  | memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len); | 
|  | ret = 0; | 
|  | err: | 
|  | brelse(iloc.bh); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writes updated data ranges for the inode in question. Updates CRC. | 
|  | * Returns 0 on success, error otherwise. | 
|  | */ | 
|  | static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) | 
|  | { | 
|  | ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | struct ext4_map_blocks map; | 
|  | struct ext4_fc_add_range fc_ext; | 
|  | struct ext4_fc_del_range lrange; | 
|  | struct ext4_extent *ex; | 
|  | int ret; | 
|  |  | 
|  | spin_lock(&ei->i_fc_lock); | 
|  | if (ei->i_fc_lblk_len == 0) { | 
|  | spin_unlock(&ei->i_fc_lock); | 
|  | return 0; | 
|  | } | 
|  | old_blk_size = ei->i_fc_lblk_start; | 
|  | new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; | 
|  | ei->i_fc_lblk_len = 0; | 
|  | spin_unlock(&ei->i_fc_lock); | 
|  |  | 
|  | cur_lblk_off = old_blk_size; | 
|  | ext4_debug("will try writing %d to %d for inode %ld\n", | 
|  | cur_lblk_off, new_blk_size, inode->i_ino); | 
|  |  | 
|  | while (cur_lblk_off <= new_blk_size) { | 
|  | map.m_lblk = cur_lblk_off; | 
|  | map.m_len = new_blk_size - cur_lblk_off + 1; | 
|  | ret = ext4_map_blocks(NULL, inode, &map, | 
|  | EXT4_GET_BLOCKS_IO_SUBMIT | | 
|  | EXT4_EX_NOCACHE); | 
|  | if (ret < 0) | 
|  | return -ECANCELED; | 
|  |  | 
|  | if (map.m_len == 0) { | 
|  | cur_lblk_off++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (ret == 0) { | 
|  | lrange.fc_ino = cpu_to_le32(inode->i_ino); | 
|  | lrange.fc_lblk = cpu_to_le32(map.m_lblk); | 
|  | lrange.fc_len = cpu_to_le32(map.m_len); | 
|  | if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, | 
|  | sizeof(lrange), (u8 *)&lrange, crc)) | 
|  | return -ENOSPC; | 
|  | } else { | 
|  | unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? | 
|  | EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; | 
|  |  | 
|  | /* Limit the number of blocks in one extent */ | 
|  | map.m_len = min(max, map.m_len); | 
|  |  | 
|  | fc_ext.fc_ino = cpu_to_le32(inode->i_ino); | 
|  | ex = (struct ext4_extent *)&fc_ext.fc_ex; | 
|  | ex->ee_block = cpu_to_le32(map.m_lblk); | 
|  | ex->ee_len = cpu_to_le16(map.m_len); | 
|  | ext4_ext_store_pblock(ex, map.m_pblk); | 
|  | if (map.m_flags & EXT4_MAP_UNWRITTEN) | 
|  | ext4_ext_mark_unwritten(ex); | 
|  | else | 
|  | ext4_ext_mark_initialized(ex); | 
|  | if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, | 
|  | sizeof(fc_ext), (u8 *)&fc_ext, crc)) | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | cur_lblk_off += map.m_len; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Flushes data of all the inodes in the commit queue. */ | 
|  | static int ext4_fc_flush_data(journal_t *journal) | 
|  | { | 
|  | struct super_block *sb = journal->j_private; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct ext4_inode_info *ei; | 
|  | int ret = 0; | 
|  |  | 
|  | list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { | 
|  | ret = jbd2_submit_inode_data(journal, ei->jinode); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { | 
|  | ret = jbd2_wait_inode_data(journal, ei->jinode); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Commit all the directory entry updates */ | 
|  | static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) | 
|  | { | 
|  | struct super_block *sb = journal->j_private; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n; | 
|  | struct inode *inode; | 
|  | struct ext4_inode_info *ei; | 
|  | int ret; | 
|  |  | 
|  | if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) | 
|  | return 0; | 
|  | list_for_each_entry_safe(fc_dentry, fc_dentry_n, | 
|  | &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) { | 
|  | if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { | 
|  | if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) | 
|  | return -ENOSPC; | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * With fcd_dilist we need not loop in sbi->s_fc_q to get the | 
|  | * corresponding inode. Also, the corresponding inode could have been | 
|  | * deleted, in which case, we don't need to do anything. | 
|  | */ | 
|  | if (list_empty(&fc_dentry->fcd_dilist)) | 
|  | continue; | 
|  | ei = list_first_entry(&fc_dentry->fcd_dilist, | 
|  | struct ext4_inode_info, i_fc_dilist); | 
|  | inode = &ei->vfs_inode; | 
|  | WARN_ON(inode->i_ino != fc_dentry->fcd_ino); | 
|  |  | 
|  | /* | 
|  | * We first write the inode and then the create dirent. This | 
|  | * allows the recovery code to create an unnamed inode first | 
|  | * and then link it to a directory entry. This allows us | 
|  | * to use namei.c routines almost as is and simplifies | 
|  | * the recovery code. | 
|  | */ | 
|  | ret = ext4_fc_write_inode(inode, crc); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = ext4_fc_write_inode_data(inode, crc); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) | 
|  | return -ENOSPC; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ext4_fc_perform_commit(journal_t *journal) | 
|  | { | 
|  | struct super_block *sb = journal->j_private; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct ext4_inode_info *iter; | 
|  | struct ext4_fc_head head; | 
|  | struct inode *inode; | 
|  | struct blk_plug plug; | 
|  | int ret = 0; | 
|  | u32 crc = 0; | 
|  |  | 
|  | /* | 
|  | * Step 1: Mark all inodes on s_fc_q[MAIN] with | 
|  | * EXT4_STATE_FC_FLUSHING_DATA. This prevents these inodes from being | 
|  | * freed until the data flush is over. | 
|  | */ | 
|  | mutex_lock(&sbi->s_fc_lock); | 
|  | list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { | 
|  | ext4_set_inode_state(&iter->vfs_inode, | 
|  | EXT4_STATE_FC_FLUSHING_DATA); | 
|  | } | 
|  | mutex_unlock(&sbi->s_fc_lock); | 
|  |  | 
|  | /* Step 2: Flush data for all the eligible inodes. */ | 
|  | ret = ext4_fc_flush_data(journal); | 
|  |  | 
|  | /* | 
|  | * Step 3: Clear EXT4_STATE_FC_FLUSHING_DATA flag, before returning | 
|  | * any error from step 2. This ensures that waiters waiting on | 
|  | * EXT4_STATE_FC_FLUSHING_DATA can resume. | 
|  | */ | 
|  | mutex_lock(&sbi->s_fc_lock); | 
|  | list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { | 
|  | ext4_clear_inode_state(&iter->vfs_inode, | 
|  | EXT4_STATE_FC_FLUSHING_DATA); | 
|  | #if (BITS_PER_LONG < 64) | 
|  | wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_FLUSHING_DATA); | 
|  | #else | 
|  | wake_up_bit(&iter->i_flags, EXT4_STATE_FC_FLUSHING_DATA); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure clearing of EXT4_STATE_FC_FLUSHING_DATA is visible before | 
|  | * the waiter checks the bit. Pairs with implicit barrier in | 
|  | * prepare_to_wait() in ext4_fc_del(). | 
|  | */ | 
|  | smp_mb(); | 
|  | mutex_unlock(&sbi->s_fc_lock); | 
|  |  | 
|  | /* | 
|  | * If we encountered error in Step 2, return it now after clearing | 
|  | * EXT4_STATE_FC_FLUSHING_DATA bit. | 
|  | */ | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  |  | 
|  | /* Step 4: Mark all inodes as being committed. */ | 
|  | jbd2_journal_lock_updates(journal); | 
|  | /* | 
|  | * The journal is now locked. No more handles can start and all the | 
|  | * previous handles are now drained. We now mark the inodes on the | 
|  | * commit queue as being committed. | 
|  | */ | 
|  | mutex_lock(&sbi->s_fc_lock); | 
|  | list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { | 
|  | ext4_set_inode_state(&iter->vfs_inode, | 
|  | EXT4_STATE_FC_COMMITTING); | 
|  | } | 
|  | mutex_unlock(&sbi->s_fc_lock); | 
|  | jbd2_journal_unlock_updates(journal); | 
|  |  | 
|  | /* | 
|  | * Step 5: If file system device is different from journal device, | 
|  | * issue a cache flush before we start writing fast commit blocks. | 
|  | */ | 
|  | if (journal->j_fs_dev != journal->j_dev) | 
|  | blkdev_issue_flush(journal->j_fs_dev); | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | /* Step 6: Write fast commit blocks to disk. */ | 
|  | if (sbi->s_fc_bytes == 0) { | 
|  | /* | 
|  | * Step 6.1: Add a head tag only if this is the first fast | 
|  | * commit in this TID. | 
|  | */ | 
|  | head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); | 
|  | head.fc_tid = cpu_to_le32( | 
|  | sbi->s_journal->j_running_transaction->t_tid); | 
|  | if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), | 
|  | (u8 *)&head, &crc)) { | 
|  | ret = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Step 6.2: Now write all the dentry updates. */ | 
|  | mutex_lock(&sbi->s_fc_lock); | 
|  | ret = ext4_fc_commit_dentry_updates(journal, &crc); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* Step 6.3: Now write all the changed inodes to disk. */ | 
|  | list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { | 
|  | inode = &iter->vfs_inode; | 
|  | if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) | 
|  | continue; | 
|  |  | 
|  | ret = ext4_fc_write_inode_data(inode, &crc); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = ext4_fc_write_inode(inode, &crc); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | /* Step 6.4: Finally write tail tag to conclude this fast commit. */ | 
|  | ret = ext4_fc_write_tail(sb, crc); | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&sbi->s_fc_lock); | 
|  | blk_finish_plug(&plug); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void ext4_fc_update_stats(struct super_block *sb, int status, | 
|  | u64 commit_time, int nblks, tid_t commit_tid) | 
|  | { | 
|  | struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats; | 
|  |  | 
|  | ext4_debug("Fast commit ended with status = %d for tid %u", | 
|  | status, commit_tid); | 
|  | if (status == EXT4_FC_STATUS_OK) { | 
|  | stats->fc_num_commits++; | 
|  | stats->fc_numblks += nblks; | 
|  | if (likely(stats->s_fc_avg_commit_time)) | 
|  | stats->s_fc_avg_commit_time = | 
|  | (commit_time + | 
|  | stats->s_fc_avg_commit_time * 3) / 4; | 
|  | else | 
|  | stats->s_fc_avg_commit_time = commit_time; | 
|  | } else if (status == EXT4_FC_STATUS_FAILED || | 
|  | status == EXT4_FC_STATUS_INELIGIBLE) { | 
|  | if (status == EXT4_FC_STATUS_FAILED) | 
|  | stats->fc_failed_commits++; | 
|  | stats->fc_ineligible_commits++; | 
|  | } else { | 
|  | stats->fc_skipped_commits++; | 
|  | } | 
|  | trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The main commit entry point. Performs a fast commit for transaction | 
|  | * commit_tid if needed. If it's not possible to perform a fast commit | 
|  | * due to various reasons, we fall back to full commit. Returns 0 | 
|  | * on success, error otherwise. | 
|  | */ | 
|  | int ext4_fc_commit(journal_t *journal, tid_t commit_tid) | 
|  | { | 
|  | struct super_block *sb = journal->j_private; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | int nblks = 0, ret, bsize = journal->j_blocksize; | 
|  | int subtid = atomic_read(&sbi->s_fc_subtid); | 
|  | int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0; | 
|  | ktime_t start_time, commit_time; | 
|  | int old_ioprio, journal_ioprio; | 
|  |  | 
|  | if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) | 
|  | return jbd2_complete_transaction(journal, commit_tid); | 
|  |  | 
|  | trace_ext4_fc_commit_start(sb, commit_tid); | 
|  |  | 
|  | start_time = ktime_get(); | 
|  | old_ioprio = get_current_ioprio(); | 
|  |  | 
|  | restart_fc: | 
|  | ret = jbd2_fc_begin_commit(journal, commit_tid); | 
|  | if (ret == -EALREADY) { | 
|  | /* There was an ongoing commit, check if we need to restart */ | 
|  | if (atomic_read(&sbi->s_fc_subtid) <= subtid && | 
|  | tid_gt(commit_tid, journal->j_commit_sequence)) | 
|  | goto restart_fc; | 
|  | ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0, | 
|  | commit_tid); | 
|  | return 0; | 
|  | } else if (ret) { | 
|  | /* | 
|  | * Commit couldn't start. Just update stats and perform a | 
|  | * full commit. | 
|  | */ | 
|  | ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0, | 
|  | commit_tid); | 
|  | return jbd2_complete_transaction(journal, commit_tid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After establishing journal barrier via jbd2_fc_begin_commit(), check | 
|  | * if we are fast commit ineligible. | 
|  | */ | 
|  | if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) { | 
|  | status = EXT4_FC_STATUS_INELIGIBLE; | 
|  | goto fallback; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that we know that this thread is going to do a fast commit, | 
|  | * elevate the priority to match that of the journal thread. | 
|  | */ | 
|  | if (journal->j_task->io_context) | 
|  | journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; | 
|  | else | 
|  | journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO; | 
|  | set_task_ioprio(current, journal_ioprio); | 
|  | fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; | 
|  | ret = ext4_fc_perform_commit(journal); | 
|  | if (ret < 0) { | 
|  | status = EXT4_FC_STATUS_FAILED; | 
|  | goto fallback; | 
|  | } | 
|  | nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; | 
|  | ret = jbd2_fc_wait_bufs(journal, nblks); | 
|  | if (ret < 0) { | 
|  | status = EXT4_FC_STATUS_FAILED; | 
|  | goto fallback; | 
|  | } | 
|  | atomic_inc(&sbi->s_fc_subtid); | 
|  | ret = jbd2_fc_end_commit(journal); | 
|  | set_task_ioprio(current, old_ioprio); | 
|  | /* | 
|  | * weight the commit time higher than the average time so we | 
|  | * don't react too strongly to vast changes in the commit time | 
|  | */ | 
|  | commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); | 
|  | ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid); | 
|  | return ret; | 
|  |  | 
|  | fallback: | 
|  | set_task_ioprio(current, old_ioprio); | 
|  | ret = jbd2_fc_end_commit_fallback(journal); | 
|  | ext4_fc_update_stats(sb, status, 0, 0, commit_tid); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fast commit cleanup routine. This is called after every fast commit and | 
|  | * full commit. full is true if we are called after a full commit. | 
|  | */ | 
|  | static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid) | 
|  | { | 
|  | struct super_block *sb = journal->j_private; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct ext4_inode_info *ei; | 
|  | struct ext4_fc_dentry_update *fc_dentry; | 
|  |  | 
|  | if (full && sbi->s_fc_bh) | 
|  | sbi->s_fc_bh = NULL; | 
|  |  | 
|  | trace_ext4_fc_cleanup(journal, full, tid); | 
|  | jbd2_fc_release_bufs(journal); | 
|  |  | 
|  | mutex_lock(&sbi->s_fc_lock); | 
|  | while (!list_empty(&sbi->s_fc_q[FC_Q_MAIN])) { | 
|  | ei = list_first_entry(&sbi->s_fc_q[FC_Q_MAIN], | 
|  | struct ext4_inode_info, | 
|  | i_fc_list); | 
|  | list_del_init(&ei->i_fc_list); | 
|  | ext4_clear_inode_state(&ei->vfs_inode, | 
|  | EXT4_STATE_FC_COMMITTING); | 
|  | if (tid_geq(tid, ei->i_sync_tid)) { | 
|  | ext4_fc_reset_inode(&ei->vfs_inode); | 
|  | } else if (full) { | 
|  | /* | 
|  | * We are called after a full commit, inode has been | 
|  | * modified while the commit was running. Re-enqueue | 
|  | * the inode into STAGING, which will then be splice | 
|  | * back into MAIN. This cannot happen during | 
|  | * fastcommit because the journal is locked all the | 
|  | * time in that case (and tid doesn't increase so | 
|  | * tid check above isn't reliable). | 
|  | */ | 
|  | list_add_tail(&ei->i_fc_list, | 
|  | &sbi->s_fc_q[FC_Q_STAGING]); | 
|  | } | 
|  | /* | 
|  | * Make sure clearing of EXT4_STATE_FC_COMMITTING is | 
|  | * visible before we send the wakeup. Pairs with implicit | 
|  | * barrier in prepare_to_wait() in ext4_fc_track_inode(). | 
|  | */ | 
|  | smp_mb(); | 
|  | #if (BITS_PER_LONG < 64) | 
|  | wake_up_bit(&ei->i_state_flags, EXT4_STATE_FC_COMMITTING); | 
|  | #else | 
|  | wake_up_bit(&ei->i_flags, EXT4_STATE_FC_COMMITTING); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { | 
|  | fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], | 
|  | struct ext4_fc_dentry_update, | 
|  | fcd_list); | 
|  | list_del_init(&fc_dentry->fcd_list); | 
|  | list_del_init(&fc_dentry->fcd_dilist); | 
|  |  | 
|  | release_dentry_name_snapshot(&fc_dentry->fcd_name); | 
|  | kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); | 
|  | } | 
|  |  | 
|  | list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], | 
|  | &sbi->s_fc_dentry_q[FC_Q_MAIN]); | 
|  | list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], | 
|  | &sbi->s_fc_q[FC_Q_MAIN]); | 
|  |  | 
|  | if (tid_geq(tid, sbi->s_fc_ineligible_tid)) { | 
|  | sbi->s_fc_ineligible_tid = 0; | 
|  | ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); | 
|  | } | 
|  |  | 
|  | if (full) | 
|  | sbi->s_fc_bytes = 0; | 
|  | mutex_unlock(&sbi->s_fc_lock); | 
|  | trace_ext4_fc_stats(sb); | 
|  | } | 
|  |  | 
|  | /* Ext4 Replay Path Routines */ | 
|  |  | 
|  | /* Helper struct for dentry replay routines */ | 
|  | struct dentry_info_args { | 
|  | int parent_ino, dname_len, ino, inode_len; | 
|  | char *dname; | 
|  | }; | 
|  |  | 
|  | /* Same as struct ext4_fc_tl, but uses native endianness fields */ | 
|  | struct ext4_fc_tl_mem { | 
|  | u16 fc_tag; | 
|  | u16 fc_len; | 
|  | }; | 
|  |  | 
|  | static inline void tl_to_darg(struct dentry_info_args *darg, | 
|  | struct ext4_fc_tl_mem *tl, u8 *val) | 
|  | { | 
|  | struct ext4_fc_dentry_info fcd; | 
|  |  | 
|  | memcpy(&fcd, val, sizeof(fcd)); | 
|  |  | 
|  | darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); | 
|  | darg->ino = le32_to_cpu(fcd.fc_ino); | 
|  | darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); | 
|  | darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info); | 
|  | } | 
|  |  | 
|  | static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val) | 
|  | { | 
|  | struct ext4_fc_tl tl_disk; | 
|  |  | 
|  | memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN); | 
|  | tl->fc_len = le16_to_cpu(tl_disk.fc_len); | 
|  | tl->fc_tag = le16_to_cpu(tl_disk.fc_tag); | 
|  | } | 
|  |  | 
|  | /* Unlink replay function */ | 
|  | static int ext4_fc_replay_unlink(struct super_block *sb, | 
|  | struct ext4_fc_tl_mem *tl, u8 *val) | 
|  | { | 
|  | struct inode *inode, *old_parent; | 
|  | struct qstr entry; | 
|  | struct dentry_info_args darg; | 
|  | int ret = 0; | 
|  |  | 
|  | tl_to_darg(&darg, tl, val); | 
|  |  | 
|  | trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, | 
|  | darg.parent_ino, darg.dname_len); | 
|  |  | 
|  | entry.name = darg.dname; | 
|  | entry.len = darg.dname_len; | 
|  | inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); | 
|  |  | 
|  | if (IS_ERR(inode)) { | 
|  | ext4_debug("Inode %d not found", darg.ino); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | old_parent = ext4_iget(sb, darg.parent_ino, | 
|  | EXT4_IGET_NORMAL); | 
|  | if (IS_ERR(old_parent)) { | 
|  | ext4_debug("Dir with inode %d not found", darg.parent_ino); | 
|  | iput(inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = __ext4_unlink(old_parent, &entry, inode, NULL); | 
|  | /* -ENOENT ok coz it might not exist anymore. */ | 
|  | if (ret == -ENOENT) | 
|  | ret = 0; | 
|  | iput(old_parent); | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ext4_fc_replay_link_internal(struct super_block *sb, | 
|  | struct dentry_info_args *darg, | 
|  | struct inode *inode) | 
|  | { | 
|  | struct inode *dir = NULL; | 
|  | struct dentry *dentry_dir = NULL, *dentry_inode = NULL; | 
|  | struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); | 
|  | int ret = 0; | 
|  |  | 
|  | dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); | 
|  | if (IS_ERR(dir)) { | 
|  | ext4_debug("Dir with inode %d not found.", darg->parent_ino); | 
|  | dir = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | dentry_dir = d_obtain_alias(dir); | 
|  | if (IS_ERR(dentry_dir)) { | 
|  | ext4_debug("Failed to obtain dentry"); | 
|  | dentry_dir = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | dentry_inode = d_alloc(dentry_dir, &qstr_dname); | 
|  | if (!dentry_inode) { | 
|  | ext4_debug("Inode dentry not created."); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = __ext4_link(dir, inode, dentry_inode); | 
|  | /* | 
|  | * It's possible that link already existed since data blocks | 
|  | * for the dir in question got persisted before we crashed OR | 
|  | * we replayed this tag and crashed before the entire replay | 
|  | * could complete. | 
|  | */ | 
|  | if (ret && ret != -EEXIST) { | 
|  | ext4_debug("Failed to link\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | if (dentry_dir) { | 
|  | d_drop(dentry_dir); | 
|  | dput(dentry_dir); | 
|  | } else if (dir) { | 
|  | iput(dir); | 
|  | } | 
|  | if (dentry_inode) { | 
|  | d_drop(dentry_inode); | 
|  | dput(dentry_inode); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Link replay function */ | 
|  | static int ext4_fc_replay_link(struct super_block *sb, | 
|  | struct ext4_fc_tl_mem *tl, u8 *val) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct dentry_info_args darg; | 
|  | int ret = 0; | 
|  |  | 
|  | tl_to_darg(&darg, tl, val); | 
|  | trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, | 
|  | darg.parent_ino, darg.dname_len); | 
|  |  | 
|  | inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); | 
|  | if (IS_ERR(inode)) { | 
|  | ext4_debug("Inode not found."); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = ext4_fc_replay_link_internal(sb, &darg, inode); | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record all the modified inodes during replay. We use this later to setup | 
|  | * block bitmaps correctly. | 
|  | */ | 
|  | static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) | 
|  | { | 
|  | struct ext4_fc_replay_state *state; | 
|  | int i; | 
|  |  | 
|  | state = &EXT4_SB(sb)->s_fc_replay_state; | 
|  | for (i = 0; i < state->fc_modified_inodes_used; i++) | 
|  | if (state->fc_modified_inodes[i] == ino) | 
|  | return 0; | 
|  | if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { | 
|  | int *fc_modified_inodes; | 
|  |  | 
|  | fc_modified_inodes = krealloc(state->fc_modified_inodes, | 
|  | sizeof(int) * (state->fc_modified_inodes_size + | 
|  | EXT4_FC_REPLAY_REALLOC_INCREMENT), | 
|  | GFP_KERNEL); | 
|  | if (!fc_modified_inodes) | 
|  | return -ENOMEM; | 
|  | state->fc_modified_inodes = fc_modified_inodes; | 
|  | state->fc_modified_inodes_size += | 
|  | EXT4_FC_REPLAY_REALLOC_INCREMENT; | 
|  | } | 
|  | state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inode replay function | 
|  | */ | 
|  | static int ext4_fc_replay_inode(struct super_block *sb, | 
|  | struct ext4_fc_tl_mem *tl, u8 *val) | 
|  | { | 
|  | struct ext4_fc_inode fc_inode; | 
|  | struct ext4_inode *raw_inode; | 
|  | struct ext4_inode *raw_fc_inode; | 
|  | struct inode *inode = NULL; | 
|  | struct ext4_iloc iloc; | 
|  | int inode_len, ino, ret, tag = tl->fc_tag; | 
|  | struct ext4_extent_header *eh; | 
|  | size_t off_gen = offsetof(struct ext4_inode, i_generation); | 
|  |  | 
|  | memcpy(&fc_inode, val, sizeof(fc_inode)); | 
|  |  | 
|  | ino = le32_to_cpu(fc_inode.fc_ino); | 
|  | trace_ext4_fc_replay(sb, tag, ino, 0, 0); | 
|  |  | 
|  | inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); | 
|  | if (!IS_ERR(inode)) { | 
|  | ext4_ext_clear_bb(inode); | 
|  | iput(inode); | 
|  | } | 
|  | inode = NULL; | 
|  |  | 
|  | ret = ext4_fc_record_modified_inode(sb, ino); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | raw_fc_inode = (struct ext4_inode *) | 
|  | (val + offsetof(struct ext4_fc_inode, fc_raw_inode)); | 
|  | ret = ext4_get_fc_inode_loc(sb, ino, &iloc); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | inode_len = tl->fc_len - sizeof(struct ext4_fc_inode); | 
|  | raw_inode = ext4_raw_inode(&iloc); | 
|  |  | 
|  | memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); | 
|  | memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen, | 
|  | inode_len - off_gen); | 
|  | if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { | 
|  | eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); | 
|  | if (eh->eh_magic != EXT4_EXT_MAGIC) { | 
|  | memset(eh, 0, sizeof(*eh)); | 
|  | eh->eh_magic = EXT4_EXT_MAGIC; | 
|  | eh->eh_max = cpu_to_le16( | 
|  | (sizeof(raw_inode->i_block) - | 
|  | sizeof(struct ext4_extent_header)) | 
|  | / sizeof(struct ext4_extent)); | 
|  | } | 
|  | } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { | 
|  | memcpy(raw_inode->i_block, raw_fc_inode->i_block, | 
|  | sizeof(raw_inode->i_block)); | 
|  | } | 
|  |  | 
|  | /* Immediately update the inode on disk. */ | 
|  | ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = sync_dirty_buffer(iloc.bh); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = ext4_mark_inode_used(sb, ino); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* Given that we just wrote the inode on disk, this SHOULD succeed. */ | 
|  | inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); | 
|  | if (IS_ERR(inode)) { | 
|  | ext4_debug("Inode not found."); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Our allocator could have made different decisions than before | 
|  | * crashing. This should be fixed but until then, we calculate | 
|  | * the number of blocks the inode. | 
|  | */ | 
|  | if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) | 
|  | ext4_ext_replay_set_iblocks(inode); | 
|  |  | 
|  | inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); | 
|  | ext4_reset_inode_seed(inode); | 
|  |  | 
|  | ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); | 
|  | ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); | 
|  | sync_dirty_buffer(iloc.bh); | 
|  | brelse(iloc.bh); | 
|  | out: | 
|  | iput(inode); | 
|  | if (!ret) | 
|  | blkdev_issue_flush(sb->s_bdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dentry create replay function. | 
|  | * | 
|  | * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the | 
|  | * inode for which we are trying to create a dentry here, should already have | 
|  | * been replayed before we start here. | 
|  | */ | 
|  | static int ext4_fc_replay_create(struct super_block *sb, | 
|  | struct ext4_fc_tl_mem *tl, u8 *val) | 
|  | { | 
|  | int ret = 0; | 
|  | struct inode *inode = NULL; | 
|  | struct inode *dir = NULL; | 
|  | struct dentry_info_args darg; | 
|  |  | 
|  | tl_to_darg(&darg, tl, val); | 
|  |  | 
|  | trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, | 
|  | darg.parent_ino, darg.dname_len); | 
|  |  | 
|  | /* This takes care of update group descriptor and other metadata */ | 
|  | ret = ext4_mark_inode_used(sb, darg.ino); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); | 
|  | if (IS_ERR(inode)) { | 
|  | ext4_debug("inode %d not found.", darg.ino); | 
|  | inode = NULL; | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (S_ISDIR(inode->i_mode)) { | 
|  | /* | 
|  | * If we are creating a directory, we need to make sure that the | 
|  | * dot and dot dot dirents are setup properly. | 
|  | */ | 
|  | dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); | 
|  | if (IS_ERR(dir)) { | 
|  | ext4_debug("Dir %d not found.", darg.ino); | 
|  | goto out; | 
|  | } | 
|  | ret = ext4_init_new_dir(NULL, dir, inode); | 
|  | iput(dir); | 
|  | if (ret) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | ret = ext4_fc_replay_link_internal(sb, &darg, inode); | 
|  | if (ret) | 
|  | goto out; | 
|  | set_nlink(inode, 1); | 
|  | ext4_mark_inode_dirty(NULL, inode); | 
|  | out: | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record physical disk regions which are in use as per fast commit area, | 
|  | * and used by inodes during replay phase. Our simple replay phase | 
|  | * allocator excludes these regions from allocation. | 
|  | */ | 
|  | int ext4_fc_record_regions(struct super_block *sb, int ino, | 
|  | ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay) | 
|  | { | 
|  | struct ext4_fc_replay_state *state; | 
|  | struct ext4_fc_alloc_region *region; | 
|  |  | 
|  | state = &EXT4_SB(sb)->s_fc_replay_state; | 
|  | /* | 
|  | * during replay phase, the fc_regions_valid may not same as | 
|  | * fc_regions_used, update it when do new additions. | 
|  | */ | 
|  | if (replay && state->fc_regions_used != state->fc_regions_valid) | 
|  | state->fc_regions_used = state->fc_regions_valid; | 
|  | if (state->fc_regions_used == state->fc_regions_size) { | 
|  | struct ext4_fc_alloc_region *fc_regions; | 
|  |  | 
|  | fc_regions = krealloc(state->fc_regions, | 
|  | sizeof(struct ext4_fc_alloc_region) * | 
|  | (state->fc_regions_size + | 
|  | EXT4_FC_REPLAY_REALLOC_INCREMENT), | 
|  | GFP_KERNEL); | 
|  | if (!fc_regions) | 
|  | return -ENOMEM; | 
|  | state->fc_regions_size += | 
|  | EXT4_FC_REPLAY_REALLOC_INCREMENT; | 
|  | state->fc_regions = fc_regions; | 
|  | } | 
|  | region = &state->fc_regions[state->fc_regions_used++]; | 
|  | region->ino = ino; | 
|  | region->lblk = lblk; | 
|  | region->pblk = pblk; | 
|  | region->len = len; | 
|  |  | 
|  | if (replay) | 
|  | state->fc_regions_valid++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Replay add range tag */ | 
|  | static int ext4_fc_replay_add_range(struct super_block *sb, | 
|  | struct ext4_fc_tl_mem *tl, u8 *val) | 
|  | { | 
|  | struct ext4_fc_add_range fc_add_ex; | 
|  | struct ext4_extent newex, *ex; | 
|  | struct inode *inode; | 
|  | ext4_lblk_t start, cur; | 
|  | int remaining, len; | 
|  | ext4_fsblk_t start_pblk; | 
|  | struct ext4_map_blocks map; | 
|  | struct ext4_ext_path *path = NULL; | 
|  | int ret; | 
|  |  | 
|  | memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); | 
|  | ex = (struct ext4_extent *)&fc_add_ex.fc_ex; | 
|  |  | 
|  | trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, | 
|  | le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), | 
|  | ext4_ext_get_actual_len(ex)); | 
|  |  | 
|  | inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); | 
|  | if (IS_ERR(inode)) { | 
|  | ext4_debug("Inode not found."); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = ext4_fc_record_modified_inode(sb, inode->i_ino); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | start = le32_to_cpu(ex->ee_block); | 
|  | start_pblk = ext4_ext_pblock(ex); | 
|  | len = ext4_ext_get_actual_len(ex); | 
|  |  | 
|  | cur = start; | 
|  | remaining = len; | 
|  | ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", | 
|  | start, start_pblk, len, ext4_ext_is_unwritten(ex), | 
|  | inode->i_ino); | 
|  |  | 
|  | while (remaining > 0) { | 
|  | map.m_lblk = cur; | 
|  | map.m_len = remaining; | 
|  | map.m_pblk = 0; | 
|  | ret = ext4_map_blocks(NULL, inode, &map, 0); | 
|  |  | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ret == 0) { | 
|  | /* Range is not mapped */ | 
|  | path = ext4_find_extent(inode, cur, path, 0); | 
|  | if (IS_ERR(path)) | 
|  | goto out; | 
|  | memset(&newex, 0, sizeof(newex)); | 
|  | newex.ee_block = cpu_to_le32(cur); | 
|  | ext4_ext_store_pblock( | 
|  | &newex, start_pblk + cur - start); | 
|  | newex.ee_len = cpu_to_le16(map.m_len); | 
|  | if (ext4_ext_is_unwritten(ex)) | 
|  | ext4_ext_mark_unwritten(&newex); | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | path = ext4_ext_insert_extent(NULL, inode, | 
|  | path, &newex, 0); | 
|  | up_write((&EXT4_I(inode)->i_data_sem)); | 
|  | if (IS_ERR(path)) | 
|  | goto out; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | if (start_pblk + cur - start != map.m_pblk) { | 
|  | /* | 
|  | * Logical to physical mapping changed. This can happen | 
|  | * if this range was removed and then reallocated to | 
|  | * map to new physical blocks during a fast commit. | 
|  | */ | 
|  | ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, | 
|  | ext4_ext_is_unwritten(ex), | 
|  | start_pblk + cur - start); | 
|  | if (ret) | 
|  | goto out; | 
|  | /* | 
|  | * Mark the old blocks as free since they aren't used | 
|  | * anymore. We maintain an array of all the modified | 
|  | * inodes. In case these blocks are still used at either | 
|  | * a different logical range in the same inode or in | 
|  | * some different inode, we will mark them as allocated | 
|  | * at the end of the FC replay using our array of | 
|  | * modified inodes. | 
|  | */ | 
|  | ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | /* Range is mapped and needs a state change */ | 
|  | ext4_debug("Converting from %ld to %d %lld", | 
|  | map.m_flags & EXT4_MAP_UNWRITTEN, | 
|  | ext4_ext_is_unwritten(ex), map.m_pblk); | 
|  | ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, | 
|  | ext4_ext_is_unwritten(ex), map.m_pblk); | 
|  | if (ret) | 
|  | goto out; | 
|  | /* | 
|  | * We may have split the extent tree while toggling the state. | 
|  | * Try to shrink the extent tree now. | 
|  | */ | 
|  | ext4_ext_replay_shrink_inode(inode, start + len); | 
|  | next: | 
|  | cur += map.m_len; | 
|  | remaining -= map.m_len; | 
|  | } | 
|  | ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> | 
|  | sb->s_blocksize_bits); | 
|  | out: | 
|  | ext4_free_ext_path(path); | 
|  | iput(inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Replay DEL_RANGE tag */ | 
|  | static int | 
|  | ext4_fc_replay_del_range(struct super_block *sb, | 
|  | struct ext4_fc_tl_mem *tl, u8 *val) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct ext4_fc_del_range lrange; | 
|  | struct ext4_map_blocks map; | 
|  | ext4_lblk_t cur, remaining; | 
|  | int ret; | 
|  |  | 
|  | memcpy(&lrange, val, sizeof(lrange)); | 
|  | cur = le32_to_cpu(lrange.fc_lblk); | 
|  | remaining = le32_to_cpu(lrange.fc_len); | 
|  |  | 
|  | trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, | 
|  | le32_to_cpu(lrange.fc_ino), cur, remaining); | 
|  |  | 
|  | inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); | 
|  | if (IS_ERR(inode)) { | 
|  | ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = ext4_fc_record_modified_inode(sb, inode->i_ino); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n", | 
|  | inode->i_ino, le32_to_cpu(lrange.fc_lblk), | 
|  | le32_to_cpu(lrange.fc_len)); | 
|  | while (remaining > 0) { | 
|  | map.m_lblk = cur; | 
|  | map.m_len = remaining; | 
|  |  | 
|  | ret = ext4_map_blocks(NULL, inode, &map, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | remaining -= ret; | 
|  | cur += ret; | 
|  | ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); | 
|  | } else { | 
|  | remaining -= map.m_len; | 
|  | cur += map.m_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk), | 
|  | le32_to_cpu(lrange.fc_lblk) + | 
|  | le32_to_cpu(lrange.fc_len) - 1); | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  | if (ret) | 
|  | goto out; | 
|  | ext4_ext_replay_shrink_inode(inode, | 
|  | i_size_read(inode) >> sb->s_blocksize_bits); | 
|  | ext4_mark_inode_dirty(NULL, inode); | 
|  | out: | 
|  | iput(inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) | 
|  | { | 
|  | struct ext4_fc_replay_state *state; | 
|  | struct inode *inode; | 
|  | struct ext4_ext_path *path = NULL; | 
|  | struct ext4_map_blocks map; | 
|  | int i, ret, j; | 
|  | ext4_lblk_t cur, end; | 
|  |  | 
|  | state = &EXT4_SB(sb)->s_fc_replay_state; | 
|  | for (i = 0; i < state->fc_modified_inodes_used; i++) { | 
|  | inode = ext4_iget(sb, state->fc_modified_inodes[i], | 
|  | EXT4_IGET_NORMAL); | 
|  | if (IS_ERR(inode)) { | 
|  | ext4_debug("Inode %d not found.", | 
|  | state->fc_modified_inodes[i]); | 
|  | continue; | 
|  | } | 
|  | cur = 0; | 
|  | end = EXT_MAX_BLOCKS; | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) { | 
|  | iput(inode); | 
|  | continue; | 
|  | } | 
|  | while (cur < end) { | 
|  | map.m_lblk = cur; | 
|  | map.m_len = end - cur; | 
|  |  | 
|  | ret = ext4_map_blocks(NULL, inode, &map, 0); | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | if (ret > 0) { | 
|  | path = ext4_find_extent(inode, map.m_lblk, path, 0); | 
|  | if (!IS_ERR(path)) { | 
|  | for (j = 0; j < path->p_depth; j++) | 
|  | ext4_mb_mark_bb(inode->i_sb, | 
|  | path[j].p_block, 1, true); | 
|  | } else { | 
|  | path = NULL; | 
|  | } | 
|  | cur += ret; | 
|  | ext4_mb_mark_bb(inode->i_sb, map.m_pblk, | 
|  | map.m_len, true); | 
|  | } else { | 
|  | cur = cur + (map.m_len ? map.m_len : 1); | 
|  | } | 
|  | } | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | ext4_free_ext_path(path); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if block is in excluded regions for block allocation. The simple | 
|  | * allocator that runs during replay phase is calls this function to see | 
|  | * if it is okay to use a block. | 
|  | */ | 
|  | bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) | 
|  | { | 
|  | int i; | 
|  | struct ext4_fc_replay_state *state; | 
|  |  | 
|  | state = &EXT4_SB(sb)->s_fc_replay_state; | 
|  | for (i = 0; i < state->fc_regions_valid; i++) { | 
|  | if (state->fc_regions[i].ino == 0 || | 
|  | state->fc_regions[i].len == 0) | 
|  | continue; | 
|  | if (in_range(blk, state->fc_regions[i].pblk, | 
|  | state->fc_regions[i].len)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Cleanup function called after replay */ | 
|  | void ext4_fc_replay_cleanup(struct super_block *sb) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  |  | 
|  | sbi->s_mount_state &= ~EXT4_FC_REPLAY; | 
|  | kfree(sbi->s_fc_replay_state.fc_regions); | 
|  | kfree(sbi->s_fc_replay_state.fc_modified_inodes); | 
|  | } | 
|  |  | 
|  | static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi, | 
|  | int tag, int len) | 
|  | { | 
|  | switch (tag) { | 
|  | case EXT4_FC_TAG_ADD_RANGE: | 
|  | return len == sizeof(struct ext4_fc_add_range); | 
|  | case EXT4_FC_TAG_DEL_RANGE: | 
|  | return len == sizeof(struct ext4_fc_del_range); | 
|  | case EXT4_FC_TAG_CREAT: | 
|  | case EXT4_FC_TAG_LINK: | 
|  | case EXT4_FC_TAG_UNLINK: | 
|  | len -= sizeof(struct ext4_fc_dentry_info); | 
|  | return len >= 1 && len <= EXT4_NAME_LEN; | 
|  | case EXT4_FC_TAG_INODE: | 
|  | len -= sizeof(struct ext4_fc_inode); | 
|  | return len >= EXT4_GOOD_OLD_INODE_SIZE && | 
|  | len <= sbi->s_inode_size; | 
|  | case EXT4_FC_TAG_PAD: | 
|  | return true; /* padding can have any length */ | 
|  | case EXT4_FC_TAG_TAIL: | 
|  | return len >= sizeof(struct ext4_fc_tail); | 
|  | case EXT4_FC_TAG_HEAD: | 
|  | return len == sizeof(struct ext4_fc_head); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Recovery Scan phase handler | 
|  | * | 
|  | * This function is called during the scan phase and is responsible | 
|  | * for doing following things: | 
|  | * - Make sure the fast commit area has valid tags for replay | 
|  | * - Count number of tags that need to be replayed by the replay handler | 
|  | * - Verify CRC | 
|  | * - Create a list of excluded blocks for allocation during replay phase | 
|  | * | 
|  | * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is | 
|  | * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP | 
|  | * to indicate that scan has finished and JBD2 can now start replay phase. | 
|  | * It returns a negative error to indicate that there was an error. At the end | 
|  | * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set | 
|  | * to indicate the number of tags that need to replayed during the replay phase. | 
|  | */ | 
|  | static int ext4_fc_replay_scan(journal_t *journal, | 
|  | struct buffer_head *bh, int off, | 
|  | tid_t expected_tid) | 
|  | { | 
|  | struct super_block *sb = journal->j_private; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct ext4_fc_replay_state *state; | 
|  | int ret = JBD2_FC_REPLAY_CONTINUE; | 
|  | struct ext4_fc_add_range ext; | 
|  | struct ext4_fc_tl_mem tl; | 
|  | struct ext4_fc_tail tail; | 
|  | __u8 *start, *end, *cur, *val; | 
|  | struct ext4_fc_head head; | 
|  | struct ext4_extent *ex; | 
|  |  | 
|  | state = &sbi->s_fc_replay_state; | 
|  |  | 
|  | start = (u8 *)bh->b_data; | 
|  | end = start + journal->j_blocksize; | 
|  |  | 
|  | if (state->fc_replay_expected_off == 0) { | 
|  | state->fc_cur_tag = 0; | 
|  | state->fc_replay_num_tags = 0; | 
|  | state->fc_crc = 0; | 
|  | state->fc_regions = NULL; | 
|  | state->fc_regions_valid = state->fc_regions_used = | 
|  | state->fc_regions_size = 0; | 
|  | /* Check if we can stop early */ | 
|  | if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) | 
|  | != EXT4_FC_TAG_HEAD) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (off != state->fc_replay_expected_off) { | 
|  | ret = -EFSCORRUPTED; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | state->fc_replay_expected_off++; | 
|  | for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; | 
|  | cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { | 
|  | ext4_fc_get_tl(&tl, cur); | 
|  | val = cur + EXT4_FC_TAG_BASE_LEN; | 
|  | if (tl.fc_len > end - val || | 
|  | !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) { | 
|  | ret = state->fc_replay_num_tags ? | 
|  | JBD2_FC_REPLAY_STOP : -ECANCELED; | 
|  | goto out_err; | 
|  | } | 
|  | ext4_debug("Scan phase, tag:%s, blk %lld\n", | 
|  | tag2str(tl.fc_tag), bh->b_blocknr); | 
|  | switch (tl.fc_tag) { | 
|  | case EXT4_FC_TAG_ADD_RANGE: | 
|  | memcpy(&ext, val, sizeof(ext)); | 
|  | ex = (struct ext4_extent *)&ext.fc_ex; | 
|  | ret = ext4_fc_record_regions(sb, | 
|  | le32_to_cpu(ext.fc_ino), | 
|  | le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), | 
|  | ext4_ext_get_actual_len(ex), 0); | 
|  | if (ret < 0) | 
|  | break; | 
|  | ret = JBD2_FC_REPLAY_CONTINUE; | 
|  | fallthrough; | 
|  | case EXT4_FC_TAG_DEL_RANGE: | 
|  | case EXT4_FC_TAG_LINK: | 
|  | case EXT4_FC_TAG_UNLINK: | 
|  | case EXT4_FC_TAG_CREAT: | 
|  | case EXT4_FC_TAG_INODE: | 
|  | case EXT4_FC_TAG_PAD: | 
|  | state->fc_cur_tag++; | 
|  | state->fc_crc = ext4_chksum(state->fc_crc, cur, | 
|  | EXT4_FC_TAG_BASE_LEN + tl.fc_len); | 
|  | break; | 
|  | case EXT4_FC_TAG_TAIL: | 
|  | state->fc_cur_tag++; | 
|  | memcpy(&tail, val, sizeof(tail)); | 
|  | state->fc_crc = ext4_chksum(state->fc_crc, cur, | 
|  | EXT4_FC_TAG_BASE_LEN + | 
|  | offsetof(struct ext4_fc_tail, | 
|  | fc_crc)); | 
|  | if (le32_to_cpu(tail.fc_tid) == expected_tid && | 
|  | le32_to_cpu(tail.fc_crc) == state->fc_crc) { | 
|  | state->fc_replay_num_tags = state->fc_cur_tag; | 
|  | state->fc_regions_valid = | 
|  | state->fc_regions_used; | 
|  | } else { | 
|  | ret = state->fc_replay_num_tags ? | 
|  | JBD2_FC_REPLAY_STOP : -EFSBADCRC; | 
|  | } | 
|  | state->fc_crc = 0; | 
|  | break; | 
|  | case EXT4_FC_TAG_HEAD: | 
|  | memcpy(&head, val, sizeof(head)); | 
|  | if (le32_to_cpu(head.fc_features) & | 
|  | ~EXT4_FC_SUPPORTED_FEATURES) { | 
|  | ret = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  | if (le32_to_cpu(head.fc_tid) != expected_tid) { | 
|  | ret = JBD2_FC_REPLAY_STOP; | 
|  | break; | 
|  | } | 
|  | state->fc_cur_tag++; | 
|  | state->fc_crc = ext4_chksum(state->fc_crc, cur, | 
|  | EXT4_FC_TAG_BASE_LEN + tl.fc_len); | 
|  | break; | 
|  | default: | 
|  | ret = state->fc_replay_num_tags ? | 
|  | JBD2_FC_REPLAY_STOP : -ECANCELED; | 
|  | } | 
|  | if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) | 
|  | break; | 
|  | } | 
|  |  | 
|  | out_err: | 
|  | trace_ext4_fc_replay_scan(sb, ret, off); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Main recovery path entry point. | 
|  | * The meaning of return codes is similar as above. | 
|  | */ | 
|  | static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, | 
|  | enum passtype pass, int off, tid_t expected_tid) | 
|  | { | 
|  | struct super_block *sb = journal->j_private; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct ext4_fc_tl_mem tl; | 
|  | __u8 *start, *end, *cur, *val; | 
|  | int ret = JBD2_FC_REPLAY_CONTINUE; | 
|  | struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; | 
|  | struct ext4_fc_tail tail; | 
|  |  | 
|  | if (pass == PASS_SCAN) { | 
|  | state->fc_current_pass = PASS_SCAN; | 
|  | return ext4_fc_replay_scan(journal, bh, off, expected_tid); | 
|  | } | 
|  |  | 
|  | if (state->fc_current_pass != pass) { | 
|  | state->fc_current_pass = pass; | 
|  | sbi->s_mount_state |= EXT4_FC_REPLAY; | 
|  | } | 
|  | if (!sbi->s_fc_replay_state.fc_replay_num_tags) { | 
|  | ext4_debug("Replay stops\n"); | 
|  | ext4_fc_set_bitmaps_and_counters(sb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_EXT4_DEBUG | 
|  | if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { | 
|  | pr_warn("Dropping fc block %d because max_replay set\n", off); | 
|  | return JBD2_FC_REPLAY_STOP; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | start = (u8 *)bh->b_data; | 
|  | end = start + journal->j_blocksize; | 
|  |  | 
|  | for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; | 
|  | cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { | 
|  | ext4_fc_get_tl(&tl, cur); | 
|  | val = cur + EXT4_FC_TAG_BASE_LEN; | 
|  |  | 
|  | if (state->fc_replay_num_tags == 0) { | 
|  | ret = JBD2_FC_REPLAY_STOP; | 
|  | ext4_fc_set_bitmaps_and_counters(sb); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag)); | 
|  | state->fc_replay_num_tags--; | 
|  | switch (tl.fc_tag) { | 
|  | case EXT4_FC_TAG_LINK: | 
|  | ret = ext4_fc_replay_link(sb, &tl, val); | 
|  | break; | 
|  | case EXT4_FC_TAG_UNLINK: | 
|  | ret = ext4_fc_replay_unlink(sb, &tl, val); | 
|  | break; | 
|  | case EXT4_FC_TAG_ADD_RANGE: | 
|  | ret = ext4_fc_replay_add_range(sb, &tl, val); | 
|  | break; | 
|  | case EXT4_FC_TAG_CREAT: | 
|  | ret = ext4_fc_replay_create(sb, &tl, val); | 
|  | break; | 
|  | case EXT4_FC_TAG_DEL_RANGE: | 
|  | ret = ext4_fc_replay_del_range(sb, &tl, val); | 
|  | break; | 
|  | case EXT4_FC_TAG_INODE: | 
|  | ret = ext4_fc_replay_inode(sb, &tl, val); | 
|  | break; | 
|  | case EXT4_FC_TAG_PAD: | 
|  | trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, | 
|  | tl.fc_len, 0); | 
|  | break; | 
|  | case EXT4_FC_TAG_TAIL: | 
|  | trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, | 
|  | 0, tl.fc_len, 0); | 
|  | memcpy(&tail, val, sizeof(tail)); | 
|  | WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); | 
|  | break; | 
|  | case EXT4_FC_TAG_HEAD: | 
|  | break; | 
|  | default: | 
|  | trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0); | 
|  | ret = -ECANCELED; | 
|  | break; | 
|  | } | 
|  | if (ret < 0) | 
|  | break; | 
|  | ret = JBD2_FC_REPLAY_CONTINUE; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void ext4_fc_init(struct super_block *sb, journal_t *journal) | 
|  | { | 
|  | /* | 
|  | * We set replay callback even if fast commit disabled because we may | 
|  | * could still have fast commit blocks that need to be replayed even if | 
|  | * fast commit has now been turned off. | 
|  | */ | 
|  | journal->j_fc_replay_callback = ext4_fc_replay; | 
|  | if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) | 
|  | return; | 
|  | journal->j_fc_cleanup_callback = ext4_fc_cleanup; | 
|  | } | 
|  |  | 
|  | static const char * const fc_ineligible_reasons[] = { | 
|  | [EXT4_FC_REASON_XATTR] = "Extended attributes changed", | 
|  | [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename", | 
|  | [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed", | 
|  | [EXT4_FC_REASON_NOMEM] = "Insufficient memory", | 
|  | [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot", | 
|  | [EXT4_FC_REASON_RESIZE] = "Resize", | 
|  | [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed", | 
|  | [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op", | 
|  | [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling", | 
|  | [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename", | 
|  | }; | 
|  |  | 
|  | int ext4_fc_info_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); | 
|  | struct ext4_fc_stats *stats = &sbi->s_fc_stats; | 
|  | int i; | 
|  |  | 
|  | if (v != SEQ_START_TOKEN) | 
|  | return 0; | 
|  |  | 
|  | seq_printf(seq, | 
|  | "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", | 
|  | stats->fc_num_commits, stats->fc_ineligible_commits, | 
|  | stats->fc_numblks, | 
|  | div_u64(stats->s_fc_avg_commit_time, 1000)); | 
|  | seq_puts(seq, "Ineligible reasons:\n"); | 
|  | for (i = 0; i < EXT4_FC_REASON_MAX; i++) | 
|  | seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], | 
|  | stats->fc_ineligible_reason_count[i]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __init ext4_fc_init_dentry_cache(void) | 
|  | { | 
|  | ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, | 
|  | SLAB_RECLAIM_ACCOUNT); | 
|  |  | 
|  | if (ext4_fc_dentry_cachep == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ext4_fc_destroy_dentry_cache(void) | 
|  | { | 
|  | kmem_cache_destroy(ext4_fc_dentry_cachep); | 
|  | } |