|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Stack depot - a stack trace storage that avoids duplication. | 
|  | * | 
|  | * Internally, stack depot maintains a hash table of unique stacktraces. The | 
|  | * stack traces themselves are stored contiguously one after another in a set | 
|  | * of separate page allocations. | 
|  | * | 
|  | * Author: Alexander Potapenko <glider@google.com> | 
|  | * Copyright (C) 2016 Google, Inc. | 
|  | * | 
|  | * Based on the code by Dmitry Chernenkov. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "stackdepot: " fmt | 
|  |  | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/jhash.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kmsan.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/printk.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/refcount.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/stacktrace.h> | 
|  | #include <linux/stackdepot.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/kasan-enabled.h> | 
|  |  | 
|  | #define DEPOT_POOLS_CAP 8192 | 
|  | /* The pool_index is offset by 1 so the first record does not have a 0 handle. */ | 
|  | #define DEPOT_MAX_POOLS \ | 
|  | (((1LL << (DEPOT_POOL_INDEX_BITS)) - 1 < DEPOT_POOLS_CAP) ? \ | 
|  | (1LL << (DEPOT_POOL_INDEX_BITS)) - 1 : DEPOT_POOLS_CAP) | 
|  |  | 
|  | static bool stack_depot_disabled; | 
|  | static bool __stack_depot_early_init_requested __initdata = IS_ENABLED(CONFIG_STACKDEPOT_ALWAYS_INIT); | 
|  | static bool __stack_depot_early_init_passed __initdata; | 
|  |  | 
|  | /* Use one hash table bucket per 16 KB of memory. */ | 
|  | #define STACK_HASH_TABLE_SCALE 14 | 
|  | /* Limit the number of buckets between 4K and 1M. */ | 
|  | #define STACK_BUCKET_NUMBER_ORDER_MIN 12 | 
|  | #define STACK_BUCKET_NUMBER_ORDER_MAX 20 | 
|  | /* Initial seed for jhash2. */ | 
|  | #define STACK_HASH_SEED 0x9747b28c | 
|  |  | 
|  | /* Hash table of stored stack records. */ | 
|  | static struct list_head *stack_table; | 
|  | /* Fixed order of the number of table buckets. Used when KASAN is enabled. */ | 
|  | static unsigned int stack_bucket_number_order; | 
|  | /* Hash mask for indexing the table. */ | 
|  | static unsigned int stack_hash_mask; | 
|  |  | 
|  | /* Array of memory regions that store stack records. */ | 
|  | static void *stack_pools[DEPOT_MAX_POOLS]; | 
|  | /* Newly allocated pool that is not yet added to stack_pools. */ | 
|  | static void *new_pool; | 
|  | /* Number of pools in stack_pools. */ | 
|  | static int pools_num; | 
|  | /* Offset to the unused space in the currently used pool. */ | 
|  | static size_t pool_offset = DEPOT_POOL_SIZE; | 
|  | /* Freelist of stack records within stack_pools. */ | 
|  | static LIST_HEAD(free_stacks); | 
|  | /* The lock must be held when performing pool or freelist modifications. */ | 
|  | static DEFINE_RAW_SPINLOCK(pool_lock); | 
|  |  | 
|  | /* Statistics counters for debugfs. */ | 
|  | enum depot_counter_id { | 
|  | DEPOT_COUNTER_REFD_ALLOCS, | 
|  | DEPOT_COUNTER_REFD_FREES, | 
|  | DEPOT_COUNTER_REFD_INUSE, | 
|  | DEPOT_COUNTER_FREELIST_SIZE, | 
|  | DEPOT_COUNTER_PERSIST_COUNT, | 
|  | DEPOT_COUNTER_PERSIST_BYTES, | 
|  | DEPOT_COUNTER_COUNT, | 
|  | }; | 
|  | static long counters[DEPOT_COUNTER_COUNT]; | 
|  | static const char *const counter_names[] = { | 
|  | [DEPOT_COUNTER_REFD_ALLOCS]	= "refcounted_allocations", | 
|  | [DEPOT_COUNTER_REFD_FREES]	= "refcounted_frees", | 
|  | [DEPOT_COUNTER_REFD_INUSE]	= "refcounted_in_use", | 
|  | [DEPOT_COUNTER_FREELIST_SIZE]	= "freelist_size", | 
|  | [DEPOT_COUNTER_PERSIST_COUNT]	= "persistent_count", | 
|  | [DEPOT_COUNTER_PERSIST_BYTES]	= "persistent_bytes", | 
|  | }; | 
|  | static_assert(ARRAY_SIZE(counter_names) == DEPOT_COUNTER_COUNT); | 
|  |  | 
|  | static int __init disable_stack_depot(char *str) | 
|  | { | 
|  | return kstrtobool(str, &stack_depot_disabled); | 
|  | } | 
|  | early_param("stack_depot_disable", disable_stack_depot); | 
|  |  | 
|  | void __init stack_depot_request_early_init(void) | 
|  | { | 
|  | /* Too late to request early init now. */ | 
|  | WARN_ON(__stack_depot_early_init_passed); | 
|  |  | 
|  | __stack_depot_early_init_requested = true; | 
|  | } | 
|  |  | 
|  | /* Initialize list_head's within the hash table. */ | 
|  | static void init_stack_table(unsigned long entries) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < entries; i++) | 
|  | INIT_LIST_HEAD(&stack_table[i]); | 
|  | } | 
|  |  | 
|  | /* Allocates a hash table via memblock. Can only be used during early boot. */ | 
|  | int __init stack_depot_early_init(void) | 
|  | { | 
|  | unsigned long entries = 0; | 
|  |  | 
|  | /* This function must be called only once, from mm_init(). */ | 
|  | if (WARN_ON(__stack_depot_early_init_passed)) | 
|  | return 0; | 
|  | __stack_depot_early_init_passed = true; | 
|  |  | 
|  | /* | 
|  | * Print disabled message even if early init has not been requested: | 
|  | * stack_depot_init() will not print one. | 
|  | */ | 
|  | if (stack_depot_disabled) { | 
|  | pr_info("disabled\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If KASAN is enabled, use the maximum order: KASAN is frequently used | 
|  | * in fuzzing scenarios, which leads to a large number of different | 
|  | * stack traces being stored in stack depot. | 
|  | */ | 
|  | if (kasan_enabled() && !stack_bucket_number_order) | 
|  | stack_bucket_number_order = STACK_BUCKET_NUMBER_ORDER_MAX; | 
|  |  | 
|  | /* | 
|  | * Check if early init has been requested after setting | 
|  | * stack_bucket_number_order: stack_depot_init() uses its value. | 
|  | */ | 
|  | if (!__stack_depot_early_init_requested) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If stack_bucket_number_order is not set, leave entries as 0 to rely | 
|  | * on the automatic calculations performed by alloc_large_system_hash(). | 
|  | */ | 
|  | if (stack_bucket_number_order) | 
|  | entries = 1UL << stack_bucket_number_order; | 
|  | pr_info("allocating hash table via alloc_large_system_hash\n"); | 
|  | stack_table = alloc_large_system_hash("stackdepot", | 
|  | sizeof(struct list_head), | 
|  | entries, | 
|  | STACK_HASH_TABLE_SCALE, | 
|  | HASH_EARLY, | 
|  | NULL, | 
|  | &stack_hash_mask, | 
|  | 1UL << STACK_BUCKET_NUMBER_ORDER_MIN, | 
|  | 1UL << STACK_BUCKET_NUMBER_ORDER_MAX); | 
|  | if (!stack_table) { | 
|  | pr_err("hash table allocation failed, disabling\n"); | 
|  | stack_depot_disabled = true; | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (!entries) { | 
|  | /* | 
|  | * Obtain the number of entries that was calculated by | 
|  | * alloc_large_system_hash(). | 
|  | */ | 
|  | entries = stack_hash_mask + 1; | 
|  | } | 
|  | init_stack_table(entries); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Allocates a hash table via kvcalloc. Can be used after boot. */ | 
|  | int stack_depot_init(void) | 
|  | { | 
|  | static DEFINE_MUTEX(stack_depot_init_mutex); | 
|  | unsigned long entries; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&stack_depot_init_mutex); | 
|  |  | 
|  | if (stack_depot_disabled || stack_table) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * Similarly to stack_depot_early_init, use stack_bucket_number_order | 
|  | * if assigned, and rely on automatic scaling otherwise. | 
|  | */ | 
|  | if (stack_bucket_number_order) { | 
|  | entries = 1UL << stack_bucket_number_order; | 
|  | } else { | 
|  | int scale = STACK_HASH_TABLE_SCALE; | 
|  |  | 
|  | entries = nr_free_buffer_pages(); | 
|  | entries = roundup_pow_of_two(entries); | 
|  |  | 
|  | if (scale > PAGE_SHIFT) | 
|  | entries >>= (scale - PAGE_SHIFT); | 
|  | else | 
|  | entries <<= (PAGE_SHIFT - scale); | 
|  | } | 
|  |  | 
|  | if (entries < 1UL << STACK_BUCKET_NUMBER_ORDER_MIN) | 
|  | entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MIN; | 
|  | if (entries > 1UL << STACK_BUCKET_NUMBER_ORDER_MAX) | 
|  | entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MAX; | 
|  |  | 
|  | pr_info("allocating hash table of %lu entries via kvcalloc\n", entries); | 
|  | stack_table = kvcalloc(entries, sizeof(struct list_head), GFP_KERNEL); | 
|  | if (!stack_table) { | 
|  | pr_err("hash table allocation failed, disabling\n"); | 
|  | stack_depot_disabled = true; | 
|  | ret = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  | stack_hash_mask = entries - 1; | 
|  | init_stack_table(entries); | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&stack_depot_init_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(stack_depot_init); | 
|  |  | 
|  | /* | 
|  | * Initializes new stack pool, and updates the list of pools. | 
|  | */ | 
|  | static bool depot_init_pool(void **prealloc) | 
|  | { | 
|  | lockdep_assert_held(&pool_lock); | 
|  |  | 
|  | if (unlikely(pools_num >= DEPOT_MAX_POOLS)) { | 
|  | /* Bail out if we reached the pool limit. */ | 
|  | WARN_ON_ONCE(pools_num > DEPOT_MAX_POOLS); /* should never happen */ | 
|  | WARN_ON_ONCE(!new_pool); /* to avoid unnecessary pre-allocation */ | 
|  | WARN_ONCE(1, "Stack depot reached limit capacity"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!new_pool && *prealloc) { | 
|  | /* We have preallocated memory, use it. */ | 
|  | WRITE_ONCE(new_pool, *prealloc); | 
|  | *prealloc = NULL; | 
|  | } | 
|  |  | 
|  | if (!new_pool) | 
|  | return false; /* new_pool and *prealloc are NULL */ | 
|  |  | 
|  | /* Save reference to the pool to be used by depot_fetch_stack(). */ | 
|  | stack_pools[pools_num] = new_pool; | 
|  |  | 
|  | /* | 
|  | * Stack depot tries to keep an extra pool allocated even before it runs | 
|  | * out of space in the currently used pool. | 
|  | * | 
|  | * To indicate that a new preallocation is needed new_pool is reset to | 
|  | * NULL; do not reset to NULL if we have reached the maximum number of | 
|  | * pools. | 
|  | */ | 
|  | if (pools_num < DEPOT_MAX_POOLS) | 
|  | WRITE_ONCE(new_pool, NULL); | 
|  | else | 
|  | WRITE_ONCE(new_pool, STACK_DEPOT_POISON); | 
|  |  | 
|  | /* Pairs with concurrent READ_ONCE() in depot_fetch_stack(). */ | 
|  | WRITE_ONCE(pools_num, pools_num + 1); | 
|  | ASSERT_EXCLUSIVE_WRITER(pools_num); | 
|  |  | 
|  | pool_offset = 0; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Keeps the preallocated memory to be used for a new stack depot pool. */ | 
|  | static void depot_keep_new_pool(void **prealloc) | 
|  | { | 
|  | lockdep_assert_held(&pool_lock); | 
|  |  | 
|  | /* | 
|  | * If a new pool is already saved or the maximum number of | 
|  | * pools is reached, do not use the preallocated memory. | 
|  | */ | 
|  | if (new_pool) | 
|  | return; | 
|  |  | 
|  | WRITE_ONCE(new_pool, *prealloc); | 
|  | *prealloc = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to initialize a new stack record from the current pool, a cached pool, or | 
|  | * the current pre-allocation. | 
|  | */ | 
|  | static struct stack_record *depot_pop_free_pool(void **prealloc, size_t size) | 
|  | { | 
|  | struct stack_record *stack; | 
|  | void *current_pool; | 
|  | u32 pool_index; | 
|  |  | 
|  | lockdep_assert_held(&pool_lock); | 
|  |  | 
|  | if (pool_offset + size > DEPOT_POOL_SIZE) { | 
|  | if (!depot_init_pool(prealloc)) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (WARN_ON_ONCE(pools_num < 1)) | 
|  | return NULL; | 
|  | pool_index = pools_num - 1; | 
|  | current_pool = stack_pools[pool_index]; | 
|  | if (WARN_ON_ONCE(!current_pool)) | 
|  | return NULL; | 
|  |  | 
|  | stack = current_pool + pool_offset; | 
|  |  | 
|  | /* Pre-initialize handle once. */ | 
|  | stack->handle.pool_index_plus_1 = pool_index + 1; | 
|  | stack->handle.offset = pool_offset >> DEPOT_STACK_ALIGN; | 
|  | stack->handle.extra = 0; | 
|  | INIT_LIST_HEAD(&stack->hash_list); | 
|  |  | 
|  | pool_offset += size; | 
|  |  | 
|  | return stack; | 
|  | } | 
|  |  | 
|  | /* Try to find next free usable entry from the freelist. */ | 
|  | static struct stack_record *depot_pop_free(void) | 
|  | { | 
|  | struct stack_record *stack; | 
|  |  | 
|  | lockdep_assert_held(&pool_lock); | 
|  |  | 
|  | if (list_empty(&free_stacks)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * We maintain the invariant that the elements in front are least | 
|  | * recently used, and are therefore more likely to be associated with an | 
|  | * RCU grace period in the past. Consequently it is sufficient to only | 
|  | * check the first entry. | 
|  | */ | 
|  | stack = list_first_entry(&free_stacks, struct stack_record, free_list); | 
|  | if (!poll_state_synchronize_rcu(stack->rcu_state)) | 
|  | return NULL; | 
|  |  | 
|  | list_del(&stack->free_list); | 
|  | counters[DEPOT_COUNTER_FREELIST_SIZE]--; | 
|  |  | 
|  | return stack; | 
|  | } | 
|  |  | 
|  | static inline size_t depot_stack_record_size(struct stack_record *s, unsigned int nr_entries) | 
|  | { | 
|  | const size_t used = flex_array_size(s, entries, nr_entries); | 
|  | const size_t unused = sizeof(s->entries) - used; | 
|  |  | 
|  | WARN_ON_ONCE(sizeof(s->entries) < used); | 
|  |  | 
|  | return ALIGN(sizeof(struct stack_record) - unused, 1 << DEPOT_STACK_ALIGN); | 
|  | } | 
|  |  | 
|  | /* Allocates a new stack in a stack depot pool. */ | 
|  | static struct stack_record * | 
|  | depot_alloc_stack(unsigned long *entries, unsigned int nr_entries, u32 hash, depot_flags_t flags, void **prealloc) | 
|  | { | 
|  | struct stack_record *stack = NULL; | 
|  | size_t record_size; | 
|  |  | 
|  | lockdep_assert_held(&pool_lock); | 
|  |  | 
|  | /* This should already be checked by public API entry points. */ | 
|  | if (WARN_ON_ONCE(!nr_entries)) | 
|  | return NULL; | 
|  |  | 
|  | /* Limit number of saved frames to CONFIG_STACKDEPOT_MAX_FRAMES. */ | 
|  | if (nr_entries > CONFIG_STACKDEPOT_MAX_FRAMES) | 
|  | nr_entries = CONFIG_STACKDEPOT_MAX_FRAMES; | 
|  |  | 
|  | if (flags & STACK_DEPOT_FLAG_GET) { | 
|  | /* | 
|  | * Evictable entries have to allocate the max. size so they may | 
|  | * safely be re-used by differently sized allocations. | 
|  | */ | 
|  | record_size = depot_stack_record_size(stack, CONFIG_STACKDEPOT_MAX_FRAMES); | 
|  | stack = depot_pop_free(); | 
|  | } else { | 
|  | record_size = depot_stack_record_size(stack, nr_entries); | 
|  | } | 
|  |  | 
|  | if (!stack) { | 
|  | stack = depot_pop_free_pool(prealloc, record_size); | 
|  | if (!stack) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Save the stack trace. */ | 
|  | stack->hash = hash; | 
|  | stack->size = nr_entries; | 
|  | /* stack->handle is already filled in by depot_pop_free_pool(). */ | 
|  | memcpy(stack->entries, entries, flex_array_size(stack, entries, nr_entries)); | 
|  |  | 
|  | if (flags & STACK_DEPOT_FLAG_GET) { | 
|  | refcount_set(&stack->count, 1); | 
|  | counters[DEPOT_COUNTER_REFD_ALLOCS]++; | 
|  | counters[DEPOT_COUNTER_REFD_INUSE]++; | 
|  | } else { | 
|  | /* Warn on attempts to switch to refcounting this entry. */ | 
|  | refcount_set(&stack->count, REFCOUNT_SATURATED); | 
|  | counters[DEPOT_COUNTER_PERSIST_COUNT]++; | 
|  | counters[DEPOT_COUNTER_PERSIST_BYTES] += record_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Let KMSAN know the stored stack record is initialized. This shall | 
|  | * prevent false positive reports if instrumented code accesses it. | 
|  | */ | 
|  | kmsan_unpoison_memory(stack, record_size); | 
|  |  | 
|  | return stack; | 
|  | } | 
|  |  | 
|  | static struct stack_record *depot_fetch_stack(depot_stack_handle_t handle) | 
|  | { | 
|  | const int pools_num_cached = READ_ONCE(pools_num); | 
|  | union handle_parts parts = { .handle = handle }; | 
|  | void *pool; | 
|  | u32 pool_index = parts.pool_index_plus_1 - 1; | 
|  | size_t offset = parts.offset << DEPOT_STACK_ALIGN; | 
|  | struct stack_record *stack; | 
|  |  | 
|  | lockdep_assert_not_held(&pool_lock); | 
|  |  | 
|  | if (pool_index >= pools_num_cached) { | 
|  | WARN(1, "pool index %d out of bounds (%d) for stack id %08x\n", | 
|  | pool_index, pools_num_cached, handle); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pool = stack_pools[pool_index]; | 
|  | if (WARN_ON(!pool)) | 
|  | return NULL; | 
|  |  | 
|  | stack = pool + offset; | 
|  | if (WARN_ON(!refcount_read(&stack->count))) | 
|  | return NULL; | 
|  |  | 
|  | return stack; | 
|  | } | 
|  |  | 
|  | /* Links stack into the freelist. */ | 
|  | static void depot_free_stack(struct stack_record *stack) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | lockdep_assert_not_held(&pool_lock); | 
|  |  | 
|  | raw_spin_lock_irqsave(&pool_lock, flags); | 
|  | printk_deferred_enter(); | 
|  |  | 
|  | /* | 
|  | * Remove the entry from the hash list. Concurrent list traversal may | 
|  | * still observe the entry, but since the refcount is zero, this entry | 
|  | * will no longer be considered as valid. | 
|  | */ | 
|  | list_del_rcu(&stack->hash_list); | 
|  |  | 
|  | /* | 
|  | * Due to being used from constrained contexts such as the allocators, | 
|  | * NMI, or even RCU itself, stack depot cannot rely on primitives that | 
|  | * would sleep (such as synchronize_rcu()) or recursively call into | 
|  | * stack depot again (such as call_rcu()). | 
|  | * | 
|  | * Instead, get an RCU cookie, so that we can ensure this entry isn't | 
|  | * moved onto another list until the next grace period, and concurrent | 
|  | * RCU list traversal remains safe. | 
|  | */ | 
|  | stack->rcu_state = get_state_synchronize_rcu(); | 
|  |  | 
|  | /* | 
|  | * Add the entry to the freelist tail, so that older entries are | 
|  | * considered first - their RCU cookie is more likely to no longer be | 
|  | * associated with the current grace period. | 
|  | */ | 
|  | list_add_tail(&stack->free_list, &free_stacks); | 
|  |  | 
|  | counters[DEPOT_COUNTER_FREELIST_SIZE]++; | 
|  | counters[DEPOT_COUNTER_REFD_FREES]++; | 
|  | counters[DEPOT_COUNTER_REFD_INUSE]--; | 
|  |  | 
|  | printk_deferred_exit(); | 
|  | raw_spin_unlock_irqrestore(&pool_lock, flags); | 
|  | } | 
|  |  | 
|  | /* Calculates the hash for a stack. */ | 
|  | static inline u32 hash_stack(unsigned long *entries, unsigned int size) | 
|  | { | 
|  | return jhash2((u32 *)entries, | 
|  | array_size(size,  sizeof(*entries)) / sizeof(u32), | 
|  | STACK_HASH_SEED); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Non-instrumented version of memcmp(). | 
|  | * Does not check the lexicographical order, only the equality. | 
|  | */ | 
|  | static inline | 
|  | int stackdepot_memcmp(const unsigned long *u1, const unsigned long *u2, | 
|  | unsigned int n) | 
|  | { | 
|  | for ( ; n-- ; u1++, u2++) { | 
|  | if (*u1 != *u2) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Finds a stack in a bucket of the hash table. */ | 
|  | static inline struct stack_record *find_stack(struct list_head *bucket, | 
|  | unsigned long *entries, int size, | 
|  | u32 hash, depot_flags_t flags) | 
|  | { | 
|  | struct stack_record *stack, *ret = NULL; | 
|  |  | 
|  | /* | 
|  | * Stack depot may be used from instrumentation that instruments RCU or | 
|  | * tracing itself; use variant that does not call into RCU and cannot be | 
|  | * traced. | 
|  | * | 
|  | * Note: Such use cases must take care when using refcounting to evict | 
|  | * unused entries, because the stack record free-then-reuse code paths | 
|  | * do call into RCU. | 
|  | */ | 
|  | rcu_read_lock_sched_notrace(); | 
|  |  | 
|  | list_for_each_entry_rcu(stack, bucket, hash_list) { | 
|  | if (stack->hash != hash || stack->size != size) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * This may race with depot_free_stack() accessing the freelist | 
|  | * management state unioned with @entries. The refcount is zero | 
|  | * in that case and the below refcount_inc_not_zero() will fail. | 
|  | */ | 
|  | if (data_race(stackdepot_memcmp(entries, stack->entries, size))) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Try to increment refcount. If this succeeds, the stack record | 
|  | * is valid and has not yet been freed. | 
|  | * | 
|  | * If STACK_DEPOT_FLAG_GET is not used, it is undefined behavior | 
|  | * to then call stack_depot_put() later, and we can assume that | 
|  | * a stack record is never placed back on the freelist. | 
|  | */ | 
|  | if ((flags & STACK_DEPOT_FLAG_GET) && !refcount_inc_not_zero(&stack->count)) | 
|  | continue; | 
|  |  | 
|  | ret = stack; | 
|  | break; | 
|  | } | 
|  |  | 
|  | rcu_read_unlock_sched_notrace(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | depot_stack_handle_t stack_depot_save_flags(unsigned long *entries, | 
|  | unsigned int nr_entries, | 
|  | gfp_t alloc_flags, | 
|  | depot_flags_t depot_flags) | 
|  | { | 
|  | struct list_head *bucket; | 
|  | struct stack_record *found = NULL; | 
|  | depot_stack_handle_t handle = 0; | 
|  | struct page *page = NULL; | 
|  | void *prealloc = NULL; | 
|  | bool can_alloc = depot_flags & STACK_DEPOT_FLAG_CAN_ALLOC; | 
|  | unsigned long flags; | 
|  | u32 hash; | 
|  |  | 
|  | if (WARN_ON(depot_flags & ~STACK_DEPOT_FLAGS_MASK)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If this stack trace is from an interrupt, including anything before | 
|  | * interrupt entry usually leads to unbounded stack depot growth. | 
|  | * | 
|  | * Since use of filter_irq_stacks() is a requirement to ensure stack | 
|  | * depot can efficiently deduplicate interrupt stacks, always | 
|  | * filter_irq_stacks() to simplify all callers' use of stack depot. | 
|  | */ | 
|  | nr_entries = filter_irq_stacks(entries, nr_entries); | 
|  |  | 
|  | if (unlikely(nr_entries == 0) || stack_depot_disabled) | 
|  | return 0; | 
|  |  | 
|  | hash = hash_stack(entries, nr_entries); | 
|  | bucket = &stack_table[hash & stack_hash_mask]; | 
|  |  | 
|  | /* Fast path: look the stack trace up without locking. */ | 
|  | found = find_stack(bucket, entries, nr_entries, hash, depot_flags); | 
|  | if (found) | 
|  | goto exit; | 
|  |  | 
|  | /* | 
|  | * Allocate memory for a new pool if required now: | 
|  | * we won't be able to do that under the lock. | 
|  | */ | 
|  | if (unlikely(can_alloc && !READ_ONCE(new_pool))) { | 
|  | page = alloc_pages(gfp_nested_mask(alloc_flags), | 
|  | DEPOT_POOL_ORDER); | 
|  | if (page) | 
|  | prealloc = page_address(page); | 
|  | } | 
|  |  | 
|  | if (in_nmi()) { | 
|  | /* We can never allocate in NMI context. */ | 
|  | WARN_ON_ONCE(can_alloc); | 
|  | /* Best effort; bail if we fail to take the lock. */ | 
|  | if (!raw_spin_trylock_irqsave(&pool_lock, flags)) | 
|  | goto exit; | 
|  | } else { | 
|  | raw_spin_lock_irqsave(&pool_lock, flags); | 
|  | } | 
|  | printk_deferred_enter(); | 
|  |  | 
|  | /* Try to find again, to avoid concurrently inserting duplicates. */ | 
|  | found = find_stack(bucket, entries, nr_entries, hash, depot_flags); | 
|  | if (!found) { | 
|  | struct stack_record *new = | 
|  | depot_alloc_stack(entries, nr_entries, hash, depot_flags, &prealloc); | 
|  |  | 
|  | if (new) { | 
|  | /* | 
|  | * This releases the stack record into the bucket and | 
|  | * makes it visible to readers in find_stack(). | 
|  | */ | 
|  | list_add_rcu(&new->hash_list, bucket); | 
|  | found = new; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (prealloc) { | 
|  | /* | 
|  | * Either stack depot already contains this stack trace, or | 
|  | * depot_alloc_stack() did not consume the preallocated memory. | 
|  | * Try to keep the preallocated memory for future. | 
|  | */ | 
|  | depot_keep_new_pool(&prealloc); | 
|  | } | 
|  |  | 
|  | printk_deferred_exit(); | 
|  | raw_spin_unlock_irqrestore(&pool_lock, flags); | 
|  | exit: | 
|  | if (prealloc) { | 
|  | /* Stack depot didn't use this memory, free it. */ | 
|  | free_pages((unsigned long)prealloc, DEPOT_POOL_ORDER); | 
|  | } | 
|  | if (found) | 
|  | handle = found->handle.handle; | 
|  | return handle; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(stack_depot_save_flags); | 
|  |  | 
|  | depot_stack_handle_t stack_depot_save(unsigned long *entries, | 
|  | unsigned int nr_entries, | 
|  | gfp_t alloc_flags) | 
|  | { | 
|  | return stack_depot_save_flags(entries, nr_entries, alloc_flags, | 
|  | STACK_DEPOT_FLAG_CAN_ALLOC); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(stack_depot_save); | 
|  |  | 
|  | struct stack_record *__stack_depot_get_stack_record(depot_stack_handle_t handle) | 
|  | { | 
|  | if (!handle) | 
|  | return NULL; | 
|  |  | 
|  | return depot_fetch_stack(handle); | 
|  | } | 
|  |  | 
|  | unsigned int stack_depot_fetch(depot_stack_handle_t handle, | 
|  | unsigned long **entries) | 
|  | { | 
|  | struct stack_record *stack; | 
|  |  | 
|  | *entries = NULL; | 
|  | /* | 
|  | * Let KMSAN know *entries is initialized. This shall prevent false | 
|  | * positive reports if instrumented code accesses it. | 
|  | */ | 
|  | kmsan_unpoison_memory(entries, sizeof(*entries)); | 
|  |  | 
|  | if (!handle || stack_depot_disabled) | 
|  | return 0; | 
|  |  | 
|  | stack = depot_fetch_stack(handle); | 
|  | /* | 
|  | * Should never be NULL, otherwise this is a use-after-put (or just a | 
|  | * corrupt handle). | 
|  | */ | 
|  | if (WARN(!stack, "corrupt handle or use after stack_depot_put()")) | 
|  | return 0; | 
|  |  | 
|  | *entries = stack->entries; | 
|  | return stack->size; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(stack_depot_fetch); | 
|  |  | 
|  | void stack_depot_put(depot_stack_handle_t handle) | 
|  | { | 
|  | struct stack_record *stack; | 
|  |  | 
|  | if (!handle || stack_depot_disabled) | 
|  | return; | 
|  |  | 
|  | stack = depot_fetch_stack(handle); | 
|  | /* | 
|  | * Should always be able to find the stack record, otherwise this is an | 
|  | * unbalanced put attempt (or corrupt handle). | 
|  | */ | 
|  | if (WARN(!stack, "corrupt handle or unbalanced stack_depot_put()")) | 
|  | return; | 
|  |  | 
|  | if (refcount_dec_and_test(&stack->count)) | 
|  | depot_free_stack(stack); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(stack_depot_put); | 
|  |  | 
|  | void stack_depot_print(depot_stack_handle_t stack) | 
|  | { | 
|  | unsigned long *entries; | 
|  | unsigned int nr_entries; | 
|  |  | 
|  | nr_entries = stack_depot_fetch(stack, &entries); | 
|  | if (nr_entries > 0) | 
|  | stack_trace_print(entries, nr_entries, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(stack_depot_print); | 
|  |  | 
|  | int stack_depot_snprint(depot_stack_handle_t handle, char *buf, size_t size, | 
|  | int spaces) | 
|  | { | 
|  | unsigned long *entries; | 
|  | unsigned int nr_entries; | 
|  |  | 
|  | nr_entries = stack_depot_fetch(handle, &entries); | 
|  | return nr_entries ? stack_trace_snprint(buf, size, entries, nr_entries, | 
|  | spaces) : 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(stack_depot_snprint); | 
|  |  | 
|  | depot_stack_handle_t __must_check stack_depot_set_extra_bits( | 
|  | depot_stack_handle_t handle, unsigned int extra_bits) | 
|  | { | 
|  | union handle_parts parts = { .handle = handle }; | 
|  |  | 
|  | /* Don't set extra bits on empty handles. */ | 
|  | if (!handle) | 
|  | return 0; | 
|  |  | 
|  | parts.extra = extra_bits; | 
|  | return parts.handle; | 
|  | } | 
|  | EXPORT_SYMBOL(stack_depot_set_extra_bits); | 
|  |  | 
|  | unsigned int stack_depot_get_extra_bits(depot_stack_handle_t handle) | 
|  | { | 
|  | union handle_parts parts = { .handle = handle }; | 
|  |  | 
|  | return parts.extra; | 
|  | } | 
|  | EXPORT_SYMBOL(stack_depot_get_extra_bits); | 
|  |  | 
|  | static int stats_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | /* | 
|  | * data race ok: These are just statistics counters, and approximate | 
|  | * statistics are ok for debugging. | 
|  | */ | 
|  | seq_printf(seq, "pools: %d\n", data_race(pools_num)); | 
|  | for (int i = 0; i < DEPOT_COUNTER_COUNT; i++) | 
|  | seq_printf(seq, "%s: %ld\n", counter_names[i], data_race(counters[i])); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | DEFINE_SHOW_ATTRIBUTE(stats); | 
|  |  | 
|  | static int depot_debugfs_init(void) | 
|  | { | 
|  | struct dentry *dir; | 
|  |  | 
|  | if (stack_depot_disabled) | 
|  | return 0; | 
|  |  | 
|  | dir = debugfs_create_dir("stackdepot", NULL); | 
|  | debugfs_create_file("stats", 0444, dir, NULL, &stats_fops); | 
|  | return 0; | 
|  | } | 
|  | late_initcall(depot_debugfs_init); |