|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * raid1.c : Multiple Devices driver for Linux | 
|  | * | 
|  | * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat | 
|  | * | 
|  | * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman | 
|  | * | 
|  | * RAID-1 management functions. | 
|  | * | 
|  | * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 | 
|  | * | 
|  | * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> | 
|  | * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> | 
|  | * | 
|  | * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support | 
|  | * bitmapped intelligence in resync: | 
|  | * | 
|  | *      - bitmap marked during normal i/o | 
|  | *      - bitmap used to skip nondirty blocks during sync | 
|  | * | 
|  | * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: | 
|  | * - persistent bitmap code | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/interval_tree_generic.h> | 
|  |  | 
|  | #include <trace/events/block.h> | 
|  |  | 
|  | #include "md.h" | 
|  | #include "raid1.h" | 
|  | #include "md-bitmap.h" | 
|  |  | 
|  | #define UNSUPPORTED_MDDEV_FLAGS		\ | 
|  | ((1L << MD_HAS_JOURNAL) |	\ | 
|  | (1L << MD_JOURNAL_CLEAN) |	\ | 
|  | (1L << MD_HAS_PPL) |		\ | 
|  | (1L << MD_HAS_MULTIPLE_PPLS)) | 
|  |  | 
|  | static void allow_barrier(struct r1conf *conf, sector_t sector_nr); | 
|  | static void lower_barrier(struct r1conf *conf, sector_t sector_nr); | 
|  |  | 
|  | #define RAID_1_10_NAME "raid1" | 
|  | #include "raid1-10.c" | 
|  |  | 
|  | #define START(node) ((node)->start) | 
|  | #define LAST(node) ((node)->last) | 
|  | INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, | 
|  | START, LAST, static inline, raid1_rb); | 
|  |  | 
|  | static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, | 
|  | struct serial_info *si, int idx) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  | sector_t lo = r1_bio->sector; | 
|  | sector_t hi = lo + r1_bio->sectors; | 
|  | struct serial_in_rdev *serial = &rdev->serial[idx]; | 
|  |  | 
|  | spin_lock_irqsave(&serial->serial_lock, flags); | 
|  | /* collision happened */ | 
|  | if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) | 
|  | ret = -EBUSY; | 
|  | else { | 
|  | si->start = lo; | 
|  | si->last = hi; | 
|  | raid1_rb_insert(si, &serial->serial_rb); | 
|  | } | 
|  | spin_unlock_irqrestore(&serial->serial_lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) | 
|  | { | 
|  | struct mddev *mddev = rdev->mddev; | 
|  | struct serial_info *si; | 
|  | int idx = sector_to_idx(r1_bio->sector); | 
|  | struct serial_in_rdev *serial = &rdev->serial[idx]; | 
|  |  | 
|  | if (WARN_ON(!mddev->serial_info_pool)) | 
|  | return; | 
|  | si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); | 
|  | wait_event(serial->serial_io_wait, | 
|  | check_and_add_serial(rdev, r1_bio, si, idx) == 0); | 
|  | } | 
|  |  | 
|  | static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) | 
|  | { | 
|  | struct serial_info *si; | 
|  | unsigned long flags; | 
|  | int found = 0; | 
|  | struct mddev *mddev = rdev->mddev; | 
|  | int idx = sector_to_idx(lo); | 
|  | struct serial_in_rdev *serial = &rdev->serial[idx]; | 
|  |  | 
|  | spin_lock_irqsave(&serial->serial_lock, flags); | 
|  | for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); | 
|  | si; si = raid1_rb_iter_next(si, lo, hi)) { | 
|  | if (si->start == lo && si->last == hi) { | 
|  | raid1_rb_remove(si, &serial->serial_rb); | 
|  | mempool_free(si, mddev->serial_info_pool); | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!found) | 
|  | WARN(1, "The write IO is not recorded for serialization\n"); | 
|  | spin_unlock_irqrestore(&serial->serial_lock, flags); | 
|  | wake_up(&serial->serial_io_wait); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * for resync bio, r1bio pointer can be retrieved from the per-bio | 
|  | * 'struct resync_pages'. | 
|  | */ | 
|  | static inline struct r1bio *get_resync_r1bio(struct bio *bio) | 
|  | { | 
|  | return get_resync_pages(bio)->raid_bio; | 
|  | } | 
|  |  | 
|  | static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) | 
|  | { | 
|  | struct pool_info *pi = data; | 
|  | int size = offsetof(struct r1bio, bios[pi->raid_disks]); | 
|  |  | 
|  | /* allocate a r1bio with room for raid_disks entries in the bios array */ | 
|  | return kzalloc(size, gfp_flags); | 
|  | } | 
|  |  | 
|  | #define RESYNC_DEPTH 32 | 
|  | #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) | 
|  | #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) | 
|  | #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) | 
|  | #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) | 
|  | #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) | 
|  |  | 
|  | static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) | 
|  | { | 
|  | struct pool_info *pi = data; | 
|  | struct r1bio *r1_bio; | 
|  | struct bio *bio; | 
|  | int need_pages; | 
|  | int j; | 
|  | struct resync_pages *rps; | 
|  |  | 
|  | r1_bio = r1bio_pool_alloc(gfp_flags, pi); | 
|  | if (!r1_bio) | 
|  | return NULL; | 
|  |  | 
|  | rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), | 
|  | gfp_flags); | 
|  | if (!rps) | 
|  | goto out_free_r1bio; | 
|  |  | 
|  | /* | 
|  | * Allocate bios : 1 for reading, n-1 for writing | 
|  | */ | 
|  | for (j = pi->raid_disks ; j-- ; ) { | 
|  | bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); | 
|  | if (!bio) | 
|  | goto out_free_bio; | 
|  | bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); | 
|  | r1_bio->bios[j] = bio; | 
|  | } | 
|  | /* | 
|  | * Allocate RESYNC_PAGES data pages and attach them to | 
|  | * the first bio. | 
|  | * If this is a user-requested check/repair, allocate | 
|  | * RESYNC_PAGES for each bio. | 
|  | */ | 
|  | if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) | 
|  | need_pages = pi->raid_disks; | 
|  | else | 
|  | need_pages = 1; | 
|  | for (j = 0; j < pi->raid_disks; j++) { | 
|  | struct resync_pages *rp = &rps[j]; | 
|  |  | 
|  | bio = r1_bio->bios[j]; | 
|  |  | 
|  | if (j < need_pages) { | 
|  | if (resync_alloc_pages(rp, gfp_flags)) | 
|  | goto out_free_pages; | 
|  | } else { | 
|  | memcpy(rp, &rps[0], sizeof(*rp)); | 
|  | resync_get_all_pages(rp); | 
|  | } | 
|  |  | 
|  | rp->raid_bio = r1_bio; | 
|  | bio->bi_private = rp; | 
|  | } | 
|  |  | 
|  | r1_bio->master_bio = NULL; | 
|  |  | 
|  | return r1_bio; | 
|  |  | 
|  | out_free_pages: | 
|  | while (--j >= 0) | 
|  | resync_free_pages(&rps[j]); | 
|  |  | 
|  | out_free_bio: | 
|  | while (++j < pi->raid_disks) { | 
|  | bio_uninit(r1_bio->bios[j]); | 
|  | kfree(r1_bio->bios[j]); | 
|  | } | 
|  | kfree(rps); | 
|  |  | 
|  | out_free_r1bio: | 
|  | rbio_pool_free(r1_bio, data); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void r1buf_pool_free(void *__r1_bio, void *data) | 
|  | { | 
|  | struct pool_info *pi = data; | 
|  | int i; | 
|  | struct r1bio *r1bio = __r1_bio; | 
|  | struct resync_pages *rp = NULL; | 
|  |  | 
|  | for (i = pi->raid_disks; i--; ) { | 
|  | rp = get_resync_pages(r1bio->bios[i]); | 
|  | resync_free_pages(rp); | 
|  | bio_uninit(r1bio->bios[i]); | 
|  | kfree(r1bio->bios[i]); | 
|  | } | 
|  |  | 
|  | /* resync pages array stored in the 1st bio's .bi_private */ | 
|  | kfree(rp); | 
|  |  | 
|  | rbio_pool_free(r1bio, data); | 
|  | } | 
|  |  | 
|  | static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < conf->raid_disks * 2; i++) { | 
|  | struct bio **bio = r1_bio->bios + i; | 
|  | if (!BIO_SPECIAL(*bio)) | 
|  | bio_put(*bio); | 
|  | *bio = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_r1bio(struct r1bio *r1_bio) | 
|  | { | 
|  | struct r1conf *conf = r1_bio->mddev->private; | 
|  |  | 
|  | put_all_bios(conf, r1_bio); | 
|  | mempool_free(r1_bio, &conf->r1bio_pool); | 
|  | } | 
|  |  | 
|  | static void put_buf(struct r1bio *r1_bio) | 
|  | { | 
|  | struct r1conf *conf = r1_bio->mddev->private; | 
|  | sector_t sect = r1_bio->sector; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < conf->raid_disks * 2; i++) { | 
|  | struct bio *bio = r1_bio->bios[i]; | 
|  | if (bio->bi_end_io) | 
|  | rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); | 
|  | } | 
|  |  | 
|  | mempool_free(r1_bio, &conf->r1buf_pool); | 
|  |  | 
|  | lower_barrier(conf, sect); | 
|  | } | 
|  |  | 
|  | static void reschedule_retry(struct r1bio *r1_bio) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct mddev *mddev = r1_bio->mddev; | 
|  | struct r1conf *conf = mddev->private; | 
|  | int idx; | 
|  |  | 
|  | idx = sector_to_idx(r1_bio->sector); | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | list_add(&r1_bio->retry_list, &conf->retry_list); | 
|  | atomic_inc(&conf->nr_queued[idx]); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  |  | 
|  | wake_up(&conf->wait_barrier); | 
|  | md_wakeup_thread(mddev->thread); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * raid_end_bio_io() is called when we have finished servicing a mirrored | 
|  | * operation and are ready to return a success/failure code to the buffer | 
|  | * cache layer. | 
|  | */ | 
|  | static void call_bio_endio(struct r1bio *r1_bio) | 
|  | { | 
|  | struct bio *bio = r1_bio->master_bio; | 
|  |  | 
|  | if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) | 
|  | bio->bi_status = BLK_STS_IOERR; | 
|  |  | 
|  | bio_endio(bio); | 
|  | } | 
|  |  | 
|  | static void raid_end_bio_io(struct r1bio *r1_bio) | 
|  | { | 
|  | struct bio *bio = r1_bio->master_bio; | 
|  | struct r1conf *conf = r1_bio->mddev->private; | 
|  | sector_t sector = r1_bio->sector; | 
|  |  | 
|  | /* if nobody has done the final endio yet, do it now */ | 
|  | if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { | 
|  | pr_debug("raid1: sync end %s on sectors %llu-%llu\n", | 
|  | (bio_data_dir(bio) == WRITE) ? "write" : "read", | 
|  | (unsigned long long) bio->bi_iter.bi_sector, | 
|  | (unsigned long long) bio_end_sector(bio) - 1); | 
|  |  | 
|  | call_bio_endio(r1_bio); | 
|  | } | 
|  |  | 
|  | free_r1bio(r1_bio); | 
|  | /* | 
|  | * Wake up any possible resync thread that waits for the device | 
|  | * to go idle.  All I/Os, even write-behind writes, are done. | 
|  | */ | 
|  | allow_barrier(conf, sector); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update disk head position estimator based on IRQ completion info. | 
|  | */ | 
|  | static inline void update_head_pos(int disk, struct r1bio *r1_bio) | 
|  | { | 
|  | struct r1conf *conf = r1_bio->mddev->private; | 
|  |  | 
|  | conf->mirrors[disk].head_position = | 
|  | r1_bio->sector + (r1_bio->sectors); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the disk number which triggered given bio | 
|  | */ | 
|  | static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) | 
|  | { | 
|  | int mirror; | 
|  | struct r1conf *conf = r1_bio->mddev->private; | 
|  | int raid_disks = conf->raid_disks; | 
|  |  | 
|  | for (mirror = 0; mirror < raid_disks * 2; mirror++) | 
|  | if (r1_bio->bios[mirror] == bio) | 
|  | break; | 
|  |  | 
|  | BUG_ON(mirror == raid_disks * 2); | 
|  | update_head_pos(mirror, r1_bio); | 
|  |  | 
|  | return mirror; | 
|  | } | 
|  |  | 
|  | static void raid1_end_read_request(struct bio *bio) | 
|  | { | 
|  | int uptodate = !bio->bi_status; | 
|  | struct r1bio *r1_bio = bio->bi_private; | 
|  | struct r1conf *conf = r1_bio->mddev->private; | 
|  | struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; | 
|  |  | 
|  | /* | 
|  | * this branch is our 'one mirror IO has finished' event handler: | 
|  | */ | 
|  | update_head_pos(r1_bio->read_disk, r1_bio); | 
|  |  | 
|  | if (uptodate) | 
|  | set_bit(R1BIO_Uptodate, &r1_bio->state); | 
|  | else if (test_bit(FailFast, &rdev->flags) && | 
|  | test_bit(R1BIO_FailFast, &r1_bio->state)) | 
|  | /* This was a fail-fast read so we definitely | 
|  | * want to retry */ | 
|  | ; | 
|  | else { | 
|  | /* If all other devices have failed, we want to return | 
|  | * the error upwards rather than fail the last device. | 
|  | * Here we redefine "uptodate" to mean "Don't want to retry" | 
|  | */ | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | if (r1_bio->mddev->degraded == conf->raid_disks || | 
|  | (r1_bio->mddev->degraded == conf->raid_disks-1 && | 
|  | test_bit(In_sync, &rdev->flags))) | 
|  | uptodate = 1; | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | } | 
|  |  | 
|  | if (uptodate) { | 
|  | raid_end_bio_io(r1_bio); | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | } else { | 
|  | /* | 
|  | * oops, read error: | 
|  | */ | 
|  | pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", | 
|  | mdname(conf->mddev), | 
|  | rdev->bdev, | 
|  | (unsigned long long)r1_bio->sector); | 
|  | set_bit(R1BIO_ReadError, &r1_bio->state); | 
|  | reschedule_retry(r1_bio); | 
|  | /* don't drop the reference on read_disk yet */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void close_write(struct r1bio *r1_bio) | 
|  | { | 
|  | struct mddev *mddev = r1_bio->mddev; | 
|  |  | 
|  | /* it really is the end of this request */ | 
|  | if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { | 
|  | bio_free_pages(r1_bio->behind_master_bio); | 
|  | bio_put(r1_bio->behind_master_bio); | 
|  | r1_bio->behind_master_bio = NULL; | 
|  | } | 
|  |  | 
|  | /* clear the bitmap if all writes complete successfully */ | 
|  | mddev->bitmap_ops->endwrite(mddev, r1_bio->sector, r1_bio->sectors, | 
|  | !test_bit(R1BIO_Degraded, &r1_bio->state), | 
|  | test_bit(R1BIO_BehindIO, &r1_bio->state)); | 
|  | md_write_end(mddev); | 
|  | } | 
|  |  | 
|  | static void r1_bio_write_done(struct r1bio *r1_bio) | 
|  | { | 
|  | if (!atomic_dec_and_test(&r1_bio->remaining)) | 
|  | return; | 
|  |  | 
|  | if (test_bit(R1BIO_WriteError, &r1_bio->state)) | 
|  | reschedule_retry(r1_bio); | 
|  | else { | 
|  | close_write(r1_bio); | 
|  | if (test_bit(R1BIO_MadeGood, &r1_bio->state)) | 
|  | reschedule_retry(r1_bio); | 
|  | else | 
|  | raid_end_bio_io(r1_bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void raid1_end_write_request(struct bio *bio) | 
|  | { | 
|  | struct r1bio *r1_bio = bio->bi_private; | 
|  | int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); | 
|  | struct r1conf *conf = r1_bio->mddev->private; | 
|  | struct bio *to_put = NULL; | 
|  | int mirror = find_bio_disk(r1_bio, bio); | 
|  | struct md_rdev *rdev = conf->mirrors[mirror].rdev; | 
|  | bool discard_error; | 
|  | sector_t lo = r1_bio->sector; | 
|  | sector_t hi = r1_bio->sector + r1_bio->sectors; | 
|  |  | 
|  | discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; | 
|  |  | 
|  | /* | 
|  | * 'one mirror IO has finished' event handler: | 
|  | */ | 
|  | if (bio->bi_status && !discard_error) { | 
|  | set_bit(WriteErrorSeen,	&rdev->flags); | 
|  | if (!test_and_set_bit(WantReplacement, &rdev->flags)) | 
|  | set_bit(MD_RECOVERY_NEEDED, & | 
|  | conf->mddev->recovery); | 
|  |  | 
|  | if (test_bit(FailFast, &rdev->flags) && | 
|  | (bio->bi_opf & MD_FAILFAST) && | 
|  | /* We never try FailFast to WriteMostly devices */ | 
|  | !test_bit(WriteMostly, &rdev->flags)) { | 
|  | md_error(r1_bio->mddev, rdev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When the device is faulty, it is not necessary to | 
|  | * handle write error. | 
|  | */ | 
|  | if (!test_bit(Faulty, &rdev->flags)) | 
|  | set_bit(R1BIO_WriteError, &r1_bio->state); | 
|  | else { | 
|  | /* Fail the request */ | 
|  | set_bit(R1BIO_Degraded, &r1_bio->state); | 
|  | /* Finished with this branch */ | 
|  | r1_bio->bios[mirror] = NULL; | 
|  | to_put = bio; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Set R1BIO_Uptodate in our master bio, so that we | 
|  | * will return a good error code for to the higher | 
|  | * levels even if IO on some other mirrored buffer | 
|  | * fails. | 
|  | * | 
|  | * The 'master' represents the composite IO operation | 
|  | * to user-side. So if something waits for IO, then it | 
|  | * will wait for the 'master' bio. | 
|  | */ | 
|  | r1_bio->bios[mirror] = NULL; | 
|  | to_put = bio; | 
|  | /* | 
|  | * Do not set R1BIO_Uptodate if the current device is | 
|  | * rebuilding or Faulty. This is because we cannot use | 
|  | * such device for properly reading the data back (we could | 
|  | * potentially use it, if the current write would have felt | 
|  | * before rdev->recovery_offset, but for simplicity we don't | 
|  | * check this here. | 
|  | */ | 
|  | if (test_bit(In_sync, &rdev->flags) && | 
|  | !test_bit(Faulty, &rdev->flags)) | 
|  | set_bit(R1BIO_Uptodate, &r1_bio->state); | 
|  |  | 
|  | /* Maybe we can clear some bad blocks. */ | 
|  | if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && | 
|  | !discard_error) { | 
|  | r1_bio->bios[mirror] = IO_MADE_GOOD; | 
|  | set_bit(R1BIO_MadeGood, &r1_bio->state); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (behind) { | 
|  | if (test_bit(CollisionCheck, &rdev->flags)) | 
|  | remove_serial(rdev, lo, hi); | 
|  | if (test_bit(WriteMostly, &rdev->flags)) | 
|  | atomic_dec(&r1_bio->behind_remaining); | 
|  |  | 
|  | /* | 
|  | * In behind mode, we ACK the master bio once the I/O | 
|  | * has safely reached all non-writemostly | 
|  | * disks. Setting the Returned bit ensures that this | 
|  | * gets done only once -- we don't ever want to return | 
|  | * -EIO here, instead we'll wait | 
|  | */ | 
|  | if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && | 
|  | test_bit(R1BIO_Uptodate, &r1_bio->state)) { | 
|  | /* Maybe we can return now */ | 
|  | if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { | 
|  | struct bio *mbio = r1_bio->master_bio; | 
|  | pr_debug("raid1: behind end write sectors" | 
|  | " %llu-%llu\n", | 
|  | (unsigned long long) mbio->bi_iter.bi_sector, | 
|  | (unsigned long long) bio_end_sector(mbio) - 1); | 
|  | call_bio_endio(r1_bio); | 
|  | } | 
|  | } | 
|  | } else if (rdev->mddev->serialize_policy) | 
|  | remove_serial(rdev, lo, hi); | 
|  | if (r1_bio->bios[mirror] == NULL) | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  |  | 
|  | /* | 
|  | * Let's see if all mirrored write operations have finished | 
|  | * already. | 
|  | */ | 
|  | r1_bio_write_done(r1_bio); | 
|  |  | 
|  | if (to_put) | 
|  | bio_put(to_put); | 
|  | } | 
|  |  | 
|  | static sector_t align_to_barrier_unit_end(sector_t start_sector, | 
|  | sector_t sectors) | 
|  | { | 
|  | sector_t len; | 
|  |  | 
|  | WARN_ON(sectors == 0); | 
|  | /* | 
|  | * len is the number of sectors from start_sector to end of the | 
|  | * barrier unit which start_sector belongs to. | 
|  | */ | 
|  | len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - | 
|  | start_sector; | 
|  |  | 
|  | if (len > sectors) | 
|  | len = sectors; | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static void update_read_sectors(struct r1conf *conf, int disk, | 
|  | sector_t this_sector, int len) | 
|  | { | 
|  | struct raid1_info *info = &conf->mirrors[disk]; | 
|  |  | 
|  | atomic_inc(&info->rdev->nr_pending); | 
|  | if (info->next_seq_sect != this_sector) | 
|  | info->seq_start = this_sector; | 
|  | info->next_seq_sect = this_sector + len; | 
|  | } | 
|  |  | 
|  | static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio, | 
|  | int *max_sectors) | 
|  | { | 
|  | sector_t this_sector = r1_bio->sector; | 
|  | int len = r1_bio->sectors; | 
|  | int disk; | 
|  |  | 
|  | for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { | 
|  | struct md_rdev *rdev; | 
|  | int read_len; | 
|  |  | 
|  | if (r1_bio->bios[disk] == IO_BLOCKED) | 
|  | continue; | 
|  |  | 
|  | rdev = conf->mirrors[disk].rdev; | 
|  | if (!rdev || test_bit(Faulty, &rdev->flags)) | 
|  | continue; | 
|  |  | 
|  | /* choose the first disk even if it has some bad blocks. */ | 
|  | read_len = raid1_check_read_range(rdev, this_sector, &len); | 
|  | if (read_len > 0) { | 
|  | update_read_sectors(conf, disk, this_sector, read_len); | 
|  | *max_sectors = read_len; | 
|  | return disk; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio) | 
|  | { | 
|  | return !test_bit(In_sync, &rdev->flags) && | 
|  | rdev->recovery_offset < r1_bio->sector + r1_bio->sectors; | 
|  | } | 
|  |  | 
|  | static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio, | 
|  | int *max_sectors) | 
|  | { | 
|  | sector_t this_sector = r1_bio->sector; | 
|  | int best_disk = -1; | 
|  | int best_len = 0; | 
|  | int disk; | 
|  |  | 
|  | for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { | 
|  | struct md_rdev *rdev; | 
|  | int len; | 
|  | int read_len; | 
|  |  | 
|  | if (r1_bio->bios[disk] == IO_BLOCKED) | 
|  | continue; | 
|  |  | 
|  | rdev = conf->mirrors[disk].rdev; | 
|  | if (!rdev || test_bit(Faulty, &rdev->flags) || | 
|  | rdev_in_recovery(rdev, r1_bio) || | 
|  | test_bit(WriteMostly, &rdev->flags)) | 
|  | continue; | 
|  |  | 
|  | /* keep track of the disk with the most readable sectors. */ | 
|  | len = r1_bio->sectors; | 
|  | read_len = raid1_check_read_range(rdev, this_sector, &len); | 
|  | if (read_len > best_len) { | 
|  | best_disk = disk; | 
|  | best_len = read_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (best_disk != -1) { | 
|  | *max_sectors = best_len; | 
|  | update_read_sectors(conf, best_disk, this_sector, best_len); | 
|  | } | 
|  |  | 
|  | return best_disk; | 
|  | } | 
|  |  | 
|  | static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio, | 
|  | int *max_sectors) | 
|  | { | 
|  | sector_t this_sector = r1_bio->sector; | 
|  | int bb_disk = -1; | 
|  | int bb_read_len = 0; | 
|  | int disk; | 
|  |  | 
|  | for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { | 
|  | struct md_rdev *rdev; | 
|  | int len; | 
|  | int read_len; | 
|  |  | 
|  | if (r1_bio->bios[disk] == IO_BLOCKED) | 
|  | continue; | 
|  |  | 
|  | rdev = conf->mirrors[disk].rdev; | 
|  | if (!rdev || test_bit(Faulty, &rdev->flags) || | 
|  | !test_bit(WriteMostly, &rdev->flags) || | 
|  | rdev_in_recovery(rdev, r1_bio)) | 
|  | continue; | 
|  |  | 
|  | /* there are no bad blocks, we can use this disk */ | 
|  | len = r1_bio->sectors; | 
|  | read_len = raid1_check_read_range(rdev, this_sector, &len); | 
|  | if (read_len == r1_bio->sectors) { | 
|  | *max_sectors = read_len; | 
|  | update_read_sectors(conf, disk, this_sector, read_len); | 
|  | return disk; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * there are partial bad blocks, choose the rdev with largest | 
|  | * read length. | 
|  | */ | 
|  | if (read_len > bb_read_len) { | 
|  | bb_disk = disk; | 
|  | bb_read_len = read_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bb_disk != -1) { | 
|  | *max_sectors = bb_read_len; | 
|  | update_read_sectors(conf, bb_disk, this_sector, bb_read_len); | 
|  | } | 
|  |  | 
|  | return bb_disk; | 
|  | } | 
|  |  | 
|  | static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio) | 
|  | { | 
|  | /* TODO: address issues with this check and concurrency. */ | 
|  | return conf->mirrors[disk].next_seq_sect == r1_bio->sector || | 
|  | conf->mirrors[disk].head_position == r1_bio->sector; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If buffered sequential IO size exceeds optimal iosize, check if there is idle | 
|  | * disk. If yes, choose the idle disk. | 
|  | */ | 
|  | static bool should_choose_next(struct r1conf *conf, int disk) | 
|  | { | 
|  | struct raid1_info *mirror = &conf->mirrors[disk]; | 
|  | int opt_iosize; | 
|  |  | 
|  | if (!test_bit(Nonrot, &mirror->rdev->flags)) | 
|  | return false; | 
|  |  | 
|  | opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9; | 
|  | return opt_iosize > 0 && mirror->seq_start != MaxSector && | 
|  | mirror->next_seq_sect > opt_iosize && | 
|  | mirror->next_seq_sect - opt_iosize >= mirror->seq_start; | 
|  | } | 
|  |  | 
|  | static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio) | 
|  | { | 
|  | if (!rdev || test_bit(Faulty, &rdev->flags)) | 
|  | return false; | 
|  |  | 
|  | if (rdev_in_recovery(rdev, r1_bio)) | 
|  | return false; | 
|  |  | 
|  | /* don't read from slow disk unless have to */ | 
|  | if (test_bit(WriteMostly, &rdev->flags)) | 
|  | return false; | 
|  |  | 
|  | /* don't split IO for bad blocks unless have to */ | 
|  | if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | struct read_balance_ctl { | 
|  | sector_t closest_dist; | 
|  | int closest_dist_disk; | 
|  | int min_pending; | 
|  | int min_pending_disk; | 
|  | int sequential_disk; | 
|  | int readable_disks; | 
|  | }; | 
|  |  | 
|  | static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio) | 
|  | { | 
|  | int disk; | 
|  | struct read_balance_ctl ctl = { | 
|  | .closest_dist_disk      = -1, | 
|  | .closest_dist           = MaxSector, | 
|  | .min_pending_disk       = -1, | 
|  | .min_pending            = UINT_MAX, | 
|  | .sequential_disk	= -1, | 
|  | }; | 
|  |  | 
|  | for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { | 
|  | struct md_rdev *rdev; | 
|  | sector_t dist; | 
|  | unsigned int pending; | 
|  |  | 
|  | if (r1_bio->bios[disk] == IO_BLOCKED) | 
|  | continue; | 
|  |  | 
|  | rdev = conf->mirrors[disk].rdev; | 
|  | if (!rdev_readable(rdev, r1_bio)) | 
|  | continue; | 
|  |  | 
|  | /* At least two disks to choose from so failfast is OK */ | 
|  | if (ctl.readable_disks++ == 1) | 
|  | set_bit(R1BIO_FailFast, &r1_bio->state); | 
|  |  | 
|  | pending = atomic_read(&rdev->nr_pending); | 
|  | dist = abs(r1_bio->sector - conf->mirrors[disk].head_position); | 
|  |  | 
|  | /* Don't change to another disk for sequential reads */ | 
|  | if (is_sequential(conf, disk, r1_bio)) { | 
|  | if (!should_choose_next(conf, disk)) | 
|  | return disk; | 
|  |  | 
|  | /* | 
|  | * Add 'pending' to avoid choosing this disk if | 
|  | * there is other idle disk. | 
|  | */ | 
|  | pending++; | 
|  | /* | 
|  | * If there is no other idle disk, this disk | 
|  | * will be chosen. | 
|  | */ | 
|  | ctl.sequential_disk = disk; | 
|  | } | 
|  |  | 
|  | if (ctl.min_pending > pending) { | 
|  | ctl.min_pending = pending; | 
|  | ctl.min_pending_disk = disk; | 
|  | } | 
|  |  | 
|  | if (ctl.closest_dist > dist) { | 
|  | ctl.closest_dist = dist; | 
|  | ctl.closest_dist_disk = disk; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sequential IO size exceeds optimal iosize, however, there is no other | 
|  | * idle disk, so choose the sequential disk. | 
|  | */ | 
|  | if (ctl.sequential_disk != -1 && ctl.min_pending != 0) | 
|  | return ctl.sequential_disk; | 
|  |  | 
|  | /* | 
|  | * If all disks are rotational, choose the closest disk. If any disk is | 
|  | * non-rotational, choose the disk with less pending request even the | 
|  | * disk is rotational, which might/might not be optimal for raids with | 
|  | * mixed ratation/non-rotational disks depending on workload. | 
|  | */ | 
|  | if (ctl.min_pending_disk != -1 && | 
|  | (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0)) | 
|  | return ctl.min_pending_disk; | 
|  | else | 
|  | return ctl.closest_dist_disk; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine returns the disk from which the requested read should be done. | 
|  | * | 
|  | * 1) If resync is in progress, find the first usable disk and use it even if it | 
|  | * has some bad blocks. | 
|  | * | 
|  | * 2) Now that there is no resync, loop through all disks and skipping slow | 
|  | * disks and disks with bad blocks for now. Only pay attention to key disk | 
|  | * choice. | 
|  | * | 
|  | * 3) If we've made it this far, now look for disks with bad blocks and choose | 
|  | * the one with most number of sectors. | 
|  | * | 
|  | * 4) If we are all the way at the end, we have no choice but to use a disk even | 
|  | * if it is write mostly. | 
|  | * | 
|  | * The rdev for the device selected will have nr_pending incremented. | 
|  | */ | 
|  | static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, | 
|  | int *max_sectors) | 
|  | { | 
|  | int disk; | 
|  |  | 
|  | clear_bit(R1BIO_FailFast, &r1_bio->state); | 
|  |  | 
|  | if (raid1_should_read_first(conf->mddev, r1_bio->sector, | 
|  | r1_bio->sectors)) | 
|  | return choose_first_rdev(conf, r1_bio, max_sectors); | 
|  |  | 
|  | disk = choose_best_rdev(conf, r1_bio); | 
|  | if (disk >= 0) { | 
|  | *max_sectors = r1_bio->sectors; | 
|  | update_read_sectors(conf, disk, r1_bio->sector, | 
|  | r1_bio->sectors); | 
|  | return disk; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are here it means we didn't find a perfectly good disk so | 
|  | * now spend a bit more time trying to find one with the most good | 
|  | * sectors. | 
|  | */ | 
|  | disk = choose_bb_rdev(conf, r1_bio, max_sectors); | 
|  | if (disk >= 0) | 
|  | return disk; | 
|  |  | 
|  | return choose_slow_rdev(conf, r1_bio, max_sectors); | 
|  | } | 
|  |  | 
|  | static void wake_up_barrier(struct r1conf *conf) | 
|  | { | 
|  | if (wq_has_sleeper(&conf->wait_barrier)) | 
|  | wake_up(&conf->wait_barrier); | 
|  | } | 
|  |  | 
|  | static void flush_bio_list(struct r1conf *conf, struct bio *bio) | 
|  | { | 
|  | /* flush any pending bitmap writes to disk before proceeding w/ I/O */ | 
|  | raid1_prepare_flush_writes(conf->mddev); | 
|  | wake_up_barrier(conf); | 
|  |  | 
|  | while (bio) { /* submit pending writes */ | 
|  | struct bio *next = bio->bi_next; | 
|  |  | 
|  | raid1_submit_write(bio); | 
|  | bio = next; | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void flush_pending_writes(struct r1conf *conf) | 
|  | { | 
|  | /* Any writes that have been queued but are awaiting | 
|  | * bitmap updates get flushed here. | 
|  | */ | 
|  | spin_lock_irq(&conf->device_lock); | 
|  |  | 
|  | if (conf->pending_bio_list.head) { | 
|  | struct blk_plug plug; | 
|  | struct bio *bio; | 
|  |  | 
|  | bio = bio_list_get(&conf->pending_bio_list); | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  |  | 
|  | /* | 
|  | * As this is called in a wait_event() loop (see freeze_array), | 
|  | * current->state might be TASK_UNINTERRUPTIBLE which will | 
|  | * cause a warning when we prepare to wait again.  As it is | 
|  | * rare that this path is taken, it is perfectly safe to force | 
|  | * us to go around the wait_event() loop again, so the warning | 
|  | * is a false-positive.  Silence the warning by resetting | 
|  | * thread state | 
|  | */ | 
|  | __set_current_state(TASK_RUNNING); | 
|  | blk_start_plug(&plug); | 
|  | flush_bio_list(conf, bio); | 
|  | blk_finish_plug(&plug); | 
|  | } else | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | } | 
|  |  | 
|  | /* Barriers.... | 
|  | * Sometimes we need to suspend IO while we do something else, | 
|  | * either some resync/recovery, or reconfigure the array. | 
|  | * To do this we raise a 'barrier'. | 
|  | * The 'barrier' is a counter that can be raised multiple times | 
|  | * to count how many activities are happening which preclude | 
|  | * normal IO. | 
|  | * We can only raise the barrier if there is no pending IO. | 
|  | * i.e. if nr_pending == 0. | 
|  | * We choose only to raise the barrier if no-one is waiting for the | 
|  | * barrier to go down.  This means that as soon as an IO request | 
|  | * is ready, no other operations which require a barrier will start | 
|  | * until the IO request has had a chance. | 
|  | * | 
|  | * So: regular IO calls 'wait_barrier'.  When that returns there | 
|  | *    is no backgroup IO happening,  It must arrange to call | 
|  | *    allow_barrier when it has finished its IO. | 
|  | * backgroup IO calls must call raise_barrier.  Once that returns | 
|  | *    there is no normal IO happeing.  It must arrange to call | 
|  | *    lower_barrier when the particular background IO completes. | 
|  | * | 
|  | * If resync/recovery is interrupted, returns -EINTR; | 
|  | * Otherwise, returns 0. | 
|  | */ | 
|  | static int raise_barrier(struct r1conf *conf, sector_t sector_nr) | 
|  | { | 
|  | int idx = sector_to_idx(sector_nr); | 
|  |  | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  |  | 
|  | /* Wait until no block IO is waiting */ | 
|  | wait_event_lock_irq(conf->wait_barrier, | 
|  | !atomic_read(&conf->nr_waiting[idx]), | 
|  | conf->resync_lock); | 
|  |  | 
|  | /* block any new IO from starting */ | 
|  | atomic_inc(&conf->barrier[idx]); | 
|  | /* | 
|  | * In raise_barrier() we firstly increase conf->barrier[idx] then | 
|  | * check conf->nr_pending[idx]. In _wait_barrier() we firstly | 
|  | * increase conf->nr_pending[idx] then check conf->barrier[idx]. | 
|  | * A memory barrier here to make sure conf->nr_pending[idx] won't | 
|  | * be fetched before conf->barrier[idx] is increased. Otherwise | 
|  | * there will be a race between raise_barrier() and _wait_barrier(). | 
|  | */ | 
|  | smp_mb__after_atomic(); | 
|  |  | 
|  | /* For these conditions we must wait: | 
|  | * A: while the array is in frozen state | 
|  | * B: while conf->nr_pending[idx] is not 0, meaning regular I/O | 
|  | *    existing in corresponding I/O barrier bucket. | 
|  | * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches | 
|  | *    max resync count which allowed on current I/O barrier bucket. | 
|  | */ | 
|  | wait_event_lock_irq(conf->wait_barrier, | 
|  | (!conf->array_frozen && | 
|  | !atomic_read(&conf->nr_pending[idx]) && | 
|  | atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || | 
|  | test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), | 
|  | conf->resync_lock); | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { | 
|  | atomic_dec(&conf->barrier[idx]); | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | wake_up(&conf->wait_barrier); | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | atomic_inc(&conf->nr_sync_pending); | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void lower_barrier(struct r1conf *conf, sector_t sector_nr) | 
|  | { | 
|  | int idx = sector_to_idx(sector_nr); | 
|  |  | 
|  | BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); | 
|  |  | 
|  | atomic_dec(&conf->barrier[idx]); | 
|  | atomic_dec(&conf->nr_sync_pending); | 
|  | wake_up(&conf->wait_barrier); | 
|  | } | 
|  |  | 
|  | static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) | 
|  | { | 
|  | bool ret = true; | 
|  |  | 
|  | /* | 
|  | * We need to increase conf->nr_pending[idx] very early here, | 
|  | * then raise_barrier() can be blocked when it waits for | 
|  | * conf->nr_pending[idx] to be 0. Then we can avoid holding | 
|  | * conf->resync_lock when there is no barrier raised in same | 
|  | * barrier unit bucket. Also if the array is frozen, I/O | 
|  | * should be blocked until array is unfrozen. | 
|  | */ | 
|  | atomic_inc(&conf->nr_pending[idx]); | 
|  | /* | 
|  | * In _wait_barrier() we firstly increase conf->nr_pending[idx], then | 
|  | * check conf->barrier[idx]. In raise_barrier() we firstly increase | 
|  | * conf->barrier[idx], then check conf->nr_pending[idx]. A memory | 
|  | * barrier is necessary here to make sure conf->barrier[idx] won't be | 
|  | * fetched before conf->nr_pending[idx] is increased. Otherwise there | 
|  | * will be a race between _wait_barrier() and raise_barrier(). | 
|  | */ | 
|  | smp_mb__after_atomic(); | 
|  |  | 
|  | /* | 
|  | * Don't worry about checking two atomic_t variables at same time | 
|  | * here. If during we check conf->barrier[idx], the array is | 
|  | * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is | 
|  | * 0, it is safe to return and make the I/O continue. Because the | 
|  | * array is frozen, all I/O returned here will eventually complete | 
|  | * or be queued, no race will happen. See code comment in | 
|  | * frozen_array(). | 
|  | */ | 
|  | if (!READ_ONCE(conf->array_frozen) && | 
|  | !atomic_read(&conf->barrier[idx])) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * After holding conf->resync_lock, conf->nr_pending[idx] | 
|  | * should be decreased before waiting for barrier to drop. | 
|  | * Otherwise, we may encounter a race condition because | 
|  | * raise_barrer() might be waiting for conf->nr_pending[idx] | 
|  | * to be 0 at same time. | 
|  | */ | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  | atomic_inc(&conf->nr_waiting[idx]); | 
|  | atomic_dec(&conf->nr_pending[idx]); | 
|  | /* | 
|  | * In case freeze_array() is waiting for | 
|  | * get_unqueued_pending() == extra | 
|  | */ | 
|  | wake_up_barrier(conf); | 
|  | /* Wait for the barrier in same barrier unit bucket to drop. */ | 
|  |  | 
|  | /* Return false when nowait flag is set */ | 
|  | if (nowait) { | 
|  | ret = false; | 
|  | } else { | 
|  | wait_event_lock_irq(conf->wait_barrier, | 
|  | !conf->array_frozen && | 
|  | !atomic_read(&conf->barrier[idx]), | 
|  | conf->resync_lock); | 
|  | atomic_inc(&conf->nr_pending[idx]); | 
|  | } | 
|  |  | 
|  | atomic_dec(&conf->nr_waiting[idx]); | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) | 
|  | { | 
|  | int idx = sector_to_idx(sector_nr); | 
|  | bool ret = true; | 
|  |  | 
|  | /* | 
|  | * Very similar to _wait_barrier(). The difference is, for read | 
|  | * I/O we don't need wait for sync I/O, but if the whole array | 
|  | * is frozen, the read I/O still has to wait until the array is | 
|  | * unfrozen. Since there is no ordering requirement with | 
|  | * conf->barrier[idx] here, memory barrier is unnecessary as well. | 
|  | */ | 
|  | atomic_inc(&conf->nr_pending[idx]); | 
|  |  | 
|  | if (!READ_ONCE(conf->array_frozen)) | 
|  | return ret; | 
|  |  | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  | atomic_inc(&conf->nr_waiting[idx]); | 
|  | atomic_dec(&conf->nr_pending[idx]); | 
|  | /* | 
|  | * In case freeze_array() is waiting for | 
|  | * get_unqueued_pending() == extra | 
|  | */ | 
|  | wake_up_barrier(conf); | 
|  | /* Wait for array to be unfrozen */ | 
|  |  | 
|  | /* Return false when nowait flag is set */ | 
|  | if (nowait) { | 
|  | /* Return false when nowait flag is set */ | 
|  | ret = false; | 
|  | } else { | 
|  | wait_event_lock_irq(conf->wait_barrier, | 
|  | !conf->array_frozen, | 
|  | conf->resync_lock); | 
|  | atomic_inc(&conf->nr_pending[idx]); | 
|  | } | 
|  |  | 
|  | atomic_dec(&conf->nr_waiting[idx]); | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) | 
|  | { | 
|  | int idx = sector_to_idx(sector_nr); | 
|  |  | 
|  | return _wait_barrier(conf, idx, nowait); | 
|  | } | 
|  |  | 
|  | static void _allow_barrier(struct r1conf *conf, int idx) | 
|  | { | 
|  | atomic_dec(&conf->nr_pending[idx]); | 
|  | wake_up_barrier(conf); | 
|  | } | 
|  |  | 
|  | static void allow_barrier(struct r1conf *conf, sector_t sector_nr) | 
|  | { | 
|  | int idx = sector_to_idx(sector_nr); | 
|  |  | 
|  | _allow_barrier(conf, idx); | 
|  | } | 
|  |  | 
|  | /* conf->resync_lock should be held */ | 
|  | static int get_unqueued_pending(struct r1conf *conf) | 
|  | { | 
|  | int idx, ret; | 
|  |  | 
|  | ret = atomic_read(&conf->nr_sync_pending); | 
|  | for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) | 
|  | ret += atomic_read(&conf->nr_pending[idx]) - | 
|  | atomic_read(&conf->nr_queued[idx]); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void freeze_array(struct r1conf *conf, int extra) | 
|  | { | 
|  | /* Stop sync I/O and normal I/O and wait for everything to | 
|  | * go quiet. | 
|  | * This is called in two situations: | 
|  | * 1) management command handlers (reshape, remove disk, quiesce). | 
|  | * 2) one normal I/O request failed. | 
|  |  | 
|  | * After array_frozen is set to 1, new sync IO will be blocked at | 
|  | * raise_barrier(), and new normal I/O will blocked at _wait_barrier() | 
|  | * or wait_read_barrier(). The flying I/Os will either complete or be | 
|  | * queued. When everything goes quite, there are only queued I/Os left. | 
|  |  | 
|  | * Every flying I/O contributes to a conf->nr_pending[idx], idx is the | 
|  | * barrier bucket index which this I/O request hits. When all sync and | 
|  | * normal I/O are queued, sum of all conf->nr_pending[] will match sum | 
|  | * of all conf->nr_queued[]. But normal I/O failure is an exception, | 
|  | * in handle_read_error(), we may call freeze_array() before trying to | 
|  | * fix the read error. In this case, the error read I/O is not queued, | 
|  | * so get_unqueued_pending() == 1. | 
|  | * | 
|  | * Therefore before this function returns, we need to wait until | 
|  | * get_unqueued_pendings(conf) gets equal to extra. For | 
|  | * normal I/O context, extra is 1, in rested situations extra is 0. | 
|  | */ | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  | conf->array_frozen = 1; | 
|  | mddev_add_trace_msg(conf->mddev, "raid1 wait freeze"); | 
|  | wait_event_lock_irq_cmd( | 
|  | conf->wait_barrier, | 
|  | get_unqueued_pending(conf) == extra, | 
|  | conf->resync_lock, | 
|  | flush_pending_writes(conf)); | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | } | 
|  | static void unfreeze_array(struct r1conf *conf) | 
|  | { | 
|  | /* reverse the effect of the freeze */ | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  | conf->array_frozen = 0; | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | wake_up(&conf->wait_barrier); | 
|  | } | 
|  |  | 
|  | static void alloc_behind_master_bio(struct r1bio *r1_bio, | 
|  | struct bio *bio) | 
|  | { | 
|  | int size = bio->bi_iter.bi_size; | 
|  | unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | int i = 0; | 
|  | struct bio *behind_bio = NULL; | 
|  |  | 
|  | behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, | 
|  | &r1_bio->mddev->bio_set); | 
|  |  | 
|  | /* discard op, we don't support writezero/writesame yet */ | 
|  | if (!bio_has_data(bio)) { | 
|  | behind_bio->bi_iter.bi_size = size; | 
|  | goto skip_copy; | 
|  | } | 
|  |  | 
|  | while (i < vcnt && size) { | 
|  | struct page *page; | 
|  | int len = min_t(int, PAGE_SIZE, size); | 
|  |  | 
|  | page = alloc_page(GFP_NOIO); | 
|  | if (unlikely(!page)) | 
|  | goto free_pages; | 
|  |  | 
|  | if (!bio_add_page(behind_bio, page, len, 0)) { | 
|  | put_page(page); | 
|  | goto free_pages; | 
|  | } | 
|  |  | 
|  | size -= len; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | bio_copy_data(behind_bio, bio); | 
|  | skip_copy: | 
|  | r1_bio->behind_master_bio = behind_bio; | 
|  | set_bit(R1BIO_BehindIO, &r1_bio->state); | 
|  |  | 
|  | return; | 
|  |  | 
|  | free_pages: | 
|  | pr_debug("%dB behind alloc failed, doing sync I/O\n", | 
|  | bio->bi_iter.bi_size); | 
|  | bio_free_pages(behind_bio); | 
|  | bio_put(behind_bio); | 
|  | } | 
|  |  | 
|  | static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) | 
|  | { | 
|  | struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, | 
|  | cb); | 
|  | struct mddev *mddev = plug->cb.data; | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct bio *bio; | 
|  |  | 
|  | if (from_schedule) { | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | bio_list_merge(&conf->pending_bio_list, &plug->pending); | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | wake_up_barrier(conf); | 
|  | md_wakeup_thread(mddev->thread); | 
|  | kfree(plug); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* we aren't scheduling, so we can do the write-out directly. */ | 
|  | bio = bio_list_get(&plug->pending); | 
|  | flush_bio_list(conf, bio); | 
|  | kfree(plug); | 
|  | } | 
|  |  | 
|  | static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) | 
|  | { | 
|  | r1_bio->master_bio = bio; | 
|  | r1_bio->sectors = bio_sectors(bio); | 
|  | r1_bio->state = 0; | 
|  | r1_bio->mddev = mddev; | 
|  | r1_bio->sector = bio->bi_iter.bi_sector; | 
|  | } | 
|  |  | 
|  | static inline struct r1bio * | 
|  | alloc_r1bio(struct mddev *mddev, struct bio *bio) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct r1bio *r1_bio; | 
|  |  | 
|  | r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); | 
|  | /* Ensure no bio records IO_BLOCKED */ | 
|  | memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); | 
|  | init_r1bio(r1_bio, mddev, bio); | 
|  | return r1_bio; | 
|  | } | 
|  |  | 
|  | static void raid1_read_request(struct mddev *mddev, struct bio *bio, | 
|  | int max_read_sectors, struct r1bio *r1_bio) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct raid1_info *mirror; | 
|  | struct bio *read_bio; | 
|  | const enum req_op op = bio_op(bio); | 
|  | const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; | 
|  | int max_sectors; | 
|  | int rdisk, error; | 
|  | bool r1bio_existed = !!r1_bio; | 
|  |  | 
|  | /* | 
|  | * If r1_bio is set, we are blocking the raid1d thread | 
|  | * so there is a tiny risk of deadlock.  So ask for | 
|  | * emergency memory if needed. | 
|  | */ | 
|  | gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; | 
|  |  | 
|  | /* | 
|  | * Still need barrier for READ in case that whole | 
|  | * array is frozen. | 
|  | */ | 
|  | if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, | 
|  | bio->bi_opf & REQ_NOWAIT)) { | 
|  | bio_wouldblock_error(bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!r1_bio) | 
|  | r1_bio = alloc_r1bio(mddev, bio); | 
|  | else | 
|  | init_r1bio(r1_bio, mddev, bio); | 
|  | r1_bio->sectors = max_read_sectors; | 
|  |  | 
|  | /* | 
|  | * make_request() can abort the operation when read-ahead is being | 
|  | * used and no empty request is available. | 
|  | */ | 
|  | rdisk = read_balance(conf, r1_bio, &max_sectors); | 
|  | if (rdisk < 0) { | 
|  | /* couldn't find anywhere to read from */ | 
|  | if (r1bio_existed) | 
|  | pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", | 
|  | mdname(mddev), | 
|  | conf->mirrors[r1_bio->read_disk].rdev->bdev, | 
|  | r1_bio->sector); | 
|  | raid_end_bio_io(r1_bio); | 
|  | return; | 
|  | } | 
|  | mirror = conf->mirrors + rdisk; | 
|  |  | 
|  | if (r1bio_existed) | 
|  | pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", | 
|  | mdname(mddev), | 
|  | (unsigned long long)r1_bio->sector, | 
|  | mirror->rdev->bdev); | 
|  |  | 
|  | if (test_bit(WriteMostly, &mirror->rdev->flags)) { | 
|  | /* | 
|  | * Reading from a write-mostly device must take care not to | 
|  | * over-take any writes that are 'behind' | 
|  | */ | 
|  | mddev_add_trace_msg(mddev, "raid1 wait behind writes"); | 
|  | mddev->bitmap_ops->wait_behind_writes(mddev); | 
|  | } | 
|  |  | 
|  | if (max_sectors < bio_sectors(bio)) { | 
|  | struct bio *split = bio_split(bio, max_sectors, | 
|  | gfp, &conf->bio_split); | 
|  |  | 
|  | if (IS_ERR(split)) { | 
|  | error = PTR_ERR(split); | 
|  | goto err_handle; | 
|  | } | 
|  | bio_chain(split, bio); | 
|  | submit_bio_noacct(bio); | 
|  | bio = split; | 
|  | r1_bio->master_bio = bio; | 
|  | r1_bio->sectors = max_sectors; | 
|  | } | 
|  |  | 
|  | r1_bio->read_disk = rdisk; | 
|  | if (!r1bio_existed) { | 
|  | md_account_bio(mddev, &bio); | 
|  | r1_bio->master_bio = bio; | 
|  | } | 
|  | read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, | 
|  | &mddev->bio_set); | 
|  |  | 
|  | r1_bio->bios[rdisk] = read_bio; | 
|  |  | 
|  | read_bio->bi_iter.bi_sector = r1_bio->sector + | 
|  | mirror->rdev->data_offset; | 
|  | read_bio->bi_end_io = raid1_end_read_request; | 
|  | read_bio->bi_opf = op | do_sync; | 
|  | if (test_bit(FailFast, &mirror->rdev->flags) && | 
|  | test_bit(R1BIO_FailFast, &r1_bio->state)) | 
|  | read_bio->bi_opf |= MD_FAILFAST; | 
|  | read_bio->bi_private = r1_bio; | 
|  | mddev_trace_remap(mddev, read_bio, r1_bio->sector); | 
|  | submit_bio_noacct(read_bio); | 
|  | return; | 
|  |  | 
|  | err_handle: | 
|  | atomic_dec(&mirror->rdev->nr_pending); | 
|  | bio->bi_status = errno_to_blk_status(error); | 
|  | set_bit(R1BIO_Uptodate, &r1_bio->state); | 
|  | raid_end_bio_io(r1_bio); | 
|  | } | 
|  |  | 
|  | static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | int disks = conf->raid_disks * 2; | 
|  | int i; | 
|  |  | 
|  | retry: | 
|  | for (i = 0; i < disks; i++) { | 
|  | struct md_rdev *rdev = conf->mirrors[i].rdev; | 
|  |  | 
|  | if (!rdev) | 
|  | continue; | 
|  |  | 
|  | /* don't write here until the bad block is acknowledged */ | 
|  | if (test_bit(WriteErrorSeen, &rdev->flags) && | 
|  | rdev_has_badblock(rdev, bio->bi_iter.bi_sector, | 
|  | bio_sectors(bio)) < 0) | 
|  | set_bit(BlockedBadBlocks, &rdev->flags); | 
|  |  | 
|  | if (rdev_blocked(rdev)) { | 
|  | if (bio->bi_opf & REQ_NOWAIT) | 
|  | return false; | 
|  |  | 
|  | mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked", | 
|  | rdev->raid_disk); | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | md_wait_for_blocked_rdev(rdev, rdev->mddev); | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void raid1_write_request(struct mddev *mddev, struct bio *bio, | 
|  | int max_write_sectors) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct r1bio *r1_bio; | 
|  | int i, disks, k, error; | 
|  | unsigned long flags; | 
|  | int first_clone; | 
|  | int max_sectors; | 
|  | bool write_behind = false; | 
|  | bool is_discard = (bio_op(bio) == REQ_OP_DISCARD); | 
|  |  | 
|  | if (mddev_is_clustered(mddev) && | 
|  | md_cluster_ops->area_resyncing(mddev, WRITE, | 
|  | bio->bi_iter.bi_sector, bio_end_sector(bio))) { | 
|  |  | 
|  | DEFINE_WAIT(w); | 
|  | if (bio->bi_opf & REQ_NOWAIT) { | 
|  | bio_wouldblock_error(bio); | 
|  | return; | 
|  | } | 
|  | for (;;) { | 
|  | prepare_to_wait(&conf->wait_barrier, | 
|  | &w, TASK_IDLE); | 
|  | if (!md_cluster_ops->area_resyncing(mddev, WRITE, | 
|  | bio->bi_iter.bi_sector, | 
|  | bio_end_sector(bio))) | 
|  | break; | 
|  | schedule(); | 
|  | } | 
|  | finish_wait(&conf->wait_barrier, &w); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register the new request and wait if the reconstruction | 
|  | * thread has put up a bar for new requests. | 
|  | * Continue immediately if no resync is active currently. | 
|  | */ | 
|  | if (!wait_barrier(conf, bio->bi_iter.bi_sector, | 
|  | bio->bi_opf & REQ_NOWAIT)) { | 
|  | bio_wouldblock_error(bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!wait_blocked_rdev(mddev, bio)) { | 
|  | bio_wouldblock_error(bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | r1_bio = alloc_r1bio(mddev, bio); | 
|  | r1_bio->sectors = max_write_sectors; | 
|  |  | 
|  | /* first select target devices under rcu_lock and | 
|  | * inc refcount on their rdev.  Record them by setting | 
|  | * bios[x] to bio | 
|  | * If there are known/acknowledged bad blocks on any device on | 
|  | * which we have seen a write error, we want to avoid writing those | 
|  | * blocks. | 
|  | * This potentially requires several writes to write around | 
|  | * the bad blocks.  Each set of writes gets it's own r1bio | 
|  | * with a set of bios attached. | 
|  | */ | 
|  |  | 
|  | disks = conf->raid_disks * 2; | 
|  | max_sectors = r1_bio->sectors; | 
|  | for (i = 0;  i < disks; i++) { | 
|  | struct md_rdev *rdev = conf->mirrors[i].rdev; | 
|  |  | 
|  | /* | 
|  | * The write-behind io is only attempted on drives marked as | 
|  | * write-mostly, which means we could allocate write behind | 
|  | * bio later. | 
|  | */ | 
|  | if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags)) | 
|  | write_behind = true; | 
|  |  | 
|  | r1_bio->bios[i] = NULL; | 
|  | if (!rdev || test_bit(Faulty, &rdev->flags)) { | 
|  | if (i < conf->raid_disks) | 
|  | set_bit(R1BIO_Degraded, &r1_bio->state); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | if (test_bit(WriteErrorSeen, &rdev->flags)) { | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  | int is_bad; | 
|  |  | 
|  | is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, | 
|  | &first_bad, &bad_sectors); | 
|  | if (is_bad && first_bad <= r1_bio->sector) { | 
|  | /* Cannot write here at all */ | 
|  | bad_sectors -= (r1_bio->sector - first_bad); | 
|  | if (bad_sectors < max_sectors) | 
|  | /* mustn't write more than bad_sectors | 
|  | * to other devices yet | 
|  | */ | 
|  | max_sectors = bad_sectors; | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | /* We don't set R1BIO_Degraded as that | 
|  | * only applies if the disk is | 
|  | * missing, so it might be re-added, | 
|  | * and we want to know to recover this | 
|  | * chunk. | 
|  | * In this case the device is here, | 
|  | * and the fact that this chunk is not | 
|  | * in-sync is recorded in the bad | 
|  | * block log | 
|  | */ | 
|  | continue; | 
|  | } | 
|  | if (is_bad) { | 
|  | int good_sectors; | 
|  |  | 
|  | /* | 
|  | * We cannot atomically write this, so just | 
|  | * error in that case. It could be possible to | 
|  | * atomically write other mirrors, but the | 
|  | * complexity of supporting that is not worth | 
|  | * the benefit. | 
|  | */ | 
|  | if (bio->bi_opf & REQ_ATOMIC) { | 
|  | error = -EIO; | 
|  | goto err_handle; | 
|  | } | 
|  |  | 
|  | good_sectors = first_bad - r1_bio->sector; | 
|  | if (good_sectors < max_sectors) | 
|  | max_sectors = good_sectors; | 
|  | } | 
|  | } | 
|  | r1_bio->bios[i] = bio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When using a bitmap, we may call alloc_behind_master_bio below. | 
|  | * alloc_behind_master_bio allocates a copy of the data payload a page | 
|  | * at a time and thus needs a new bio that can fit the whole payload | 
|  | * this bio in page sized chunks. | 
|  | */ | 
|  | if (write_behind && mddev->bitmap) | 
|  | max_sectors = min_t(int, max_sectors, | 
|  | BIO_MAX_VECS * (PAGE_SIZE >> 9)); | 
|  | if (max_sectors < bio_sectors(bio)) { | 
|  | struct bio *split = bio_split(bio, max_sectors, | 
|  | GFP_NOIO, &conf->bio_split); | 
|  |  | 
|  | if (IS_ERR(split)) { | 
|  | error = PTR_ERR(split); | 
|  | goto err_handle; | 
|  | } | 
|  | bio_chain(split, bio); | 
|  | submit_bio_noacct(bio); | 
|  | bio = split; | 
|  | r1_bio->master_bio = bio; | 
|  | r1_bio->sectors = max_sectors; | 
|  | } | 
|  |  | 
|  | md_account_bio(mddev, &bio); | 
|  | r1_bio->master_bio = bio; | 
|  | atomic_set(&r1_bio->remaining, 1); | 
|  | atomic_set(&r1_bio->behind_remaining, 0); | 
|  |  | 
|  | first_clone = 1; | 
|  |  | 
|  | for (i = 0; i < disks; i++) { | 
|  | struct bio *mbio = NULL; | 
|  | struct md_rdev *rdev = conf->mirrors[i].rdev; | 
|  | if (!r1_bio->bios[i]) | 
|  | continue; | 
|  |  | 
|  | if (first_clone) { | 
|  | unsigned long max_write_behind = | 
|  | mddev->bitmap_info.max_write_behind; | 
|  | struct md_bitmap_stats stats; | 
|  | int err; | 
|  |  | 
|  | /* do behind I/O ? | 
|  | * Not if there are too many, or cannot | 
|  | * allocate memory, or a reader on WriteMostly | 
|  | * is waiting for behind writes to flush */ | 
|  | err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats); | 
|  | if (!err && write_behind && !stats.behind_wait && | 
|  | stats.behind_writes < max_write_behind) | 
|  | alloc_behind_master_bio(r1_bio, bio); | 
|  |  | 
|  | mddev->bitmap_ops->startwrite( | 
|  | mddev, r1_bio->sector, r1_bio->sectors, | 
|  | test_bit(R1BIO_BehindIO, &r1_bio->state)); | 
|  | first_clone = 0; | 
|  | } | 
|  |  | 
|  | if (r1_bio->behind_master_bio) { | 
|  | mbio = bio_alloc_clone(rdev->bdev, | 
|  | r1_bio->behind_master_bio, | 
|  | GFP_NOIO, &mddev->bio_set); | 
|  | if (test_bit(CollisionCheck, &rdev->flags)) | 
|  | wait_for_serialization(rdev, r1_bio); | 
|  | if (test_bit(WriteMostly, &rdev->flags)) | 
|  | atomic_inc(&r1_bio->behind_remaining); | 
|  | } else { | 
|  | mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, | 
|  | &mddev->bio_set); | 
|  |  | 
|  | if (mddev->serialize_policy) | 
|  | wait_for_serialization(rdev, r1_bio); | 
|  | } | 
|  |  | 
|  | r1_bio->bios[i] = mbio; | 
|  |  | 
|  | mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset); | 
|  | mbio->bi_end_io	= raid1_end_write_request; | 
|  | mbio->bi_opf = bio_op(bio) | | 
|  | (bio->bi_opf & (REQ_SYNC | REQ_FUA | REQ_ATOMIC)); | 
|  | if (test_bit(FailFast, &rdev->flags) && | 
|  | !test_bit(WriteMostly, &rdev->flags) && | 
|  | conf->raid_disks - mddev->degraded > 1) | 
|  | mbio->bi_opf |= MD_FAILFAST; | 
|  | mbio->bi_private = r1_bio; | 
|  |  | 
|  | atomic_inc(&r1_bio->remaining); | 
|  | mddev_trace_remap(mddev, mbio, r1_bio->sector); | 
|  | /* flush_pending_writes() needs access to the rdev so...*/ | 
|  | mbio->bi_bdev = (void *)rdev; | 
|  | if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) { | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | bio_list_add(&conf->pending_bio_list, mbio); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | md_wakeup_thread(mddev->thread); | 
|  | } | 
|  | } | 
|  |  | 
|  | r1_bio_write_done(r1_bio); | 
|  |  | 
|  | /* In case raid1d snuck in to freeze_array */ | 
|  | wake_up_barrier(conf); | 
|  | return; | 
|  | err_handle: | 
|  | for (k = 0; k < i; k++) { | 
|  | if (r1_bio->bios[k]) { | 
|  | rdev_dec_pending(conf->mirrors[k].rdev, mddev); | 
|  | r1_bio->bios[k] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | bio->bi_status = errno_to_blk_status(error); | 
|  | set_bit(R1BIO_Uptodate, &r1_bio->state); | 
|  | raid_end_bio_io(r1_bio); | 
|  | } | 
|  |  | 
|  | static bool raid1_make_request(struct mddev *mddev, struct bio *bio) | 
|  | { | 
|  | sector_t sectors; | 
|  |  | 
|  | if (unlikely(bio->bi_opf & REQ_PREFLUSH) | 
|  | && md_flush_request(mddev, bio)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * There is a limit to the maximum size, but | 
|  | * the read/write handler might find a lower limit | 
|  | * due to bad blocks.  To avoid multiple splits, | 
|  | * we pass the maximum number of sectors down | 
|  | * and let the lower level perform the split. | 
|  | */ | 
|  | sectors = align_to_barrier_unit_end( | 
|  | bio->bi_iter.bi_sector, bio_sectors(bio)); | 
|  |  | 
|  | if (bio_data_dir(bio) == READ) | 
|  | raid1_read_request(mddev, bio, sectors, NULL); | 
|  | else { | 
|  | md_write_start(mddev,bio); | 
|  | raid1_write_request(mddev, bio, sectors); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void raid1_status(struct seq_file *seq, struct mddev *mddev) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | int i; | 
|  |  | 
|  | lockdep_assert_held(&mddev->lock); | 
|  |  | 
|  | seq_printf(seq, " [%d/%d] [", conf->raid_disks, | 
|  | conf->raid_disks - mddev->degraded); | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); | 
|  |  | 
|  | seq_printf(seq, "%s", | 
|  | rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); | 
|  | } | 
|  | seq_printf(seq, "]"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * raid1_error() - RAID1 error handler. | 
|  | * @mddev: affected md device. | 
|  | * @rdev: member device to fail. | 
|  | * | 
|  | * The routine acknowledges &rdev failure and determines new @mddev state. | 
|  | * If it failed, then: | 
|  | *	- &MD_BROKEN flag is set in &mddev->flags. | 
|  | *	- recovery is disabled. | 
|  | * Otherwise, it must be degraded: | 
|  | *	- recovery is interrupted. | 
|  | *	- &mddev->degraded is bumped. | 
|  | * | 
|  | * @rdev is marked as &Faulty excluding case when array is failed and | 
|  | * &mddev->fail_last_dev is off. | 
|  | */ | 
|  | static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  |  | 
|  | if (test_bit(In_sync, &rdev->flags) && | 
|  | (conf->raid_disks - mddev->degraded) == 1) { | 
|  | set_bit(MD_BROKEN, &mddev->flags); | 
|  |  | 
|  | if (!mddev->fail_last_dev) { | 
|  | conf->recovery_disabled = mddev->recovery_disabled; | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | return; | 
|  | } | 
|  | } | 
|  | set_bit(Blocked, &rdev->flags); | 
|  | if (test_and_clear_bit(In_sync, &rdev->flags)) | 
|  | mddev->degraded++; | 
|  | set_bit(Faulty, &rdev->flags); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | /* | 
|  | * if recovery is running, make sure it aborts. | 
|  | */ | 
|  | set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
|  | set_mask_bits(&mddev->sb_flags, 0, | 
|  | BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); | 
|  | pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" | 
|  | "md/raid1:%s: Operation continuing on %d devices.\n", | 
|  | mdname(mddev), rdev->bdev, | 
|  | mdname(mddev), conf->raid_disks - mddev->degraded); | 
|  | } | 
|  |  | 
|  | static void print_conf(struct r1conf *conf) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | pr_debug("RAID1 conf printout:\n"); | 
|  | if (!conf) { | 
|  | pr_debug("(!conf)\n"); | 
|  | return; | 
|  | } | 
|  | pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, | 
|  | conf->raid_disks); | 
|  |  | 
|  | lockdep_assert_held(&conf->mddev->reconfig_mutex); | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | struct md_rdev *rdev = conf->mirrors[i].rdev; | 
|  | if (rdev) | 
|  | pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", | 
|  | i, !test_bit(In_sync, &rdev->flags), | 
|  | !test_bit(Faulty, &rdev->flags), | 
|  | rdev->bdev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void close_sync(struct r1conf *conf) | 
|  | { | 
|  | int idx; | 
|  |  | 
|  | for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { | 
|  | _wait_barrier(conf, idx, false); | 
|  | _allow_barrier(conf, idx); | 
|  | } | 
|  |  | 
|  | mempool_exit(&conf->r1buf_pool); | 
|  | } | 
|  |  | 
|  | static int raid1_spare_active(struct mddev *mddev) | 
|  | { | 
|  | int i; | 
|  | struct r1conf *conf = mddev->private; | 
|  | int count = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Find all failed disks within the RAID1 configuration | 
|  | * and mark them readable. | 
|  | * Called under mddev lock, so rcu protection not needed. | 
|  | * device_lock used to avoid races with raid1_end_read_request | 
|  | * which expects 'In_sync' flags and ->degraded to be consistent. | 
|  | */ | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | struct md_rdev *rdev = conf->mirrors[i].rdev; | 
|  | struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; | 
|  | if (repl | 
|  | && !test_bit(Candidate, &repl->flags) | 
|  | && repl->recovery_offset == MaxSector | 
|  | && !test_bit(Faulty, &repl->flags) | 
|  | && !test_and_set_bit(In_sync, &repl->flags)) { | 
|  | /* replacement has just become active */ | 
|  | if (!rdev || | 
|  | !test_and_clear_bit(In_sync, &rdev->flags)) | 
|  | count++; | 
|  | if (rdev) { | 
|  | /* Replaced device not technically | 
|  | * faulty, but we need to be sure | 
|  | * it gets removed and never re-added | 
|  | */ | 
|  | set_bit(Faulty, &rdev->flags); | 
|  | sysfs_notify_dirent_safe( | 
|  | rdev->sysfs_state); | 
|  | } | 
|  | } | 
|  | if (rdev | 
|  | && rdev->recovery_offset == MaxSector | 
|  | && !test_bit(Faulty, &rdev->flags) | 
|  | && !test_and_set_bit(In_sync, &rdev->flags)) { | 
|  | count++; | 
|  | sysfs_notify_dirent_safe(rdev->sysfs_state); | 
|  | } | 
|  | } | 
|  | mddev->degraded -= count; | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  |  | 
|  | print_conf(conf); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk, | 
|  | bool replacement) | 
|  | { | 
|  | struct raid1_info *info = conf->mirrors + disk; | 
|  |  | 
|  | if (replacement) | 
|  | info += conf->raid_disks; | 
|  |  | 
|  | if (info->rdev) | 
|  | return false; | 
|  |  | 
|  | if (bdev_nonrot(rdev->bdev)) { | 
|  | set_bit(Nonrot, &rdev->flags); | 
|  | WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1); | 
|  | } | 
|  |  | 
|  | rdev->raid_disk = disk; | 
|  | info->head_position = 0; | 
|  | info->seq_start = MaxSector; | 
|  | WRITE_ONCE(info->rdev, rdev); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool raid1_remove_conf(struct r1conf *conf, int disk) | 
|  | { | 
|  | struct raid1_info *info = conf->mirrors + disk; | 
|  | struct md_rdev *rdev = info->rdev; | 
|  |  | 
|  | if (!rdev || test_bit(In_sync, &rdev->flags) || | 
|  | atomic_read(&rdev->nr_pending)) | 
|  | return false; | 
|  |  | 
|  | /* Only remove non-faulty devices if recovery is not possible. */ | 
|  | if (!test_bit(Faulty, &rdev->flags) && | 
|  | rdev->mddev->recovery_disabled != conf->recovery_disabled && | 
|  | rdev->mddev->degraded < conf->raid_disks) | 
|  | return false; | 
|  |  | 
|  | if (test_and_clear_bit(Nonrot, &rdev->flags)) | 
|  | WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1); | 
|  |  | 
|  | WRITE_ONCE(info->rdev, NULL); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | int err = -EEXIST; | 
|  | int mirror = 0, repl_slot = -1; | 
|  | struct raid1_info *p; | 
|  | int first = 0; | 
|  | int last = conf->raid_disks - 1; | 
|  |  | 
|  | if (mddev->recovery_disabled == conf->recovery_disabled) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (rdev->raid_disk >= 0) | 
|  | first = last = rdev->raid_disk; | 
|  |  | 
|  | /* | 
|  | * find the disk ... but prefer rdev->saved_raid_disk | 
|  | * if possible. | 
|  | */ | 
|  | if (rdev->saved_raid_disk >= 0 && | 
|  | rdev->saved_raid_disk >= first && | 
|  | rdev->saved_raid_disk < conf->raid_disks && | 
|  | conf->mirrors[rdev->saved_raid_disk].rdev == NULL) | 
|  | first = last = rdev->saved_raid_disk; | 
|  |  | 
|  | for (mirror = first; mirror <= last; mirror++) { | 
|  | p = conf->mirrors + mirror; | 
|  | if (!p->rdev) { | 
|  | err = mddev_stack_new_rdev(mddev, rdev); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | raid1_add_conf(conf, rdev, mirror, false); | 
|  | /* As all devices are equivalent, we don't need a full recovery | 
|  | * if this was recently any drive of the array | 
|  | */ | 
|  | if (rdev->saved_raid_disk < 0) | 
|  | conf->fullsync = 1; | 
|  | break; | 
|  | } | 
|  | if (test_bit(WantReplacement, &p->rdev->flags) && | 
|  | p[conf->raid_disks].rdev == NULL && repl_slot < 0) | 
|  | repl_slot = mirror; | 
|  | } | 
|  |  | 
|  | if (err && repl_slot >= 0) { | 
|  | /* Add this device as a replacement */ | 
|  | clear_bit(In_sync, &rdev->flags); | 
|  | set_bit(Replacement, &rdev->flags); | 
|  | raid1_add_conf(conf, rdev, repl_slot, true); | 
|  | err = 0; | 
|  | conf->fullsync = 1; | 
|  | } | 
|  |  | 
|  | print_conf(conf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | int err = 0; | 
|  | int number = rdev->raid_disk; | 
|  | struct raid1_info *p = conf->mirrors + number; | 
|  |  | 
|  | if (unlikely(number >= conf->raid_disks)) | 
|  | goto abort; | 
|  |  | 
|  | if (rdev != p->rdev) { | 
|  | number += conf->raid_disks; | 
|  | p = conf->mirrors + number; | 
|  | } | 
|  |  | 
|  | print_conf(conf); | 
|  | if (rdev == p->rdev) { | 
|  | if (!raid1_remove_conf(conf, number)) { | 
|  | err = -EBUSY; | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | if (number < conf->raid_disks && | 
|  | conf->mirrors[conf->raid_disks + number].rdev) { | 
|  | /* We just removed a device that is being replaced. | 
|  | * Move down the replacement.  We drain all IO before | 
|  | * doing this to avoid confusion. | 
|  | */ | 
|  | struct md_rdev *repl = | 
|  | conf->mirrors[conf->raid_disks + number].rdev; | 
|  | freeze_array(conf, 0); | 
|  | if (atomic_read(&repl->nr_pending)) { | 
|  | /* It means that some queued IO of retry_list | 
|  | * hold repl. Thus, we cannot set replacement | 
|  | * as NULL, avoiding rdev NULL pointer | 
|  | * dereference in sync_request_write and | 
|  | * handle_write_finished. | 
|  | */ | 
|  | err = -EBUSY; | 
|  | unfreeze_array(conf); | 
|  | goto abort; | 
|  | } | 
|  | clear_bit(Replacement, &repl->flags); | 
|  | WRITE_ONCE(p->rdev, repl); | 
|  | conf->mirrors[conf->raid_disks + number].rdev = NULL; | 
|  | unfreeze_array(conf); | 
|  | } | 
|  |  | 
|  | clear_bit(WantReplacement, &rdev->flags); | 
|  | err = md_integrity_register(mddev); | 
|  | } | 
|  | abort: | 
|  |  | 
|  | print_conf(conf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void end_sync_read(struct bio *bio) | 
|  | { | 
|  | struct r1bio *r1_bio = get_resync_r1bio(bio); | 
|  |  | 
|  | update_head_pos(r1_bio->read_disk, r1_bio); | 
|  |  | 
|  | /* | 
|  | * we have read a block, now it needs to be re-written, | 
|  | * or re-read if the read failed. | 
|  | * We don't do much here, just schedule handling by raid1d | 
|  | */ | 
|  | if (!bio->bi_status) | 
|  | set_bit(R1BIO_Uptodate, &r1_bio->state); | 
|  |  | 
|  | if (atomic_dec_and_test(&r1_bio->remaining)) | 
|  | reschedule_retry(r1_bio); | 
|  | } | 
|  |  | 
|  | static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) | 
|  | { | 
|  | sector_t sync_blocks = 0; | 
|  | sector_t s = r1_bio->sector; | 
|  | long sectors_to_go = r1_bio->sectors; | 
|  |  | 
|  | /* make sure these bits don't get cleared. */ | 
|  | do { | 
|  | mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks); | 
|  | s += sync_blocks; | 
|  | sectors_to_go -= sync_blocks; | 
|  | } while (sectors_to_go > 0); | 
|  | } | 
|  |  | 
|  | static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) | 
|  | { | 
|  | if (atomic_dec_and_test(&r1_bio->remaining)) { | 
|  | struct mddev *mddev = r1_bio->mddev; | 
|  | int s = r1_bio->sectors; | 
|  |  | 
|  | if (test_bit(R1BIO_MadeGood, &r1_bio->state) || | 
|  | test_bit(R1BIO_WriteError, &r1_bio->state)) | 
|  | reschedule_retry(r1_bio); | 
|  | else { | 
|  | put_buf(r1_bio); | 
|  | md_done_sync(mddev, s, uptodate); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void end_sync_write(struct bio *bio) | 
|  | { | 
|  | int uptodate = !bio->bi_status; | 
|  | struct r1bio *r1_bio = get_resync_r1bio(bio); | 
|  | struct mddev *mddev = r1_bio->mddev; | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; | 
|  |  | 
|  | if (!uptodate) { | 
|  | abort_sync_write(mddev, r1_bio); | 
|  | set_bit(WriteErrorSeen, &rdev->flags); | 
|  | if (!test_and_set_bit(WantReplacement, &rdev->flags)) | 
|  | set_bit(MD_RECOVERY_NEEDED, & | 
|  | mddev->recovery); | 
|  | set_bit(R1BIO_WriteError, &r1_bio->state); | 
|  | } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && | 
|  | !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev, | 
|  | r1_bio->sector, r1_bio->sectors)) { | 
|  | set_bit(R1BIO_MadeGood, &r1_bio->state); | 
|  | } | 
|  |  | 
|  | put_sync_write_buf(r1_bio, uptodate); | 
|  | } | 
|  |  | 
|  | static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, | 
|  | int sectors, struct page *page, blk_opf_t rw) | 
|  | { | 
|  | if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) | 
|  | /* success */ | 
|  | return 1; | 
|  | if (rw == REQ_OP_WRITE) { | 
|  | set_bit(WriteErrorSeen, &rdev->flags); | 
|  | if (!test_and_set_bit(WantReplacement, | 
|  | &rdev->flags)) | 
|  | set_bit(MD_RECOVERY_NEEDED, & | 
|  | rdev->mddev->recovery); | 
|  | } | 
|  | /* need to record an error - either for the block or the device */ | 
|  | if (!rdev_set_badblocks(rdev, sector, sectors, 0)) | 
|  | md_error(rdev->mddev, rdev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fix_sync_read_error(struct r1bio *r1_bio) | 
|  | { | 
|  | /* Try some synchronous reads of other devices to get | 
|  | * good data, much like with normal read errors.  Only | 
|  | * read into the pages we already have so we don't | 
|  | * need to re-issue the read request. | 
|  | * We don't need to freeze the array, because being in an | 
|  | * active sync request, there is no normal IO, and | 
|  | * no overlapping syncs. | 
|  | * We don't need to check is_badblock() again as we | 
|  | * made sure that anything with a bad block in range | 
|  | * will have bi_end_io clear. | 
|  | */ | 
|  | struct mddev *mddev = r1_bio->mddev; | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct bio *bio = r1_bio->bios[r1_bio->read_disk]; | 
|  | struct page **pages = get_resync_pages(bio)->pages; | 
|  | sector_t sect = r1_bio->sector; | 
|  | int sectors = r1_bio->sectors; | 
|  | int idx = 0; | 
|  | struct md_rdev *rdev; | 
|  |  | 
|  | rdev = conf->mirrors[r1_bio->read_disk].rdev; | 
|  | if (test_bit(FailFast, &rdev->flags)) { | 
|  | /* Don't try recovering from here - just fail it | 
|  | * ... unless it is the last working device of course */ | 
|  | md_error(mddev, rdev); | 
|  | if (test_bit(Faulty, &rdev->flags)) | 
|  | /* Don't try to read from here, but make sure | 
|  | * put_buf does it's thing | 
|  | */ | 
|  | bio->bi_end_io = end_sync_write; | 
|  | } | 
|  |  | 
|  | while(sectors) { | 
|  | int s = sectors; | 
|  | int d = r1_bio->read_disk; | 
|  | int success = 0; | 
|  | int start; | 
|  |  | 
|  | if (s > (PAGE_SIZE>>9)) | 
|  | s = PAGE_SIZE >> 9; | 
|  | do { | 
|  | if (r1_bio->bios[d]->bi_end_io == end_sync_read) { | 
|  | /* No rcu protection needed here devices | 
|  | * can only be removed when no resync is | 
|  | * active, and resync is currently active | 
|  | */ | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (sync_page_io(rdev, sect, s<<9, | 
|  | pages[idx], | 
|  | REQ_OP_READ, false)) { | 
|  | success = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | d++; | 
|  | if (d == conf->raid_disks * 2) | 
|  | d = 0; | 
|  | } while (!success && d != r1_bio->read_disk); | 
|  |  | 
|  | if (!success) { | 
|  | int abort = 0; | 
|  | /* Cannot read from anywhere, this block is lost. | 
|  | * Record a bad block on each device.  If that doesn't | 
|  | * work just disable and interrupt the recovery. | 
|  | * Don't fail devices as that won't really help. | 
|  | */ | 
|  | pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", | 
|  | mdname(mddev), bio->bi_bdev, | 
|  | (unsigned long long)r1_bio->sector); | 
|  | for (d = 0; d < conf->raid_disks * 2; d++) { | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (!rdev || test_bit(Faulty, &rdev->flags)) | 
|  | continue; | 
|  | if (!rdev_set_badblocks(rdev, sect, s, 0)) | 
|  | abort = 1; | 
|  | } | 
|  | if (abort) { | 
|  | conf->recovery_disabled = | 
|  | mddev->recovery_disabled; | 
|  | set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
|  | md_done_sync(mddev, r1_bio->sectors, 0); | 
|  | put_buf(r1_bio); | 
|  | return 0; | 
|  | } | 
|  | /* Try next page */ | 
|  | sectors -= s; | 
|  | sect += s; | 
|  | idx++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | start = d; | 
|  | /* write it back and re-read */ | 
|  | while (d != r1_bio->read_disk) { | 
|  | if (d == 0) | 
|  | d = conf->raid_disks * 2; | 
|  | d--; | 
|  | if (r1_bio->bios[d]->bi_end_io != end_sync_read) | 
|  | continue; | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (r1_sync_page_io(rdev, sect, s, | 
|  | pages[idx], | 
|  | REQ_OP_WRITE) == 0) { | 
|  | r1_bio->bios[d]->bi_end_io = NULL; | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | } | 
|  | } | 
|  | d = start; | 
|  | while (d != r1_bio->read_disk) { | 
|  | if (d == 0) | 
|  | d = conf->raid_disks * 2; | 
|  | d--; | 
|  | if (r1_bio->bios[d]->bi_end_io != end_sync_read) | 
|  | continue; | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (r1_sync_page_io(rdev, sect, s, | 
|  | pages[idx], | 
|  | REQ_OP_READ) != 0) | 
|  | atomic_add(s, &rdev->corrected_errors); | 
|  | } | 
|  | sectors -= s; | 
|  | sect += s; | 
|  | idx ++; | 
|  | } | 
|  | set_bit(R1BIO_Uptodate, &r1_bio->state); | 
|  | bio->bi_status = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void process_checks(struct r1bio *r1_bio) | 
|  | { | 
|  | /* We have read all readable devices.  If we haven't | 
|  | * got the block, then there is no hope left. | 
|  | * If we have, then we want to do a comparison | 
|  | * and skip the write if everything is the same. | 
|  | * If any blocks failed to read, then we need to | 
|  | * attempt an over-write | 
|  | */ | 
|  | struct mddev *mddev = r1_bio->mddev; | 
|  | struct r1conf *conf = mddev->private; | 
|  | int primary; | 
|  | int i; | 
|  | int vcnt; | 
|  |  | 
|  | /* Fix variable parts of all bios */ | 
|  | vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); | 
|  | for (i = 0; i < conf->raid_disks * 2; i++) { | 
|  | blk_status_t status; | 
|  | struct bio *b = r1_bio->bios[i]; | 
|  | struct resync_pages *rp = get_resync_pages(b); | 
|  | if (b->bi_end_io != end_sync_read) | 
|  | continue; | 
|  | /* fixup the bio for reuse, but preserve errno */ | 
|  | status = b->bi_status; | 
|  | bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); | 
|  | b->bi_status = status; | 
|  | b->bi_iter.bi_sector = r1_bio->sector + | 
|  | conf->mirrors[i].rdev->data_offset; | 
|  | b->bi_end_io = end_sync_read; | 
|  | rp->raid_bio = r1_bio; | 
|  | b->bi_private = rp; | 
|  |  | 
|  | /* initialize bvec table again */ | 
|  | md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); | 
|  | } | 
|  | for (primary = 0; primary < conf->raid_disks * 2; primary++) | 
|  | if (r1_bio->bios[primary]->bi_end_io == end_sync_read && | 
|  | !r1_bio->bios[primary]->bi_status) { | 
|  | r1_bio->bios[primary]->bi_end_io = NULL; | 
|  | rdev_dec_pending(conf->mirrors[primary].rdev, mddev); | 
|  | break; | 
|  | } | 
|  | r1_bio->read_disk = primary; | 
|  | for (i = 0; i < conf->raid_disks * 2; i++) { | 
|  | int j = 0; | 
|  | struct bio *pbio = r1_bio->bios[primary]; | 
|  | struct bio *sbio = r1_bio->bios[i]; | 
|  | blk_status_t status = sbio->bi_status; | 
|  | struct page **ppages = get_resync_pages(pbio)->pages; | 
|  | struct page **spages = get_resync_pages(sbio)->pages; | 
|  | struct bio_vec *bi; | 
|  | int page_len[RESYNC_PAGES] = { 0 }; | 
|  | struct bvec_iter_all iter_all; | 
|  |  | 
|  | if (sbio->bi_end_io != end_sync_read) | 
|  | continue; | 
|  | /* Now we can 'fixup' the error value */ | 
|  | sbio->bi_status = 0; | 
|  |  | 
|  | bio_for_each_segment_all(bi, sbio, iter_all) | 
|  | page_len[j++] = bi->bv_len; | 
|  |  | 
|  | if (!status) { | 
|  | for (j = vcnt; j-- ; ) { | 
|  | if (memcmp(page_address(ppages[j]), | 
|  | page_address(spages[j]), | 
|  | page_len[j])) | 
|  | break; | 
|  | } | 
|  | } else | 
|  | j = 0; | 
|  | if (j >= 0) | 
|  | atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); | 
|  | if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) | 
|  | && !status)) { | 
|  | /* No need to write to this device. */ | 
|  | sbio->bi_end_io = NULL; | 
|  | rdev_dec_pending(conf->mirrors[i].rdev, mddev); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bio_copy_data(sbio, pbio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | int i; | 
|  | int disks = conf->raid_disks * 2; | 
|  | struct bio *wbio; | 
|  |  | 
|  | if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) | 
|  | /* ouch - failed to read all of that. */ | 
|  | if (!fix_sync_read_error(r1_bio)) | 
|  | return; | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) | 
|  | process_checks(r1_bio); | 
|  |  | 
|  | /* | 
|  | * schedule writes | 
|  | */ | 
|  | atomic_set(&r1_bio->remaining, 1); | 
|  | for (i = 0; i < disks ; i++) { | 
|  | wbio = r1_bio->bios[i]; | 
|  | if (wbio->bi_end_io == NULL || | 
|  | (wbio->bi_end_io == end_sync_read && | 
|  | (i == r1_bio->read_disk || | 
|  | !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) | 
|  | continue; | 
|  | if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { | 
|  | abort_sync_write(mddev, r1_bio); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | wbio->bi_opf = REQ_OP_WRITE; | 
|  | if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) | 
|  | wbio->bi_opf |= MD_FAILFAST; | 
|  |  | 
|  | wbio->bi_end_io = end_sync_write; | 
|  | atomic_inc(&r1_bio->remaining); | 
|  | md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); | 
|  |  | 
|  | submit_bio_noacct(wbio); | 
|  | } | 
|  |  | 
|  | put_sync_write_buf(r1_bio, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a kernel thread which: | 
|  | * | 
|  | *	1.	Retries failed read operations on working mirrors. | 
|  | *	2.	Updates the raid superblock when problems encounter. | 
|  | *	3.	Performs writes following reads for array synchronising. | 
|  | */ | 
|  |  | 
|  | static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio) | 
|  | { | 
|  | sector_t sect = r1_bio->sector; | 
|  | int sectors = r1_bio->sectors; | 
|  | int read_disk = r1_bio->read_disk; | 
|  | struct mddev *mddev = conf->mddev; | 
|  | struct md_rdev *rdev = conf->mirrors[read_disk].rdev; | 
|  |  | 
|  | if (exceed_read_errors(mddev, rdev)) { | 
|  | r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; | 
|  | return; | 
|  | } | 
|  |  | 
|  | while(sectors) { | 
|  | int s = sectors; | 
|  | int d = read_disk; | 
|  | int success = 0; | 
|  | int start; | 
|  |  | 
|  | if (s > (PAGE_SIZE>>9)) | 
|  | s = PAGE_SIZE >> 9; | 
|  |  | 
|  | do { | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (rdev && | 
|  | (test_bit(In_sync, &rdev->flags) || | 
|  | (!test_bit(Faulty, &rdev->flags) && | 
|  | rdev->recovery_offset >= sect + s)) && | 
|  | rdev_has_badblock(rdev, sect, s) == 0) { | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | if (sync_page_io(rdev, sect, s<<9, | 
|  | conf->tmppage, REQ_OP_READ, false)) | 
|  | success = 1; | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | if (success) | 
|  | break; | 
|  | } | 
|  |  | 
|  | d++; | 
|  | if (d == conf->raid_disks * 2) | 
|  | d = 0; | 
|  | } while (d != read_disk); | 
|  |  | 
|  | if (!success) { | 
|  | /* Cannot read from anywhere - mark it bad */ | 
|  | struct md_rdev *rdev = conf->mirrors[read_disk].rdev; | 
|  | if (!rdev_set_badblocks(rdev, sect, s, 0)) | 
|  | md_error(mddev, rdev); | 
|  | break; | 
|  | } | 
|  | /* write it back and re-read */ | 
|  | start = d; | 
|  | while (d != read_disk) { | 
|  | if (d==0) | 
|  | d = conf->raid_disks * 2; | 
|  | d--; | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (rdev && | 
|  | !test_bit(Faulty, &rdev->flags)) { | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | r1_sync_page_io(rdev, sect, s, | 
|  | conf->tmppage, REQ_OP_WRITE); | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | } | 
|  | } | 
|  | d = start; | 
|  | while (d != read_disk) { | 
|  | if (d==0) | 
|  | d = conf->raid_disks * 2; | 
|  | d--; | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | if (rdev && | 
|  | !test_bit(Faulty, &rdev->flags)) { | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | if (r1_sync_page_io(rdev, sect, s, | 
|  | conf->tmppage, REQ_OP_READ)) { | 
|  | atomic_add(s, &rdev->corrected_errors); | 
|  | pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", | 
|  | mdname(mddev), s, | 
|  | (unsigned long long)(sect + | 
|  | rdev->data_offset), | 
|  | rdev->bdev); | 
|  | } | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | } | 
|  | } | 
|  | sectors -= s; | 
|  | sect += s; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int narrow_write_error(struct r1bio *r1_bio, int i) | 
|  | { | 
|  | struct mddev *mddev = r1_bio->mddev; | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct md_rdev *rdev = conf->mirrors[i].rdev; | 
|  |  | 
|  | /* bio has the data to be written to device 'i' where | 
|  | * we just recently had a write error. | 
|  | * We repeatedly clone the bio and trim down to one block, | 
|  | * then try the write.  Where the write fails we record | 
|  | * a bad block. | 
|  | * It is conceivable that the bio doesn't exactly align with | 
|  | * blocks.  We must handle this somehow. | 
|  | * | 
|  | * We currently own a reference on the rdev. | 
|  | */ | 
|  |  | 
|  | int block_sectors; | 
|  | sector_t sector; | 
|  | int sectors; | 
|  | int sect_to_write = r1_bio->sectors; | 
|  | int ok = 1; | 
|  |  | 
|  | if (rdev->badblocks.shift < 0) | 
|  | return 0; | 
|  |  | 
|  | block_sectors = roundup(1 << rdev->badblocks.shift, | 
|  | bdev_logical_block_size(rdev->bdev) >> 9); | 
|  | sector = r1_bio->sector; | 
|  | sectors = ((sector + block_sectors) | 
|  | & ~(sector_t)(block_sectors - 1)) | 
|  | - sector; | 
|  |  | 
|  | while (sect_to_write) { | 
|  | struct bio *wbio; | 
|  | if (sectors > sect_to_write) | 
|  | sectors = sect_to_write; | 
|  | /* Write at 'sector' for 'sectors'*/ | 
|  |  | 
|  | if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { | 
|  | wbio = bio_alloc_clone(rdev->bdev, | 
|  | r1_bio->behind_master_bio, | 
|  | GFP_NOIO, &mddev->bio_set); | 
|  | } else { | 
|  | wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, | 
|  | GFP_NOIO, &mddev->bio_set); | 
|  | } | 
|  |  | 
|  | wbio->bi_opf = REQ_OP_WRITE; | 
|  | wbio->bi_iter.bi_sector = r1_bio->sector; | 
|  | wbio->bi_iter.bi_size = r1_bio->sectors << 9; | 
|  |  | 
|  | bio_trim(wbio, sector - r1_bio->sector, sectors); | 
|  | wbio->bi_iter.bi_sector += rdev->data_offset; | 
|  |  | 
|  | if (submit_bio_wait(wbio) < 0) | 
|  | /* failure! */ | 
|  | ok = rdev_set_badblocks(rdev, sector, | 
|  | sectors, 0) | 
|  | && ok; | 
|  |  | 
|  | bio_put(wbio); | 
|  | sect_to_write -= sectors; | 
|  | sector += sectors; | 
|  | sectors = block_sectors; | 
|  | } | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) | 
|  | { | 
|  | int m; | 
|  | int s = r1_bio->sectors; | 
|  | for (m = 0; m < conf->raid_disks * 2 ; m++) { | 
|  | struct md_rdev *rdev = conf->mirrors[m].rdev; | 
|  | struct bio *bio = r1_bio->bios[m]; | 
|  | if (bio->bi_end_io == NULL) | 
|  | continue; | 
|  | if (!bio->bi_status && | 
|  | test_bit(R1BIO_MadeGood, &r1_bio->state)) { | 
|  | rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); | 
|  | } | 
|  | if (bio->bi_status && | 
|  | test_bit(R1BIO_WriteError, &r1_bio->state)) { | 
|  | if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) | 
|  | md_error(conf->mddev, rdev); | 
|  | } | 
|  | } | 
|  | put_buf(r1_bio); | 
|  | md_done_sync(conf->mddev, s, 1); | 
|  | } | 
|  |  | 
|  | static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) | 
|  | { | 
|  | int m, idx; | 
|  | bool fail = false; | 
|  |  | 
|  | for (m = 0; m < conf->raid_disks * 2 ; m++) | 
|  | if (r1_bio->bios[m] == IO_MADE_GOOD) { | 
|  | struct md_rdev *rdev = conf->mirrors[m].rdev; | 
|  | rdev_clear_badblocks(rdev, | 
|  | r1_bio->sector, | 
|  | r1_bio->sectors, 0); | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | } else if (r1_bio->bios[m] != NULL) { | 
|  | /* This drive got a write error.  We need to | 
|  | * narrow down and record precise write | 
|  | * errors. | 
|  | */ | 
|  | fail = true; | 
|  | if (!narrow_write_error(r1_bio, m)) { | 
|  | md_error(conf->mddev, | 
|  | conf->mirrors[m].rdev); | 
|  | /* an I/O failed, we can't clear the bitmap */ | 
|  | set_bit(R1BIO_Degraded, &r1_bio->state); | 
|  | } | 
|  | rdev_dec_pending(conf->mirrors[m].rdev, | 
|  | conf->mddev); | 
|  | } | 
|  | if (fail) { | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | list_add(&r1_bio->retry_list, &conf->bio_end_io_list); | 
|  | idx = sector_to_idx(r1_bio->sector); | 
|  | atomic_inc(&conf->nr_queued[idx]); | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | /* | 
|  | * In case freeze_array() is waiting for condition | 
|  | * get_unqueued_pending() == extra to be true. | 
|  | */ | 
|  | wake_up(&conf->wait_barrier); | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | } else { | 
|  | if (test_bit(R1BIO_WriteError, &r1_bio->state)) | 
|  | close_write(r1_bio); | 
|  | raid_end_bio_io(r1_bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) | 
|  | { | 
|  | struct mddev *mddev = conf->mddev; | 
|  | struct bio *bio; | 
|  | struct md_rdev *rdev; | 
|  | sector_t sector; | 
|  |  | 
|  | clear_bit(R1BIO_ReadError, &r1_bio->state); | 
|  | /* we got a read error. Maybe the drive is bad.  Maybe just | 
|  | * the block and we can fix it. | 
|  | * We freeze all other IO, and try reading the block from | 
|  | * other devices.  When we find one, we re-write | 
|  | * and check it that fixes the read error. | 
|  | * This is all done synchronously while the array is | 
|  | * frozen | 
|  | */ | 
|  |  | 
|  | bio = r1_bio->bios[r1_bio->read_disk]; | 
|  | bio_put(bio); | 
|  | r1_bio->bios[r1_bio->read_disk] = NULL; | 
|  |  | 
|  | rdev = conf->mirrors[r1_bio->read_disk].rdev; | 
|  | if (mddev->ro == 0 | 
|  | && !test_bit(FailFast, &rdev->flags)) { | 
|  | freeze_array(conf, 1); | 
|  | fix_read_error(conf, r1_bio); | 
|  | unfreeze_array(conf); | 
|  | } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { | 
|  | md_error(mddev, rdev); | 
|  | } else { | 
|  | r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; | 
|  | } | 
|  |  | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | sector = r1_bio->sector; | 
|  | bio = r1_bio->master_bio; | 
|  |  | 
|  | /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ | 
|  | r1_bio->state = 0; | 
|  | raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); | 
|  | allow_barrier(conf, sector); | 
|  | } | 
|  |  | 
|  | static void raid1d(struct md_thread *thread) | 
|  | { | 
|  | struct mddev *mddev = thread->mddev; | 
|  | struct r1bio *r1_bio; | 
|  | unsigned long flags; | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct list_head *head = &conf->retry_list; | 
|  | struct blk_plug plug; | 
|  | int idx; | 
|  |  | 
|  | md_check_recovery(mddev); | 
|  |  | 
|  | if (!list_empty_careful(&conf->bio_end_io_list) && | 
|  | !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { | 
|  | LIST_HEAD(tmp); | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) | 
|  | list_splice_init(&conf->bio_end_io_list, &tmp); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | while (!list_empty(&tmp)) { | 
|  | r1_bio = list_first_entry(&tmp, struct r1bio, | 
|  | retry_list); | 
|  | list_del(&r1_bio->retry_list); | 
|  | idx = sector_to_idx(r1_bio->sector); | 
|  | atomic_dec(&conf->nr_queued[idx]); | 
|  | if (mddev->degraded) | 
|  | set_bit(R1BIO_Degraded, &r1_bio->state); | 
|  | if (test_bit(R1BIO_WriteError, &r1_bio->state)) | 
|  | close_write(r1_bio); | 
|  | raid_end_bio_io(r1_bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | for (;;) { | 
|  |  | 
|  | flush_pending_writes(conf); | 
|  |  | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | if (list_empty(head)) { | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | break; | 
|  | } | 
|  | r1_bio = list_entry(head->prev, struct r1bio, retry_list); | 
|  | list_del(head->prev); | 
|  | idx = sector_to_idx(r1_bio->sector); | 
|  | atomic_dec(&conf->nr_queued[idx]); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  |  | 
|  | mddev = r1_bio->mddev; | 
|  | conf = mddev->private; | 
|  | if (test_bit(R1BIO_IsSync, &r1_bio->state)) { | 
|  | if (test_bit(R1BIO_MadeGood, &r1_bio->state) || | 
|  | test_bit(R1BIO_WriteError, &r1_bio->state)) | 
|  | handle_sync_write_finished(conf, r1_bio); | 
|  | else | 
|  | sync_request_write(mddev, r1_bio); | 
|  | } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || | 
|  | test_bit(R1BIO_WriteError, &r1_bio->state)) | 
|  | handle_write_finished(conf, r1_bio); | 
|  | else if (test_bit(R1BIO_ReadError, &r1_bio->state)) | 
|  | handle_read_error(conf, r1_bio); | 
|  | else | 
|  | WARN_ON_ONCE(1); | 
|  |  | 
|  | cond_resched(); | 
|  | if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) | 
|  | md_check_recovery(mddev); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  | } | 
|  |  | 
|  | static int init_resync(struct r1conf *conf) | 
|  | { | 
|  | int buffs; | 
|  |  | 
|  | buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; | 
|  | BUG_ON(mempool_initialized(&conf->r1buf_pool)); | 
|  |  | 
|  | return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, | 
|  | r1buf_pool_free, conf->poolinfo); | 
|  | } | 
|  |  | 
|  | static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) | 
|  | { | 
|  | struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); | 
|  | struct resync_pages *rps; | 
|  | struct bio *bio; | 
|  | int i; | 
|  |  | 
|  | for (i = conf->poolinfo->raid_disks; i--; ) { | 
|  | bio = r1bio->bios[i]; | 
|  | rps = bio->bi_private; | 
|  | bio_reset(bio, NULL, 0); | 
|  | bio->bi_private = rps; | 
|  | } | 
|  | r1bio->master_bio = NULL; | 
|  | return r1bio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * perform a "sync" on one "block" | 
|  | * | 
|  | * We need to make sure that no normal I/O request - particularly write | 
|  | * requests - conflict with active sync requests. | 
|  | * | 
|  | * This is achieved by tracking pending requests and a 'barrier' concept | 
|  | * that can be installed to exclude normal IO requests. | 
|  | */ | 
|  |  | 
|  | static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, | 
|  | sector_t max_sector, int *skipped) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  | struct r1bio *r1_bio; | 
|  | struct bio *bio; | 
|  | sector_t nr_sectors; | 
|  | int disk = -1; | 
|  | int i; | 
|  | int wonly = -1; | 
|  | int write_targets = 0, read_targets = 0; | 
|  | sector_t sync_blocks; | 
|  | bool still_degraded = false; | 
|  | int good_sectors = RESYNC_SECTORS; | 
|  | int min_bad = 0; /* number of sectors that are bad in all devices */ | 
|  | int idx = sector_to_idx(sector_nr); | 
|  | int page_idx = 0; | 
|  |  | 
|  | if (!mempool_initialized(&conf->r1buf_pool)) | 
|  | if (init_resync(conf)) | 
|  | return 0; | 
|  |  | 
|  | if (sector_nr >= max_sector) { | 
|  | /* If we aborted, we need to abort the | 
|  | * sync on the 'current' bitmap chunk (there will | 
|  | * only be one in raid1 resync. | 
|  | * We can find the current addess in mddev->curr_resync | 
|  | */ | 
|  | if (mddev->curr_resync < max_sector) /* aborted */ | 
|  | mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync, | 
|  | &sync_blocks); | 
|  | else /* completed sync */ | 
|  | conf->fullsync = 0; | 
|  |  | 
|  | mddev->bitmap_ops->close_sync(mddev); | 
|  | close_sync(conf); | 
|  |  | 
|  | if (mddev_is_clustered(mddev)) { | 
|  | conf->cluster_sync_low = 0; | 
|  | conf->cluster_sync_high = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (mddev->bitmap == NULL && | 
|  | mddev->recovery_cp == MaxSector && | 
|  | !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && | 
|  | conf->fullsync == 0) { | 
|  | *skipped = 1; | 
|  | return max_sector - sector_nr; | 
|  | } | 
|  | /* before building a request, check if we can skip these blocks.. | 
|  | * This call the bitmap_start_sync doesn't actually record anything | 
|  | */ | 
|  | if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) && | 
|  | !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { | 
|  | /* We can skip this block, and probably several more */ | 
|  | *skipped = 1; | 
|  | return sync_blocks; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is non-resync activity waiting for a turn, then let it | 
|  | * though before starting on this new sync request. | 
|  | */ | 
|  | if (atomic_read(&conf->nr_waiting[idx])) | 
|  | schedule_timeout_uninterruptible(1); | 
|  |  | 
|  | /* we are incrementing sector_nr below. To be safe, we check against | 
|  | * sector_nr + two times RESYNC_SECTORS | 
|  | */ | 
|  |  | 
|  | mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, | 
|  | mddev_is_clustered(mddev) && | 
|  | (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); | 
|  |  | 
|  | if (raise_barrier(conf, sector_nr)) | 
|  | return 0; | 
|  |  | 
|  | r1_bio = raid1_alloc_init_r1buf(conf); | 
|  |  | 
|  | /* | 
|  | * If we get a correctably read error during resync or recovery, | 
|  | * we might want to read from a different device.  So we | 
|  | * flag all drives that could conceivably be read from for READ, | 
|  | * and any others (which will be non-In_sync devices) for WRITE. | 
|  | * If a read fails, we try reading from something else for which READ | 
|  | * is OK. | 
|  | */ | 
|  |  | 
|  | r1_bio->mddev = mddev; | 
|  | r1_bio->sector = sector_nr; | 
|  | r1_bio->state = 0; | 
|  | set_bit(R1BIO_IsSync, &r1_bio->state); | 
|  | /* make sure good_sectors won't go across barrier unit boundary */ | 
|  | good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); | 
|  |  | 
|  | for (i = 0; i < conf->raid_disks * 2; i++) { | 
|  | struct md_rdev *rdev; | 
|  | bio = r1_bio->bios[i]; | 
|  |  | 
|  | rdev = conf->mirrors[i].rdev; | 
|  | if (rdev == NULL || | 
|  | test_bit(Faulty, &rdev->flags)) { | 
|  | if (i < conf->raid_disks) | 
|  | still_degraded = true; | 
|  | } else if (!test_bit(In_sync, &rdev->flags)) { | 
|  | bio->bi_opf = REQ_OP_WRITE; | 
|  | bio->bi_end_io = end_sync_write; | 
|  | write_targets ++; | 
|  | } else { | 
|  | /* may need to read from here */ | 
|  | sector_t first_bad = MaxSector; | 
|  | int bad_sectors; | 
|  |  | 
|  | if (is_badblock(rdev, sector_nr, good_sectors, | 
|  | &first_bad, &bad_sectors)) { | 
|  | if (first_bad > sector_nr) | 
|  | good_sectors = first_bad - sector_nr; | 
|  | else { | 
|  | bad_sectors -= (sector_nr - first_bad); | 
|  | if (min_bad == 0 || | 
|  | min_bad > bad_sectors) | 
|  | min_bad = bad_sectors; | 
|  | } | 
|  | } | 
|  | if (sector_nr < first_bad) { | 
|  | if (test_bit(WriteMostly, &rdev->flags)) { | 
|  | if (wonly < 0) | 
|  | wonly = i; | 
|  | } else { | 
|  | if (disk < 0) | 
|  | disk = i; | 
|  | } | 
|  | bio->bi_opf = REQ_OP_READ; | 
|  | bio->bi_end_io = end_sync_read; | 
|  | read_targets++; | 
|  | } else if (!test_bit(WriteErrorSeen, &rdev->flags) && | 
|  | test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && | 
|  | !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { | 
|  | /* | 
|  | * The device is suitable for reading (InSync), | 
|  | * but has bad block(s) here. Let's try to correct them, | 
|  | * if we are doing resync or repair. Otherwise, leave | 
|  | * this device alone for this sync request. | 
|  | */ | 
|  | bio->bi_opf = REQ_OP_WRITE; | 
|  | bio->bi_end_io = end_sync_write; | 
|  | write_targets++; | 
|  | } | 
|  | } | 
|  | if (rdev && bio->bi_end_io) { | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; | 
|  | bio_set_dev(bio, rdev->bdev); | 
|  | if (test_bit(FailFast, &rdev->flags)) | 
|  | bio->bi_opf |= MD_FAILFAST; | 
|  | } | 
|  | } | 
|  | if (disk < 0) | 
|  | disk = wonly; | 
|  | r1_bio->read_disk = disk; | 
|  |  | 
|  | if (read_targets == 0 && min_bad > 0) { | 
|  | /* These sectors are bad on all InSync devices, so we | 
|  | * need to mark them bad on all write targets | 
|  | */ | 
|  | int ok = 1; | 
|  | for (i = 0 ; i < conf->raid_disks * 2 ; i++) | 
|  | if (r1_bio->bios[i]->bi_end_io == end_sync_write) { | 
|  | struct md_rdev *rdev = conf->mirrors[i].rdev; | 
|  | ok = rdev_set_badblocks(rdev, sector_nr, | 
|  | min_bad, 0 | 
|  | ) && ok; | 
|  | } | 
|  | set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); | 
|  | *skipped = 1; | 
|  | put_buf(r1_bio); | 
|  |  | 
|  | if (!ok) { | 
|  | /* Cannot record the badblocks, so need to | 
|  | * abort the resync. | 
|  | * If there are multiple read targets, could just | 
|  | * fail the really bad ones ??? | 
|  | */ | 
|  | conf->recovery_disabled = mddev->recovery_disabled; | 
|  | set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
|  | return 0; | 
|  | } else | 
|  | return min_bad; | 
|  |  | 
|  | } | 
|  | if (min_bad > 0 && min_bad < good_sectors) { | 
|  | /* only resync enough to reach the next bad->good | 
|  | * transition */ | 
|  | good_sectors = min_bad; | 
|  | } | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) | 
|  | /* extra read targets are also write targets */ | 
|  | write_targets += read_targets-1; | 
|  |  | 
|  | if (write_targets == 0 || read_targets == 0) { | 
|  | /* There is nowhere to write, so all non-sync | 
|  | * drives must be failed - so we are finished | 
|  | */ | 
|  | sector_t rv; | 
|  | if (min_bad > 0) | 
|  | max_sector = sector_nr + min_bad; | 
|  | rv = max_sector - sector_nr; | 
|  | *skipped = 1; | 
|  | put_buf(r1_bio); | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | if (max_sector > mddev->resync_max) | 
|  | max_sector = mddev->resync_max; /* Don't do IO beyond here */ | 
|  | if (max_sector > sector_nr + good_sectors) | 
|  | max_sector = sector_nr + good_sectors; | 
|  | nr_sectors = 0; | 
|  | sync_blocks = 0; | 
|  | do { | 
|  | struct page *page; | 
|  | int len = PAGE_SIZE; | 
|  | if (sector_nr + (len>>9) > max_sector) | 
|  | len = (max_sector - sector_nr) << 9; | 
|  | if (len == 0) | 
|  | break; | 
|  | if (sync_blocks == 0) { | 
|  | if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, | 
|  | &sync_blocks, still_degraded) && | 
|  | !conf->fullsync && | 
|  | !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) | 
|  | break; | 
|  | if ((len >> 9) > sync_blocks) | 
|  | len = sync_blocks<<9; | 
|  | } | 
|  |  | 
|  | for (i = 0 ; i < conf->raid_disks * 2; i++) { | 
|  | struct resync_pages *rp; | 
|  |  | 
|  | bio = r1_bio->bios[i]; | 
|  | rp = get_resync_pages(bio); | 
|  | if (bio->bi_end_io) { | 
|  | page = resync_fetch_page(rp, page_idx); | 
|  |  | 
|  | /* | 
|  | * won't fail because the vec table is big | 
|  | * enough to hold all these pages | 
|  | */ | 
|  | __bio_add_page(bio, page, len, 0); | 
|  | } | 
|  | } | 
|  | nr_sectors += len>>9; | 
|  | sector_nr += len>>9; | 
|  | sync_blocks -= (len>>9); | 
|  | } while (++page_idx < RESYNC_PAGES); | 
|  |  | 
|  | r1_bio->sectors = nr_sectors; | 
|  |  | 
|  | if (mddev_is_clustered(mddev) && | 
|  | conf->cluster_sync_high < sector_nr + nr_sectors) { | 
|  | conf->cluster_sync_low = mddev->curr_resync_completed; | 
|  | conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; | 
|  | /* Send resync message */ | 
|  | md_cluster_ops->resync_info_update(mddev, | 
|  | conf->cluster_sync_low, | 
|  | conf->cluster_sync_high); | 
|  | } | 
|  |  | 
|  | /* For a user-requested sync, we read all readable devices and do a | 
|  | * compare | 
|  | */ | 
|  | if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { | 
|  | atomic_set(&r1_bio->remaining, read_targets); | 
|  | for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { | 
|  | bio = r1_bio->bios[i]; | 
|  | if (bio->bi_end_io == end_sync_read) { | 
|  | read_targets--; | 
|  | md_sync_acct_bio(bio, nr_sectors); | 
|  | if (read_targets == 1) | 
|  | bio->bi_opf &= ~MD_FAILFAST; | 
|  | submit_bio_noacct(bio); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | atomic_set(&r1_bio->remaining, 1); | 
|  | bio = r1_bio->bios[r1_bio->read_disk]; | 
|  | md_sync_acct_bio(bio, nr_sectors); | 
|  | if (read_targets == 1) | 
|  | bio->bi_opf &= ~MD_FAILFAST; | 
|  | submit_bio_noacct(bio); | 
|  | } | 
|  | return nr_sectors; | 
|  | } | 
|  |  | 
|  | static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) | 
|  | { | 
|  | if (sectors) | 
|  | return sectors; | 
|  |  | 
|  | return mddev->dev_sectors; | 
|  | } | 
|  |  | 
|  | static struct r1conf *setup_conf(struct mddev *mddev) | 
|  | { | 
|  | struct r1conf *conf; | 
|  | int i; | 
|  | struct raid1_info *disk; | 
|  | struct md_rdev *rdev; | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); | 
|  | if (!conf) | 
|  | goto abort; | 
|  |  | 
|  | conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, | 
|  | sizeof(atomic_t), GFP_KERNEL); | 
|  | if (!conf->nr_pending) | 
|  | goto abort; | 
|  |  | 
|  | conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, | 
|  | sizeof(atomic_t), GFP_KERNEL); | 
|  | if (!conf->nr_waiting) | 
|  | goto abort; | 
|  |  | 
|  | conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, | 
|  | sizeof(atomic_t), GFP_KERNEL); | 
|  | if (!conf->nr_queued) | 
|  | goto abort; | 
|  |  | 
|  | conf->barrier = kcalloc(BARRIER_BUCKETS_NR, | 
|  | sizeof(atomic_t), GFP_KERNEL); | 
|  | if (!conf->barrier) | 
|  | goto abort; | 
|  |  | 
|  | conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), | 
|  | mddev->raid_disks, 2), | 
|  | GFP_KERNEL); | 
|  | if (!conf->mirrors) | 
|  | goto abort; | 
|  |  | 
|  | conf->tmppage = alloc_page(GFP_KERNEL); | 
|  | if (!conf->tmppage) | 
|  | goto abort; | 
|  |  | 
|  | conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); | 
|  | if (!conf->poolinfo) | 
|  | goto abort; | 
|  | conf->poolinfo->raid_disks = mddev->raid_disks * 2; | 
|  | err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, | 
|  | rbio_pool_free, conf->poolinfo); | 
|  | if (err) | 
|  | goto abort; | 
|  |  | 
|  | err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); | 
|  | if (err) | 
|  | goto abort; | 
|  |  | 
|  | conf->poolinfo->mddev = mddev; | 
|  |  | 
|  | err = -EINVAL; | 
|  | spin_lock_init(&conf->device_lock); | 
|  | conf->raid_disks = mddev->raid_disks; | 
|  | rdev_for_each(rdev, mddev) { | 
|  | int disk_idx = rdev->raid_disk; | 
|  |  | 
|  | if (disk_idx >= conf->raid_disks || disk_idx < 0) | 
|  | continue; | 
|  |  | 
|  | if (!raid1_add_conf(conf, rdev, disk_idx, | 
|  | test_bit(Replacement, &rdev->flags))) | 
|  | goto abort; | 
|  | } | 
|  | conf->mddev = mddev; | 
|  | INIT_LIST_HEAD(&conf->retry_list); | 
|  | INIT_LIST_HEAD(&conf->bio_end_io_list); | 
|  |  | 
|  | spin_lock_init(&conf->resync_lock); | 
|  | init_waitqueue_head(&conf->wait_barrier); | 
|  |  | 
|  | bio_list_init(&conf->pending_bio_list); | 
|  | conf->recovery_disabled = mddev->recovery_disabled - 1; | 
|  |  | 
|  | err = -EIO; | 
|  | for (i = 0; i < conf->raid_disks * 2; i++) { | 
|  |  | 
|  | disk = conf->mirrors + i; | 
|  |  | 
|  | if (i < conf->raid_disks && | 
|  | disk[conf->raid_disks].rdev) { | 
|  | /* This slot has a replacement. */ | 
|  | if (!disk->rdev) { | 
|  | /* No original, just make the replacement | 
|  | * a recovering spare | 
|  | */ | 
|  | disk->rdev = | 
|  | disk[conf->raid_disks].rdev; | 
|  | disk[conf->raid_disks].rdev = NULL; | 
|  | } else if (!test_bit(In_sync, &disk->rdev->flags)) | 
|  | /* Original is not in_sync - bad */ | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | if (!disk->rdev || | 
|  | !test_bit(In_sync, &disk->rdev->flags)) { | 
|  | disk->head_position = 0; | 
|  | if (disk->rdev && | 
|  | (disk->rdev->saved_raid_disk < 0)) | 
|  | conf->fullsync = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = -ENOMEM; | 
|  | rcu_assign_pointer(conf->thread, | 
|  | md_register_thread(raid1d, mddev, "raid1")); | 
|  | if (!conf->thread) | 
|  | goto abort; | 
|  |  | 
|  | return conf; | 
|  |  | 
|  | abort: | 
|  | if (conf) { | 
|  | mempool_exit(&conf->r1bio_pool); | 
|  | kfree(conf->mirrors); | 
|  | safe_put_page(conf->tmppage); | 
|  | kfree(conf->poolinfo); | 
|  | kfree(conf->nr_pending); | 
|  | kfree(conf->nr_waiting); | 
|  | kfree(conf->nr_queued); | 
|  | kfree(conf->barrier); | 
|  | bioset_exit(&conf->bio_split); | 
|  | kfree(conf); | 
|  | } | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static int raid1_set_limits(struct mddev *mddev) | 
|  | { | 
|  | struct queue_limits lim; | 
|  | int err; | 
|  |  | 
|  | md_init_stacking_limits(&lim); | 
|  | lim.max_write_zeroes_sectors = 0; | 
|  | lim.features |= BLK_FEAT_ATOMIC_WRITES_STACKED; | 
|  | err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY); | 
|  | if (err) { | 
|  | queue_limits_cancel_update(mddev->gendisk->queue); | 
|  | return err; | 
|  | } | 
|  | return queue_limits_set(mddev->gendisk->queue, &lim); | 
|  | } | 
|  |  | 
|  | static int raid1_run(struct mddev *mddev) | 
|  | { | 
|  | struct r1conf *conf; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | if (mddev->level != 1) { | 
|  | pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", | 
|  | mdname(mddev), mddev->level); | 
|  | return -EIO; | 
|  | } | 
|  | if (mddev->reshape_position != MaxSector) { | 
|  | pr_warn("md/raid1:%s: reshape_position set but not supported\n", | 
|  | mdname(mddev)); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * copy the already verified devices into our private RAID1 | 
|  | * bookkeeping area. [whatever we allocate in run(), | 
|  | * should be freed in raid1_free()] | 
|  | */ | 
|  | if (mddev->private == NULL) | 
|  | conf = setup_conf(mddev); | 
|  | else | 
|  | conf = mddev->private; | 
|  |  | 
|  | if (IS_ERR(conf)) | 
|  | return PTR_ERR(conf); | 
|  |  | 
|  | if (!mddev_is_dm(mddev)) { | 
|  | ret = raid1_set_limits(mddev); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | mddev->degraded = 0; | 
|  | for (i = 0; i < conf->raid_disks; i++) | 
|  | if (conf->mirrors[i].rdev == NULL || | 
|  | !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || | 
|  | test_bit(Faulty, &conf->mirrors[i].rdev->flags)) | 
|  | mddev->degraded++; | 
|  | /* | 
|  | * RAID1 needs at least one disk in active | 
|  | */ | 
|  | if (conf->raid_disks - mddev->degraded < 1) { | 
|  | md_unregister_thread(mddev, &conf->thread); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (conf->raid_disks - mddev->degraded == 1) | 
|  | mddev->recovery_cp = MaxSector; | 
|  |  | 
|  | if (mddev->recovery_cp != MaxSector) | 
|  | pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", | 
|  | mdname(mddev)); | 
|  | pr_info("md/raid1:%s: active with %d out of %d mirrors\n", | 
|  | mdname(mddev), mddev->raid_disks - mddev->degraded, | 
|  | mddev->raid_disks); | 
|  |  | 
|  | /* | 
|  | * Ok, everything is just fine now | 
|  | */ | 
|  | rcu_assign_pointer(mddev->thread, conf->thread); | 
|  | rcu_assign_pointer(conf->thread, NULL); | 
|  | mddev->private = conf; | 
|  | set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); | 
|  |  | 
|  | md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); | 
|  |  | 
|  | ret = md_integrity_register(mddev); | 
|  | if (ret) | 
|  | md_unregister_thread(mddev, &mddev->thread); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void raid1_free(struct mddev *mddev, void *priv) | 
|  | { | 
|  | struct r1conf *conf = priv; | 
|  |  | 
|  | mempool_exit(&conf->r1bio_pool); | 
|  | kfree(conf->mirrors); | 
|  | safe_put_page(conf->tmppage); | 
|  | kfree(conf->poolinfo); | 
|  | kfree(conf->nr_pending); | 
|  | kfree(conf->nr_waiting); | 
|  | kfree(conf->nr_queued); | 
|  | kfree(conf->barrier); | 
|  | bioset_exit(&conf->bio_split); | 
|  | kfree(conf); | 
|  | } | 
|  |  | 
|  | static int raid1_resize(struct mddev *mddev, sector_t sectors) | 
|  | { | 
|  | /* no resync is happening, and there is enough space | 
|  | * on all devices, so we can resize. | 
|  | * We need to make sure resync covers any new space. | 
|  | * If the array is shrinking we should possibly wait until | 
|  | * any io in the removed space completes, but it hardly seems | 
|  | * worth it. | 
|  | */ | 
|  | sector_t newsize = raid1_size(mddev, sectors, 0); | 
|  | int ret; | 
|  |  | 
|  | if (mddev->external_size && | 
|  | mddev->array_sectors > newsize) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | md_set_array_sectors(mddev, newsize); | 
|  | if (sectors > mddev->dev_sectors && | 
|  | mddev->recovery_cp > mddev->dev_sectors) { | 
|  | mddev->recovery_cp = mddev->dev_sectors; | 
|  | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
|  | } | 
|  | mddev->dev_sectors = sectors; | 
|  | mddev->resync_max_sectors = sectors; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int raid1_reshape(struct mddev *mddev) | 
|  | { | 
|  | /* We need to: | 
|  | * 1/ resize the r1bio_pool | 
|  | * 2/ resize conf->mirrors | 
|  | * | 
|  | * We allocate a new r1bio_pool if we can. | 
|  | * Then raise a device barrier and wait until all IO stops. | 
|  | * Then resize conf->mirrors and swap in the new r1bio pool. | 
|  | * | 
|  | * At the same time, we "pack" the devices so that all the missing | 
|  | * devices have the higher raid_disk numbers. | 
|  | */ | 
|  | mempool_t newpool, oldpool; | 
|  | struct pool_info *newpoolinfo; | 
|  | struct raid1_info *newmirrors; | 
|  | struct r1conf *conf = mddev->private; | 
|  | int cnt, raid_disks; | 
|  | unsigned long flags; | 
|  | int d, d2; | 
|  | int ret; | 
|  |  | 
|  | memset(&newpool, 0, sizeof(newpool)); | 
|  | memset(&oldpool, 0, sizeof(oldpool)); | 
|  |  | 
|  | /* Cannot change chunk_size, layout, or level */ | 
|  | if (mddev->chunk_sectors != mddev->new_chunk_sectors || | 
|  | mddev->layout != mddev->new_layout || | 
|  | mddev->level != mddev->new_level) { | 
|  | mddev->new_chunk_sectors = mddev->chunk_sectors; | 
|  | mddev->new_layout = mddev->layout; | 
|  | mddev->new_level = mddev->level; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!mddev_is_clustered(mddev)) | 
|  | md_allow_write(mddev); | 
|  |  | 
|  | raid_disks = mddev->raid_disks + mddev->delta_disks; | 
|  |  | 
|  | if (raid_disks < conf->raid_disks) { | 
|  | cnt=0; | 
|  | for (d= 0; d < conf->raid_disks; d++) | 
|  | if (conf->mirrors[d].rdev) | 
|  | cnt++; | 
|  | if (cnt > raid_disks) | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); | 
|  | if (!newpoolinfo) | 
|  | return -ENOMEM; | 
|  | newpoolinfo->mddev = mddev; | 
|  | newpoolinfo->raid_disks = raid_disks * 2; | 
|  |  | 
|  | ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, | 
|  | rbio_pool_free, newpoolinfo); | 
|  | if (ret) { | 
|  | kfree(newpoolinfo); | 
|  | return ret; | 
|  | } | 
|  | newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), | 
|  | raid_disks, 2), | 
|  | GFP_KERNEL); | 
|  | if (!newmirrors) { | 
|  | kfree(newpoolinfo); | 
|  | mempool_exit(&newpool); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | freeze_array(conf, 0); | 
|  |  | 
|  | /* ok, everything is stopped */ | 
|  | oldpool = conf->r1bio_pool; | 
|  | conf->r1bio_pool = newpool; | 
|  |  | 
|  | for (d = d2 = 0; d < conf->raid_disks; d++) { | 
|  | struct md_rdev *rdev = conf->mirrors[d].rdev; | 
|  | if (rdev && rdev->raid_disk != d2) { | 
|  | sysfs_unlink_rdev(mddev, rdev); | 
|  | rdev->raid_disk = d2; | 
|  | sysfs_unlink_rdev(mddev, rdev); | 
|  | if (sysfs_link_rdev(mddev, rdev)) | 
|  | pr_warn("md/raid1:%s: cannot register rd%d\n", | 
|  | mdname(mddev), rdev->raid_disk); | 
|  | } | 
|  | if (rdev) | 
|  | newmirrors[d2++].rdev = rdev; | 
|  | } | 
|  | kfree(conf->mirrors); | 
|  | conf->mirrors = newmirrors; | 
|  | kfree(conf->poolinfo); | 
|  | conf->poolinfo = newpoolinfo; | 
|  |  | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | mddev->degraded += (raid_disks - conf->raid_disks); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | conf->raid_disks = mddev->raid_disks = raid_disks; | 
|  | mddev->delta_disks = 0; | 
|  |  | 
|  | unfreeze_array(conf); | 
|  |  | 
|  | set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); | 
|  | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
|  | md_wakeup_thread(mddev->thread); | 
|  |  | 
|  | mempool_exit(&oldpool); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void raid1_quiesce(struct mddev *mddev, int quiesce) | 
|  | { | 
|  | struct r1conf *conf = mddev->private; | 
|  |  | 
|  | if (quiesce) | 
|  | freeze_array(conf, 0); | 
|  | else | 
|  | unfreeze_array(conf); | 
|  | } | 
|  |  | 
|  | static void *raid1_takeover(struct mddev *mddev) | 
|  | { | 
|  | /* raid1 can take over: | 
|  | *  raid5 with 2 devices, any layout or chunk size | 
|  | */ | 
|  | if (mddev->level == 5 && mddev->raid_disks == 2) { | 
|  | struct r1conf *conf; | 
|  | mddev->new_level = 1; | 
|  | mddev->new_layout = 0; | 
|  | mddev->new_chunk_sectors = 0; | 
|  | conf = setup_conf(mddev); | 
|  | if (!IS_ERR(conf)) { | 
|  | /* Array must appear to be quiesced */ | 
|  | conf->array_frozen = 1; | 
|  | mddev_clear_unsupported_flags(mddev, | 
|  | UNSUPPORTED_MDDEV_FLAGS); | 
|  | } | 
|  | return conf; | 
|  | } | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | static struct md_personality raid1_personality = | 
|  | { | 
|  | .name		= "raid1", | 
|  | .level		= 1, | 
|  | .owner		= THIS_MODULE, | 
|  | .make_request	= raid1_make_request, | 
|  | .run		= raid1_run, | 
|  | .free		= raid1_free, | 
|  | .status		= raid1_status, | 
|  | .error_handler	= raid1_error, | 
|  | .hot_add_disk	= raid1_add_disk, | 
|  | .hot_remove_disk= raid1_remove_disk, | 
|  | .spare_active	= raid1_spare_active, | 
|  | .sync_request	= raid1_sync_request, | 
|  | .resize		= raid1_resize, | 
|  | .size		= raid1_size, | 
|  | .check_reshape	= raid1_reshape, | 
|  | .quiesce	= raid1_quiesce, | 
|  | .takeover	= raid1_takeover, | 
|  | }; | 
|  |  | 
|  | static int __init raid_init(void) | 
|  | { | 
|  | return register_md_personality(&raid1_personality); | 
|  | } | 
|  |  | 
|  | static void raid_exit(void) | 
|  | { | 
|  | unregister_md_personality(&raid1_personality); | 
|  | } | 
|  |  | 
|  | module_init(raid_init); | 
|  | module_exit(raid_exit); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); | 
|  | MODULE_ALIAS("md-personality-3"); /* RAID1 */ | 
|  | MODULE_ALIAS("md-raid1"); | 
|  | MODULE_ALIAS("md-level-1"); |