|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Based on arch/arm/mm/context.c | 
|  | * | 
|  | * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved. | 
|  | * Copyright (C) 2012 ARM Ltd. | 
|  | */ | 
|  |  | 
|  | #include <linux/bitfield.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mm.h> | 
|  |  | 
|  | #include <asm/cpufeature.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | static u32 asid_bits; | 
|  | static DEFINE_RAW_SPINLOCK(cpu_asid_lock); | 
|  |  | 
|  | static atomic64_t asid_generation; | 
|  | static unsigned long *asid_map; | 
|  |  | 
|  | static DEFINE_PER_CPU(atomic64_t, active_asids); | 
|  | static DEFINE_PER_CPU(u64, reserved_asids); | 
|  | static cpumask_t tlb_flush_pending; | 
|  |  | 
|  | static unsigned long max_pinned_asids; | 
|  | static unsigned long nr_pinned_asids; | 
|  | static unsigned long *pinned_asid_map; | 
|  |  | 
|  | #define ASID_MASK		(~GENMASK(asid_bits - 1, 0)) | 
|  | #define ASID_FIRST_VERSION	(1UL << asid_bits) | 
|  |  | 
|  | #define NUM_USER_ASIDS		ASID_FIRST_VERSION | 
|  | #define ctxid2asid(asid)	((asid) & ~ASID_MASK) | 
|  | #define asid2ctxid(asid, genid)	((asid) | (genid)) | 
|  |  | 
|  | /* Get the ASIDBits supported by the current CPU */ | 
|  | static u32 get_cpu_asid_bits(void) | 
|  | { | 
|  | u32 asid; | 
|  | int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1), | 
|  | ID_AA64MMFR0_EL1_ASIDBITS_SHIFT); | 
|  |  | 
|  | switch (fld) { | 
|  | default: | 
|  | pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n", | 
|  | smp_processor_id(),  fld); | 
|  | fallthrough; | 
|  | case ID_AA64MMFR0_EL1_ASIDBITS_8: | 
|  | asid = 8; | 
|  | break; | 
|  | case ID_AA64MMFR0_EL1_ASIDBITS_16: | 
|  | asid = 16; | 
|  | } | 
|  |  | 
|  | return asid; | 
|  | } | 
|  |  | 
|  | /* Check if the current cpu's ASIDBits is compatible with asid_bits */ | 
|  | void verify_cpu_asid_bits(void) | 
|  | { | 
|  | u32 asid = get_cpu_asid_bits(); | 
|  |  | 
|  | if (asid < asid_bits) { | 
|  | /* | 
|  | * We cannot decrease the ASID size at runtime, so panic if we support | 
|  | * fewer ASID bits than the boot CPU. | 
|  | */ | 
|  | pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n", | 
|  | smp_processor_id(), asid, asid_bits); | 
|  | cpu_panic_kernel(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_kpti_asid_bits(unsigned long *map) | 
|  | { | 
|  | unsigned int len = BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(unsigned long); | 
|  | /* | 
|  | * In case of KPTI kernel/user ASIDs are allocated in | 
|  | * pairs, the bottom bit distinguishes the two: if it | 
|  | * is set, then the ASID will map only userspace. Thus | 
|  | * mark even as reserved for kernel. | 
|  | */ | 
|  | memset(map, 0xaa, len); | 
|  | } | 
|  |  | 
|  | static void set_reserved_asid_bits(void) | 
|  | { | 
|  | if (pinned_asid_map) | 
|  | bitmap_copy(asid_map, pinned_asid_map, NUM_USER_ASIDS); | 
|  | else if (arm64_kernel_unmapped_at_el0()) | 
|  | set_kpti_asid_bits(asid_map); | 
|  | else | 
|  | bitmap_clear(asid_map, 0, NUM_USER_ASIDS); | 
|  | } | 
|  |  | 
|  | #define asid_gen_match(asid) \ | 
|  | (!(((asid) ^ atomic64_read(&asid_generation)) >> asid_bits)) | 
|  |  | 
|  | static void flush_context(void) | 
|  | { | 
|  | int i; | 
|  | u64 asid; | 
|  |  | 
|  | /* Update the list of reserved ASIDs and the ASID bitmap. */ | 
|  | set_reserved_asid_bits(); | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0); | 
|  | /* | 
|  | * If this CPU has already been through a | 
|  | * rollover, but hasn't run another task in | 
|  | * the meantime, we must preserve its reserved | 
|  | * ASID, as this is the only trace we have of | 
|  | * the process it is still running. | 
|  | */ | 
|  | if (asid == 0) | 
|  | asid = per_cpu(reserved_asids, i); | 
|  | __set_bit(ctxid2asid(asid), asid_map); | 
|  | per_cpu(reserved_asids, i) = asid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue a TLB invalidation for each CPU to perform on next | 
|  | * context-switch | 
|  | */ | 
|  | cpumask_setall(&tlb_flush_pending); | 
|  | } | 
|  |  | 
|  | static bool check_update_reserved_asid(u64 asid, u64 newasid) | 
|  | { | 
|  | int cpu; | 
|  | bool hit = false; | 
|  |  | 
|  | /* | 
|  | * Iterate over the set of reserved ASIDs looking for a match. | 
|  | * If we find one, then we can update our mm to use newasid | 
|  | * (i.e. the same ASID in the current generation) but we can't | 
|  | * exit the loop early, since we need to ensure that all copies | 
|  | * of the old ASID are updated to reflect the mm. Failure to do | 
|  | * so could result in us missing the reserved ASID in a future | 
|  | * generation. | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | if (per_cpu(reserved_asids, cpu) == asid) { | 
|  | hit = true; | 
|  | per_cpu(reserved_asids, cpu) = newasid; | 
|  | } | 
|  | } | 
|  |  | 
|  | return hit; | 
|  | } | 
|  |  | 
|  | static u64 new_context(struct mm_struct *mm) | 
|  | { | 
|  | static u32 cur_idx = 1; | 
|  | u64 asid = atomic64_read(&mm->context.id); | 
|  | u64 generation = atomic64_read(&asid_generation); | 
|  |  | 
|  | if (asid != 0) { | 
|  | u64 newasid = asid2ctxid(ctxid2asid(asid), generation); | 
|  |  | 
|  | /* | 
|  | * If our current ASID was active during a rollover, we | 
|  | * can continue to use it and this was just a false alarm. | 
|  | */ | 
|  | if (check_update_reserved_asid(asid, newasid)) | 
|  | return newasid; | 
|  |  | 
|  | /* | 
|  | * If it is pinned, we can keep using it. Note that reserved | 
|  | * takes priority, because even if it is also pinned, we need to | 
|  | * update the generation into the reserved_asids. | 
|  | */ | 
|  | if (refcount_read(&mm->context.pinned)) | 
|  | return newasid; | 
|  |  | 
|  | /* | 
|  | * We had a valid ASID in a previous life, so try to re-use | 
|  | * it if possible. | 
|  | */ | 
|  | if (!__test_and_set_bit(ctxid2asid(asid), asid_map)) | 
|  | return newasid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a free ASID. If we can't find one, take a note of the | 
|  | * currently active ASIDs and mark the TLBs as requiring flushes.  We | 
|  | * always count from ASID #2 (index 1), as we use ASID #0 when setting | 
|  | * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd | 
|  | * pairs. | 
|  | */ | 
|  | asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx); | 
|  | if (asid != NUM_USER_ASIDS) | 
|  | goto set_asid; | 
|  |  | 
|  | /* We're out of ASIDs, so increment the global generation count */ | 
|  | generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION, | 
|  | &asid_generation); | 
|  | flush_context(); | 
|  |  | 
|  | /* We have more ASIDs than CPUs, so this will always succeed */ | 
|  | asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1); | 
|  |  | 
|  | set_asid: | 
|  | __set_bit(asid, asid_map); | 
|  | cur_idx = asid; | 
|  | return asid2ctxid(asid, generation); | 
|  | } | 
|  |  | 
|  | void check_and_switch_context(struct mm_struct *mm) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned int cpu; | 
|  | u64 asid, old_active_asid; | 
|  |  | 
|  | if (system_supports_cnp()) | 
|  | cpu_set_reserved_ttbr0(); | 
|  |  | 
|  | asid = atomic64_read(&mm->context.id); | 
|  |  | 
|  | /* | 
|  | * The memory ordering here is subtle. | 
|  | * If our active_asids is non-zero and the ASID matches the current | 
|  | * generation, then we update the active_asids entry with a relaxed | 
|  | * cmpxchg. Racing with a concurrent rollover means that either: | 
|  | * | 
|  | * - We get a zero back from the cmpxchg and end up waiting on the | 
|  | *   lock. Taking the lock synchronises with the rollover and so | 
|  | *   we are forced to see the updated generation. | 
|  | * | 
|  | * - We get a valid ASID back from the cmpxchg, which means the | 
|  | *   relaxed xchg in flush_context will treat us as reserved | 
|  | *   because atomic RmWs are totally ordered for a given location. | 
|  | */ | 
|  | old_active_asid = atomic64_read(this_cpu_ptr(&active_asids)); | 
|  | if (old_active_asid && asid_gen_match(asid) && | 
|  | atomic64_cmpxchg_relaxed(this_cpu_ptr(&active_asids), | 
|  | old_active_asid, asid)) | 
|  | goto switch_mm_fastpath; | 
|  |  | 
|  | raw_spin_lock_irqsave(&cpu_asid_lock, flags); | 
|  | /* Check that our ASID belongs to the current generation. */ | 
|  | asid = atomic64_read(&mm->context.id); | 
|  | if (!asid_gen_match(asid)) { | 
|  | asid = new_context(mm); | 
|  | atomic64_set(&mm->context.id, asid); | 
|  | } | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  | if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending)) | 
|  | local_flush_tlb_all(); | 
|  |  | 
|  | atomic64_set(this_cpu_ptr(&active_asids), asid); | 
|  | raw_spin_unlock_irqrestore(&cpu_asid_lock, flags); | 
|  |  | 
|  | switch_mm_fastpath: | 
|  |  | 
|  | arm64_apply_bp_hardening(); | 
|  |  | 
|  | /* | 
|  | * Defer TTBR0_EL1 setting for user threads to uaccess_enable() when | 
|  | * emulating PAN. | 
|  | */ | 
|  | if (!system_uses_ttbr0_pan()) | 
|  | cpu_switch_mm(mm->pgd, mm); | 
|  | } | 
|  |  | 
|  | unsigned long arm64_mm_context_get(struct mm_struct *mm) | 
|  | { | 
|  | unsigned long flags; | 
|  | u64 asid; | 
|  |  | 
|  | if (!pinned_asid_map) | 
|  | return 0; | 
|  |  | 
|  | raw_spin_lock_irqsave(&cpu_asid_lock, flags); | 
|  |  | 
|  | asid = atomic64_read(&mm->context.id); | 
|  |  | 
|  | if (refcount_inc_not_zero(&mm->context.pinned)) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (nr_pinned_asids >= max_pinned_asids) { | 
|  | asid = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (!asid_gen_match(asid)) { | 
|  | /* | 
|  | * We went through one or more rollover since that ASID was | 
|  | * used. Ensure that it is still valid, or generate a new one. | 
|  | */ | 
|  | asid = new_context(mm); | 
|  | atomic64_set(&mm->context.id, asid); | 
|  | } | 
|  |  | 
|  | nr_pinned_asids++; | 
|  | __set_bit(ctxid2asid(asid), pinned_asid_map); | 
|  | refcount_set(&mm->context.pinned, 1); | 
|  |  | 
|  | out_unlock: | 
|  | raw_spin_unlock_irqrestore(&cpu_asid_lock, flags); | 
|  |  | 
|  | asid = ctxid2asid(asid); | 
|  |  | 
|  | /* Set the equivalent of USER_ASID_BIT */ | 
|  | if (asid && arm64_kernel_unmapped_at_el0()) | 
|  | asid |= 1; | 
|  |  | 
|  | return asid; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(arm64_mm_context_get); | 
|  |  | 
|  | void arm64_mm_context_put(struct mm_struct *mm) | 
|  | { | 
|  | unsigned long flags; | 
|  | u64 asid = atomic64_read(&mm->context.id); | 
|  |  | 
|  | if (!pinned_asid_map) | 
|  | return; | 
|  |  | 
|  | raw_spin_lock_irqsave(&cpu_asid_lock, flags); | 
|  |  | 
|  | if (refcount_dec_and_test(&mm->context.pinned)) { | 
|  | __clear_bit(ctxid2asid(asid), pinned_asid_map); | 
|  | nr_pinned_asids--; | 
|  | } | 
|  |  | 
|  | raw_spin_unlock_irqrestore(&cpu_asid_lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(arm64_mm_context_put); | 
|  |  | 
|  | /* Errata workaround post TTBRx_EL1 update. */ | 
|  | asmlinkage void post_ttbr_update_workaround(void) | 
|  | { | 
|  | if (!IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) | 
|  | return; | 
|  |  | 
|  | asm(ALTERNATIVE("nop; nop; nop", | 
|  | "ic iallu; dsb nsh; isb", | 
|  | ARM64_WORKAROUND_CAVIUM_27456)); | 
|  | } | 
|  |  | 
|  | void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm) | 
|  | { | 
|  | unsigned long ttbr1 = read_sysreg(ttbr1_el1); | 
|  | unsigned long asid = ASID(mm); | 
|  | unsigned long ttbr0 = phys_to_ttbr(pgd_phys); | 
|  |  | 
|  | /* Skip CNP for the reserved ASID */ | 
|  | if (system_supports_cnp() && asid) | 
|  | ttbr0 |= TTBR_CNP_BIT; | 
|  |  | 
|  | /* SW PAN needs a copy of the ASID in TTBR0 for entry */ | 
|  | if (IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN)) | 
|  | ttbr0 |= FIELD_PREP(TTBR_ASID_MASK, asid); | 
|  |  | 
|  | /* Set ASID in TTBR1 since TCR.A1 is set */ | 
|  | ttbr1 &= ~TTBR_ASID_MASK; | 
|  | ttbr1 |= FIELD_PREP(TTBR_ASID_MASK, asid); | 
|  |  | 
|  | cpu_set_reserved_ttbr0_nosync(); | 
|  | write_sysreg(ttbr1, ttbr1_el1); | 
|  | write_sysreg(ttbr0, ttbr0_el1); | 
|  | isb(); | 
|  | post_ttbr_update_workaround(); | 
|  | } | 
|  |  | 
|  | static int asids_update_limit(void) | 
|  | { | 
|  | unsigned long num_available_asids = NUM_USER_ASIDS; | 
|  |  | 
|  | if (arm64_kernel_unmapped_at_el0()) { | 
|  | num_available_asids /= 2; | 
|  | if (pinned_asid_map) | 
|  | set_kpti_asid_bits(pinned_asid_map); | 
|  | } | 
|  | /* | 
|  | * Expect allocation after rollover to fail if we don't have at least | 
|  | * one more ASID than CPUs. ASID #0 is reserved for init_mm. | 
|  | */ | 
|  | WARN_ON(num_available_asids - 1 <= num_possible_cpus()); | 
|  | pr_info("ASID allocator initialised with %lu entries\n", | 
|  | num_available_asids); | 
|  |  | 
|  | /* | 
|  | * There must always be an ASID available after rollover. Ensure that, | 
|  | * even if all CPUs have a reserved ASID and the maximum number of ASIDs | 
|  | * are pinned, there still is at least one empty slot in the ASID map. | 
|  | */ | 
|  | max_pinned_asids = num_available_asids - num_possible_cpus() - 2; | 
|  | return 0; | 
|  | } | 
|  | arch_initcall(asids_update_limit); | 
|  |  | 
|  | static int asids_init(void) | 
|  | { | 
|  | asid_bits = get_cpu_asid_bits(); | 
|  | atomic64_set(&asid_generation, ASID_FIRST_VERSION); | 
|  | asid_map = bitmap_zalloc(NUM_USER_ASIDS, GFP_KERNEL); | 
|  | if (!asid_map) | 
|  | panic("Failed to allocate bitmap for %lu ASIDs\n", | 
|  | NUM_USER_ASIDS); | 
|  |  | 
|  | pinned_asid_map = bitmap_zalloc(NUM_USER_ASIDS, GFP_KERNEL); | 
|  | nr_pinned_asids = 0; | 
|  |  | 
|  | /* | 
|  | * We cannot call set_reserved_asid_bits() here because CPU | 
|  | * caps are not finalized yet, so it is safer to assume KPTI | 
|  | * and reserve kernel ASID's from beginning. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) | 
|  | set_kpti_asid_bits(asid_map); | 
|  | return 0; | 
|  | } | 
|  | early_initcall(asids_init); |