|  | /* | 
|  | * Generic binary BCH encoding/decoding library | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published by | 
|  | * the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., 51 | 
|  | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | * | 
|  | * Copyright © 2011 Parrot S.A. | 
|  | * | 
|  | * Author: Ivan Djelic <ivan.djelic@parrot.com> | 
|  | * | 
|  | * Description: | 
|  | * | 
|  | * This library provides runtime configurable encoding/decoding of binary | 
|  | * Bose-Chaudhuri-Hocquenghem (BCH) codes. | 
|  | * | 
|  | * Call bch_init to get a pointer to a newly allocated bch_control structure for | 
|  | * the given m (Galois field order), t (error correction capability) and | 
|  | * (optional) primitive polynomial parameters. | 
|  | * | 
|  | * Call bch_encode to compute and store ecc parity bytes to a given buffer. | 
|  | * Call bch_decode to detect and locate errors in received data. | 
|  | * | 
|  | * On systems supporting hw BCH features, intermediate results may be provided | 
|  | * to bch_decode in order to skip certain steps. See bch_decode() documentation | 
|  | * for details. | 
|  | * | 
|  | * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of | 
|  | * parameters m and t; thus allowing extra compiler optimizations and providing | 
|  | * better (up to 2x) encoding performance. Using this option makes sense when | 
|  | * (m,t) are fixed and known in advance, e.g. when using BCH error correction | 
|  | * on a particular NAND flash device. | 
|  | * | 
|  | * Algorithmic details: | 
|  | * | 
|  | * Encoding is performed by processing 32 input bits in parallel, using 4 | 
|  | * remainder lookup tables. | 
|  | * | 
|  | * The final stage of decoding involves the following internal steps: | 
|  | * a. Syndrome computation | 
|  | * b. Error locator polynomial computation using Berlekamp-Massey algorithm | 
|  | * c. Error locator root finding (by far the most expensive step) | 
|  | * | 
|  | * In this implementation, step c is not performed using the usual Chien search. | 
|  | * Instead, an alternative approach described in [1] is used. It consists in | 
|  | * factoring the error locator polynomial using the Berlekamp Trace algorithm | 
|  | * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial | 
|  | * solving techniques [2] are used. The resulting algorithm, called BTZ, yields | 
|  | * much better performance than Chien search for usual (m,t) values (typically | 
|  | * m >= 13, t < 32, see [1]). | 
|  | * | 
|  | * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields | 
|  | * of characteristic 2, in: Western European Workshop on Research in Cryptology | 
|  | * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. | 
|  | * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over | 
|  | * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/bitrev.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include <linux/bch.h> | 
|  |  | 
|  | #if defined(CONFIG_BCH_CONST_PARAMS) | 
|  | #define GF_M(_p)               (CONFIG_BCH_CONST_M) | 
|  | #define GF_T(_p)               (CONFIG_BCH_CONST_T) | 
|  | #define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1) | 
|  | #define BCH_MAX_M              (CONFIG_BCH_CONST_M) | 
|  | #define BCH_MAX_T	       (CONFIG_BCH_CONST_T) | 
|  | #else | 
|  | #define GF_M(_p)               ((_p)->m) | 
|  | #define GF_T(_p)               ((_p)->t) | 
|  | #define GF_N(_p)               ((_p)->n) | 
|  | #define BCH_MAX_M              15 /* 2KB */ | 
|  | #define BCH_MAX_T              64 /* 64 bit correction */ | 
|  | #endif | 
|  |  | 
|  | #define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) | 
|  | #define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) | 
|  |  | 
|  | #define BCH_ECC_MAX_WORDS      DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32) | 
|  |  | 
|  | #ifndef dbg | 
|  | #define dbg(_fmt, args...)     do {} while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * represent a polynomial over GF(2^m) | 
|  | */ | 
|  | struct gf_poly { | 
|  | unsigned int deg;    /* polynomial degree */ | 
|  | unsigned int c[];   /* polynomial terms */ | 
|  | }; | 
|  |  | 
|  | /* given its degree, compute a polynomial size in bytes */ | 
|  | #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) | 
|  |  | 
|  | /* polynomial of degree 1 */ | 
|  | struct gf_poly_deg1 { | 
|  | struct gf_poly poly; | 
|  | unsigned int   c[2]; | 
|  | }; | 
|  |  | 
|  | static u8 swap_bits(struct bch_control *bch, u8 in) | 
|  | { | 
|  | if (!bch->swap_bits) | 
|  | return in; | 
|  |  | 
|  | return bitrev8(in); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * same as bch_encode(), but process input data one byte at a time | 
|  | */ | 
|  | static void bch_encode_unaligned(struct bch_control *bch, | 
|  | const unsigned char *data, unsigned int len, | 
|  | uint32_t *ecc) | 
|  | { | 
|  | int i; | 
|  | const uint32_t *p; | 
|  | const int l = BCH_ECC_WORDS(bch)-1; | 
|  |  | 
|  | while (len--) { | 
|  | u8 tmp = swap_bits(bch, *data++); | 
|  |  | 
|  | p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(tmp)) & 0xff); | 
|  |  | 
|  | for (i = 0; i < l; i++) | 
|  | ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); | 
|  |  | 
|  | ecc[l] = (ecc[l] << 8)^(*p); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * convert ecc bytes to aligned, zero-padded 32-bit ecc words | 
|  | */ | 
|  | static void load_ecc8(struct bch_control *bch, uint32_t *dst, | 
|  | const uint8_t *src) | 
|  | { | 
|  | uint8_t pad[4] = {0, 0, 0, 0}; | 
|  | unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; | 
|  |  | 
|  | for (i = 0; i < nwords; i++, src += 4) | 
|  | dst[i] = ((u32)swap_bits(bch, src[0]) << 24) | | 
|  | ((u32)swap_bits(bch, src[1]) << 16) | | 
|  | ((u32)swap_bits(bch, src[2]) << 8) | | 
|  | swap_bits(bch, src[3]); | 
|  |  | 
|  | memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); | 
|  | dst[nwords] = ((u32)swap_bits(bch, pad[0]) << 24) | | 
|  | ((u32)swap_bits(bch, pad[1]) << 16) | | 
|  | ((u32)swap_bits(bch, pad[2]) << 8) | | 
|  | swap_bits(bch, pad[3]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * convert 32-bit ecc words to ecc bytes | 
|  | */ | 
|  | static void store_ecc8(struct bch_control *bch, uint8_t *dst, | 
|  | const uint32_t *src) | 
|  | { | 
|  | uint8_t pad[4]; | 
|  | unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; | 
|  |  | 
|  | for (i = 0; i < nwords; i++) { | 
|  | *dst++ = swap_bits(bch, src[i] >> 24); | 
|  | *dst++ = swap_bits(bch, src[i] >> 16); | 
|  | *dst++ = swap_bits(bch, src[i] >> 8); | 
|  | *dst++ = swap_bits(bch, src[i]); | 
|  | } | 
|  | pad[0] = swap_bits(bch, src[nwords] >> 24); | 
|  | pad[1] = swap_bits(bch, src[nwords] >> 16); | 
|  | pad[2] = swap_bits(bch, src[nwords] >> 8); | 
|  | pad[3] = swap_bits(bch, src[nwords]); | 
|  | memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bch_encode - calculate BCH ecc parity of data | 
|  | * @bch:   BCH control structure | 
|  | * @data:  data to encode | 
|  | * @len:   data length in bytes | 
|  | * @ecc:   ecc parity data, must be initialized by caller | 
|  | * | 
|  | * The @ecc parity array is used both as input and output parameter, in order to | 
|  | * allow incremental computations. It should be of the size indicated by member | 
|  | * @ecc_bytes of @bch, and should be initialized to 0 before the first call. | 
|  | * | 
|  | * The exact number of computed ecc parity bits is given by member @ecc_bits of | 
|  | * @bch; it may be less than m*t for large values of t. | 
|  | */ | 
|  | void bch_encode(struct bch_control *bch, const uint8_t *data, | 
|  | unsigned int len, uint8_t *ecc) | 
|  | { | 
|  | const unsigned int l = BCH_ECC_WORDS(bch)-1; | 
|  | unsigned int i, mlen; | 
|  | unsigned long m; | 
|  | uint32_t w, r[BCH_ECC_MAX_WORDS]; | 
|  | const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r); | 
|  | const uint32_t * const tab0 = bch->mod8_tab; | 
|  | const uint32_t * const tab1 = tab0 + 256*(l+1); | 
|  | const uint32_t * const tab2 = tab1 + 256*(l+1); | 
|  | const uint32_t * const tab3 = tab2 + 256*(l+1); | 
|  | const uint32_t *pdata, *p0, *p1, *p2, *p3; | 
|  |  | 
|  | if (WARN_ON(r_bytes > sizeof(r))) | 
|  | return; | 
|  |  | 
|  | if (ecc) { | 
|  | /* load ecc parity bytes into internal 32-bit buffer */ | 
|  | load_ecc8(bch, bch->ecc_buf, ecc); | 
|  | } else { | 
|  | memset(bch->ecc_buf, 0, r_bytes); | 
|  | } | 
|  |  | 
|  | /* process first unaligned data bytes */ | 
|  | m = ((unsigned long)data) & 3; | 
|  | if (m) { | 
|  | mlen = (len < (4-m)) ? len : 4-m; | 
|  | bch_encode_unaligned(bch, data, mlen, bch->ecc_buf); | 
|  | data += mlen; | 
|  | len  -= mlen; | 
|  | } | 
|  |  | 
|  | /* process 32-bit aligned data words */ | 
|  | pdata = (uint32_t *)data; | 
|  | mlen  = len/4; | 
|  | data += 4*mlen; | 
|  | len  -= 4*mlen; | 
|  | memcpy(r, bch->ecc_buf, r_bytes); | 
|  |  | 
|  | /* | 
|  | * split each 32-bit word into 4 polynomials of weight 8 as follows: | 
|  | * | 
|  | * 31 ...24  23 ...16  15 ... 8  7 ... 0 | 
|  | * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt | 
|  | *                               tttttttt  mod g = r0 (precomputed) | 
|  | *                     zzzzzzzz  00000000  mod g = r1 (precomputed) | 
|  | *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed) | 
|  | * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed) | 
|  | * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3 | 
|  | */ | 
|  | while (mlen--) { | 
|  | /* input data is read in big-endian format */ | 
|  | w = cpu_to_be32(*pdata++); | 
|  | if (bch->swap_bits) | 
|  | w = (u32)swap_bits(bch, w) | | 
|  | ((u32)swap_bits(bch, w >> 8) << 8) | | 
|  | ((u32)swap_bits(bch, w >> 16) << 16) | | 
|  | ((u32)swap_bits(bch, w >> 24) << 24); | 
|  | w ^= r[0]; | 
|  | p0 = tab0 + (l+1)*((w >>  0) & 0xff); | 
|  | p1 = tab1 + (l+1)*((w >>  8) & 0xff); | 
|  | p2 = tab2 + (l+1)*((w >> 16) & 0xff); | 
|  | p3 = tab3 + (l+1)*((w >> 24) & 0xff); | 
|  |  | 
|  | for (i = 0; i < l; i++) | 
|  | r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; | 
|  |  | 
|  | r[l] = p0[l]^p1[l]^p2[l]^p3[l]; | 
|  | } | 
|  | memcpy(bch->ecc_buf, r, r_bytes); | 
|  |  | 
|  | /* process last unaligned bytes */ | 
|  | if (len) | 
|  | bch_encode_unaligned(bch, data, len, bch->ecc_buf); | 
|  |  | 
|  | /* store ecc parity bytes into original parity buffer */ | 
|  | if (ecc) | 
|  | store_ecc8(bch, ecc, bch->ecc_buf); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bch_encode); | 
|  |  | 
|  | static inline int modulo(struct bch_control *bch, unsigned int v) | 
|  | { | 
|  | const unsigned int n = GF_N(bch); | 
|  | while (v >= n) { | 
|  | v -= n; | 
|  | v = (v & n) + (v >> GF_M(bch)); | 
|  | } | 
|  | return v; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * shorter and faster modulo function, only works when v < 2N. | 
|  | */ | 
|  | static inline int mod_s(struct bch_control *bch, unsigned int v) | 
|  | { | 
|  | const unsigned int n = GF_N(bch); | 
|  | return (v < n) ? v : v-n; | 
|  | } | 
|  |  | 
|  | static inline int deg(unsigned int poly) | 
|  | { | 
|  | /* polynomial degree is the most-significant bit index */ | 
|  | return fls(poly)-1; | 
|  | } | 
|  |  | 
|  | static inline int parity(unsigned int x) | 
|  | { | 
|  | /* | 
|  | * public domain code snippet, lifted from | 
|  | * http://www-graphics.stanford.edu/~seander/bithacks.html | 
|  | */ | 
|  | x ^= x >> 1; | 
|  | x ^= x >> 2; | 
|  | x = (x & 0x11111111U) * 0x11111111U; | 
|  | return (x >> 28) & 1; | 
|  | } | 
|  |  | 
|  | /* Galois field basic operations: multiply, divide, inverse, etc. */ | 
|  |  | 
|  | static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, | 
|  | unsigned int b) | 
|  | { | 
|  | return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ | 
|  | bch->a_log_tab[b])] : 0; | 
|  | } | 
|  |  | 
|  | static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) | 
|  | { | 
|  | return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; | 
|  | } | 
|  |  | 
|  | static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, | 
|  | unsigned int b) | 
|  | { | 
|  | return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ | 
|  | GF_N(bch)-bch->a_log_tab[b])] : 0; | 
|  | } | 
|  |  | 
|  | static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) | 
|  | { | 
|  | return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; | 
|  | } | 
|  |  | 
|  | static inline unsigned int a_pow(struct bch_control *bch, int i) | 
|  | { | 
|  | return bch->a_pow_tab[modulo(bch, i)]; | 
|  | } | 
|  |  | 
|  | static inline int a_log(struct bch_control *bch, unsigned int x) | 
|  | { | 
|  | return bch->a_log_tab[x]; | 
|  | } | 
|  |  | 
|  | static inline int a_ilog(struct bch_control *bch, unsigned int x) | 
|  | { | 
|  | return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t | 
|  | */ | 
|  | static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, | 
|  | unsigned int *syn) | 
|  | { | 
|  | int i, j, s; | 
|  | unsigned int m; | 
|  | uint32_t poly; | 
|  | const int t = GF_T(bch); | 
|  |  | 
|  | s = bch->ecc_bits; | 
|  |  | 
|  | /* make sure extra bits in last ecc word are cleared */ | 
|  | m = ((unsigned int)s) & 31; | 
|  | if (m) | 
|  | ecc[s/32] &= ~((1u << (32-m))-1); | 
|  | memset(syn, 0, 2*t*sizeof(*syn)); | 
|  |  | 
|  | /* compute v(a^j) for j=1 .. 2t-1 */ | 
|  | do { | 
|  | poly = *ecc++; | 
|  | s -= 32; | 
|  | while (poly) { | 
|  | i = deg(poly); | 
|  | for (j = 0; j < 2*t; j += 2) | 
|  | syn[j] ^= a_pow(bch, (j+1)*(i+s)); | 
|  |  | 
|  | poly ^= (1 << i); | 
|  | } | 
|  | } while (s > 0); | 
|  |  | 
|  | /* v(a^(2j)) = v(a^j)^2 */ | 
|  | for (j = 0; j < t; j++) | 
|  | syn[2*j+1] = gf_sqr(bch, syn[j]); | 
|  | } | 
|  |  | 
|  | static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) | 
|  | { | 
|  | memcpy(dst, src, GF_POLY_SZ(src->deg)); | 
|  | } | 
|  |  | 
|  | static int compute_error_locator_polynomial(struct bch_control *bch, | 
|  | const unsigned int *syn) | 
|  | { | 
|  | const unsigned int t = GF_T(bch); | 
|  | const unsigned int n = GF_N(bch); | 
|  | unsigned int i, j, tmp, l, pd = 1, d = syn[0]; | 
|  | struct gf_poly *elp = bch->elp; | 
|  | struct gf_poly *pelp = bch->poly_2t[0]; | 
|  | struct gf_poly *elp_copy = bch->poly_2t[1]; | 
|  | int k, pp = -1; | 
|  |  | 
|  | memset(pelp, 0, GF_POLY_SZ(2*t)); | 
|  | memset(elp, 0, GF_POLY_SZ(2*t)); | 
|  |  | 
|  | pelp->deg = 0; | 
|  | pelp->c[0] = 1; | 
|  | elp->deg = 0; | 
|  | elp->c[0] = 1; | 
|  |  | 
|  | /* use simplified binary Berlekamp-Massey algorithm */ | 
|  | for (i = 0; (i < t) && (elp->deg <= t); i++) { | 
|  | if (d) { | 
|  | k = 2*i-pp; | 
|  | gf_poly_copy(elp_copy, elp); | 
|  | /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ | 
|  | tmp = a_log(bch, d)+n-a_log(bch, pd); | 
|  | for (j = 0; j <= pelp->deg; j++) { | 
|  | if (pelp->c[j]) { | 
|  | l = a_log(bch, pelp->c[j]); | 
|  | elp->c[j+k] ^= a_pow(bch, tmp+l); | 
|  | } | 
|  | } | 
|  | /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ | 
|  | tmp = pelp->deg+k; | 
|  | if (tmp > elp->deg) { | 
|  | elp->deg = tmp; | 
|  | gf_poly_copy(pelp, elp_copy); | 
|  | pd = d; | 
|  | pp = 2*i; | 
|  | } | 
|  | } | 
|  | /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ | 
|  | if (i < t-1) { | 
|  | d = syn[2*i+2]; | 
|  | for (j = 1; j <= elp->deg; j++) | 
|  | d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); | 
|  | } | 
|  | } | 
|  | dbg("elp=%s\n", gf_poly_str(elp)); | 
|  | return (elp->deg > t) ? -1 : (int)elp->deg; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * solve a m x m linear system in GF(2) with an expected number of solutions, | 
|  | * and return the number of found solutions | 
|  | */ | 
|  | static int solve_linear_system(struct bch_control *bch, unsigned int *rows, | 
|  | unsigned int *sol, int nsol) | 
|  | { | 
|  | const int m = GF_M(bch); | 
|  | unsigned int tmp, mask; | 
|  | int rem, c, r, p, k, param[BCH_MAX_M]; | 
|  |  | 
|  | k = 0; | 
|  | mask = 1 << m; | 
|  |  | 
|  | /* Gaussian elimination */ | 
|  | for (c = 0; c < m; c++) { | 
|  | rem = 0; | 
|  | p = c-k; | 
|  | /* find suitable row for elimination */ | 
|  | for (r = p; r < m; r++) { | 
|  | if (rows[r] & mask) { | 
|  | if (r != p) | 
|  | swap(rows[r], rows[p]); | 
|  | rem = r+1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (rem) { | 
|  | /* perform elimination on remaining rows */ | 
|  | tmp = rows[p]; | 
|  | for (r = rem; r < m; r++) { | 
|  | if (rows[r] & mask) | 
|  | rows[r] ^= tmp; | 
|  | } | 
|  | } else { | 
|  | /* elimination not needed, store defective row index */ | 
|  | param[k++] = c; | 
|  | } | 
|  | mask >>= 1; | 
|  | } | 
|  | /* rewrite system, inserting fake parameter rows */ | 
|  | if (k > 0) { | 
|  | p = k; | 
|  | for (r = m-1; r >= 0; r--) { | 
|  | if ((r > m-1-k) && rows[r]) | 
|  | /* system has no solution */ | 
|  | return 0; | 
|  |  | 
|  | rows[r] = (p && (r == param[p-1])) ? | 
|  | p--, 1u << (m-r) : rows[r-p]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nsol != (1 << k)) | 
|  | /* unexpected number of solutions */ | 
|  | return 0; | 
|  |  | 
|  | for (p = 0; p < nsol; p++) { | 
|  | /* set parameters for p-th solution */ | 
|  | for (c = 0; c < k; c++) | 
|  | rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); | 
|  |  | 
|  | /* compute unique solution */ | 
|  | tmp = 0; | 
|  | for (r = m-1; r >= 0; r--) { | 
|  | mask = rows[r] & (tmp|1); | 
|  | tmp |= parity(mask) << (m-r); | 
|  | } | 
|  | sol[p] = tmp >> 1; | 
|  | } | 
|  | return nsol; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this function builds and solves a linear system for finding roots of a degree | 
|  | * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). | 
|  | */ | 
|  | static int find_affine4_roots(struct bch_control *bch, unsigned int a, | 
|  | unsigned int b, unsigned int c, | 
|  | unsigned int *roots) | 
|  | { | 
|  | int i, j, k; | 
|  | const int m = GF_M(bch); | 
|  | unsigned int mask = 0xff, t, rows[16] = {0,}; | 
|  |  | 
|  | j = a_log(bch, b); | 
|  | k = a_log(bch, a); | 
|  | rows[0] = c; | 
|  |  | 
|  | /* build linear system to solve X^4+aX^2+bX+c = 0 */ | 
|  | for (i = 0; i < m; i++) { | 
|  | rows[i+1] = bch->a_pow_tab[4*i]^ | 
|  | (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ | 
|  | (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); | 
|  | j++; | 
|  | k += 2; | 
|  | } | 
|  | /* | 
|  | * transpose 16x16 matrix before passing it to linear solver | 
|  | * warning: this code assumes m < 16 | 
|  | */ | 
|  | for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { | 
|  | for (k = 0; k < 16; k = (k+j+1) & ~j) { | 
|  | t = ((rows[k] >> j)^rows[k+j]) & mask; | 
|  | rows[k] ^= (t << j); | 
|  | rows[k+j] ^= t; | 
|  | } | 
|  | } | 
|  | return solve_linear_system(bch, rows, roots, 4); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) | 
|  | */ | 
|  | static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, | 
|  | unsigned int *roots) | 
|  | { | 
|  | int n = 0; | 
|  |  | 
|  | if (poly->c[0]) | 
|  | /* poly[X] = bX+c with c!=0, root=c/b */ | 
|  | roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ | 
|  | bch->a_log_tab[poly->c[1]]); | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compute roots of a degree 2 polynomial over GF(2^m) | 
|  | */ | 
|  | static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, | 
|  | unsigned int *roots) | 
|  | { | 
|  | int n = 0, i, l0, l1, l2; | 
|  | unsigned int u, v, r; | 
|  |  | 
|  | if (poly->c[0] && poly->c[1]) { | 
|  |  | 
|  | l0 = bch->a_log_tab[poly->c[0]]; | 
|  | l1 = bch->a_log_tab[poly->c[1]]; | 
|  | l2 = bch->a_log_tab[poly->c[2]]; | 
|  |  | 
|  | /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ | 
|  | u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); | 
|  | /* | 
|  | * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): | 
|  | * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = | 
|  | * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) | 
|  | * i.e. r and r+1 are roots iff Tr(u)=0 | 
|  | */ | 
|  | r = 0; | 
|  | v = u; | 
|  | while (v) { | 
|  | i = deg(v); | 
|  | r ^= bch->xi_tab[i]; | 
|  | v ^= (1 << i); | 
|  | } | 
|  | /* verify root */ | 
|  | if ((gf_sqr(bch, r)^r) == u) { | 
|  | /* reverse z=a/bX transformation and compute log(1/r) */ | 
|  | roots[n++] = modulo(bch, 2*GF_N(bch)-l1- | 
|  | bch->a_log_tab[r]+l2); | 
|  | roots[n++] = modulo(bch, 2*GF_N(bch)-l1- | 
|  | bch->a_log_tab[r^1]+l2); | 
|  | } | 
|  | } | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compute roots of a degree 3 polynomial over GF(2^m) | 
|  | */ | 
|  | static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, | 
|  | unsigned int *roots) | 
|  | { | 
|  | int i, n = 0; | 
|  | unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; | 
|  |  | 
|  | if (poly->c[0]) { | 
|  | /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ | 
|  | e3 = poly->c[3]; | 
|  | c2 = gf_div(bch, poly->c[0], e3); | 
|  | b2 = gf_div(bch, poly->c[1], e3); | 
|  | a2 = gf_div(bch, poly->c[2], e3); | 
|  |  | 
|  | /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ | 
|  | c = gf_mul(bch, a2, c2);           /* c = a2c2      */ | 
|  | b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */ | 
|  | a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */ | 
|  |  | 
|  | /* find the 4 roots of this affine polynomial */ | 
|  | if (find_affine4_roots(bch, a, b, c, tmp) == 4) { | 
|  | /* remove a2 from final list of roots */ | 
|  | for (i = 0; i < 4; i++) { | 
|  | if (tmp[i] != a2) | 
|  | roots[n++] = a_ilog(bch, tmp[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compute roots of a degree 4 polynomial over GF(2^m) | 
|  | */ | 
|  | static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, | 
|  | unsigned int *roots) | 
|  | { | 
|  | int i, l, n = 0; | 
|  | unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; | 
|  |  | 
|  | if (poly->c[0] == 0) | 
|  | return 0; | 
|  |  | 
|  | /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ | 
|  | e4 = poly->c[4]; | 
|  | d = gf_div(bch, poly->c[0], e4); | 
|  | c = gf_div(bch, poly->c[1], e4); | 
|  | b = gf_div(bch, poly->c[2], e4); | 
|  | a = gf_div(bch, poly->c[3], e4); | 
|  |  | 
|  | /* use Y=1/X transformation to get an affine polynomial */ | 
|  | if (a) { | 
|  | /* first, eliminate cX by using z=X+e with ae^2+c=0 */ | 
|  | if (c) { | 
|  | /* compute e such that e^2 = c/a */ | 
|  | f = gf_div(bch, c, a); | 
|  | l = a_log(bch, f); | 
|  | l += (l & 1) ? GF_N(bch) : 0; | 
|  | e = a_pow(bch, l/2); | 
|  | /* | 
|  | * use transformation z=X+e: | 
|  | * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d | 
|  | * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d | 
|  | * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d | 
|  | * z^4 + az^3 +     b'z^2 + d' | 
|  | */ | 
|  | d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; | 
|  | b = gf_mul(bch, a, e)^b; | 
|  | } | 
|  | /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ | 
|  | if (d == 0) | 
|  | /* assume all roots have multiplicity 1 */ | 
|  | return 0; | 
|  |  | 
|  | c2 = gf_inv(bch, d); | 
|  | b2 = gf_div(bch, a, d); | 
|  | a2 = gf_div(bch, b, d); | 
|  | } else { | 
|  | /* polynomial is already affine */ | 
|  | c2 = d; | 
|  | b2 = c; | 
|  | a2 = b; | 
|  | } | 
|  | /* find the 4 roots of this affine polynomial */ | 
|  | if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { | 
|  | for (i = 0; i < 4; i++) { | 
|  | /* post-process roots (reverse transformations) */ | 
|  | f = a ? gf_inv(bch, roots[i]) : roots[i]; | 
|  | roots[i] = a_ilog(bch, f^e); | 
|  | } | 
|  | n = 4; | 
|  | } | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * build monic, log-based representation of a polynomial | 
|  | */ | 
|  | static void gf_poly_logrep(struct bch_control *bch, | 
|  | const struct gf_poly *a, int *rep) | 
|  | { | 
|  | int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); | 
|  |  | 
|  | /* represent 0 values with -1; warning, rep[d] is not set to 1 */ | 
|  | for (i = 0; i < d; i++) | 
|  | rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compute polynomial Euclidean division remainder in GF(2^m)[X] | 
|  | */ | 
|  | static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, | 
|  | const struct gf_poly *b, int *rep) | 
|  | { | 
|  | int la, p, m; | 
|  | unsigned int i, j, *c = a->c; | 
|  | const unsigned int d = b->deg; | 
|  |  | 
|  | if (a->deg < d) | 
|  | return; | 
|  |  | 
|  | /* reuse or compute log representation of denominator */ | 
|  | if (!rep) { | 
|  | rep = bch->cache; | 
|  | gf_poly_logrep(bch, b, rep); | 
|  | } | 
|  |  | 
|  | for (j = a->deg; j >= d; j--) { | 
|  | if (c[j]) { | 
|  | la = a_log(bch, c[j]); | 
|  | p = j-d; | 
|  | for (i = 0; i < d; i++, p++) { | 
|  | m = rep[i]; | 
|  | if (m >= 0) | 
|  | c[p] ^= bch->a_pow_tab[mod_s(bch, | 
|  | m+la)]; | 
|  | } | 
|  | } | 
|  | } | 
|  | a->deg = d-1; | 
|  | while (!c[a->deg] && a->deg) | 
|  | a->deg--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compute polynomial Euclidean division quotient in GF(2^m)[X] | 
|  | */ | 
|  | static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, | 
|  | const struct gf_poly *b, struct gf_poly *q) | 
|  | { | 
|  | if (a->deg >= b->deg) { | 
|  | q->deg = a->deg-b->deg; | 
|  | /* compute a mod b (modifies a) */ | 
|  | gf_poly_mod(bch, a, b, NULL); | 
|  | /* quotient is stored in upper part of polynomial a */ | 
|  | memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); | 
|  | } else { | 
|  | q->deg = 0; | 
|  | q->c[0] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] | 
|  | */ | 
|  | static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, | 
|  | struct gf_poly *b) | 
|  | { | 
|  | dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); | 
|  |  | 
|  | if (a->deg < b->deg) | 
|  | swap(a, b); | 
|  |  | 
|  | while (b->deg > 0) { | 
|  | gf_poly_mod(bch, a, b, NULL); | 
|  | swap(a, b); | 
|  | } | 
|  |  | 
|  | dbg("%s\n", gf_poly_str(a)); | 
|  |  | 
|  | return a; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a polynomial f and an integer k, compute Tr(a^kX) mod f | 
|  | * This is used in Berlekamp Trace algorithm for splitting polynomials | 
|  | */ | 
|  | static void compute_trace_bk_mod(struct bch_control *bch, int k, | 
|  | const struct gf_poly *f, struct gf_poly *z, | 
|  | struct gf_poly *out) | 
|  | { | 
|  | const int m = GF_M(bch); | 
|  | int i, j; | 
|  |  | 
|  | /* z contains z^2j mod f */ | 
|  | z->deg = 1; | 
|  | z->c[0] = 0; | 
|  | z->c[1] = bch->a_pow_tab[k]; | 
|  |  | 
|  | out->deg = 0; | 
|  | memset(out, 0, GF_POLY_SZ(f->deg)); | 
|  |  | 
|  | /* compute f log representation only once */ | 
|  | gf_poly_logrep(bch, f, bch->cache); | 
|  |  | 
|  | for (i = 0; i < m; i++) { | 
|  | /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ | 
|  | for (j = z->deg; j >= 0; j--) { | 
|  | out->c[j] ^= z->c[j]; | 
|  | z->c[2*j] = gf_sqr(bch, z->c[j]); | 
|  | z->c[2*j+1] = 0; | 
|  | } | 
|  | if (z->deg > out->deg) | 
|  | out->deg = z->deg; | 
|  |  | 
|  | if (i < m-1) { | 
|  | z->deg *= 2; | 
|  | /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ | 
|  | gf_poly_mod(bch, z, f, bch->cache); | 
|  | } | 
|  | } | 
|  | while (!out->c[out->deg] && out->deg) | 
|  | out->deg--; | 
|  |  | 
|  | dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * factor a polynomial using Berlekamp Trace algorithm (BTA) | 
|  | */ | 
|  | static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, | 
|  | struct gf_poly **g, struct gf_poly **h) | 
|  | { | 
|  | struct gf_poly *f2 = bch->poly_2t[0]; | 
|  | struct gf_poly *q  = bch->poly_2t[1]; | 
|  | struct gf_poly *tk = bch->poly_2t[2]; | 
|  | struct gf_poly *z  = bch->poly_2t[3]; | 
|  | struct gf_poly *gcd; | 
|  |  | 
|  | dbg("factoring %s...\n", gf_poly_str(f)); | 
|  |  | 
|  | *g = f; | 
|  | *h = NULL; | 
|  |  | 
|  | /* tk = Tr(a^k.X) mod f */ | 
|  | compute_trace_bk_mod(bch, k, f, z, tk); | 
|  |  | 
|  | if (tk->deg > 0) { | 
|  | /* compute g = gcd(f, tk) (destructive operation) */ | 
|  | gf_poly_copy(f2, f); | 
|  | gcd = gf_poly_gcd(bch, f2, tk); | 
|  | if (gcd->deg < f->deg) { | 
|  | /* compute h=f/gcd(f,tk); this will modify f and q */ | 
|  | gf_poly_div(bch, f, gcd, q); | 
|  | /* store g and h in-place (clobbering f) */ | 
|  | *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; | 
|  | gf_poly_copy(*g, gcd); | 
|  | gf_poly_copy(*h, q); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find roots of a polynomial, using BTZ algorithm; see the beginning of this | 
|  | * file for details | 
|  | */ | 
|  | static int find_poly_roots(struct bch_control *bch, unsigned int k, | 
|  | struct gf_poly *poly, unsigned int *roots) | 
|  | { | 
|  | int cnt; | 
|  | struct gf_poly *f1, *f2; | 
|  |  | 
|  | switch (poly->deg) { | 
|  | /* handle low degree polynomials with ad hoc techniques */ | 
|  | case 1: | 
|  | cnt = find_poly_deg1_roots(bch, poly, roots); | 
|  | break; | 
|  | case 2: | 
|  | cnt = find_poly_deg2_roots(bch, poly, roots); | 
|  | break; | 
|  | case 3: | 
|  | cnt = find_poly_deg3_roots(bch, poly, roots); | 
|  | break; | 
|  | case 4: | 
|  | cnt = find_poly_deg4_roots(bch, poly, roots); | 
|  | break; | 
|  | default: | 
|  | /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ | 
|  | cnt = 0; | 
|  | if (poly->deg && (k <= GF_M(bch))) { | 
|  | factor_polynomial(bch, k, poly, &f1, &f2); | 
|  | if (f1) | 
|  | cnt += find_poly_roots(bch, k+1, f1, roots); | 
|  | if (f2) | 
|  | cnt += find_poly_roots(bch, k+1, f2, roots+cnt); | 
|  | } | 
|  | break; | 
|  | } | 
|  | return cnt; | 
|  | } | 
|  |  | 
|  | #if defined(USE_CHIEN_SEARCH) | 
|  | /* | 
|  | * exhaustive root search (Chien) implementation - not used, included only for | 
|  | * reference/comparison tests | 
|  | */ | 
|  | static int chien_search(struct bch_control *bch, unsigned int len, | 
|  | struct gf_poly *p, unsigned int *roots) | 
|  | { | 
|  | int m; | 
|  | unsigned int i, j, syn, syn0, count = 0; | 
|  | const unsigned int k = 8*len+bch->ecc_bits; | 
|  |  | 
|  | /* use a log-based representation of polynomial */ | 
|  | gf_poly_logrep(bch, p, bch->cache); | 
|  | bch->cache[p->deg] = 0; | 
|  | syn0 = gf_div(bch, p->c[0], p->c[p->deg]); | 
|  |  | 
|  | for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { | 
|  | /* compute elp(a^i) */ | 
|  | for (j = 1, syn = syn0; j <= p->deg; j++) { | 
|  | m = bch->cache[j]; | 
|  | if (m >= 0) | 
|  | syn ^= a_pow(bch, m+j*i); | 
|  | } | 
|  | if (syn == 0) { | 
|  | roots[count++] = GF_N(bch)-i; | 
|  | if (count == p->deg) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return (count == p->deg) ? count : 0; | 
|  | } | 
|  | #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) | 
|  | #endif /* USE_CHIEN_SEARCH */ | 
|  |  | 
|  | /** | 
|  | * bch_decode - decode received codeword and find bit error locations | 
|  | * @bch:      BCH control structure | 
|  | * @data:     received data, ignored if @calc_ecc is provided | 
|  | * @len:      data length in bytes, must always be provided | 
|  | * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc | 
|  | * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data | 
|  | * @syn:      hw computed syndrome data (if NULL, syndrome is calculated) | 
|  | * @errloc:   output array of error locations | 
|  | * | 
|  | * Returns: | 
|  | *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if | 
|  | *  invalid parameters were provided | 
|  | * | 
|  | * Depending on the available hw BCH support and the need to compute @calc_ecc | 
|  | * separately (using bch_encode()), this function should be called with one of | 
|  | * the following parameter configurations - | 
|  | * | 
|  | * by providing @data and @recv_ecc only: | 
|  | *   bch_decode(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) | 
|  | * | 
|  | * by providing @recv_ecc and @calc_ecc: | 
|  | *   bch_decode(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) | 
|  | * | 
|  | * by providing ecc = recv_ecc XOR calc_ecc: | 
|  | *   bch_decode(@bch, NULL, @len, NULL, ecc, NULL, @errloc) | 
|  | * | 
|  | * by providing syndrome results @syn: | 
|  | *   bch_decode(@bch, NULL, @len, NULL, NULL, @syn, @errloc) | 
|  | * | 
|  | * Once bch_decode() has successfully returned with a positive value, error | 
|  | * locations returned in array @errloc should be interpreted as follows - | 
|  | * | 
|  | * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for | 
|  | * data correction) | 
|  | * | 
|  | * if (errloc[n] < 8*len), then n-th error is located in data and can be | 
|  | * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); | 
|  | * | 
|  | * Note that this function does not perform any data correction by itself, it | 
|  | * merely indicates error locations. | 
|  | */ | 
|  | int bch_decode(struct bch_control *bch, const uint8_t *data, unsigned int len, | 
|  | const uint8_t *recv_ecc, const uint8_t *calc_ecc, | 
|  | const unsigned int *syn, unsigned int *errloc) | 
|  | { | 
|  | const unsigned int ecc_words = BCH_ECC_WORDS(bch); | 
|  | unsigned int nbits; | 
|  | int i, err, nroots; | 
|  | uint32_t sum; | 
|  |  | 
|  | /* sanity check: make sure data length can be handled */ | 
|  | if (8*len > (bch->n-bch->ecc_bits)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* if caller does not provide syndromes, compute them */ | 
|  | if (!syn) { | 
|  | if (!calc_ecc) { | 
|  | /* compute received data ecc into an internal buffer */ | 
|  | if (!data || !recv_ecc) | 
|  | return -EINVAL; | 
|  | bch_encode(bch, data, len, NULL); | 
|  | } else { | 
|  | /* load provided calculated ecc */ | 
|  | load_ecc8(bch, bch->ecc_buf, calc_ecc); | 
|  | } | 
|  | /* load received ecc or assume it was XORed in calc_ecc */ | 
|  | if (recv_ecc) { | 
|  | load_ecc8(bch, bch->ecc_buf2, recv_ecc); | 
|  | /* XOR received and calculated ecc */ | 
|  | for (i = 0, sum = 0; i < (int)ecc_words; i++) { | 
|  | bch->ecc_buf[i] ^= bch->ecc_buf2[i]; | 
|  | sum |= bch->ecc_buf[i]; | 
|  | } | 
|  | if (!sum) | 
|  | /* no error found */ | 
|  | return 0; | 
|  | } | 
|  | compute_syndromes(bch, bch->ecc_buf, bch->syn); | 
|  | syn = bch->syn; | 
|  | } | 
|  |  | 
|  | err = compute_error_locator_polynomial(bch, syn); | 
|  | if (err > 0) { | 
|  | nroots = find_poly_roots(bch, 1, bch->elp, errloc); | 
|  | if (err != nroots) | 
|  | err = -1; | 
|  | } | 
|  | if (err > 0) { | 
|  | /* post-process raw error locations for easier correction */ | 
|  | nbits = (len*8)+bch->ecc_bits; | 
|  | for (i = 0; i < err; i++) { | 
|  | if (errloc[i] >= nbits) { | 
|  | err = -1; | 
|  | break; | 
|  | } | 
|  | errloc[i] = nbits-1-errloc[i]; | 
|  | if (!bch->swap_bits) | 
|  | errloc[i] = (errloc[i] & ~7) | | 
|  | (7-(errloc[i] & 7)); | 
|  | } | 
|  | } | 
|  | return (err >= 0) ? err : -EBADMSG; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bch_decode); | 
|  |  | 
|  | /* | 
|  | * generate Galois field lookup tables | 
|  | */ | 
|  | static int build_gf_tables(struct bch_control *bch, unsigned int poly) | 
|  | { | 
|  | unsigned int i, x = 1; | 
|  | const unsigned int k = 1 << deg(poly); | 
|  |  | 
|  | /* primitive polynomial must be of degree m */ | 
|  | if (k != (1u << GF_M(bch))) | 
|  | return -1; | 
|  |  | 
|  | for (i = 0; i < GF_N(bch); i++) { | 
|  | bch->a_pow_tab[i] = x; | 
|  | bch->a_log_tab[x] = i; | 
|  | if (i && (x == 1)) | 
|  | /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ | 
|  | return -1; | 
|  | x <<= 1; | 
|  | if (x & k) | 
|  | x ^= poly; | 
|  | } | 
|  | bch->a_pow_tab[GF_N(bch)] = 1; | 
|  | bch->a_log_tab[0] = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compute generator polynomial remainder tables for fast encoding | 
|  | */ | 
|  | static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) | 
|  | { | 
|  | int i, j, b, d; | 
|  | uint32_t data, hi, lo, *tab; | 
|  | const int l = BCH_ECC_WORDS(bch); | 
|  | const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); | 
|  | const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); | 
|  |  | 
|  | memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); | 
|  |  | 
|  | for (i = 0; i < 256; i++) { | 
|  | /* p(X)=i is a small polynomial of weight <= 8 */ | 
|  | for (b = 0; b < 4; b++) { | 
|  | /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ | 
|  | tab = bch->mod8_tab + (b*256+i)*l; | 
|  | data = i << (8*b); | 
|  | while (data) { | 
|  | d = deg(data); | 
|  | /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ | 
|  | data ^= g[0] >> (31-d); | 
|  | for (j = 0; j < ecclen; j++) { | 
|  | hi = (d < 31) ? g[j] << (d+1) : 0; | 
|  | lo = (j+1 < plen) ? | 
|  | g[j+1] >> (31-d) : 0; | 
|  | tab[j] ^= hi|lo; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * build a base for factoring degree 2 polynomials | 
|  | */ | 
|  | static int build_deg2_base(struct bch_control *bch) | 
|  | { | 
|  | const int m = GF_M(bch); | 
|  | int i, j, r; | 
|  | unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M]; | 
|  |  | 
|  | /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ | 
|  | for (i = 0; i < m; i++) { | 
|  | for (j = 0, sum = 0; j < m; j++) | 
|  | sum ^= a_pow(bch, i*(1 << j)); | 
|  |  | 
|  | if (sum) { | 
|  | ak = bch->a_pow_tab[i]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ | 
|  | remaining = m; | 
|  | memset(xi, 0, sizeof(xi)); | 
|  |  | 
|  | for (x = 0; (x <= GF_N(bch)) && remaining; x++) { | 
|  | y = gf_sqr(bch, x)^x; | 
|  | for (i = 0; i < 2; i++) { | 
|  | r = a_log(bch, y); | 
|  | if (y && (r < m) && !xi[r]) { | 
|  | bch->xi_tab[r] = x; | 
|  | xi[r] = 1; | 
|  | remaining--; | 
|  | dbg("x%d = %x\n", r, x); | 
|  | break; | 
|  | } | 
|  | y ^= ak; | 
|  | } | 
|  | } | 
|  | /* should not happen but check anyway */ | 
|  | return remaining ? -1 : 0; | 
|  | } | 
|  |  | 
|  | static void *bch_alloc(size_t size, int *err) | 
|  | { | 
|  | void *ptr; | 
|  |  | 
|  | ptr = kmalloc(size, GFP_KERNEL); | 
|  | if (ptr == NULL) | 
|  | *err = 1; | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compute generator polynomial for given (m,t) parameters. | 
|  | */ | 
|  | static uint32_t *compute_generator_polynomial(struct bch_control *bch) | 
|  | { | 
|  | const unsigned int m = GF_M(bch); | 
|  | const unsigned int t = GF_T(bch); | 
|  | int n, err = 0; | 
|  | unsigned int i, j, nbits, r, word, *roots; | 
|  | struct gf_poly *g; | 
|  | uint32_t *genpoly; | 
|  |  | 
|  | g = bch_alloc(GF_POLY_SZ(m*t), &err); | 
|  | roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); | 
|  | genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); | 
|  |  | 
|  | if (err) { | 
|  | kfree(genpoly); | 
|  | genpoly = NULL; | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | /* enumerate all roots of g(X) */ | 
|  | memset(roots , 0, (bch->n+1)*sizeof(*roots)); | 
|  | for (i = 0; i < t; i++) { | 
|  | for (j = 0, r = 2*i+1; j < m; j++) { | 
|  | roots[r] = 1; | 
|  | r = mod_s(bch, 2*r); | 
|  | } | 
|  | } | 
|  | /* build generator polynomial g(X) */ | 
|  | g->deg = 0; | 
|  | g->c[0] = 1; | 
|  | for (i = 0; i < GF_N(bch); i++) { | 
|  | if (roots[i]) { | 
|  | /* multiply g(X) by (X+root) */ | 
|  | r = bch->a_pow_tab[i]; | 
|  | g->c[g->deg+1] = 1; | 
|  | for (j = g->deg; j > 0; j--) | 
|  | g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; | 
|  |  | 
|  | g->c[0] = gf_mul(bch, g->c[0], r); | 
|  | g->deg++; | 
|  | } | 
|  | } | 
|  | /* store left-justified binary representation of g(X) */ | 
|  | n = g->deg+1; | 
|  | i = 0; | 
|  |  | 
|  | while (n > 0) { | 
|  | nbits = (n > 32) ? 32 : n; | 
|  | for (j = 0, word = 0; j < nbits; j++) { | 
|  | if (g->c[n-1-j]) | 
|  | word |= 1u << (31-j); | 
|  | } | 
|  | genpoly[i++] = word; | 
|  | n -= nbits; | 
|  | } | 
|  | bch->ecc_bits = g->deg; | 
|  |  | 
|  | finish: | 
|  | kfree(g); | 
|  | kfree(roots); | 
|  |  | 
|  | return genpoly; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bch_init - initialize a BCH encoder/decoder | 
|  | * @m:          Galois field order, should be in the range 5-15 | 
|  | * @t:          maximum error correction capability, in bits | 
|  | * @prim_poly:  user-provided primitive polynomial (or 0 to use default) | 
|  | * @swap_bits:  swap bits within data and syndrome bytes | 
|  | * | 
|  | * Returns: | 
|  | *  a newly allocated BCH control structure if successful, NULL otherwise | 
|  | * | 
|  | * This initialization can take some time, as lookup tables are built for fast | 
|  | * encoding/decoding; make sure not to call this function from a time critical | 
|  | * path. Usually, bch_init() should be called on module/driver init and | 
|  | * bch_free() should be called to release memory on exit. | 
|  | * | 
|  | * You may provide your own primitive polynomial of degree @m in argument | 
|  | * @prim_poly, or let bch_init() use its default polynomial. | 
|  | * | 
|  | * Once bch_init() has successfully returned a pointer to a newly allocated | 
|  | * BCH control structure, ecc length in bytes is given by member @ecc_bytes of | 
|  | * the structure. | 
|  | */ | 
|  | struct bch_control *bch_init(int m, int t, unsigned int prim_poly, | 
|  | bool swap_bits) | 
|  | { | 
|  | int err = 0; | 
|  | unsigned int i, words; | 
|  | uint32_t *genpoly; | 
|  | struct bch_control *bch = NULL; | 
|  |  | 
|  | const int min_m = 5; | 
|  |  | 
|  | /* default primitive polynomials */ | 
|  | static const unsigned int prim_poly_tab[] = { | 
|  | 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, | 
|  | 0x402b, 0x8003, | 
|  | }; | 
|  |  | 
|  | #if defined(CONFIG_BCH_CONST_PARAMS) | 
|  | if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { | 
|  | printk(KERN_ERR "bch encoder/decoder was configured to support " | 
|  | "parameters m=%d, t=%d only!\n", | 
|  | CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); | 
|  | goto fail; | 
|  | } | 
|  | #endif | 
|  | if ((m < min_m) || (m > BCH_MAX_M)) | 
|  | /* | 
|  | * values of m greater than 15 are not currently supported; | 
|  | * supporting m > 15 would require changing table base type | 
|  | * (uint16_t) and a small patch in matrix transposition | 
|  | */ | 
|  | goto fail; | 
|  |  | 
|  | if (t > BCH_MAX_T) | 
|  | /* | 
|  | * we can support larger than 64 bits if necessary, at the | 
|  | * cost of higher stack usage. | 
|  | */ | 
|  | goto fail; | 
|  |  | 
|  | /* sanity checks */ | 
|  | if ((t < 1) || (m*t >= ((1 << m)-1))) | 
|  | /* invalid t value */ | 
|  | goto fail; | 
|  |  | 
|  | /* select a primitive polynomial for generating GF(2^m) */ | 
|  | if (prim_poly == 0) | 
|  | prim_poly = prim_poly_tab[m-min_m]; | 
|  |  | 
|  | bch = kzalloc(sizeof(*bch), GFP_KERNEL); | 
|  | if (bch == NULL) | 
|  | goto fail; | 
|  |  | 
|  | bch->m = m; | 
|  | bch->t = t; | 
|  | bch->n = (1 << m)-1; | 
|  | words  = DIV_ROUND_UP(m*t, 32); | 
|  | bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); | 
|  | bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); | 
|  | bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); | 
|  | bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); | 
|  | bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err); | 
|  | bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); | 
|  | bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err); | 
|  | bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err); | 
|  | bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err); | 
|  | bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); | 
|  | bch->swap_bits = swap_bits; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) | 
|  | bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); | 
|  |  | 
|  | if (err) | 
|  | goto fail; | 
|  |  | 
|  | err = build_gf_tables(bch, prim_poly); | 
|  | if (err) | 
|  | goto fail; | 
|  |  | 
|  | /* use generator polynomial for computing encoding tables */ | 
|  | genpoly = compute_generator_polynomial(bch); | 
|  | if (genpoly == NULL) | 
|  | goto fail; | 
|  |  | 
|  | build_mod8_tables(bch, genpoly); | 
|  | kfree(genpoly); | 
|  |  | 
|  | err = build_deg2_base(bch); | 
|  | if (err) | 
|  | goto fail; | 
|  |  | 
|  | return bch; | 
|  |  | 
|  | fail: | 
|  | bch_free(bch); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bch_init); | 
|  |  | 
|  | /** | 
|  | *  bch_free - free the BCH control structure | 
|  | *  @bch:    BCH control structure to release | 
|  | */ | 
|  | void bch_free(struct bch_control *bch) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | if (bch) { | 
|  | kfree(bch->a_pow_tab); | 
|  | kfree(bch->a_log_tab); | 
|  | kfree(bch->mod8_tab); | 
|  | kfree(bch->ecc_buf); | 
|  | kfree(bch->ecc_buf2); | 
|  | kfree(bch->xi_tab); | 
|  | kfree(bch->syn); | 
|  | kfree(bch->cache); | 
|  | kfree(bch->elp); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) | 
|  | kfree(bch->poly_2t[i]); | 
|  |  | 
|  | kfree(bch); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bch_free); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>"); | 
|  | MODULE_DESCRIPTION("Binary BCH encoder/decoder"); |