|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * NUMA emulation | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/numa_memblks.h> | 
|  | #include <asm/numa.h> | 
|  | #include <acpi/acpi_numa.h> | 
|  |  | 
|  | #define FAKE_NODE_MIN_SIZE	((u64)32 << 20) | 
|  | #define FAKE_NODE_MIN_HASH_MASK	(~(FAKE_NODE_MIN_SIZE - 1UL)) | 
|  |  | 
|  | int emu_nid_to_phys[MAX_NUMNODES]; | 
|  | static char *emu_cmdline __initdata; | 
|  |  | 
|  | int __init numa_emu_cmdline(char *str) | 
|  | { | 
|  | emu_cmdline = str; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < mi->nr_blks; i++) | 
|  | if (mi->blk[i].nid == nid) | 
|  | return i; | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | static u64 __init mem_hole_size(u64 start, u64 end) | 
|  | { | 
|  | unsigned long start_pfn = PFN_UP(start); | 
|  | unsigned long end_pfn = PFN_DOWN(end); | 
|  |  | 
|  | if (start_pfn < end_pfn) | 
|  | return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets up nid to range from @start to @end.  The return value is -errno if | 
|  | * something went wrong, 0 otherwise. | 
|  | */ | 
|  | static int __init emu_setup_memblk(struct numa_meminfo *ei, | 
|  | struct numa_meminfo *pi, | 
|  | int nid, int phys_blk, u64 size) | 
|  | { | 
|  | struct numa_memblk *eb = &ei->blk[ei->nr_blks]; | 
|  | struct numa_memblk *pb = &pi->blk[phys_blk]; | 
|  |  | 
|  | if (ei->nr_blks >= NR_NODE_MEMBLKS) { | 
|  | pr_err("NUMA: Too many emulated memblks, failing emulation\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ei->nr_blks++; | 
|  | eb->start = pb->start; | 
|  | eb->end = pb->start + size; | 
|  | eb->nid = nid; | 
|  |  | 
|  | if (emu_nid_to_phys[nid] == NUMA_NO_NODE) | 
|  | emu_nid_to_phys[nid] = pb->nid; | 
|  |  | 
|  | pb->start += size; | 
|  | if (pb->start >= pb->end) { | 
|  | WARN_ON_ONCE(pb->start > pb->end); | 
|  | numa_remove_memblk_from(phys_blk, pi); | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n", | 
|  | nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr | 
|  | * to max_addr. | 
|  | * | 
|  | * Returns zero on success or negative on error. | 
|  | */ | 
|  | static int __init split_nodes_interleave(struct numa_meminfo *ei, | 
|  | struct numa_meminfo *pi, | 
|  | u64 addr, u64 max_addr, int nr_nodes) | 
|  | { | 
|  | nodemask_t physnode_mask = numa_nodes_parsed; | 
|  | u64 size; | 
|  | int big; | 
|  | int nid = 0; | 
|  | int i, ret; | 
|  |  | 
|  | if (nr_nodes <= 0) | 
|  | return -1; | 
|  | if (nr_nodes > MAX_NUMNODES) { | 
|  | pr_info("numa=fake=%d too large, reducing to %d\n", | 
|  | nr_nodes, MAX_NUMNODES); | 
|  | nr_nodes = MAX_NUMNODES; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate target node size.  x86_32 freaks on __udivdi3() so do | 
|  | * the division in ulong number of pages and convert back. | 
|  | */ | 
|  | size = max_addr - addr - mem_hole_size(addr, max_addr); | 
|  | size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes); | 
|  |  | 
|  | /* | 
|  | * Calculate the number of big nodes that can be allocated as a result | 
|  | * of consolidating the remainder. | 
|  | */ | 
|  | big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) / | 
|  | FAKE_NODE_MIN_SIZE; | 
|  |  | 
|  | size &= FAKE_NODE_MIN_HASH_MASK; | 
|  | if (!size) { | 
|  | pr_err("Not enough memory for each node.  " | 
|  | "NUMA emulation disabled.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Continue to fill physical nodes with fake nodes until there is no | 
|  | * memory left on any of them. | 
|  | */ | 
|  | while (!nodes_empty(physnode_mask)) { | 
|  | for_each_node_mask(i, physnode_mask) { | 
|  | u64 dma32_end = numa_emu_dma_end(); | 
|  | u64 start, limit, end; | 
|  | int phys_blk; | 
|  |  | 
|  | phys_blk = emu_find_memblk_by_nid(i, pi); | 
|  | if (phys_blk < 0) { | 
|  | node_clear(i, physnode_mask); | 
|  | continue; | 
|  | } | 
|  | start = pi->blk[phys_blk].start; | 
|  | limit = pi->blk[phys_blk].end; | 
|  | end = start + size; | 
|  |  | 
|  | if (nid < big) | 
|  | end += FAKE_NODE_MIN_SIZE; | 
|  |  | 
|  | /* | 
|  | * Continue to add memory to this fake node if its | 
|  | * non-reserved memory is less than the per-node size. | 
|  | */ | 
|  | while (end - start - mem_hole_size(start, end) < size) { | 
|  | end += FAKE_NODE_MIN_SIZE; | 
|  | if (end > limit) { | 
|  | end = limit; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there won't be at least FAKE_NODE_MIN_SIZE of | 
|  | * non-reserved memory in ZONE_DMA32 for the next node, | 
|  | * this one must extend to the boundary. | 
|  | */ | 
|  | if (end < dma32_end && dma32_end - end - | 
|  | mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) | 
|  | end = dma32_end; | 
|  |  | 
|  | /* | 
|  | * If there won't be enough non-reserved memory for the | 
|  | * next node, this one must extend to the end of the | 
|  | * physical node. | 
|  | */ | 
|  | if (limit - end - mem_hole_size(end, limit) < size) | 
|  | end = limit; | 
|  |  | 
|  | ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes, | 
|  | phys_blk, | 
|  | min(end, limit) - start); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the end address of a node so that there is at least `size' amount of | 
|  | * non-reserved memory or `max_addr' is reached. | 
|  | */ | 
|  | static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size) | 
|  | { | 
|  | u64 end = start + size; | 
|  |  | 
|  | while (end - start - mem_hole_size(start, end) < size) { | 
|  | end += FAKE_NODE_MIN_SIZE; | 
|  | if (end > max_addr) { | 
|  | end = max_addr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return end; | 
|  | } | 
|  |  | 
|  | static u64 uniform_size(u64 max_addr, u64 base, u64 hole, int nr_nodes) | 
|  | { | 
|  | unsigned long max_pfn = PHYS_PFN(max_addr); | 
|  | unsigned long base_pfn = PHYS_PFN(base); | 
|  | unsigned long hole_pfns = PHYS_PFN(hole); | 
|  |  | 
|  | return PFN_PHYS((max_pfn - base_pfn - hole_pfns) / nr_nodes); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets up fake nodes of `size' interleaved over physical nodes ranging from | 
|  | * `addr' to `max_addr'. | 
|  | * | 
|  | * Returns zero on success or negative on error. | 
|  | */ | 
|  | static int __init split_nodes_size_interleave_uniform(struct numa_meminfo *ei, | 
|  | struct numa_meminfo *pi, | 
|  | u64 addr, u64 max_addr, u64 size, | 
|  | int nr_nodes, struct numa_memblk *pblk, | 
|  | int nid) | 
|  | { | 
|  | nodemask_t physnode_mask = numa_nodes_parsed; | 
|  | int i, ret, uniform = 0; | 
|  | u64 min_size; | 
|  |  | 
|  | if ((!size && !nr_nodes) || (nr_nodes && !pblk)) | 
|  | return -1; | 
|  |  | 
|  | /* | 
|  | * In the 'uniform' case split the passed in physical node by | 
|  | * nr_nodes, in the non-uniform case, ignore the passed in | 
|  | * physical block and try to create nodes of at least size | 
|  | * @size. | 
|  | * | 
|  | * In the uniform case, split the nodes strictly by physical | 
|  | * capacity, i.e. ignore holes. In the non-uniform case account | 
|  | * for holes and treat @size as a minimum floor. | 
|  | */ | 
|  | if (!nr_nodes) | 
|  | nr_nodes = MAX_NUMNODES; | 
|  | else { | 
|  | nodes_clear(physnode_mask); | 
|  | node_set(pblk->nid, physnode_mask); | 
|  | uniform = 1; | 
|  | } | 
|  |  | 
|  | if (uniform) { | 
|  | min_size = uniform_size(max_addr, addr, 0, nr_nodes); | 
|  | size = min_size; | 
|  | } else { | 
|  | /* | 
|  | * The limit on emulated nodes is MAX_NUMNODES, so the | 
|  | * size per node is increased accordingly if the | 
|  | * requested size is too small.  This creates a uniform | 
|  | * distribution of node sizes across the entire machine | 
|  | * (but not necessarily over physical nodes). | 
|  | */ | 
|  | min_size = uniform_size(max_addr, addr, | 
|  | mem_hole_size(addr, max_addr), nr_nodes); | 
|  | } | 
|  | min_size = ALIGN(max(min_size, FAKE_NODE_MIN_SIZE), FAKE_NODE_MIN_SIZE); | 
|  | if (size < min_size) { | 
|  | pr_err("Fake node size %LuMB too small, increasing to %LuMB\n", | 
|  | size >> 20, min_size >> 20); | 
|  | size = min_size; | 
|  | } | 
|  | size = ALIGN_DOWN(size, FAKE_NODE_MIN_SIZE); | 
|  |  | 
|  | /* | 
|  | * Fill physical nodes with fake nodes of size until there is no memory | 
|  | * left on any of them. | 
|  | */ | 
|  | while (!nodes_empty(physnode_mask)) { | 
|  | for_each_node_mask(i, physnode_mask) { | 
|  | u64 dma32_end = numa_emu_dma_end(); | 
|  | u64 start, limit, end; | 
|  | int phys_blk; | 
|  |  | 
|  | phys_blk = emu_find_memblk_by_nid(i, pi); | 
|  | if (phys_blk < 0) { | 
|  | node_clear(i, physnode_mask); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | start = pi->blk[phys_blk].start; | 
|  | limit = pi->blk[phys_blk].end; | 
|  |  | 
|  | if (uniform) | 
|  | end = start + size; | 
|  | else | 
|  | end = find_end_of_node(start, limit, size); | 
|  | /* | 
|  | * If there won't be at least FAKE_NODE_MIN_SIZE of | 
|  | * non-reserved memory in ZONE_DMA32 for the next node, | 
|  | * this one must extend to the boundary. | 
|  | */ | 
|  | if (end < dma32_end && dma32_end - end - | 
|  | mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) | 
|  | end = dma32_end; | 
|  |  | 
|  | /* | 
|  | * If there won't be enough non-reserved memory for the | 
|  | * next node, this one must extend to the end of the | 
|  | * physical node. | 
|  | */ | 
|  | if ((limit - end - mem_hole_size(end, limit) < size) | 
|  | && !uniform) | 
|  | end = limit; | 
|  |  | 
|  | ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES, | 
|  | phys_blk, | 
|  | min(end, limit) - start); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | static int __init split_nodes_size_interleave(struct numa_meminfo *ei, | 
|  | struct numa_meminfo *pi, | 
|  | u64 addr, u64 max_addr, u64 size) | 
|  | { | 
|  | return split_nodes_size_interleave_uniform(ei, pi, addr, max_addr, size, | 
|  | 0, NULL, 0); | 
|  | } | 
|  |  | 
|  | static int __init setup_emu2phys_nid(int *dfl_phys_nid) | 
|  | { | 
|  | int i, max_emu_nid = 0; | 
|  |  | 
|  | *dfl_phys_nid = NUMA_NO_NODE; | 
|  | for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) { | 
|  | if (emu_nid_to_phys[i] != NUMA_NO_NODE) { | 
|  | max_emu_nid = i; | 
|  | if (*dfl_phys_nid == NUMA_NO_NODE) | 
|  | *dfl_phys_nid = emu_nid_to_phys[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return max_emu_nid; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * numa_emulation - Emulate NUMA nodes | 
|  | * @numa_meminfo: NUMA configuration to massage | 
|  | * @numa_dist_cnt: The size of the physical NUMA distance table | 
|  | * | 
|  | * Emulate NUMA nodes according to the numa=fake kernel parameter. | 
|  | * @numa_meminfo contains the physical memory configuration and is modified | 
|  | * to reflect the emulated configuration on success.  @numa_dist_cnt is | 
|  | * used to determine the size of the physical distance table. | 
|  | * | 
|  | * On success, the following modifications are made. | 
|  | * | 
|  | * - @numa_meminfo is updated to reflect the emulated nodes. | 
|  | * | 
|  | * - __apicid_to_node[] is updated such that APIC IDs are mapped to the | 
|  | *   emulated nodes. | 
|  | * | 
|  | * - NUMA distance table is rebuilt to represent distances between emulated | 
|  | *   nodes.  The distances are determined considering how emulated nodes | 
|  | *   are mapped to physical nodes and match the actual distances. | 
|  | * | 
|  | * - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical | 
|  | *   nodes.  This is used by numa_add_cpu() and numa_remove_cpu(). | 
|  | * | 
|  | * If emulation is not enabled or fails, emu_nid_to_phys[] is filled with | 
|  | * identity mapping and no other modification is made. | 
|  | */ | 
|  | void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt) | 
|  | { | 
|  | static struct numa_meminfo ei __initdata; | 
|  | static struct numa_meminfo pi __initdata; | 
|  | const u64 max_addr = PFN_PHYS(max_pfn); | 
|  | u8 *phys_dist = NULL; | 
|  | size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]); | 
|  | int max_emu_nid, dfl_phys_nid; | 
|  | int i, j, ret; | 
|  | nodemask_t physnode_mask = numa_nodes_parsed; | 
|  |  | 
|  | if (!emu_cmdline) | 
|  | goto no_emu; | 
|  |  | 
|  | memset(&ei, 0, sizeof(ei)); | 
|  | pi = *numa_meminfo; | 
|  |  | 
|  | for (i = 0; i < MAX_NUMNODES; i++) | 
|  | emu_nid_to_phys[i] = NUMA_NO_NODE; | 
|  |  | 
|  | /* | 
|  | * If the numa=fake command-line contains a 'M' or 'G', it represents | 
|  | * the fixed node size.  Otherwise, if it is just a single number N, | 
|  | * split the system RAM into N fake nodes. | 
|  | */ | 
|  | if (strchr(emu_cmdline, 'U')) { | 
|  | unsigned long n; | 
|  | int nid = 0; | 
|  |  | 
|  | n = simple_strtoul(emu_cmdline, &emu_cmdline, 0); | 
|  | ret = -1; | 
|  | for_each_node_mask(i, physnode_mask) { | 
|  | /* | 
|  | * The reason we pass in blk[0] is due to | 
|  | * numa_remove_memblk_from() called by | 
|  | * emu_setup_memblk() will delete entry 0 | 
|  | * and then move everything else up in the pi.blk | 
|  | * array. Therefore we should always be looking | 
|  | * at blk[0]. | 
|  | */ | 
|  | ret = split_nodes_size_interleave_uniform(&ei, &pi, | 
|  | pi.blk[0].start, pi.blk[0].end, 0, | 
|  | n, &pi.blk[0], nid); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret < n) { | 
|  | pr_info("%s: phys: %d only got %d of %ld nodes, failing\n", | 
|  | __func__, i, ret, n); | 
|  | ret = -1; | 
|  | break; | 
|  | } | 
|  | nid = ret; | 
|  | } | 
|  | } else if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) { | 
|  | u64 size; | 
|  |  | 
|  | size = memparse(emu_cmdline, &emu_cmdline); | 
|  | ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size); | 
|  | } else { | 
|  | unsigned long n; | 
|  |  | 
|  | n = simple_strtoul(emu_cmdline, &emu_cmdline, 0); | 
|  | ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n); | 
|  | } | 
|  | if (*emu_cmdline == ':') | 
|  | emu_cmdline++; | 
|  |  | 
|  | if (ret < 0) | 
|  | goto no_emu; | 
|  |  | 
|  | if (numa_cleanup_meminfo(&ei) < 0) { | 
|  | pr_warn("NUMA: Warning: constructed meminfo invalid, disabling emulation\n"); | 
|  | goto no_emu; | 
|  | } | 
|  |  | 
|  | /* copy the physical distance table */ | 
|  | if (numa_dist_cnt) { | 
|  | phys_dist = memblock_alloc(phys_size, PAGE_SIZE); | 
|  | if (!phys_dist) { | 
|  | pr_warn("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n"); | 
|  | goto no_emu; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < numa_dist_cnt; i++) | 
|  | for (j = 0; j < numa_dist_cnt; j++) | 
|  | phys_dist[i * numa_dist_cnt + j] = | 
|  | node_distance(i, j); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine the max emulated nid and the default phys nid to use | 
|  | * for unmapped nodes. | 
|  | */ | 
|  | max_emu_nid = setup_emu2phys_nid(&dfl_phys_nid); | 
|  |  | 
|  | /* Make sure numa_nodes_parsed only contains emulated nodes */ | 
|  | nodes_clear(numa_nodes_parsed); | 
|  | for (i = 0; i < ARRAY_SIZE(ei.blk); i++) | 
|  | if (ei.blk[i].start != ei.blk[i].end && | 
|  | ei.blk[i].nid != NUMA_NO_NODE) | 
|  | node_set(ei.blk[i].nid, numa_nodes_parsed); | 
|  |  | 
|  | /* fix pxm_to_node_map[] and node_to_pxm_map[] to avoid collision | 
|  | * with faked numa nodes, particularly during later memory hotplug | 
|  | * handling, and also update numa_nodes_parsed accordingly. | 
|  | */ | 
|  | ret = fix_pxm_node_maps(max_emu_nid); | 
|  | if (ret < 0) | 
|  | goto no_emu; | 
|  |  | 
|  | /* commit */ | 
|  | *numa_meminfo = ei; | 
|  |  | 
|  | numa_emu_update_cpu_to_node(emu_nid_to_phys, max_emu_nid + 1); | 
|  |  | 
|  | /* make sure all emulated nodes are mapped to a physical node */ | 
|  | for (i = 0; i < max_emu_nid + 1; i++) | 
|  | if (emu_nid_to_phys[i] == NUMA_NO_NODE) | 
|  | emu_nid_to_phys[i] = dfl_phys_nid; | 
|  |  | 
|  | /* transform distance table */ | 
|  | numa_reset_distance(); | 
|  | for (i = 0; i < max_emu_nid + 1; i++) { | 
|  | for (j = 0; j < max_emu_nid + 1; j++) { | 
|  | int physi = emu_nid_to_phys[i]; | 
|  | int physj = emu_nid_to_phys[j]; | 
|  | int dist; | 
|  |  | 
|  | if (get_option(&emu_cmdline, &dist) == 2) | 
|  | ; | 
|  | else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt) | 
|  | dist = physi == physj ? | 
|  | LOCAL_DISTANCE : REMOTE_DISTANCE; | 
|  | else | 
|  | dist = phys_dist[physi * numa_dist_cnt + physj]; | 
|  |  | 
|  | numa_set_distance(i, j, dist); | 
|  | } | 
|  | } | 
|  | for (i = 0; i < numa_distance_cnt; i++) { | 
|  | for (j = 0; j < numa_distance_cnt; j++) { | 
|  | int physi, physj; | 
|  | u8 dist; | 
|  |  | 
|  | /* distance between fake nodes is already ok */ | 
|  | if (emu_nid_to_phys[i] != NUMA_NO_NODE && | 
|  | emu_nid_to_phys[j] != NUMA_NO_NODE) | 
|  | continue; | 
|  | if (emu_nid_to_phys[i] != NUMA_NO_NODE) | 
|  | physi = emu_nid_to_phys[i]; | 
|  | else | 
|  | physi = i - max_emu_nid; | 
|  | if (emu_nid_to_phys[j] != NUMA_NO_NODE) | 
|  | physj = emu_nid_to_phys[j]; | 
|  | else | 
|  | physj = j - max_emu_nid; | 
|  | dist = phys_dist[physi * numa_dist_cnt + physj]; | 
|  | numa_set_distance(i, j, dist); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* free the copied physical distance table */ | 
|  | memblock_free(phys_dist, phys_size); | 
|  | return; | 
|  |  | 
|  | no_emu: | 
|  | numa_nodes_parsed = physnode_mask; | 
|  | /* No emulation.  Build identity emu_nid_to_phys[] for numa_add_cpu() */ | 
|  | for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) | 
|  | emu_nid_to_phys[i] = i; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_DEBUG_PER_CPU_MAPS | 
|  | void numa_add_cpu(unsigned int cpu) | 
|  | { | 
|  | int physnid, nid; | 
|  |  | 
|  | nid = early_cpu_to_node(cpu); | 
|  | BUG_ON(nid == NUMA_NO_NODE || !node_online(nid)); | 
|  |  | 
|  | physnid = emu_nid_to_phys[nid]; | 
|  |  | 
|  | /* | 
|  | * Map the cpu to each emulated node that is allocated on the physical | 
|  | * node of the cpu's apic id. | 
|  | */ | 
|  | for_each_online_node(nid) | 
|  | if (emu_nid_to_phys[nid] == physnid) | 
|  | cpumask_set_cpu(cpu, node_to_cpumask_map[nid]); | 
|  | } | 
|  |  | 
|  | void numa_remove_cpu(unsigned int cpu) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_online_node(i) | 
|  | cpumask_clear_cpu(cpu, node_to_cpumask_map[i]); | 
|  | } | 
|  | #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */ | 
|  | static void numa_set_cpumask(unsigned int cpu, bool enable) | 
|  | { | 
|  | int nid, physnid; | 
|  |  | 
|  | nid = early_cpu_to_node(cpu); | 
|  | if (nid == NUMA_NO_NODE) { | 
|  | /* early_cpu_to_node() already emits a warning and trace */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | physnid = emu_nid_to_phys[nid]; | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | if (emu_nid_to_phys[nid] != physnid) | 
|  | continue; | 
|  |  | 
|  | debug_cpumask_set_cpu(cpu, nid, enable); | 
|  | } | 
|  | } | 
|  |  | 
|  | void numa_add_cpu(unsigned int cpu) | 
|  | { | 
|  | numa_set_cpumask(cpu, true); | 
|  | } | 
|  |  | 
|  | void numa_remove_cpu(unsigned int cpu) | 
|  | { | 
|  | numa_set_cpumask(cpu, false); | 
|  | } | 
|  | #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */ |