|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * linux/fs/ext4/readpage.c | 
|  | * | 
|  | * Copyright (C) 2002, Linus Torvalds. | 
|  | * Copyright (C) 2015, Google, Inc. | 
|  | * | 
|  | * This was originally taken from fs/mpage.c | 
|  | * | 
|  | * The ext4_mpage_readpages() function here is intended to | 
|  | * replace mpage_readahead() in the general case, not just for | 
|  | * encrypted files.  It has some limitations (see below), where it | 
|  | * will fall back to read_block_full_page(), but these limitations | 
|  | * should only be hit when page_size != block_size. | 
|  | * | 
|  | * This will allow us to attach a callback function to support ext4 | 
|  | * encryption. | 
|  | * | 
|  | * If anything unusual happens, such as: | 
|  | * | 
|  | * - encountering a page which has buffers | 
|  | * - encountering a page which has a non-hole after a hole | 
|  | * - encountering a page with non-contiguous blocks | 
|  | * | 
|  | * then this code just gives up and calls the buffer_head-based read function. | 
|  | * It does handle a page which has holes at the end - that is a common case: | 
|  | * the end-of-file on blocksize < PAGE_SIZE setups. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/kdev_t.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/mpage.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/pagevec.h> | 
|  |  | 
|  | #include "ext4.h" | 
|  |  | 
|  | #define NUM_PREALLOC_POST_READ_CTXS	128 | 
|  |  | 
|  | static struct kmem_cache *bio_post_read_ctx_cache; | 
|  | static mempool_t *bio_post_read_ctx_pool; | 
|  |  | 
|  | /* postprocessing steps for read bios */ | 
|  | enum bio_post_read_step { | 
|  | STEP_INITIAL = 0, | 
|  | STEP_DECRYPT, | 
|  | STEP_VERITY, | 
|  | STEP_MAX, | 
|  | }; | 
|  |  | 
|  | struct bio_post_read_ctx { | 
|  | struct bio *bio; | 
|  | struct work_struct work; | 
|  | unsigned int cur_step; | 
|  | unsigned int enabled_steps; | 
|  | }; | 
|  |  | 
|  | static void __read_end_io(struct bio *bio) | 
|  | { | 
|  | struct folio_iter fi; | 
|  |  | 
|  | bio_for_each_folio_all(fi, bio) | 
|  | folio_end_read(fi.folio, bio->bi_status == 0); | 
|  | if (bio->bi_private) | 
|  | mempool_free(bio->bi_private, bio_post_read_ctx_pool); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static void bio_post_read_processing(struct bio_post_read_ctx *ctx); | 
|  |  | 
|  | static void decrypt_work(struct work_struct *work) | 
|  | { | 
|  | struct bio_post_read_ctx *ctx = | 
|  | container_of(work, struct bio_post_read_ctx, work); | 
|  | struct bio *bio = ctx->bio; | 
|  |  | 
|  | if (fscrypt_decrypt_bio(bio)) | 
|  | bio_post_read_processing(ctx); | 
|  | else | 
|  | __read_end_io(bio); | 
|  | } | 
|  |  | 
|  | static void verity_work(struct work_struct *work) | 
|  | { | 
|  | struct bio_post_read_ctx *ctx = | 
|  | container_of(work, struct bio_post_read_ctx, work); | 
|  | struct bio *bio = ctx->bio; | 
|  |  | 
|  | /* | 
|  | * fsverity_verify_bio() may call readahead() again, and although verity | 
|  | * will be disabled for that, decryption may still be needed, causing | 
|  | * another bio_post_read_ctx to be allocated.  So to guarantee that | 
|  | * mempool_alloc() never deadlocks we must free the current ctx first. | 
|  | * This is safe because verity is the last post-read step. | 
|  | */ | 
|  | BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX); | 
|  | mempool_free(ctx, bio_post_read_ctx_pool); | 
|  | bio->bi_private = NULL; | 
|  |  | 
|  | fsverity_verify_bio(bio); | 
|  |  | 
|  | __read_end_io(bio); | 
|  | } | 
|  |  | 
|  | static void bio_post_read_processing(struct bio_post_read_ctx *ctx) | 
|  | { | 
|  | /* | 
|  | * We use different work queues for decryption and for verity because | 
|  | * verity may require reading metadata pages that need decryption, and | 
|  | * we shouldn't recurse to the same workqueue. | 
|  | */ | 
|  | switch (++ctx->cur_step) { | 
|  | case STEP_DECRYPT: | 
|  | if (ctx->enabled_steps & (1 << STEP_DECRYPT)) { | 
|  | INIT_WORK(&ctx->work, decrypt_work); | 
|  | fscrypt_enqueue_decrypt_work(&ctx->work); | 
|  | return; | 
|  | } | 
|  | ctx->cur_step++; | 
|  | fallthrough; | 
|  | case STEP_VERITY: | 
|  | if (ctx->enabled_steps & (1 << STEP_VERITY)) { | 
|  | INIT_WORK(&ctx->work, verity_work); | 
|  | fsverity_enqueue_verify_work(&ctx->work); | 
|  | return; | 
|  | } | 
|  | ctx->cur_step++; | 
|  | fallthrough; | 
|  | default: | 
|  | __read_end_io(ctx->bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool bio_post_read_required(struct bio *bio) | 
|  | { | 
|  | return bio->bi_private && !bio->bi_status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * I/O completion handler for multipage BIOs. | 
|  | * | 
|  | * The mpage code never puts partial pages into a BIO (except for end-of-file). | 
|  | * If a page does not map to a contiguous run of blocks then it simply falls | 
|  | * back to block_read_full_folio(). | 
|  | * | 
|  | * Why is this?  If a page's completion depends on a number of different BIOs | 
|  | * which can complete in any order (or at the same time) then determining the | 
|  | * status of that page is hard.  See end_buffer_async_read() for the details. | 
|  | * There is no point in duplicating all that complexity. | 
|  | */ | 
|  | static void mpage_end_io(struct bio *bio) | 
|  | { | 
|  | if (bio_post_read_required(bio)) { | 
|  | struct bio_post_read_ctx *ctx = bio->bi_private; | 
|  |  | 
|  | ctx->cur_step = STEP_INITIAL; | 
|  | bio_post_read_processing(ctx); | 
|  | return; | 
|  | } | 
|  | __read_end_io(bio); | 
|  | } | 
|  |  | 
|  | static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx) | 
|  | { | 
|  | return fsverity_active(inode) && | 
|  | idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static void ext4_set_bio_post_read_ctx(struct bio *bio, | 
|  | const struct inode *inode, | 
|  | pgoff_t first_idx) | 
|  | { | 
|  | unsigned int post_read_steps = 0; | 
|  |  | 
|  | if (fscrypt_inode_uses_fs_layer_crypto(inode)) | 
|  | post_read_steps |= 1 << STEP_DECRYPT; | 
|  |  | 
|  | if (ext4_need_verity(inode, first_idx)) | 
|  | post_read_steps |= 1 << STEP_VERITY; | 
|  |  | 
|  | if (post_read_steps) { | 
|  | /* Due to the mempool, this never fails. */ | 
|  | struct bio_post_read_ctx *ctx = | 
|  | mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); | 
|  |  | 
|  | ctx->bio = bio; | 
|  | ctx->enabled_steps = post_read_steps; | 
|  | bio->bi_private = ctx; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline loff_t ext4_readpage_limit(struct inode *inode) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) | 
|  | return inode->i_sb->s_maxbytes; | 
|  |  | 
|  | return i_size_read(inode); | 
|  | } | 
|  |  | 
|  | int ext4_mpage_readpages(struct inode *inode, | 
|  | struct readahead_control *rac, struct folio *folio) | 
|  | { | 
|  | struct bio *bio = NULL; | 
|  | sector_t last_block_in_bio = 0; | 
|  |  | 
|  | const unsigned blkbits = inode->i_blkbits; | 
|  | const unsigned blocks_per_page = PAGE_SIZE >> blkbits; | 
|  | const unsigned blocksize = 1 << blkbits; | 
|  | sector_t next_block; | 
|  | sector_t block_in_file; | 
|  | sector_t last_block; | 
|  | sector_t last_block_in_file; | 
|  | sector_t first_block; | 
|  | unsigned page_block; | 
|  | struct block_device *bdev = inode->i_sb->s_bdev; | 
|  | int length; | 
|  | unsigned relative_block = 0; | 
|  | struct ext4_map_blocks map; | 
|  | unsigned int nr_pages = rac ? readahead_count(rac) : 1; | 
|  |  | 
|  | map.m_pblk = 0; | 
|  | map.m_lblk = 0; | 
|  | map.m_len = 0; | 
|  | map.m_flags = 0; | 
|  |  | 
|  | for (; nr_pages; nr_pages--) { | 
|  | int fully_mapped = 1; | 
|  | unsigned first_hole = blocks_per_page; | 
|  |  | 
|  | if (rac) | 
|  | folio = readahead_folio(rac); | 
|  | prefetchw(&folio->flags); | 
|  |  | 
|  | if (folio_buffers(folio)) | 
|  | goto confused; | 
|  |  | 
|  | block_in_file = next_block = | 
|  | (sector_t)folio->index << (PAGE_SHIFT - blkbits); | 
|  | last_block = block_in_file + nr_pages * blocks_per_page; | 
|  | last_block_in_file = (ext4_readpage_limit(inode) + | 
|  | blocksize - 1) >> blkbits; | 
|  | if (last_block > last_block_in_file) | 
|  | last_block = last_block_in_file; | 
|  | page_block = 0; | 
|  |  | 
|  | /* | 
|  | * Map blocks using the previous result first. | 
|  | */ | 
|  | if ((map.m_flags & EXT4_MAP_MAPPED) && | 
|  | block_in_file > map.m_lblk && | 
|  | block_in_file < (map.m_lblk + map.m_len)) { | 
|  | unsigned map_offset = block_in_file - map.m_lblk; | 
|  | unsigned last = map.m_len - map_offset; | 
|  |  | 
|  | first_block = map.m_pblk + map_offset; | 
|  | for (relative_block = 0; ; relative_block++) { | 
|  | if (relative_block == last) { | 
|  | /* needed? */ | 
|  | map.m_flags &= ~EXT4_MAP_MAPPED; | 
|  | break; | 
|  | } | 
|  | if (page_block == blocks_per_page) | 
|  | break; | 
|  | page_block++; | 
|  | block_in_file++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Then do more ext4_map_blocks() calls until we are | 
|  | * done with this folio. | 
|  | */ | 
|  | while (page_block < blocks_per_page) { | 
|  | if (block_in_file < last_block) { | 
|  | map.m_lblk = block_in_file; | 
|  | map.m_len = last_block - block_in_file; | 
|  |  | 
|  | if (ext4_map_blocks(NULL, inode, &map, 0) < 0) { | 
|  | set_error_page: | 
|  | folio_zero_segment(folio, 0, | 
|  | folio_size(folio)); | 
|  | folio_unlock(folio); | 
|  | goto next_page; | 
|  | } | 
|  | } | 
|  | if ((map.m_flags & EXT4_MAP_MAPPED) == 0) { | 
|  | fully_mapped = 0; | 
|  | if (first_hole == blocks_per_page) | 
|  | first_hole = page_block; | 
|  | page_block++; | 
|  | block_in_file++; | 
|  | continue; | 
|  | } | 
|  | if (first_hole != blocks_per_page) | 
|  | goto confused;		/* hole -> non-hole */ | 
|  |  | 
|  | /* Contiguous blocks? */ | 
|  | if (!page_block) | 
|  | first_block = map.m_pblk; | 
|  | else if (first_block + page_block != map.m_pblk) | 
|  | goto confused; | 
|  | for (relative_block = 0; ; relative_block++) { | 
|  | if (relative_block == map.m_len) { | 
|  | /* needed? */ | 
|  | map.m_flags &= ~EXT4_MAP_MAPPED; | 
|  | break; | 
|  | } else if (page_block == blocks_per_page) | 
|  | break; | 
|  | page_block++; | 
|  | block_in_file++; | 
|  | } | 
|  | } | 
|  | if (first_hole != blocks_per_page) { | 
|  | folio_zero_segment(folio, first_hole << blkbits, | 
|  | folio_size(folio)); | 
|  | if (first_hole == 0) { | 
|  | if (ext4_need_verity(inode, folio->index) && | 
|  | !fsverity_verify_folio(folio)) | 
|  | goto set_error_page; | 
|  | folio_end_read(folio, true); | 
|  | continue; | 
|  | } | 
|  | } else if (fully_mapped) { | 
|  | folio_set_mappedtodisk(folio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This folio will go to BIO.  Do we need to send this | 
|  | * BIO off first? | 
|  | */ | 
|  | if (bio && (last_block_in_bio != first_block - 1 || | 
|  | !fscrypt_mergeable_bio(bio, inode, next_block))) { | 
|  | submit_and_realloc: | 
|  | submit_bio(bio); | 
|  | bio = NULL; | 
|  | } | 
|  | if (bio == NULL) { | 
|  | /* | 
|  | * bio_alloc will _always_ be able to allocate a bio if | 
|  | * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset(). | 
|  | */ | 
|  | bio = bio_alloc(bdev, bio_max_segs(nr_pages), | 
|  | REQ_OP_READ, GFP_KERNEL); | 
|  | fscrypt_set_bio_crypt_ctx(bio, inode, next_block, | 
|  | GFP_KERNEL); | 
|  | ext4_set_bio_post_read_ctx(bio, inode, folio->index); | 
|  | bio->bi_iter.bi_sector = first_block << (blkbits - 9); | 
|  | bio->bi_end_io = mpage_end_io; | 
|  | if (rac) | 
|  | bio->bi_opf |= REQ_RAHEAD; | 
|  | } | 
|  |  | 
|  | length = first_hole << blkbits; | 
|  | if (!bio_add_folio(bio, folio, length, 0)) | 
|  | goto submit_and_realloc; | 
|  |  | 
|  | if (((map.m_flags & EXT4_MAP_BOUNDARY) && | 
|  | (relative_block == map.m_len)) || | 
|  | (first_hole != blocks_per_page)) { | 
|  | submit_bio(bio); | 
|  | bio = NULL; | 
|  | } else | 
|  | last_block_in_bio = first_block + blocks_per_page - 1; | 
|  | continue; | 
|  | confused: | 
|  | if (bio) { | 
|  | submit_bio(bio); | 
|  | bio = NULL; | 
|  | } | 
|  | if (!folio_test_uptodate(folio)) | 
|  | block_read_full_folio(folio, ext4_get_block); | 
|  | else | 
|  | folio_unlock(folio); | 
|  | next_page: | 
|  | ; /* A label shall be followed by a statement until C23 */ | 
|  | } | 
|  | if (bio) | 
|  | submit_bio(bio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __init ext4_init_post_read_processing(void) | 
|  | { | 
|  | bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, SLAB_RECLAIM_ACCOUNT); | 
|  |  | 
|  | if (!bio_post_read_ctx_cache) | 
|  | goto fail; | 
|  | bio_post_read_ctx_pool = | 
|  | mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, | 
|  | bio_post_read_ctx_cache); | 
|  | if (!bio_post_read_ctx_pool) | 
|  | goto fail_free_cache; | 
|  | return 0; | 
|  |  | 
|  | fail_free_cache: | 
|  | kmem_cache_destroy(bio_post_read_ctx_cache); | 
|  | fail: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void ext4_exit_post_read_processing(void) | 
|  | { | 
|  | mempool_destroy(bio_post_read_ctx_pool); | 
|  | kmem_cache_destroy(bio_post_read_ctx_cache); | 
|  | } |