blob: 5a3346124a0177da27c6d205559a2f363f5aa40d [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include <linux/string.h>
#include <linux/acpi.h>
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
#include <drm/amdgpu_drm.h>
#include "dm_services.h"
#include "amdgpu.h"
#include "amdgpu_dm.h"
#include "amdgpu_dm_irq.h"
#include "amdgpu_pm.h"
unsigned long long dm_get_timestamp(struct dc_context *ctx)
{
struct timespec64 time;
getrawmonotonic64(&time);
return timespec64_to_ns(&time);
}
unsigned long long dm_get_elapse_time_in_ns(struct dc_context *ctx,
unsigned long long current_time_stamp,
unsigned long long last_time_stamp)
{
return current_time_stamp - last_time_stamp;
}
void dm_perf_trace_timestamp(const char *func_name, unsigned int line)
{
}
bool dm_write_persistent_data(struct dc_context *ctx,
const struct dc_sink *sink,
const char *module_name,
const char *key_name,
void *params,
unsigned int size,
struct persistent_data_flag *flag)
{
/*TODO implement*/
return false;
}
bool dm_read_persistent_data(struct dc_context *ctx,
const struct dc_sink *sink,
const char *module_name,
const char *key_name,
void *params,
unsigned int size,
struct persistent_data_flag *flag)
{
/*TODO implement*/
return false;
}
/**** power component interfaces ****/
bool dm_pp_apply_display_requirements(
const struct dc_context *ctx,
const struct dm_pp_display_configuration *pp_display_cfg)
{
struct amdgpu_device *adev = ctx->driver_context;
if (adev->pm.dpm_enabled) {
memset(&adev->pm.pm_display_cfg, 0,
sizeof(adev->pm.pm_display_cfg));
adev->pm.pm_display_cfg.cpu_cc6_disable =
pp_display_cfg->cpu_cc6_disable;
adev->pm.pm_display_cfg.cpu_pstate_disable =
pp_display_cfg->cpu_pstate_disable;
adev->pm.pm_display_cfg.cpu_pstate_separation_time =
pp_display_cfg->cpu_pstate_separation_time;
adev->pm.pm_display_cfg.nb_pstate_switch_disable =
pp_display_cfg->nb_pstate_switch_disable;
adev->pm.pm_display_cfg.num_display =
pp_display_cfg->display_count;
adev->pm.pm_display_cfg.num_path_including_non_display =
pp_display_cfg->display_count;
adev->pm.pm_display_cfg.min_core_set_clock =
pp_display_cfg->min_engine_clock_khz/10;
adev->pm.pm_display_cfg.min_core_set_clock_in_sr =
pp_display_cfg->min_engine_clock_deep_sleep_khz/10;
adev->pm.pm_display_cfg.min_mem_set_clock =
pp_display_cfg->min_memory_clock_khz/10;
adev->pm.pm_display_cfg.multi_monitor_in_sync =
pp_display_cfg->all_displays_in_sync;
adev->pm.pm_display_cfg.min_vblank_time =
pp_display_cfg->avail_mclk_switch_time_us;
adev->pm.pm_display_cfg.display_clk =
pp_display_cfg->disp_clk_khz/10;
adev->pm.pm_display_cfg.dce_tolerable_mclk_in_active_latency =
pp_display_cfg->avail_mclk_switch_time_in_disp_active_us;
adev->pm.pm_display_cfg.crtc_index = pp_display_cfg->crtc_index;
adev->pm.pm_display_cfg.line_time_in_us =
pp_display_cfg->line_time_in_us;
adev->pm.pm_display_cfg.vrefresh = pp_display_cfg->disp_configs[0].v_refresh;
adev->pm.pm_display_cfg.crossfire_display_index = -1;
adev->pm.pm_display_cfg.min_bus_bandwidth = 0;
/* TODO: complete implementation of
* pp_display_configuration_change().
* Follow example of:
* PHM_StoreDALConfigurationData - powerplay\hwmgr\hardwaremanager.c
* PP_IRI_DisplayConfigurationChange - powerplay\eventmgr\iri.c */
if (adev->powerplay.pp_funcs->display_configuration_change)
adev->powerplay.pp_funcs->display_configuration_change(
adev->powerplay.pp_handle,
&adev->pm.pm_display_cfg);
/* TODO: replace by a separate call to 'apply display cfg'? */
amdgpu_pm_compute_clocks(adev);
}
return true;
}
static void get_default_clock_levels(
enum dm_pp_clock_type clk_type,
struct dm_pp_clock_levels *clks)
{
uint32_t disp_clks_in_khz[6] = {
300000, 400000, 496560, 626090, 685720, 757900 };
uint32_t sclks_in_khz[6] = {
300000, 360000, 423530, 514290, 626090, 720000 };
uint32_t mclks_in_khz[2] = { 333000, 800000 };
switch (clk_type) {
case DM_PP_CLOCK_TYPE_DISPLAY_CLK:
clks->num_levels = 6;
memmove(clks->clocks_in_khz, disp_clks_in_khz,
sizeof(disp_clks_in_khz));
break;
case DM_PP_CLOCK_TYPE_ENGINE_CLK:
clks->num_levels = 6;
memmove(clks->clocks_in_khz, sclks_in_khz,
sizeof(sclks_in_khz));
break;
case DM_PP_CLOCK_TYPE_MEMORY_CLK:
clks->num_levels = 2;
memmove(clks->clocks_in_khz, mclks_in_khz,
sizeof(mclks_in_khz));
break;
default:
clks->num_levels = 0;
break;
}
}
static enum amd_pp_clock_type dc_to_pp_clock_type(
enum dm_pp_clock_type dm_pp_clk_type)
{
enum amd_pp_clock_type amd_pp_clk_type = 0;
switch (dm_pp_clk_type) {
case DM_PP_CLOCK_TYPE_DISPLAY_CLK:
amd_pp_clk_type = amd_pp_disp_clock;
break;
case DM_PP_CLOCK_TYPE_ENGINE_CLK:
amd_pp_clk_type = amd_pp_sys_clock;
break;
case DM_PP_CLOCK_TYPE_MEMORY_CLK:
amd_pp_clk_type = amd_pp_mem_clock;
break;
default:
DRM_ERROR("DM_PPLIB: invalid clock type: %d!\n",
dm_pp_clk_type);
break;
}
return amd_pp_clk_type;
}
static void pp_to_dc_clock_levels(
const struct amd_pp_clocks *pp_clks,
struct dm_pp_clock_levels *dc_clks,
enum dm_pp_clock_type dc_clk_type)
{
uint32_t i;
if (pp_clks->count > DM_PP_MAX_CLOCK_LEVELS) {
DRM_INFO("DM_PPLIB: Warning: %s clock: number of levels %d exceeds maximum of %d!\n",
DC_DECODE_PP_CLOCK_TYPE(dc_clk_type),
pp_clks->count,
DM_PP_MAX_CLOCK_LEVELS);
dc_clks->num_levels = DM_PP_MAX_CLOCK_LEVELS;
} else
dc_clks->num_levels = pp_clks->count;
DRM_INFO("DM_PPLIB: values for %s clock\n",
DC_DECODE_PP_CLOCK_TYPE(dc_clk_type));
for (i = 0; i < dc_clks->num_levels; i++) {
DRM_INFO("DM_PPLIB:\t %d\n", pp_clks->clock[i]);
/* translate 10kHz to kHz */
dc_clks->clocks_in_khz[i] = pp_clks->clock[i] * 10;
}
}
static void pp_to_dc_clock_levels_with_latency(
const struct pp_clock_levels_with_latency *pp_clks,
struct dm_pp_clock_levels_with_latency *clk_level_info,
enum dm_pp_clock_type dc_clk_type)
{
uint32_t i;
if (pp_clks->num_levels > DM_PP_MAX_CLOCK_LEVELS) {
DRM_INFO("DM_PPLIB: Warning: %s clock: number of levels %d exceeds maximum of %d!\n",
DC_DECODE_PP_CLOCK_TYPE(dc_clk_type),
pp_clks->num_levels,
DM_PP_MAX_CLOCK_LEVELS);
clk_level_info->num_levels = DM_PP_MAX_CLOCK_LEVELS;
} else
clk_level_info->num_levels = pp_clks->num_levels;
DRM_DEBUG("DM_PPLIB: values for %s clock\n",
DC_DECODE_PP_CLOCK_TYPE(dc_clk_type));
for (i = 0; i < clk_level_info->num_levels; i++) {
DRM_DEBUG("DM_PPLIB:\t %d\n", pp_clks->data[i].clocks_in_khz);
clk_level_info->data[i].clocks_in_khz = pp_clks->data[i].clocks_in_khz;
clk_level_info->data[i].latency_in_us = pp_clks->data[i].latency_in_us;
}
}
bool dm_pp_get_clock_levels_by_type(
const struct dc_context *ctx,
enum dm_pp_clock_type clk_type,
struct dm_pp_clock_levels *dc_clks)
{
struct amdgpu_device *adev = ctx->driver_context;
void *pp_handle = adev->powerplay.pp_handle;
struct amd_pp_clocks pp_clks = { 0 };
struct amd_pp_simple_clock_info validation_clks = { 0 };
uint32_t i;
if (adev->powerplay.pp_funcs->get_clock_by_type) {
if (adev->powerplay.pp_funcs->get_clock_by_type(pp_handle,
dc_to_pp_clock_type(clk_type), &pp_clks)) {
/* Error in pplib. Provide default values. */
get_default_clock_levels(clk_type, dc_clks);
return true;
}
}
pp_to_dc_clock_levels(&pp_clks, dc_clks, clk_type);
if (adev->powerplay.pp_funcs->get_display_mode_validation_clocks) {
if (adev->powerplay.pp_funcs->get_display_mode_validation_clocks(
pp_handle, &validation_clks)) {
/* Error in pplib. Provide default values. */
DRM_INFO("DM_PPLIB: Warning: using default validation clocks!\n");
validation_clks.engine_max_clock = 72000;
validation_clks.memory_max_clock = 80000;
validation_clks.level = 0;
}
}
DRM_INFO("DM_PPLIB: Validation clocks:\n");
DRM_INFO("DM_PPLIB: engine_max_clock: %d\n",
validation_clks.engine_max_clock);
DRM_INFO("DM_PPLIB: memory_max_clock: %d\n",
validation_clks.memory_max_clock);
DRM_INFO("DM_PPLIB: level : %d\n",
validation_clks.level);
/* Translate 10 kHz to kHz. */
validation_clks.engine_max_clock *= 10;
validation_clks.memory_max_clock *= 10;
/* Determine the highest non-boosted level from the Validation Clocks */
if (clk_type == DM_PP_CLOCK_TYPE_ENGINE_CLK) {
for (i = 0; i < dc_clks->num_levels; i++) {
if (dc_clks->clocks_in_khz[i] > validation_clks.engine_max_clock) {
/* This clock is higher the validation clock.
* Than means the previous one is the highest
* non-boosted one. */
DRM_INFO("DM_PPLIB: reducing engine clock level from %d to %d\n",
dc_clks->num_levels, i);
dc_clks->num_levels = i > 0 ? i : 1;
break;
}
}
} else if (clk_type == DM_PP_CLOCK_TYPE_MEMORY_CLK) {
for (i = 0; i < dc_clks->num_levels; i++) {
if (dc_clks->clocks_in_khz[i] > validation_clks.memory_max_clock) {
DRM_INFO("DM_PPLIB: reducing memory clock level from %d to %d\n",
dc_clks->num_levels, i);
dc_clks->num_levels = i > 0 ? i : 1;
break;
}
}
}
return true;
}
bool dm_pp_get_clock_levels_by_type_with_latency(
const struct dc_context *ctx,
enum dm_pp_clock_type clk_type,
struct dm_pp_clock_levels_with_latency *clk_level_info)
{
struct amdgpu_device *adev = ctx->driver_context;
void *pp_handle = adev->powerplay.pp_handle;
struct pp_clock_levels_with_latency pp_clks = { 0 };
const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs;
if (!pp_funcs || !pp_funcs->get_clock_by_type_with_latency)
return false;
if (pp_funcs->get_clock_by_type_with_latency(pp_handle,
dc_to_pp_clock_type(clk_type),
&pp_clks))
return false;
pp_to_dc_clock_levels_with_latency(&pp_clks, clk_level_info, clk_type);
return true;
}
bool dm_pp_get_clock_levels_by_type_with_voltage(
const struct dc_context *ctx,
enum dm_pp_clock_type clk_type,
struct dm_pp_clock_levels_with_voltage *clk_level_info)
{
/* TODO: to be implemented */
return false;
}
bool dm_pp_notify_wm_clock_changes(
const struct dc_context *ctx,
struct dm_pp_wm_sets_with_clock_ranges *wm_with_clock_ranges)
{
/* TODO: to be implemented */
return false;
}
bool dm_pp_apply_power_level_change_request(
const struct dc_context *ctx,
struct dm_pp_power_level_change_request *level_change_req)
{
/* TODO: to be implemented */
return false;
}
bool dm_pp_apply_clock_for_voltage_request(
const struct dc_context *ctx,
struct dm_pp_clock_for_voltage_req *clock_for_voltage_req)
{
/* TODO: to be implemented */
return false;
}
bool dm_pp_get_static_clocks(
const struct dc_context *ctx,
struct dm_pp_static_clock_info *static_clk_info)
{
/* TODO: to be implemented */
return false;
}
void dm_pp_get_funcs_rv(
struct dc_context *ctx,
struct pp_smu_funcs_rv *funcs)
{}
/**** end of power component interfaces ****/