blob: 4ac1aa30ea11f156adc347cc87839ae72ef7ebd1 [file] [log] [blame]
/*
* Copyright 2013 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include <subdev/clock.h>
#include <subdev/timer.h>
#include <subdev/bios.h>
#include <subdev/bios/pll.h>
#include "pll.h"
struct nve0_clock_info {
u32 freq;
u32 ssel;
u32 mdiv;
u32 dsrc;
u32 ddiv;
u32 coef;
};
struct nve0_clock_priv {
struct nouveau_clock base;
struct nve0_clock_info eng[16];
};
static u32 read_div(struct nve0_clock_priv *, int, u32, u32);
static u32 read_pll(struct nve0_clock_priv *, u32);
static u32
read_vco(struct nve0_clock_priv *priv, u32 dsrc)
{
u32 ssrc = nv_rd32(priv, dsrc);
if (!(ssrc & 0x00000100))
return read_pll(priv, 0x00e800);
return read_pll(priv, 0x00e820);
}
static u32
read_pll(struct nve0_clock_priv *priv, u32 pll)
{
u32 ctrl = nv_rd32(priv, pll + 0x00);
u32 coef = nv_rd32(priv, pll + 0x04);
u32 P = (coef & 0x003f0000) >> 16;
u32 N = (coef & 0x0000ff00) >> 8;
u32 M = (coef & 0x000000ff) >> 0;
u32 sclk;
u16 fN = 0xf000;
if (!(ctrl & 0x00000001))
return 0;
switch (pll) {
case 0x00e800:
case 0x00e820:
sclk = nv_device(priv)->crystal;
P = 1;
break;
case 0x132000:
sclk = read_pll(priv, 0x132020);
P = (coef & 0x10000000) ? 2 : 1;
break;
case 0x132020:
sclk = read_div(priv, 0, 0x137320, 0x137330);
fN = nv_rd32(priv, pll + 0x10) >> 16;
break;
case 0x137000:
case 0x137020:
case 0x137040:
case 0x1370e0:
sclk = read_div(priv, (pll & 0xff) / 0x20, 0x137120, 0x137140);
break;
default:
return 0;
}
if (P == 0)
P = 1;
sclk = (sclk * N) + (((u16)(fN + 4096) * sclk) >> 13);
return sclk / (M * P);
}
static u32
read_div(struct nve0_clock_priv *priv, int doff, u32 dsrc, u32 dctl)
{
u32 ssrc = nv_rd32(priv, dsrc + (doff * 4));
u32 sctl = nv_rd32(priv, dctl + (doff * 4));
switch (ssrc & 0x00000003) {
case 0:
if ((ssrc & 0x00030000) != 0x00030000)
return nv_device(priv)->crystal;
return 108000;
case 2:
return 100000;
case 3:
if (sctl & 0x80000000) {
u32 sclk = read_vco(priv, dsrc + (doff * 4));
u32 sdiv = (sctl & 0x0000003f) + 2;
return (sclk * 2) / sdiv;
}
return read_vco(priv, dsrc + (doff * 4));
default:
return 0;
}
}
static u32
read_mem(struct nve0_clock_priv *priv)
{
switch (nv_rd32(priv, 0x1373f4) & 0x0000000f) {
case 1: return read_pll(priv, 0x132020);
case 2: return read_pll(priv, 0x132000);
default:
return 0;
}
}
static u32
read_clk(struct nve0_clock_priv *priv, int clk)
{
u32 sctl = nv_rd32(priv, 0x137250 + (clk * 4));
u32 sclk, sdiv;
if (clk < 7) {
u32 ssel = nv_rd32(priv, 0x137100);
if (ssel & (1 << clk)) {
sclk = read_pll(priv, 0x137000 + (clk * 0x20));
sdiv = 1;
} else {
sclk = read_div(priv, clk, 0x137160, 0x1371d0);
sdiv = 0;
}
} else {
u32 ssrc = nv_rd32(priv, 0x137160 + (clk * 0x04));
if ((ssrc & 0x00000003) == 0x00000003) {
sclk = read_div(priv, clk, 0x137160, 0x1371d0);
if (ssrc & 0x00000100) {
if (ssrc & 0x40000000)
sclk = read_pll(priv, 0x1370e0);
sdiv = 1;
} else {
sdiv = 0;
}
} else {
sclk = read_div(priv, clk, 0x137160, 0x1371d0);
sdiv = 0;
}
}
if (sctl & 0x80000000) {
if (sdiv)
sdiv = ((sctl & 0x00003f00) >> 8) + 2;
else
sdiv = ((sctl & 0x0000003f) >> 0) + 2;
return (sclk * 2) / sdiv;
}
return sclk;
}
static int
nve0_clock_read(struct nouveau_clock *clk, enum nv_clk_src src)
{
struct nouveau_device *device = nv_device(clk);
struct nve0_clock_priv *priv = (void *)clk;
switch (src) {
case nv_clk_src_crystal:
return device->crystal;
case nv_clk_src_href:
return 100000;
case nv_clk_src_mem:
return read_mem(priv);
case nv_clk_src_gpc:
return read_clk(priv, 0x00);
case nv_clk_src_rop:
return read_clk(priv, 0x01);
case nv_clk_src_hubk07:
return read_clk(priv, 0x02);
case nv_clk_src_hubk06:
return read_clk(priv, 0x07);
case nv_clk_src_hubk01:
return read_clk(priv, 0x08);
case nv_clk_src_daemon:
return read_clk(priv, 0x0c);
case nv_clk_src_vdec:
return read_clk(priv, 0x0e);
default:
nv_error(clk, "invalid clock source %d\n", src);
return -EINVAL;
}
}
static u32
calc_div(struct nve0_clock_priv *priv, int clk, u32 ref, u32 freq, u32 *ddiv)
{
u32 div = min((ref * 2) / freq, (u32)65);
if (div < 2)
div = 2;
*ddiv = div - 2;
return (ref * 2) / div;
}
static u32
calc_src(struct nve0_clock_priv *priv, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
{
u32 sclk;
/* use one of the fixed frequencies if possible */
*ddiv = 0x00000000;
switch (freq) {
case 27000:
case 108000:
*dsrc = 0x00000000;
if (freq == 108000)
*dsrc |= 0x00030000;
return freq;
case 100000:
*dsrc = 0x00000002;
return freq;
default:
*dsrc = 0x00000003;
break;
}
/* otherwise, calculate the closest divider */
sclk = read_vco(priv, 0x137160 + (clk * 4));
if (clk < 7)
sclk = calc_div(priv, clk, sclk, freq, ddiv);
return sclk;
}
static u32
calc_pll(struct nve0_clock_priv *priv, int clk, u32 freq, u32 *coef)
{
struct nouveau_bios *bios = nouveau_bios(priv);
struct nvbios_pll limits;
int N, M, P, ret;
ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits);
if (ret)
return 0;
limits.refclk = read_div(priv, clk, 0x137120, 0x137140);
if (!limits.refclk)
return 0;
ret = nva3_pll_calc(nv_subdev(priv), &limits, freq, &N, NULL, &M, &P);
if (ret <= 0)
return 0;
*coef = (P << 16) | (N << 8) | M;
return ret;
}
static int
calc_clk(struct nve0_clock_priv *priv,
struct nouveau_cstate *cstate, int clk, int dom)
{
struct nve0_clock_info *info = &priv->eng[clk];
u32 freq = cstate->domain[dom];
u32 src0, div0, div1D, div1P = 0;
u32 clk0, clk1 = 0;
/* invalid clock domain */
if (!freq)
return 0;
/* first possible path, using only dividers */
clk0 = calc_src(priv, clk, freq, &src0, &div0);
clk0 = calc_div(priv, clk, clk0, freq, &div1D);
/* see if we can get any closer using PLLs */
if (clk0 != freq && (0x0000ff87 & (1 << clk))) {
if (clk <= 7)
clk1 = calc_pll(priv, clk, freq, &info->coef);
else
clk1 = cstate->domain[nv_clk_src_hubk06];
clk1 = calc_div(priv, clk, clk1, freq, &div1P);
}
/* select the method which gets closest to target freq */
if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
info->dsrc = src0;
if (div0) {
info->ddiv |= 0x80000000;
info->ddiv |= div0 << 8;
info->ddiv |= div0;
}
if (div1D) {
info->mdiv |= 0x80000000;
info->mdiv |= div1D;
}
info->ssel = 0;
info->freq = clk0;
} else {
if (div1P) {
info->mdiv |= 0x80000000;
info->mdiv |= div1P << 8;
}
info->ssel = (1 << clk);
info->dsrc = 0x40000100;
info->freq = clk1;
}
return 0;
}
static int
nve0_clock_calc(struct nouveau_clock *clk, struct nouveau_cstate *cstate)
{
struct nve0_clock_priv *priv = (void *)clk;
int ret;
if ((ret = calc_clk(priv, cstate, 0x00, nv_clk_src_gpc)) ||
(ret = calc_clk(priv, cstate, 0x01, nv_clk_src_rop)) ||
(ret = calc_clk(priv, cstate, 0x02, nv_clk_src_hubk07)) ||
(ret = calc_clk(priv, cstate, 0x07, nv_clk_src_hubk06)) ||
(ret = calc_clk(priv, cstate, 0x08, nv_clk_src_hubk01)) ||
(ret = calc_clk(priv, cstate, 0x0c, nv_clk_src_daemon)) ||
(ret = calc_clk(priv, cstate, 0x0e, nv_clk_src_vdec)))
return ret;
return 0;
}
static void
nve0_clock_prog_0(struct nve0_clock_priv *priv, int clk)
{
struct nve0_clock_info *info = &priv->eng[clk];
if (!info->ssel) {
nv_mask(priv, 0x1371d0 + (clk * 0x04), 0x80003f3f, info->ddiv);
nv_wr32(priv, 0x137160 + (clk * 0x04), info->dsrc);
}
}
static void
nve0_clock_prog_1_0(struct nve0_clock_priv *priv, int clk)
{
nv_mask(priv, 0x137100, (1 << clk), 0x00000000);
nv_wait(priv, 0x137100, (1 << clk), 0x00000000);
}
static void
nve0_clock_prog_1_1(struct nve0_clock_priv *priv, int clk)
{
nv_mask(priv, 0x137160 + (clk * 0x04), 0x00000100, 0x00000000);
}
static void
nve0_clock_prog_2(struct nve0_clock_priv *priv, int clk)
{
struct nve0_clock_info *info = &priv->eng[clk];
const u32 addr = 0x137000 + (clk * 0x20);
nv_mask(priv, addr + 0x00, 0x00000004, 0x00000000);
nv_mask(priv, addr + 0x00, 0x00000001, 0x00000000);
if (info->coef) {
nv_wr32(priv, addr + 0x04, info->coef);
nv_mask(priv, addr + 0x00, 0x00000001, 0x00000001);
nv_wait(priv, addr + 0x00, 0x00020000, 0x00020000);
nv_mask(priv, addr + 0x00, 0x00020004, 0x00000004);
}
}
static void
nve0_clock_prog_3(struct nve0_clock_priv *priv, int clk)
{
struct nve0_clock_info *info = &priv->eng[clk];
nv_mask(priv, 0x137250 + (clk * 0x04), 0x00003f3f, info->mdiv);
}
static void
nve0_clock_prog_4_0(struct nve0_clock_priv *priv, int clk)
{
struct nve0_clock_info *info = &priv->eng[clk];
if (info->ssel) {
nv_mask(priv, 0x137100, (1 << clk), info->ssel);
nv_wait(priv, 0x137100, (1 << clk), info->ssel);
}
}
static void
nve0_clock_prog_4_1(struct nve0_clock_priv *priv, int clk)
{
struct nve0_clock_info *info = &priv->eng[clk];
if (info->ssel) {
nv_mask(priv, 0x137160 + (clk * 0x04), 0x40000000, 0x40000000);
nv_mask(priv, 0x137160 + (clk * 0x04), 0x00000100, 0x00000100);
}
}
static int
nve0_clock_prog(struct nouveau_clock *clk)
{
struct nve0_clock_priv *priv = (void *)clk;
struct {
u32 mask;
void (*exec)(struct nve0_clock_priv *, int);
} stage[] = {
{ 0x007f, nve0_clock_prog_0 }, /* div programming */
{ 0x007f, nve0_clock_prog_1_0 }, /* select div mode */
{ 0xff80, nve0_clock_prog_1_1 },
{ 0x00ff, nve0_clock_prog_2 }, /* (maybe) program pll */
{ 0xff80, nve0_clock_prog_3 }, /* final divider */
{ 0x007f, nve0_clock_prog_4_0 }, /* (maybe) select pll mode */
{ 0xff80, nve0_clock_prog_4_1 },
};
int i, j;
for (i = 0; i < ARRAY_SIZE(stage); i++) {
for (j = 0; j < ARRAY_SIZE(priv->eng); j++) {
if (!(stage[i].mask & (1 << j)))
continue;
if (!priv->eng[j].freq)
continue;
stage[i].exec(priv, j);
}
}
return 0;
}
static void
nve0_clock_tidy(struct nouveau_clock *clk)
{
struct nve0_clock_priv *priv = (void *)clk;
memset(priv->eng, 0x00, sizeof(priv->eng));
}
static struct nouveau_clocks
nve0_domain[] = {
{ nv_clk_src_crystal, 0xff },
{ nv_clk_src_href , 0xff },
{ nv_clk_src_gpc , 0x00, NVKM_CLK_DOM_FLAG_CORE, "core", 2000 },
{ nv_clk_src_hubk07 , 0x01, NVKM_CLK_DOM_FLAG_CORE },
{ nv_clk_src_rop , 0x02, NVKM_CLK_DOM_FLAG_CORE },
{ nv_clk_src_mem , 0x03, 0, "memory", 500 },
{ nv_clk_src_hubk06 , 0x04, NVKM_CLK_DOM_FLAG_CORE },
{ nv_clk_src_hubk01 , 0x05 },
{ nv_clk_src_vdec , 0x06 },
{ nv_clk_src_daemon , 0x07 },
{ nv_clk_src_max }
};
static int
nve0_clock_ctor(struct nouveau_object *parent, struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 size,
struct nouveau_object **pobject)
{
struct nve0_clock_priv *priv;
int ret;
ret = nouveau_clock_create(parent, engine, oclass, nve0_domain, true,
&priv);
*pobject = nv_object(priv);
if (ret)
return ret;
priv->base.read = nve0_clock_read;
priv->base.calc = nve0_clock_calc;
priv->base.prog = nve0_clock_prog;
priv->base.tidy = nve0_clock_tidy;
return 0;
}
struct nouveau_oclass
nve0_clock_oclass = {
.handle = NV_SUBDEV(CLOCK, 0xe0),
.ofuncs = &(struct nouveau_ofuncs) {
.ctor = nve0_clock_ctor,
.dtor = _nouveau_clock_dtor,
.init = _nouveau_clock_init,
.fini = _nouveau_clock_fini,
},
};