|  | /* | 
|  | *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru | 
|  | *  Programm System Institute | 
|  | *  Pereslavl-Zalessky Russia | 
|  | */ | 
|  |  | 
|  | #include <linux/time.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include "reiserfs.h" | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/quotaops.h> | 
|  |  | 
|  | /* Does the buffer contain a disk block which is in the tree. */ | 
|  | inline int B_IS_IN_TREE(const struct buffer_head *bh) | 
|  | { | 
|  |  | 
|  | RFALSE(B_LEVEL(bh) > MAX_HEIGHT, | 
|  | "PAP-1010: block (%b) has too big level (%z)", bh, bh); | 
|  |  | 
|  | return (B_LEVEL(bh) != FREE_LEVEL); | 
|  | } | 
|  |  | 
|  | /* to get item head in le form */ | 
|  | inline void copy_item_head(struct item_head *to, | 
|  | const struct item_head *from) | 
|  | { | 
|  | memcpy(to, from, IH_SIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * k1 is pointer to on-disk structure which is stored in little-endian | 
|  | * form. k2 is pointer to cpu variable. For key of items of the same | 
|  | * object this returns 0. | 
|  | * Returns: -1 if key1 < key2 | 
|  | * 0 if key1 == key2 | 
|  | * 1 if key1 > key2 | 
|  | */ | 
|  | inline int comp_short_keys(const struct reiserfs_key *le_key, | 
|  | const struct cpu_key *cpu_key) | 
|  | { | 
|  | __u32 n; | 
|  | n = le32_to_cpu(le_key->k_dir_id); | 
|  | if (n < cpu_key->on_disk_key.k_dir_id) | 
|  | return -1; | 
|  | if (n > cpu_key->on_disk_key.k_dir_id) | 
|  | return 1; | 
|  | n = le32_to_cpu(le_key->k_objectid); | 
|  | if (n < cpu_key->on_disk_key.k_objectid) | 
|  | return -1; | 
|  | if (n > cpu_key->on_disk_key.k_objectid) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * k1 is pointer to on-disk structure which is stored in little-endian | 
|  | * form. k2 is pointer to cpu variable. | 
|  | * Compare keys using all 4 key fields. | 
|  | * Returns: -1 if key1 < key2 0 | 
|  | * if key1 = key2 1 if key1 > key2 | 
|  | */ | 
|  | static inline int comp_keys(const struct reiserfs_key *le_key, | 
|  | const struct cpu_key *cpu_key) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | retval = comp_short_keys(le_key, cpu_key); | 
|  | if (retval) | 
|  | return retval; | 
|  | if (le_key_k_offset(le_key_version(le_key), le_key) < | 
|  | cpu_key_k_offset(cpu_key)) | 
|  | return -1; | 
|  | if (le_key_k_offset(le_key_version(le_key), le_key) > | 
|  | cpu_key_k_offset(cpu_key)) | 
|  | return 1; | 
|  |  | 
|  | if (cpu_key->key_length == 3) | 
|  | return 0; | 
|  |  | 
|  | /* this part is needed only when tail conversion is in progress */ | 
|  | if (le_key_k_type(le_key_version(le_key), le_key) < | 
|  | cpu_key_k_type(cpu_key)) | 
|  | return -1; | 
|  |  | 
|  | if (le_key_k_type(le_key_version(le_key), le_key) > | 
|  | cpu_key_k_type(cpu_key)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | inline int comp_short_le_keys(const struct reiserfs_key *key1, | 
|  | const struct reiserfs_key *key2) | 
|  | { | 
|  | __u32 *k1_u32, *k2_u32; | 
|  | int key_length = REISERFS_SHORT_KEY_LEN; | 
|  |  | 
|  | k1_u32 = (__u32 *) key1; | 
|  | k2_u32 = (__u32 *) key2; | 
|  | for (; key_length--; ++k1_u32, ++k2_u32) { | 
|  | if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32)) | 
|  | return -1; | 
|  | if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32)) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from) | 
|  | { | 
|  | int version; | 
|  | to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id); | 
|  | to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid); | 
|  |  | 
|  | /* find out version of the key */ | 
|  | version = le_key_version(from); | 
|  | to->version = version; | 
|  | to->on_disk_key.k_offset = le_key_k_offset(version, from); | 
|  | to->on_disk_key.k_type = le_key_k_type(version, from); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this does not say which one is bigger, it only returns 1 if keys | 
|  | * are not equal, 0 otherwise | 
|  | */ | 
|  | inline int comp_le_keys(const struct reiserfs_key *k1, | 
|  | const struct reiserfs_key *k2) | 
|  | { | 
|  | return memcmp(k1, k2, sizeof(struct reiserfs_key)); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | *  Binary search toolkit function                                        * | 
|  | *  Search for an item in the array by the item key                       * | 
|  | *  Returns:    1 if found,  0 if not found;                              * | 
|  | *        *pos = number of the searched element if found, else the        * | 
|  | *        number of the first element that is larger than key.            * | 
|  | **************************************************************************/ | 
|  | /* | 
|  | * For those not familiar with binary search: lbound is the leftmost item | 
|  | * that it could be, rbound the rightmost item that it could be.  We examine | 
|  | * the item halfway between lbound and rbound, and that tells us either | 
|  | * that we can increase lbound, or decrease rbound, or that we have found it, | 
|  | * or if lbound <= rbound that there are no possible items, and we have not | 
|  | * found it. With each examination we cut the number of possible items it | 
|  | * could be by one more than half rounded down, or we find it. | 
|  | */ | 
|  | static inline int bin_search(const void *key,	/* Key to search for. */ | 
|  | const void *base,	/* First item in the array. */ | 
|  | int num,	/* Number of items in the array. */ | 
|  | /* | 
|  | * Item size in the array.  searched. Lest the | 
|  | * reader be confused, note that this is crafted | 
|  | * as a general function, and when it is applied | 
|  | * specifically to the array of item headers in a | 
|  | * node, width is actually the item header size | 
|  | * not the item size. | 
|  | */ | 
|  | int width, | 
|  | int *pos /* Number of the searched for element. */ | 
|  | ) | 
|  | { | 
|  | int rbound, lbound, j; | 
|  |  | 
|  | for (j = ((rbound = num - 1) + (lbound = 0)) / 2; | 
|  | lbound <= rbound; j = (rbound + lbound) / 2) | 
|  | switch (comp_keys | 
|  | ((struct reiserfs_key *)((char *)base + j * width), | 
|  | (struct cpu_key *)key)) { | 
|  | case -1: | 
|  | lbound = j + 1; | 
|  | continue; | 
|  | case 1: | 
|  | rbound = j - 1; | 
|  | continue; | 
|  | case 0: | 
|  | *pos = j; | 
|  | return ITEM_FOUND;	/* Key found in the array.  */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * bin_search did not find given key, it returns position of key, | 
|  | * that is minimal and greater than the given one. | 
|  | */ | 
|  | *pos = lbound; | 
|  | return ITEM_NOT_FOUND; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Minimal possible key. It is never in the tree. */ | 
|  | const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} }; | 
|  |  | 
|  | /* Maximal possible key. It is never in the tree. */ | 
|  | static const struct reiserfs_key MAX_KEY = { | 
|  | cpu_to_le32(0xffffffff), | 
|  | cpu_to_le32(0xffffffff), | 
|  | {{cpu_to_le32(0xffffffff), | 
|  | cpu_to_le32(0xffffffff)},} | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Get delimiting key of the buffer by looking for it in the buffers in the | 
|  | * path, starting from the bottom of the path, and going upwards.  We must | 
|  | * check the path's validity at each step.  If the key is not in the path, | 
|  | * there is no delimiting key in the tree (buffer is first or last buffer | 
|  | * in tree), and in this case we return a special key, either MIN_KEY or | 
|  | * MAX_KEY. | 
|  | */ | 
|  | static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path, | 
|  | const struct super_block *sb) | 
|  | { | 
|  | int position, path_offset = chk_path->path_length; | 
|  | struct buffer_head *parent; | 
|  |  | 
|  | RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, | 
|  | "PAP-5010: invalid offset in the path"); | 
|  |  | 
|  | /* While not higher in path than first element. */ | 
|  | while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { | 
|  |  | 
|  | RFALSE(!buffer_uptodate | 
|  | (PATH_OFFSET_PBUFFER(chk_path, path_offset)), | 
|  | "PAP-5020: parent is not uptodate"); | 
|  |  | 
|  | /* Parent at the path is not in the tree now. */ | 
|  | if (!B_IS_IN_TREE | 
|  | (parent = | 
|  | PATH_OFFSET_PBUFFER(chk_path, path_offset))) | 
|  | return &MAX_KEY; | 
|  | /* Check whether position in the parent is correct. */ | 
|  | if ((position = | 
|  | PATH_OFFSET_POSITION(chk_path, | 
|  | path_offset)) > | 
|  | B_NR_ITEMS(parent)) | 
|  | return &MAX_KEY; | 
|  | /* Check whether parent at the path really points to the child. */ | 
|  | if (B_N_CHILD_NUM(parent, position) != | 
|  | PATH_OFFSET_PBUFFER(chk_path, | 
|  | path_offset + 1)->b_blocknr) | 
|  | return &MAX_KEY; | 
|  | /* | 
|  | * Return delimiting key if position in the parent | 
|  | * is not equal to zero. | 
|  | */ | 
|  | if (position) | 
|  | return internal_key(parent, position - 1); | 
|  | } | 
|  | /* Return MIN_KEY if we are in the root of the buffer tree. */ | 
|  | if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> | 
|  | b_blocknr == SB_ROOT_BLOCK(sb)) | 
|  | return &MIN_KEY; | 
|  | return &MAX_KEY; | 
|  | } | 
|  |  | 
|  | /* Get delimiting key of the buffer at the path and its right neighbor. */ | 
|  | inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path, | 
|  | const struct super_block *sb) | 
|  | { | 
|  | int position, path_offset = chk_path->path_length; | 
|  | struct buffer_head *parent; | 
|  |  | 
|  | RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET, | 
|  | "PAP-5030: invalid offset in the path"); | 
|  |  | 
|  | while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) { | 
|  |  | 
|  | RFALSE(!buffer_uptodate | 
|  | (PATH_OFFSET_PBUFFER(chk_path, path_offset)), | 
|  | "PAP-5040: parent is not uptodate"); | 
|  |  | 
|  | /* Parent at the path is not in the tree now. */ | 
|  | if (!B_IS_IN_TREE | 
|  | (parent = | 
|  | PATH_OFFSET_PBUFFER(chk_path, path_offset))) | 
|  | return &MIN_KEY; | 
|  | /* Check whether position in the parent is correct. */ | 
|  | if ((position = | 
|  | PATH_OFFSET_POSITION(chk_path, | 
|  | path_offset)) > | 
|  | B_NR_ITEMS(parent)) | 
|  | return &MIN_KEY; | 
|  | /* | 
|  | * Check whether parent at the path really points | 
|  | * to the child. | 
|  | */ | 
|  | if (B_N_CHILD_NUM(parent, position) != | 
|  | PATH_OFFSET_PBUFFER(chk_path, | 
|  | path_offset + 1)->b_blocknr) | 
|  | return &MIN_KEY; | 
|  |  | 
|  | /* | 
|  | * Return delimiting key if position in the parent | 
|  | * is not the last one. | 
|  | */ | 
|  | if (position != B_NR_ITEMS(parent)) | 
|  | return internal_key(parent, position); | 
|  | } | 
|  |  | 
|  | /* Return MAX_KEY if we are in the root of the buffer tree. */ | 
|  | if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)-> | 
|  | b_blocknr == SB_ROOT_BLOCK(sb)) | 
|  | return &MAX_KEY; | 
|  | return &MIN_KEY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether a key is contained in the tree rooted from a buffer at a path. | 
|  | * This works by looking at the left and right delimiting keys for the buffer | 
|  | * in the last path_element in the path.  These delimiting keys are stored | 
|  | * at least one level above that buffer in the tree. If the buffer is the | 
|  | * first or last node in the tree order then one of the delimiting keys may | 
|  | * be absent, and in this case get_lkey and get_rkey return a special key | 
|  | * which is MIN_KEY or MAX_KEY. | 
|  | */ | 
|  | static inline int key_in_buffer( | 
|  | /* Path which should be checked. */ | 
|  | struct treepath *chk_path, | 
|  | /* Key which should be checked. */ | 
|  | const struct cpu_key *key, | 
|  | struct super_block *sb | 
|  | ) | 
|  | { | 
|  |  | 
|  | RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET | 
|  | || chk_path->path_length > MAX_HEIGHT, | 
|  | "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)", | 
|  | key, chk_path->path_length); | 
|  | RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev, | 
|  | "PAP-5060: device must not be NODEV"); | 
|  |  | 
|  | if (comp_keys(get_lkey(chk_path, sb), key) == 1) | 
|  | /* left delimiting key is bigger, that the key we look for */ | 
|  | return 0; | 
|  | /*  if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */ | 
|  | if (comp_keys(get_rkey(chk_path, sb), key) != 1) | 
|  | /* key must be less than right delimitiing key */ | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int reiserfs_check_path(struct treepath *p) | 
|  | { | 
|  | RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET, | 
|  | "path not properly relsed"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drop the reference to each buffer in a path and restore | 
|  | * dirty bits clean when preparing the buffer for the log. | 
|  | * This version should only be called from fix_nodes() | 
|  | */ | 
|  | void pathrelse_and_restore(struct super_block *sb, | 
|  | struct treepath *search_path) | 
|  | { | 
|  | int path_offset = search_path->path_length; | 
|  |  | 
|  | RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, | 
|  | "clm-4000: invalid path offset"); | 
|  |  | 
|  | while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) { | 
|  | struct buffer_head *bh; | 
|  | bh = PATH_OFFSET_PBUFFER(search_path, path_offset--); | 
|  | reiserfs_restore_prepared_buffer(sb, bh); | 
|  | brelse(bh); | 
|  | } | 
|  | search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; | 
|  | } | 
|  |  | 
|  | /* Drop the reference to each buffer in a path */ | 
|  | void pathrelse(struct treepath *search_path) | 
|  | { | 
|  | int path_offset = search_path->path_length; | 
|  |  | 
|  | RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, | 
|  | "PAP-5090: invalid path offset"); | 
|  |  | 
|  | while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) | 
|  | brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--)); | 
|  |  | 
|  | search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; | 
|  | } | 
|  |  | 
|  | static int is_leaf(char *buf, int blocksize, struct buffer_head *bh) | 
|  | { | 
|  | struct block_head *blkh; | 
|  | struct item_head *ih; | 
|  | int used_space; | 
|  | int prev_location; | 
|  | int i; | 
|  | int nr; | 
|  |  | 
|  | blkh = (struct block_head *)buf; | 
|  | if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) { | 
|  | reiserfs_warning(NULL, "reiserfs-5080", | 
|  | "this should be caught earlier"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | nr = blkh_nr_item(blkh); | 
|  | if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) { | 
|  | /* item number is too big or too small */ | 
|  | reiserfs_warning(NULL, "reiserfs-5081", | 
|  | "nr_item seems wrong: %z", bh); | 
|  | return 0; | 
|  | } | 
|  | ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1; | 
|  | used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih)); | 
|  |  | 
|  | /* free space does not match to calculated amount of use space */ | 
|  | if (used_space != blocksize - blkh_free_space(blkh)) { | 
|  | reiserfs_warning(NULL, "reiserfs-5082", | 
|  | "free space seems wrong: %z", bh); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * FIXME: it is_leaf will hit performance too much - we may have | 
|  | * return 1 here | 
|  | */ | 
|  |  | 
|  | /* check tables of item heads */ | 
|  | ih = (struct item_head *)(buf + BLKH_SIZE); | 
|  | prev_location = blocksize; | 
|  | for (i = 0; i < nr; i++, ih++) { | 
|  | if (le_ih_k_type(ih) == TYPE_ANY) { | 
|  | reiserfs_warning(NULL, "reiserfs-5083", | 
|  | "wrong item type for item %h", | 
|  | ih); | 
|  | return 0; | 
|  | } | 
|  | if (ih_location(ih) >= blocksize | 
|  | || ih_location(ih) < IH_SIZE * nr) { | 
|  | reiserfs_warning(NULL, "reiserfs-5084", | 
|  | "item location seems wrong: %h", | 
|  | ih); | 
|  | return 0; | 
|  | } | 
|  | if (ih_item_len(ih) < 1 | 
|  | || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) { | 
|  | reiserfs_warning(NULL, "reiserfs-5085", | 
|  | "item length seems wrong: %h", | 
|  | ih); | 
|  | return 0; | 
|  | } | 
|  | if (prev_location - ih_location(ih) != ih_item_len(ih)) { | 
|  | reiserfs_warning(NULL, "reiserfs-5086", | 
|  | "item location seems wrong " | 
|  | "(second one): %h", ih); | 
|  | return 0; | 
|  | } | 
|  | prev_location = ih_location(ih); | 
|  | } | 
|  |  | 
|  | /* one may imagine many more checks */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* returns 1 if buf looks like an internal node, 0 otherwise */ | 
|  | static int is_internal(char *buf, int blocksize, struct buffer_head *bh) | 
|  | { | 
|  | struct block_head *blkh; | 
|  | int nr; | 
|  | int used_space; | 
|  |  | 
|  | blkh = (struct block_head *)buf; | 
|  | nr = blkh_level(blkh); | 
|  | if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) { | 
|  | /* this level is not possible for internal nodes */ | 
|  | reiserfs_warning(NULL, "reiserfs-5087", | 
|  | "this should be caught earlier"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | nr = blkh_nr_item(blkh); | 
|  | /* for internal which is not root we might check min number of keys */ | 
|  | if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) { | 
|  | reiserfs_warning(NULL, "reiserfs-5088", | 
|  | "number of key seems wrong: %z", bh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1); | 
|  | if (used_space != blocksize - blkh_free_space(blkh)) { | 
|  | reiserfs_warning(NULL, "reiserfs-5089", | 
|  | "free space seems wrong: %z", bh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* one may imagine many more checks */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * make sure that bh contains formatted node of reiserfs tree of | 
|  | * 'level'-th level | 
|  | */ | 
|  | static int is_tree_node(struct buffer_head *bh, int level) | 
|  | { | 
|  | if (B_LEVEL(bh) != level) { | 
|  | reiserfs_warning(NULL, "reiserfs-5090", "node level %d does " | 
|  | "not match to the expected one %d", | 
|  | B_LEVEL(bh), level); | 
|  | return 0; | 
|  | } | 
|  | if (level == DISK_LEAF_NODE_LEVEL) | 
|  | return is_leaf(bh->b_data, bh->b_size, bh); | 
|  |  | 
|  | return is_internal(bh->b_data, bh->b_size, bh); | 
|  | } | 
|  |  | 
|  | #define SEARCH_BY_KEY_READA 16 | 
|  |  | 
|  | /* | 
|  | * The function is NOT SCHEDULE-SAFE! | 
|  | * It might unlock the write lock if we needed to wait for a block | 
|  | * to be read. Note that in this case it won't recover the lock to avoid | 
|  | * high contention resulting from too much lock requests, especially | 
|  | * the caller (search_by_key) will perform other schedule-unsafe | 
|  | * operations just after calling this function. | 
|  | * | 
|  | * @return depth of lock to be restored after read completes | 
|  | */ | 
|  | static int search_by_key_reada(struct super_block *s, | 
|  | struct buffer_head **bh, | 
|  | b_blocknr_t *b, int num) | 
|  | { | 
|  | int i, j; | 
|  | int depth = -1; | 
|  |  | 
|  | for (i = 0; i < num; i++) { | 
|  | bh[i] = sb_getblk(s, b[i]); | 
|  | } | 
|  | /* | 
|  | * We are going to read some blocks on which we | 
|  | * have a reference. It's safe, though we might be | 
|  | * reading blocks concurrently changed if we release | 
|  | * the lock. But it's still fine because we check later | 
|  | * if the tree changed | 
|  | */ | 
|  | for (j = 0; j < i; j++) { | 
|  | /* | 
|  | * note, this needs attention if we are getting rid of the BKL | 
|  | * you have to make sure the prepared bit isn't set on this | 
|  | * buffer | 
|  | */ | 
|  | if (!buffer_uptodate(bh[j])) { | 
|  | if (depth == -1) | 
|  | depth = reiserfs_write_unlock_nested(s); | 
|  | ll_rw_block(READA, 1, bh + j); | 
|  | } | 
|  | brelse(bh[j]); | 
|  | } | 
|  | return depth; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function fills up the path from the root to the leaf as it | 
|  | * descends the tree looking for the key.  It uses reiserfs_bread to | 
|  | * try to find buffers in the cache given their block number.  If it | 
|  | * does not find them in the cache it reads them from disk.  For each | 
|  | * node search_by_key finds using reiserfs_bread it then uses | 
|  | * bin_search to look through that node.  bin_search will find the | 
|  | * position of the block_number of the next node if it is looking | 
|  | * through an internal node.  If it is looking through a leaf node | 
|  | * bin_search will find the position of the item which has key either | 
|  | * equal to given key, or which is the maximal key less than the given | 
|  | * key.  search_by_key returns a path that must be checked for the | 
|  | * correctness of the top of the path but need not be checked for the | 
|  | * correctness of the bottom of the path | 
|  | */ | 
|  | /* | 
|  | * search_by_key - search for key (and item) in stree | 
|  | * @sb: superblock | 
|  | * @key: pointer to key to search for | 
|  | * @search_path: Allocated and initialized struct treepath; Returned filled | 
|  | *		 on success. | 
|  | * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to | 
|  | *		stop at leaf level. | 
|  | * | 
|  | * The function is NOT SCHEDULE-SAFE! | 
|  | */ | 
|  | int search_by_key(struct super_block *sb, const struct cpu_key *key, | 
|  | struct treepath *search_path, int stop_level) | 
|  | { | 
|  | b_blocknr_t block_number; | 
|  | int expected_level; | 
|  | struct buffer_head *bh; | 
|  | struct path_element *last_element; | 
|  | int node_level, retval; | 
|  | int right_neighbor_of_leaf_node; | 
|  | int fs_gen; | 
|  | struct buffer_head *reada_bh[SEARCH_BY_KEY_READA]; | 
|  | b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA]; | 
|  | int reada_count = 0; | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | int repeat_counter = 0; | 
|  | #endif | 
|  |  | 
|  | PROC_INFO_INC(sb, search_by_key); | 
|  |  | 
|  | /* | 
|  | * As we add each node to a path we increase its count.  This means | 
|  | * that we must be careful to release all nodes in a path before we | 
|  | * either discard the path struct or re-use the path struct, as we | 
|  | * do here. | 
|  | */ | 
|  |  | 
|  | pathrelse(search_path); | 
|  |  | 
|  | right_neighbor_of_leaf_node = 0; | 
|  |  | 
|  | /* | 
|  | * With each iteration of this loop we search through the items in the | 
|  | * current node, and calculate the next current node(next path element) | 
|  | * for the next iteration of this loop.. | 
|  | */ | 
|  | block_number = SB_ROOT_BLOCK(sb); | 
|  | expected_level = -1; | 
|  | while (1) { | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | if (!(++repeat_counter % 50000)) | 
|  | reiserfs_warning(sb, "PAP-5100", | 
|  | "%s: there were %d iterations of " | 
|  | "while loop looking for key %K", | 
|  | current->comm, repeat_counter, | 
|  | key); | 
|  | #endif | 
|  |  | 
|  | /* prep path to have another element added to it. */ | 
|  | last_element = | 
|  | PATH_OFFSET_PELEMENT(search_path, | 
|  | ++search_path->path_length); | 
|  | fs_gen = get_generation(sb); | 
|  |  | 
|  | /* | 
|  | * Read the next tree node, and set the last element | 
|  | * in the path to have a pointer to it. | 
|  | */ | 
|  | if ((bh = last_element->pe_buffer = | 
|  | sb_getblk(sb, block_number))) { | 
|  |  | 
|  | /* | 
|  | * We'll need to drop the lock if we encounter any | 
|  | * buffers that need to be read. If all of them are | 
|  | * already up to date, we don't need to drop the lock. | 
|  | */ | 
|  | int depth = -1; | 
|  |  | 
|  | if (!buffer_uptodate(bh) && reada_count > 1) | 
|  | depth = search_by_key_reada(sb, reada_bh, | 
|  | reada_blocks, reada_count); | 
|  |  | 
|  | if (!buffer_uptodate(bh) && depth == -1) | 
|  | depth = reiserfs_write_unlock_nested(sb); | 
|  |  | 
|  | ll_rw_block(READ, 1, &bh); | 
|  | wait_on_buffer(bh); | 
|  |  | 
|  | if (depth != -1) | 
|  | reiserfs_write_lock_nested(sb, depth); | 
|  | if (!buffer_uptodate(bh)) | 
|  | goto io_error; | 
|  | } else { | 
|  | io_error: | 
|  | search_path->path_length--; | 
|  | pathrelse(search_path); | 
|  | return IO_ERROR; | 
|  | } | 
|  | reada_count = 0; | 
|  | if (expected_level == -1) | 
|  | expected_level = SB_TREE_HEIGHT(sb); | 
|  | expected_level--; | 
|  |  | 
|  | /* | 
|  | * It is possible that schedule occurred. We must check | 
|  | * whether the key to search is still in the tree rooted | 
|  | * from the current buffer. If not then repeat search | 
|  | * from the root. | 
|  | */ | 
|  | if (fs_changed(fs_gen, sb) && | 
|  | (!B_IS_IN_TREE(bh) || | 
|  | B_LEVEL(bh) != expected_level || | 
|  | !key_in_buffer(search_path, key, sb))) { | 
|  | PROC_INFO_INC(sb, search_by_key_fs_changed); | 
|  | PROC_INFO_INC(sb, search_by_key_restarted); | 
|  | PROC_INFO_INC(sb, | 
|  | sbk_restarted[expected_level - 1]); | 
|  | pathrelse(search_path); | 
|  |  | 
|  | /* | 
|  | * Get the root block number so that we can | 
|  | * repeat the search starting from the root. | 
|  | */ | 
|  | block_number = SB_ROOT_BLOCK(sb); | 
|  | expected_level = -1; | 
|  | right_neighbor_of_leaf_node = 0; | 
|  |  | 
|  | /* repeat search from the root */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * only check that the key is in the buffer if key is not | 
|  | * equal to the MAX_KEY. Latter case is only possible in | 
|  | * "finish_unfinished()" processing during mount. | 
|  | */ | 
|  | RFALSE(comp_keys(&MAX_KEY, key) && | 
|  | !key_in_buffer(search_path, key, sb), | 
|  | "PAP-5130: key is not in the buffer"); | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | if (REISERFS_SB(sb)->cur_tb) { | 
|  | print_cur_tb("5140"); | 
|  | reiserfs_panic(sb, "PAP-5140", | 
|  | "schedule occurred in do_balance!"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * make sure, that the node contents look like a node of | 
|  | * certain level | 
|  | */ | 
|  | if (!is_tree_node(bh, expected_level)) { | 
|  | reiserfs_error(sb, "vs-5150", | 
|  | "invalid format found in block %ld. " | 
|  | "Fsck?", bh->b_blocknr); | 
|  | pathrelse(search_path); | 
|  | return IO_ERROR; | 
|  | } | 
|  |  | 
|  | /* ok, we have acquired next formatted node in the tree */ | 
|  | node_level = B_LEVEL(bh); | 
|  |  | 
|  | PROC_INFO_BH_STAT(sb, bh, node_level - 1); | 
|  |  | 
|  | RFALSE(node_level < stop_level, | 
|  | "vs-5152: tree level (%d) is less than stop level (%d)", | 
|  | node_level, stop_level); | 
|  |  | 
|  | retval = bin_search(key, item_head(bh, 0), | 
|  | B_NR_ITEMS(bh), | 
|  | (node_level == | 
|  | DISK_LEAF_NODE_LEVEL) ? IH_SIZE : | 
|  | KEY_SIZE, | 
|  | &last_element->pe_position); | 
|  | if (node_level == stop_level) { | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* we are not in the stop level */ | 
|  | /* | 
|  | * item has been found, so we choose the pointer which | 
|  | * is to the right of the found one | 
|  | */ | 
|  | if (retval == ITEM_FOUND) | 
|  | last_element->pe_position++; | 
|  |  | 
|  | /* | 
|  | * if item was not found we choose the position which is to | 
|  | * the left of the found item. This requires no code, | 
|  | * bin_search did it already. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * So we have chosen a position in the current node which is | 
|  | * an internal node.  Now we calculate child block number by | 
|  | * position in the node. | 
|  | */ | 
|  | block_number = | 
|  | B_N_CHILD_NUM(bh, last_element->pe_position); | 
|  |  | 
|  | /* | 
|  | * if we are going to read leaf nodes, try for read | 
|  | * ahead as well | 
|  | */ | 
|  | if ((search_path->reada & PATH_READA) && | 
|  | node_level == DISK_LEAF_NODE_LEVEL + 1) { | 
|  | int pos = last_element->pe_position; | 
|  | int limit = B_NR_ITEMS(bh); | 
|  | struct reiserfs_key *le_key; | 
|  |  | 
|  | if (search_path->reada & PATH_READA_BACK) | 
|  | limit = 0; | 
|  | while (reada_count < SEARCH_BY_KEY_READA) { | 
|  | if (pos == limit) | 
|  | break; | 
|  | reada_blocks[reada_count++] = | 
|  | B_N_CHILD_NUM(bh, pos); | 
|  | if (search_path->reada & PATH_READA_BACK) | 
|  | pos--; | 
|  | else | 
|  | pos++; | 
|  |  | 
|  | /* | 
|  | * check to make sure we're in the same object | 
|  | */ | 
|  | le_key = internal_key(bh, pos); | 
|  | if (le32_to_cpu(le_key->k_objectid) != | 
|  | key->on_disk_key.k_objectid) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Form the path to an item and position in this item which contains | 
|  | * file byte defined by key. If there is no such item | 
|  | * corresponding to the key, we point the path to the item with | 
|  | * maximal key less than key, and *pos_in_item is set to one | 
|  | * past the last entry/byte in the item.  If searching for entry in a | 
|  | * directory item, and it is not found, *pos_in_item is set to one | 
|  | * entry more than the entry with maximal key which is less than the | 
|  | * sought key. | 
|  | * | 
|  | * Note that if there is no entry in this same node which is one more, | 
|  | * then we point to an imaginary entry.  for direct items, the | 
|  | * position is in units of bytes, for indirect items the position is | 
|  | * in units of blocknr entries, for directory items the position is in | 
|  | * units of directory entries. | 
|  | */ | 
|  | /* The function is NOT SCHEDULE-SAFE! */ | 
|  | int search_for_position_by_key(struct super_block *sb, | 
|  | /* Key to search (cpu variable) */ | 
|  | const struct cpu_key *p_cpu_key, | 
|  | /* Filled up by this function. */ | 
|  | struct treepath *search_path) | 
|  | { | 
|  | struct item_head *p_le_ih;	/* pointer to on-disk structure */ | 
|  | int blk_size; | 
|  | loff_t item_offset, offset; | 
|  | struct reiserfs_dir_entry de; | 
|  | int retval; | 
|  |  | 
|  | /* If searching for directory entry. */ | 
|  | if (is_direntry_cpu_key(p_cpu_key)) | 
|  | return search_by_entry_key(sb, p_cpu_key, search_path, | 
|  | &de); | 
|  |  | 
|  | /* If not searching for directory entry. */ | 
|  |  | 
|  | /* If item is found. */ | 
|  | retval = search_item(sb, p_cpu_key, search_path); | 
|  | if (retval == IO_ERROR) | 
|  | return retval; | 
|  | if (retval == ITEM_FOUND) { | 
|  |  | 
|  | RFALSE(!ih_item_len | 
|  | (item_head | 
|  | (PATH_PLAST_BUFFER(search_path), | 
|  | PATH_LAST_POSITION(search_path))), | 
|  | "PAP-5165: item length equals zero"); | 
|  |  | 
|  | pos_in_item(search_path) = 0; | 
|  | return POSITION_FOUND; | 
|  | } | 
|  |  | 
|  | RFALSE(!PATH_LAST_POSITION(search_path), | 
|  | "PAP-5170: position equals zero"); | 
|  |  | 
|  | /* Item is not found. Set path to the previous item. */ | 
|  | p_le_ih = | 
|  | item_head(PATH_PLAST_BUFFER(search_path), | 
|  | --PATH_LAST_POSITION(search_path)); | 
|  | blk_size = sb->s_blocksize; | 
|  |  | 
|  | if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key)) | 
|  | return FILE_NOT_FOUND; | 
|  |  | 
|  | /* FIXME: quite ugly this far */ | 
|  |  | 
|  | item_offset = le_ih_k_offset(p_le_ih); | 
|  | offset = cpu_key_k_offset(p_cpu_key); | 
|  |  | 
|  | /* Needed byte is contained in the item pointed to by the path. */ | 
|  | if (item_offset <= offset && | 
|  | item_offset + op_bytes_number(p_le_ih, blk_size) > offset) { | 
|  | pos_in_item(search_path) = offset - item_offset; | 
|  | if (is_indirect_le_ih(p_le_ih)) { | 
|  | pos_in_item(search_path) /= blk_size; | 
|  | } | 
|  | return POSITION_FOUND; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Needed byte is not contained in the item pointed to by the | 
|  | * path. Set pos_in_item out of the item. | 
|  | */ | 
|  | if (is_indirect_le_ih(p_le_ih)) | 
|  | pos_in_item(search_path) = | 
|  | ih_item_len(p_le_ih) / UNFM_P_SIZE; | 
|  | else | 
|  | pos_in_item(search_path) = ih_item_len(p_le_ih); | 
|  |  | 
|  | return POSITION_NOT_FOUND; | 
|  | } | 
|  |  | 
|  | /* Compare given item and item pointed to by the path. */ | 
|  | int comp_items(const struct item_head *stored_ih, const struct treepath *path) | 
|  | { | 
|  | struct buffer_head *bh = PATH_PLAST_BUFFER(path); | 
|  | struct item_head *ih; | 
|  |  | 
|  | /* Last buffer at the path is not in the tree. */ | 
|  | if (!B_IS_IN_TREE(bh)) | 
|  | return 1; | 
|  |  | 
|  | /* Last path position is invalid. */ | 
|  | if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh)) | 
|  | return 1; | 
|  |  | 
|  | /* we need only to know, whether it is the same item */ | 
|  | ih = tp_item_head(path); | 
|  | return memcmp(stored_ih, ih, IH_SIZE); | 
|  | } | 
|  |  | 
|  | /* unformatted nodes are not logged anymore, ever.  This is safe now */ | 
|  | #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1) | 
|  |  | 
|  | /* block can not be forgotten as it is in I/O or held by someone */ | 
|  | #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh))) | 
|  |  | 
|  | /* prepare for delete or cut of direct item */ | 
|  | static inline int prepare_for_direct_item(struct treepath *path, | 
|  | struct item_head *le_ih, | 
|  | struct inode *inode, | 
|  | loff_t new_file_length, int *cut_size) | 
|  | { | 
|  | loff_t round_len; | 
|  |  | 
|  | if (new_file_length == max_reiserfs_offset(inode)) { | 
|  | /* item has to be deleted */ | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | return M_DELETE; | 
|  | } | 
|  | /* new file gets truncated */ | 
|  | if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) { | 
|  | round_len = ROUND_UP(new_file_length); | 
|  | /* this was new_file_length < le_ih ... */ | 
|  | if (round_len < le_ih_k_offset(le_ih)) { | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | return M_DELETE;	/* Delete this item. */ | 
|  | } | 
|  | /* Calculate first position and size for cutting from item. */ | 
|  | pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1); | 
|  | *cut_size = -(ih_item_len(le_ih) - pos_in_item(path)); | 
|  |  | 
|  | return M_CUT;	/* Cut from this item. */ | 
|  | } | 
|  |  | 
|  | /* old file: items may have any length */ | 
|  |  | 
|  | if (new_file_length < le_ih_k_offset(le_ih)) { | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | return M_DELETE;	/* Delete this item. */ | 
|  | } | 
|  |  | 
|  | /* Calculate first position and size for cutting from item. */ | 
|  | *cut_size = -(ih_item_len(le_ih) - | 
|  | (pos_in_item(path) = | 
|  | new_file_length + 1 - le_ih_k_offset(le_ih))); | 
|  | return M_CUT;		/* Cut from this item. */ | 
|  | } | 
|  |  | 
|  | static inline int prepare_for_direntry_item(struct treepath *path, | 
|  | struct item_head *le_ih, | 
|  | struct inode *inode, | 
|  | loff_t new_file_length, | 
|  | int *cut_size) | 
|  | { | 
|  | if (le_ih_k_offset(le_ih) == DOT_OFFSET && | 
|  | new_file_length == max_reiserfs_offset(inode)) { | 
|  | RFALSE(ih_entry_count(le_ih) != 2, | 
|  | "PAP-5220: incorrect empty directory item (%h)", le_ih); | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | /* Delete the directory item containing "." and ".." entry. */ | 
|  | return M_DELETE; | 
|  | } | 
|  |  | 
|  | if (ih_entry_count(le_ih) == 1) { | 
|  | /* | 
|  | * Delete the directory item such as there is one record only | 
|  | * in this item | 
|  | */ | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | return M_DELETE; | 
|  | } | 
|  |  | 
|  | /* Cut one record from the directory item. */ | 
|  | *cut_size = | 
|  | -(DEH_SIZE + | 
|  | entry_length(get_last_bh(path), le_ih, pos_in_item(path))); | 
|  | return M_CUT; | 
|  | } | 
|  |  | 
|  | #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1) | 
|  |  | 
|  | /* | 
|  | * If the path points to a directory or direct item, calculate mode | 
|  | * and the size cut, for balance. | 
|  | * If the path points to an indirect item, remove some number of its | 
|  | * unformatted nodes. | 
|  | * In case of file truncate calculate whether this item must be | 
|  | * deleted/truncated or last unformatted node of this item will be | 
|  | * converted to a direct item. | 
|  | * This function returns a determination of what balance mode the | 
|  | * calling function should employ. | 
|  | */ | 
|  | static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, | 
|  | struct treepath *path, | 
|  | const struct cpu_key *item_key, | 
|  | /* | 
|  | * Number of unformatted nodes | 
|  | * which were removed from end | 
|  | * of the file. | 
|  | */ | 
|  | int *removed, | 
|  | int *cut_size, | 
|  | /* MAX_KEY_OFFSET in case of delete. */ | 
|  | unsigned long long new_file_length | 
|  | ) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | struct item_head *p_le_ih = tp_item_head(path); | 
|  | struct buffer_head *bh = PATH_PLAST_BUFFER(path); | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | /* Stat_data item. */ | 
|  | if (is_statdata_le_ih(p_le_ih)) { | 
|  |  | 
|  | RFALSE(new_file_length != max_reiserfs_offset(inode), | 
|  | "PAP-5210: mode must be M_DELETE"); | 
|  |  | 
|  | *cut_size = -(IH_SIZE + ih_item_len(p_le_ih)); | 
|  | return M_DELETE; | 
|  | } | 
|  |  | 
|  | /* Directory item. */ | 
|  | if (is_direntry_le_ih(p_le_ih)) | 
|  | return prepare_for_direntry_item(path, p_le_ih, inode, | 
|  | new_file_length, | 
|  | cut_size); | 
|  |  | 
|  | /* Direct item. */ | 
|  | if (is_direct_le_ih(p_le_ih)) | 
|  | return prepare_for_direct_item(path, p_le_ih, inode, | 
|  | new_file_length, cut_size); | 
|  |  | 
|  | /* Case of an indirect item. */ | 
|  | { | 
|  | int blk_size = sb->s_blocksize; | 
|  | struct item_head s_ih; | 
|  | int need_re_search; | 
|  | int delete = 0; | 
|  | int result = M_CUT; | 
|  | int pos = 0; | 
|  |  | 
|  | if ( new_file_length == max_reiserfs_offset (inode) ) { | 
|  | /* | 
|  | * prepare_for_delete_or_cut() is called by | 
|  | * reiserfs_delete_item() | 
|  | */ | 
|  | new_file_length = 0; | 
|  | delete = 1; | 
|  | } | 
|  |  | 
|  | do { | 
|  | need_re_search = 0; | 
|  | *cut_size = 0; | 
|  | bh = PATH_PLAST_BUFFER(path); | 
|  | copy_item_head(&s_ih, tp_item_head(path)); | 
|  | pos = I_UNFM_NUM(&s_ih); | 
|  |  | 
|  | while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) { | 
|  | __le32 *unfm; | 
|  | __u32 block; | 
|  |  | 
|  | /* | 
|  | * Each unformatted block deletion may involve | 
|  | * one additional bitmap block into the transaction, | 
|  | * thereby the initial journal space reservation | 
|  | * might not be enough. | 
|  | */ | 
|  | if (!delete && (*cut_size) != 0 && | 
|  | reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) | 
|  | break; | 
|  |  | 
|  | unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1; | 
|  | block = get_block_num(unfm, 0); | 
|  |  | 
|  | if (block != 0) { | 
|  | reiserfs_prepare_for_journal(sb, bh, 1); | 
|  | put_block_num(unfm, 0, 0); | 
|  | journal_mark_dirty(th, bh); | 
|  | reiserfs_free_block(th, inode, block, 1); | 
|  | } | 
|  |  | 
|  | reiserfs_cond_resched(sb); | 
|  |  | 
|  | if (item_moved (&s_ih, path))  { | 
|  | need_re_search = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | pos --; | 
|  | (*removed)++; | 
|  | (*cut_size) -= UNFM_P_SIZE; | 
|  |  | 
|  | if (pos == 0) { | 
|  | (*cut_size) -= IH_SIZE; | 
|  | result = M_DELETE; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * a trick.  If the buffer has been logged, this will | 
|  | * do nothing.  If we've broken the loop without logging | 
|  | * it, it will restore the buffer | 
|  | */ | 
|  | reiserfs_restore_prepared_buffer(sb, bh); | 
|  | } while (need_re_search && | 
|  | search_for_position_by_key(sb, item_key, path) == POSITION_FOUND); | 
|  | pos_in_item(path) = pos * UNFM_P_SIZE; | 
|  |  | 
|  | if (*cut_size == 0) { | 
|  | /* | 
|  | * Nothing was cut. maybe convert last unformatted node to the | 
|  | * direct item? | 
|  | */ | 
|  | result = M_CONVERT; | 
|  | } | 
|  | return result; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Calculate number of bytes which will be deleted or cut during balance */ | 
|  | static int calc_deleted_bytes_number(struct tree_balance *tb, char mode) | 
|  | { | 
|  | int del_size; | 
|  | struct item_head *p_le_ih = tp_item_head(tb->tb_path); | 
|  |  | 
|  | if (is_statdata_le_ih(p_le_ih)) | 
|  | return 0; | 
|  |  | 
|  | del_size = | 
|  | (mode == | 
|  | M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0]; | 
|  | if (is_direntry_le_ih(p_le_ih)) { | 
|  | /* | 
|  | * return EMPTY_DIR_SIZE; We delete emty directories only. | 
|  | * we can't use EMPTY_DIR_SIZE, as old format dirs have a | 
|  | * different empty size.  ick. FIXME, is this right? | 
|  | */ | 
|  | return del_size; | 
|  | } | 
|  |  | 
|  | if (is_indirect_le_ih(p_le_ih)) | 
|  | del_size = (del_size / UNFM_P_SIZE) * | 
|  | (PATH_PLAST_BUFFER(tb->tb_path)->b_size); | 
|  | return del_size; | 
|  | } | 
|  |  | 
|  | static void init_tb_struct(struct reiserfs_transaction_handle *th, | 
|  | struct tree_balance *tb, | 
|  | struct super_block *sb, | 
|  | struct treepath *path, int size) | 
|  | { | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | memset(tb, '\0', sizeof(struct tree_balance)); | 
|  | tb->transaction_handle = th; | 
|  | tb->tb_sb = sb; | 
|  | tb->tb_path = path; | 
|  | PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL; | 
|  | PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0; | 
|  | tb->insert_size[0] = size; | 
|  | } | 
|  |  | 
|  | void padd_item(char *item, int total_length, int length) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = total_length; i > length;) | 
|  | item[--i] = 0; | 
|  | } | 
|  |  | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | char key2type(struct reiserfs_key *ih) | 
|  | { | 
|  | if (is_direntry_le_key(2, ih)) | 
|  | return 'd'; | 
|  | if (is_direct_le_key(2, ih)) | 
|  | return 'D'; | 
|  | if (is_indirect_le_key(2, ih)) | 
|  | return 'i'; | 
|  | if (is_statdata_le_key(2, ih)) | 
|  | return 's'; | 
|  | return 'u'; | 
|  | } | 
|  |  | 
|  | char head2type(struct item_head *ih) | 
|  | { | 
|  | if (is_direntry_le_ih(ih)) | 
|  | return 'd'; | 
|  | if (is_direct_le_ih(ih)) | 
|  | return 'D'; | 
|  | if (is_indirect_le_ih(ih)) | 
|  | return 'i'; | 
|  | if (is_statdata_le_ih(ih)) | 
|  | return 's'; | 
|  | return 'u'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Delete object item. | 
|  | * th       - active transaction handle | 
|  | * path     - path to the deleted item | 
|  | * item_key - key to search for the deleted item | 
|  | * indode   - used for updating i_blocks and quotas | 
|  | * un_bh    - NULL or unformatted node pointer | 
|  | */ | 
|  | int reiserfs_delete_item(struct reiserfs_transaction_handle *th, | 
|  | struct treepath *path, const struct cpu_key *item_key, | 
|  | struct inode *inode, struct buffer_head *un_bh) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | struct tree_balance s_del_balance; | 
|  | struct item_head s_ih; | 
|  | struct item_head *q_ih; | 
|  | int quota_cut_bytes; | 
|  | int ret_value, del_size, removed; | 
|  | int depth; | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | char mode; | 
|  | int iter = 0; | 
|  | #endif | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | init_tb_struct(th, &s_del_balance, sb, path, | 
|  | 0 /*size is unknown */ ); | 
|  |  | 
|  | while (1) { | 
|  | removed = 0; | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | iter++; | 
|  | mode = | 
|  | #endif | 
|  | prepare_for_delete_or_cut(th, inode, path, | 
|  | item_key, &removed, | 
|  | &del_size, | 
|  | max_reiserfs_offset(inode)); | 
|  |  | 
|  | RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE"); | 
|  |  | 
|  | copy_item_head(&s_ih, tp_item_head(path)); | 
|  | s_del_balance.insert_size[0] = del_size; | 
|  |  | 
|  | ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL); | 
|  | if (ret_value != REPEAT_SEARCH) | 
|  | break; | 
|  |  | 
|  | PROC_INFO_INC(sb, delete_item_restarted); | 
|  |  | 
|  | /* file system changed, repeat search */ | 
|  | ret_value = | 
|  | search_for_position_by_key(sb, item_key, path); | 
|  | if (ret_value == IO_ERROR) | 
|  | break; | 
|  | if (ret_value == FILE_NOT_FOUND) { | 
|  | reiserfs_warning(sb, "vs-5340", | 
|  | "no items of the file %K found", | 
|  | item_key); | 
|  | break; | 
|  | } | 
|  | }			/* while (1) */ | 
|  |  | 
|  | if (ret_value != CARRY_ON) { | 
|  | unfix_nodes(&s_del_balance); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* reiserfs_delete_item returns item length when success */ | 
|  | ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE); | 
|  | q_ih = tp_item_head(path); | 
|  | quota_cut_bytes = ih_item_len(q_ih); | 
|  |  | 
|  | /* | 
|  | * hack so the quota code doesn't have to guess if the file has a | 
|  | * tail.  On tail insert, we allocate quota for 1 unformatted node. | 
|  | * We test the offset because the tail might have been | 
|  | * split into multiple items, and we only want to decrement for | 
|  | * the unfm node once | 
|  | */ | 
|  | if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) { | 
|  | if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) { | 
|  | quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; | 
|  | } else { | 
|  | quota_cut_bytes = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (un_bh) { | 
|  | int off; | 
|  | char *data; | 
|  |  | 
|  | /* | 
|  | * We are in direct2indirect conversion, so move tail contents | 
|  | * to the unformatted node | 
|  | */ | 
|  | /* | 
|  | * note, we do the copy before preparing the buffer because we | 
|  | * don't care about the contents of the unformatted node yet. | 
|  | * the only thing we really care about is the direct item's | 
|  | * data is in the unformatted node. | 
|  | * | 
|  | * Otherwise, we would have to call | 
|  | * reiserfs_prepare_for_journal on the unformatted node, | 
|  | * which might schedule, meaning we'd have to loop all the | 
|  | * way back up to the start of the while loop. | 
|  | * | 
|  | * The unformatted node must be dirtied later on.  We can't be | 
|  | * sure here if the entire tail has been deleted yet. | 
|  | * | 
|  | * un_bh is from the page cache (all unformatted nodes are | 
|  | * from the page cache) and might be a highmem page.  So, we | 
|  | * can't use un_bh->b_data. | 
|  | * -clm | 
|  | */ | 
|  |  | 
|  | data = kmap_atomic(un_bh->b_page); | 
|  | off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1)); | 
|  | memcpy(data + off, | 
|  | ih_item_body(PATH_PLAST_BUFFER(path), &s_ih), | 
|  | ret_value); | 
|  | kunmap_atomic(data); | 
|  | } | 
|  |  | 
|  | /* Perform balancing after all resources have been collected at once. */ | 
|  | do_balance(&s_del_balance, NULL, NULL, M_DELETE); | 
|  |  | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug(sb, REISERFS_DEBUG_CODE, | 
|  | "reiserquota delete_item(): freeing %u, id=%u type=%c", | 
|  | quota_cut_bytes, inode->i_uid, head2type(&s_ih)); | 
|  | #endif | 
|  | depth = reiserfs_write_unlock_nested(inode->i_sb); | 
|  | dquot_free_space_nodirty(inode, quota_cut_bytes); | 
|  | reiserfs_write_lock_nested(inode->i_sb, depth); | 
|  |  | 
|  | /* Return deleted body length */ | 
|  | return ret_value; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Summary Of Mechanisms For Handling Collisions Between Processes: | 
|  | * | 
|  | *  deletion of the body of the object is performed by iput(), with the | 
|  | *  result that if multiple processes are operating on a file, the | 
|  | *  deletion of the body of the file is deferred until the last process | 
|  | *  that has an open inode performs its iput(). | 
|  | * | 
|  | *  writes and truncates are protected from collisions by use of | 
|  | *  semaphores. | 
|  | * | 
|  | *  creates, linking, and mknod are protected from collisions with other | 
|  | *  processes by making the reiserfs_add_entry() the last step in the | 
|  | *  creation, and then rolling back all changes if there was a collision. | 
|  | *  - Hans | 
|  | */ | 
|  |  | 
|  | /* this deletes item which never gets split */ | 
|  | void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, struct reiserfs_key *key) | 
|  | { | 
|  | struct super_block *sb = th->t_super; | 
|  | struct tree_balance tb; | 
|  | INITIALIZE_PATH(path); | 
|  | int item_len = 0; | 
|  | int tb_init = 0; | 
|  | struct cpu_key cpu_key; | 
|  | int retval; | 
|  | int quota_cut_bytes = 0; | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | le_key2cpu_key(&cpu_key, key); | 
|  |  | 
|  | while (1) { | 
|  | retval = search_item(th->t_super, &cpu_key, &path); | 
|  | if (retval == IO_ERROR) { | 
|  | reiserfs_error(th->t_super, "vs-5350", | 
|  | "i/o failure occurred trying " | 
|  | "to delete %K", &cpu_key); | 
|  | break; | 
|  | } | 
|  | if (retval != ITEM_FOUND) { | 
|  | pathrelse(&path); | 
|  | /* | 
|  | * No need for a warning, if there is just no free | 
|  | * space to insert '..' item into the | 
|  | * newly-created subdir | 
|  | */ | 
|  | if (! | 
|  | ((unsigned long long) | 
|  | GET_HASH_VALUE(le_key_k_offset | 
|  | (le_key_version(key), key)) == 0 | 
|  | && (unsigned long long) | 
|  | GET_GENERATION_NUMBER(le_key_k_offset | 
|  | (le_key_version(key), | 
|  | key)) == 1)) | 
|  | reiserfs_warning(th->t_super, "vs-5355", | 
|  | "%k not found", key); | 
|  | break; | 
|  | } | 
|  | if (!tb_init) { | 
|  | tb_init = 1; | 
|  | item_len = ih_item_len(tp_item_head(&path)); | 
|  | init_tb_struct(th, &tb, th->t_super, &path, | 
|  | -(IH_SIZE + item_len)); | 
|  | } | 
|  | quota_cut_bytes = ih_item_len(tp_item_head(&path)); | 
|  |  | 
|  | retval = fix_nodes(M_DELETE, &tb, NULL, NULL); | 
|  | if (retval == REPEAT_SEARCH) { | 
|  | PROC_INFO_INC(th->t_super, delete_solid_item_restarted); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (retval == CARRY_ON) { | 
|  | do_balance(&tb, NULL, NULL, M_DELETE); | 
|  | /* | 
|  | * Should we count quota for item? (we don't | 
|  | * count quotas for save-links) | 
|  | */ | 
|  | if (inode) { | 
|  | int depth; | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, | 
|  | "reiserquota delete_solid_item(): freeing %u id=%u type=%c", | 
|  | quota_cut_bytes, inode->i_uid, | 
|  | key2type(key)); | 
|  | #endif | 
|  | depth = reiserfs_write_unlock_nested(sb); | 
|  | dquot_free_space_nodirty(inode, | 
|  | quota_cut_bytes); | 
|  | reiserfs_write_lock_nested(sb, depth); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* IO_ERROR, NO_DISK_SPACE, etc */ | 
|  | reiserfs_warning(th->t_super, "vs-5360", | 
|  | "could not delete %K due to fix_nodes failure", | 
|  | &cpu_key); | 
|  | unfix_nodes(&tb); | 
|  | break; | 
|  | } | 
|  |  | 
|  | reiserfs_check_path(&path); | 
|  | } | 
|  |  | 
|  | int reiserfs_delete_object(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode) | 
|  | { | 
|  | int err; | 
|  | inode->i_size = 0; | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | /* for directory this deletes item containing "." and ".." */ | 
|  | err = | 
|  | reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ ); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | #if defined( USE_INODE_GENERATION_COUNTER ) | 
|  | if (!old_format_only(th->t_super)) { | 
|  | __le32 *inode_generation; | 
|  |  | 
|  | inode_generation = | 
|  | &REISERFS_SB(th->t_super)->s_rs->s_inode_generation; | 
|  | le32_add_cpu(inode_generation, 1); | 
|  | } | 
|  | /* USE_INODE_GENERATION_COUNTER */ | 
|  | #endif | 
|  | reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void unmap_buffers(struct page *page, loff_t pos) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  | struct buffer_head *head; | 
|  | struct buffer_head *next; | 
|  | unsigned long tail_index; | 
|  | unsigned long cur_index; | 
|  |  | 
|  | if (page) { | 
|  | if (page_has_buffers(page)) { | 
|  | tail_index = pos & (PAGE_SIZE - 1); | 
|  | cur_index = 0; | 
|  | head = page_buffers(page); | 
|  | bh = head; | 
|  | do { | 
|  | next = bh->b_this_page; | 
|  |  | 
|  | /* | 
|  | * we want to unmap the buffers that contain | 
|  | * the tail, and all the buffers after it | 
|  | * (since the tail must be at the end of the | 
|  | * file).  We don't want to unmap file data | 
|  | * before the tail, since it might be dirty | 
|  | * and waiting to reach disk | 
|  | */ | 
|  | cur_index += bh->b_size; | 
|  | if (cur_index > tail_index) { | 
|  | reiserfs_unmap_buffer(bh); | 
|  | } | 
|  | bh = next; | 
|  | } while (bh != head); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, | 
|  | struct page *page, | 
|  | struct treepath *path, | 
|  | const struct cpu_key *item_key, | 
|  | loff_t new_file_size, char *mode) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | int block_size = sb->s_blocksize; | 
|  | int cut_bytes; | 
|  | BUG_ON(!th->t_trans_id); | 
|  | BUG_ON(new_file_size != inode->i_size); | 
|  |  | 
|  | /* | 
|  | * the page being sent in could be NULL if there was an i/o error | 
|  | * reading in the last block.  The user will hit problems trying to | 
|  | * read the file, but for now we just skip the indirect2direct | 
|  | */ | 
|  | if (atomic_read(&inode->i_count) > 1 || | 
|  | !tail_has_to_be_packed(inode) || | 
|  | !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) { | 
|  | /* leave tail in an unformatted node */ | 
|  | *mode = M_SKIP_BALANCING; | 
|  | cut_bytes = | 
|  | block_size - (new_file_size & (block_size - 1)); | 
|  | pathrelse(path); | 
|  | return cut_bytes; | 
|  | } | 
|  |  | 
|  | /* Perform the conversion to a direct_item. */ | 
|  | return indirect2direct(th, inode, page, path, item_key, | 
|  | new_file_size, mode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we did indirect_to_direct conversion. And we have inserted direct | 
|  | * item successesfully, but there were no disk space to cut unfm | 
|  | * pointer being converted. Therefore we have to delete inserted | 
|  | * direct item(s) | 
|  | */ | 
|  | static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, struct treepath *path) | 
|  | { | 
|  | struct cpu_key tail_key; | 
|  | int tail_len; | 
|  | int removed; | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); | 
|  | tail_key.key_length = 4; | 
|  |  | 
|  | tail_len = | 
|  | (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1; | 
|  | while (tail_len) { | 
|  | /* look for the last byte of the tail */ | 
|  | if (search_for_position_by_key(inode->i_sb, &tail_key, path) == | 
|  | POSITION_NOT_FOUND) | 
|  | reiserfs_panic(inode->i_sb, "vs-5615", | 
|  | "found invalid item"); | 
|  | RFALSE(path->pos_in_item != | 
|  | ih_item_len(tp_item_head(path)) - 1, | 
|  | "vs-5616: appended bytes found"); | 
|  | PATH_LAST_POSITION(path)--; | 
|  |  | 
|  | removed = | 
|  | reiserfs_delete_item(th, path, &tail_key, inode, | 
|  | NULL /*unbh not needed */ ); | 
|  | RFALSE(removed <= 0 | 
|  | || removed > tail_len, | 
|  | "vs-5617: there was tail %d bytes, removed item length %d bytes", | 
|  | tail_len, removed); | 
|  | tail_len -= removed; | 
|  | set_cpu_key_k_offset(&tail_key, | 
|  | cpu_key_k_offset(&tail_key) - removed); | 
|  | } | 
|  | reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct " | 
|  | "conversion has been rolled back due to " | 
|  | "lack of disk space"); | 
|  | mark_inode_dirty(inode); | 
|  | } | 
|  |  | 
|  | /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */ | 
|  | int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, | 
|  | struct treepath *path, | 
|  | struct cpu_key *item_key, | 
|  | struct inode *inode, | 
|  | struct page *page, loff_t new_file_size) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | /* | 
|  | * Every function which is going to call do_balance must first | 
|  | * create a tree_balance structure.  Then it must fill up this | 
|  | * structure by using the init_tb_struct and fix_nodes functions. | 
|  | * After that we can make tree balancing. | 
|  | */ | 
|  | struct tree_balance s_cut_balance; | 
|  | struct item_head *p_le_ih; | 
|  | int cut_size = 0;	/* Amount to be cut. */ | 
|  | int ret_value = CARRY_ON; | 
|  | int removed = 0;	/* Number of the removed unformatted nodes. */ | 
|  | int is_inode_locked = 0; | 
|  | char mode;		/* Mode of the balance. */ | 
|  | int retval2 = -1; | 
|  | int quota_cut_bytes; | 
|  | loff_t tail_pos = 0; | 
|  | int depth; | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | init_tb_struct(th, &s_cut_balance, inode->i_sb, path, | 
|  | cut_size); | 
|  |  | 
|  | /* | 
|  | * Repeat this loop until we either cut the item without needing | 
|  | * to balance, or we fix_nodes without schedule occurring | 
|  | */ | 
|  | while (1) { | 
|  | /* | 
|  | * Determine the balance mode, position of the first byte to | 
|  | * be cut, and size to be cut.  In case of the indirect item | 
|  | * free unformatted nodes which are pointed to by the cut | 
|  | * pointers. | 
|  | */ | 
|  |  | 
|  | mode = | 
|  | prepare_for_delete_or_cut(th, inode, path, | 
|  | item_key, &removed, | 
|  | &cut_size, new_file_size); | 
|  | if (mode == M_CONVERT) { | 
|  | /* | 
|  | * convert last unformatted node to direct item or | 
|  | * leave tail in the unformatted node | 
|  | */ | 
|  | RFALSE(ret_value != CARRY_ON, | 
|  | "PAP-5570: can not convert twice"); | 
|  |  | 
|  | ret_value = | 
|  | maybe_indirect_to_direct(th, inode, page, | 
|  | path, item_key, | 
|  | new_file_size, &mode); | 
|  | if (mode == M_SKIP_BALANCING) | 
|  | /* tail has been left in the unformatted node */ | 
|  | return ret_value; | 
|  |  | 
|  | is_inode_locked = 1; | 
|  |  | 
|  | /* | 
|  | * removing of last unformatted node will | 
|  | * change value we have to return to truncate. | 
|  | * Save it | 
|  | */ | 
|  | retval2 = ret_value; | 
|  |  | 
|  | /* | 
|  | * So, we have performed the first part of the | 
|  | * conversion: | 
|  | * inserting the new direct item.  Now we are | 
|  | * removing the last unformatted node pointer. | 
|  | * Set key to search for it. | 
|  | */ | 
|  | set_cpu_key_k_type(item_key, TYPE_INDIRECT); | 
|  | item_key->key_length = 4; | 
|  | new_file_size -= | 
|  | (new_file_size & (sb->s_blocksize - 1)); | 
|  | tail_pos = new_file_size; | 
|  | set_cpu_key_k_offset(item_key, new_file_size + 1); | 
|  | if (search_for_position_by_key | 
|  | (sb, item_key, | 
|  | path) == POSITION_NOT_FOUND) { | 
|  | print_block(PATH_PLAST_BUFFER(path), 3, | 
|  | PATH_LAST_POSITION(path) - 1, | 
|  | PATH_LAST_POSITION(path) + 1); | 
|  | reiserfs_panic(sb, "PAP-5580", "item to " | 
|  | "convert does not exist (%K)", | 
|  | item_key); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (cut_size == 0) { | 
|  | pathrelse(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | s_cut_balance.insert_size[0] = cut_size; | 
|  |  | 
|  | ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL); | 
|  | if (ret_value != REPEAT_SEARCH) | 
|  | break; | 
|  |  | 
|  | PROC_INFO_INC(sb, cut_from_item_restarted); | 
|  |  | 
|  | ret_value = | 
|  | search_for_position_by_key(sb, item_key, path); | 
|  | if (ret_value == POSITION_FOUND) | 
|  | continue; | 
|  |  | 
|  | reiserfs_warning(sb, "PAP-5610", "item %K not found", | 
|  | item_key); | 
|  | unfix_nodes(&s_cut_balance); | 
|  | return (ret_value == IO_ERROR) ? -EIO : -ENOENT; | 
|  | }			/* while */ | 
|  |  | 
|  | /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */ | 
|  | if (ret_value != CARRY_ON) { | 
|  | if (is_inode_locked) { | 
|  | /* | 
|  | * FIXME: this seems to be not needed: we are always | 
|  | * able to cut item | 
|  | */ | 
|  | indirect_to_direct_roll_back(th, inode, path); | 
|  | } | 
|  | if (ret_value == NO_DISK_SPACE) | 
|  | reiserfs_warning(sb, "reiserfs-5092", | 
|  | "NO_DISK_SPACE"); | 
|  | unfix_nodes(&s_cut_balance); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* go ahead and perform balancing */ | 
|  |  | 
|  | RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode"); | 
|  |  | 
|  | /* Calculate number of bytes that need to be cut from the item. */ | 
|  | quota_cut_bytes = | 
|  | (mode == | 
|  | M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance. | 
|  | insert_size[0]; | 
|  | if (retval2 == -1) | 
|  | ret_value = calc_deleted_bytes_number(&s_cut_balance, mode); | 
|  | else | 
|  | ret_value = retval2; | 
|  |  | 
|  | /* | 
|  | * For direct items, we only change the quota when deleting the last | 
|  | * item. | 
|  | */ | 
|  | p_le_ih = tp_item_head(s_cut_balance.tb_path); | 
|  | if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) { | 
|  | if (mode == M_DELETE && | 
|  | (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) == | 
|  | 1) { | 
|  | /* FIXME: this is to keep 3.5 happy */ | 
|  | REISERFS_I(inode)->i_first_direct_byte = U32_MAX; | 
|  | quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE; | 
|  | } else { | 
|  | quota_cut_bytes = 0; | 
|  | } | 
|  | } | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | if (is_inode_locked) { | 
|  | struct item_head *le_ih = | 
|  | tp_item_head(s_cut_balance.tb_path); | 
|  | /* | 
|  | * we are going to complete indirect2direct conversion. Make | 
|  | * sure, that we exactly remove last unformatted node pointer | 
|  | * of the item | 
|  | */ | 
|  | if (!is_indirect_le_ih(le_ih)) | 
|  | reiserfs_panic(sb, "vs-5652", | 
|  | "item must be indirect %h", le_ih); | 
|  |  | 
|  | if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE) | 
|  | reiserfs_panic(sb, "vs-5653", "completing " | 
|  | "indirect2direct conversion indirect " | 
|  | "item %h being deleted must be of " | 
|  | "4 byte long", le_ih); | 
|  |  | 
|  | if (mode == M_CUT | 
|  | && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) { | 
|  | reiserfs_panic(sb, "vs-5654", "can not complete " | 
|  | "indirect2direct conversion of %h " | 
|  | "(CUT, insert_size==%d)", | 
|  | le_ih, s_cut_balance.insert_size[0]); | 
|  | } | 
|  | /* | 
|  | * it would be useful to make sure, that right neighboring | 
|  | * item is direct item of this file | 
|  | */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | do_balance(&s_cut_balance, NULL, NULL, mode); | 
|  | if (is_inode_locked) { | 
|  | /* | 
|  | * we've done an indirect->direct conversion.  when the | 
|  | * data block was freed, it was removed from the list of | 
|  | * blocks that must be flushed before the transaction | 
|  | * commits, make sure to unmap and invalidate it | 
|  | */ | 
|  | unmap_buffers(page, tail_pos); | 
|  | REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; | 
|  | } | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, | 
|  | "reiserquota cut_from_item(): freeing %u id=%u type=%c", | 
|  | quota_cut_bytes, inode->i_uid, '?'); | 
|  | #endif | 
|  | depth = reiserfs_write_unlock_nested(sb); | 
|  | dquot_free_space_nodirty(inode, quota_cut_bytes); | 
|  | reiserfs_write_lock_nested(sb, depth); | 
|  | return ret_value; | 
|  | } | 
|  |  | 
|  | static void truncate_directory(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode) | 
|  | { | 
|  | BUG_ON(!th->t_trans_id); | 
|  | if (inode->i_nlink) | 
|  | reiserfs_error(inode->i_sb, "vs-5655", "link count != 0"); | 
|  |  | 
|  | set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET); | 
|  | set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY); | 
|  | reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode)); | 
|  | reiserfs_update_sd(th, inode); | 
|  | set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET); | 
|  | set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Truncate file to the new size. Note, this must be called with a | 
|  | * transaction already started | 
|  | */ | 
|  | int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode,	/* ->i_size contains new size */ | 
|  | struct page *page,	/* up to date for last block */ | 
|  | /* | 
|  | * when it is called by file_release to convert | 
|  | * the tail - no timestamps should be updated | 
|  | */ | 
|  | int update_timestamps | 
|  | ) | 
|  | { | 
|  | INITIALIZE_PATH(s_search_path);	/* Path to the current object item. */ | 
|  | struct item_head *p_le_ih;	/* Pointer to an item header. */ | 
|  |  | 
|  | /* Key to search for a previous file item. */ | 
|  | struct cpu_key s_item_key; | 
|  | loff_t file_size,	/* Old file size. */ | 
|  | new_file_size;	/* New file size. */ | 
|  | int deleted;		/* Number of deleted or truncated bytes. */ | 
|  | int retval; | 
|  | int err = 0; | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  | if (! | 
|  | (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) | 
|  | || S_ISLNK(inode->i_mode))) | 
|  | return 0; | 
|  |  | 
|  | /* deletion of directory - no need to update timestamps */ | 
|  | if (S_ISDIR(inode->i_mode)) { | 
|  | truncate_directory(th, inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Get new file size. */ | 
|  | new_file_size = inode->i_size; | 
|  |  | 
|  | /* FIXME: note, that key type is unimportant here */ | 
|  | make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode), | 
|  | TYPE_DIRECT, 3); | 
|  |  | 
|  | retval = | 
|  | search_for_position_by_key(inode->i_sb, &s_item_key, | 
|  | &s_search_path); | 
|  | if (retval == IO_ERROR) { | 
|  | reiserfs_error(inode->i_sb, "vs-5657", | 
|  | "i/o failure occurred trying to truncate %K", | 
|  | &s_item_key); | 
|  | err = -EIO; | 
|  | goto out; | 
|  | } | 
|  | if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) { | 
|  | reiserfs_error(inode->i_sb, "PAP-5660", | 
|  | "wrong result %d of search for %K", retval, | 
|  | &s_item_key); | 
|  |  | 
|  | err = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | s_search_path.pos_in_item--; | 
|  |  | 
|  | /* Get real file size (total length of all file items) */ | 
|  | p_le_ih = tp_item_head(&s_search_path); | 
|  | if (is_statdata_le_ih(p_le_ih)) | 
|  | file_size = 0; | 
|  | else { | 
|  | loff_t offset = le_ih_k_offset(p_le_ih); | 
|  | int bytes = | 
|  | op_bytes_number(p_le_ih, inode->i_sb->s_blocksize); | 
|  |  | 
|  | /* | 
|  | * this may mismatch with real file size: if last direct item | 
|  | * had no padding zeros and last unformatted node had no free | 
|  | * space, this file would have this file size | 
|  | */ | 
|  | file_size = offset + bytes - 1; | 
|  | } | 
|  | /* | 
|  | * are we doing a full truncate or delete, if so | 
|  | * kick in the reada code | 
|  | */ | 
|  | if (new_file_size == 0) | 
|  | s_search_path.reada = PATH_READA | PATH_READA_BACK; | 
|  |  | 
|  | if (file_size == 0 || file_size < new_file_size) { | 
|  | goto update_and_out; | 
|  | } | 
|  |  | 
|  | /* Update key to search for the last file item. */ | 
|  | set_cpu_key_k_offset(&s_item_key, file_size); | 
|  |  | 
|  | do { | 
|  | /* Cut or delete file item. */ | 
|  | deleted = | 
|  | reiserfs_cut_from_item(th, &s_search_path, &s_item_key, | 
|  | inode, page, new_file_size); | 
|  | if (deleted < 0) { | 
|  | reiserfs_warning(inode->i_sb, "vs-5665", | 
|  | "reiserfs_cut_from_item failed"); | 
|  | reiserfs_check_path(&s_search_path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | RFALSE(deleted > file_size, | 
|  | "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K", | 
|  | deleted, file_size, &s_item_key); | 
|  |  | 
|  | /* Change key to search the last file item. */ | 
|  | file_size -= deleted; | 
|  |  | 
|  | set_cpu_key_k_offset(&s_item_key, file_size); | 
|  |  | 
|  | /* | 
|  | * While there are bytes to truncate and previous | 
|  | * file item is presented in the tree. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This loop could take a really long time, and could log | 
|  | * many more blocks than a transaction can hold.  So, we do | 
|  | * a polite journal end here, and if the transaction needs | 
|  | * ending, we make sure the file is consistent before ending | 
|  | * the current trans and starting a new one | 
|  | */ | 
|  | if (journal_transaction_should_end(th, 0) || | 
|  | reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) { | 
|  | pathrelse(&s_search_path); | 
|  |  | 
|  | if (update_timestamps) { | 
|  | inode->i_mtime = CURRENT_TIME_SEC; | 
|  | inode->i_ctime = CURRENT_TIME_SEC; | 
|  | } | 
|  | reiserfs_update_sd(th, inode); | 
|  |  | 
|  | err = journal_end(th); | 
|  | if (err) | 
|  | goto out; | 
|  | err = journal_begin(th, inode->i_sb, | 
|  | JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ; | 
|  | if (err) | 
|  | goto out; | 
|  | reiserfs_update_inode_transaction(inode); | 
|  | } | 
|  | } while (file_size > ROUND_UP(new_file_size) && | 
|  | search_for_position_by_key(inode->i_sb, &s_item_key, | 
|  | &s_search_path) == POSITION_FOUND); | 
|  |  | 
|  | RFALSE(file_size > ROUND_UP(new_file_size), | 
|  | "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d", | 
|  | new_file_size, file_size, s_item_key.on_disk_key.k_objectid); | 
|  |  | 
|  | update_and_out: | 
|  | if (update_timestamps) { | 
|  | /* this is truncate, not file closing */ | 
|  | inode->i_mtime = CURRENT_TIME_SEC; | 
|  | inode->i_ctime = CURRENT_TIME_SEC; | 
|  | } | 
|  | reiserfs_update_sd(th, inode); | 
|  |  | 
|  | out: | 
|  | pathrelse(&s_search_path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | /* this makes sure, that we __append__, not overwrite or add holes */ | 
|  | static void check_research_for_paste(struct treepath *path, | 
|  | const struct cpu_key *key) | 
|  | { | 
|  | struct item_head *found_ih = tp_item_head(path); | 
|  |  | 
|  | if (is_direct_le_ih(found_ih)) { | 
|  | if (le_ih_k_offset(found_ih) + | 
|  | op_bytes_number(found_ih, | 
|  | get_last_bh(path)->b_size) != | 
|  | cpu_key_k_offset(key) | 
|  | || op_bytes_number(found_ih, | 
|  | get_last_bh(path)->b_size) != | 
|  | pos_in_item(path)) | 
|  | reiserfs_panic(NULL, "PAP-5720", "found direct item " | 
|  | "%h or position (%d) does not match " | 
|  | "to key %K", found_ih, | 
|  | pos_in_item(path), key); | 
|  | } | 
|  | if (is_indirect_le_ih(found_ih)) { | 
|  | if (le_ih_k_offset(found_ih) + | 
|  | op_bytes_number(found_ih, | 
|  | get_last_bh(path)->b_size) != | 
|  | cpu_key_k_offset(key) | 
|  | || I_UNFM_NUM(found_ih) != pos_in_item(path) | 
|  | || get_ih_free_space(found_ih) != 0) | 
|  | reiserfs_panic(NULL, "PAP-5730", "found indirect " | 
|  | "item (%h) or position (%d) does not " | 
|  | "match to key (%K)", | 
|  | found_ih, pos_in_item(path), key); | 
|  | } | 
|  | } | 
|  | #endif				/* config reiserfs check */ | 
|  |  | 
|  | /* | 
|  | * Paste bytes to the existing item. | 
|  | * Returns bytes number pasted into the item. | 
|  | */ | 
|  | int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, | 
|  | /* Path to the pasted item. */ | 
|  | struct treepath *search_path, | 
|  | /* Key to search for the needed item. */ | 
|  | const struct cpu_key *key, | 
|  | /* Inode item belongs to */ | 
|  | struct inode *inode, | 
|  | /* Pointer to the bytes to paste. */ | 
|  | const char *body, | 
|  | /* Size of pasted bytes. */ | 
|  | int pasted_size) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | struct tree_balance s_paste_balance; | 
|  | int retval; | 
|  | int fs_gen; | 
|  | int depth; | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | fs_gen = get_generation(inode->i_sb); | 
|  |  | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, | 
|  | "reiserquota paste_into_item(): allocating %u id=%u type=%c", | 
|  | pasted_size, inode->i_uid, | 
|  | key2type(&key->on_disk_key)); | 
|  | #endif | 
|  |  | 
|  | depth = reiserfs_write_unlock_nested(sb); | 
|  | retval = dquot_alloc_space_nodirty(inode, pasted_size); | 
|  | reiserfs_write_lock_nested(sb, depth); | 
|  | if (retval) { | 
|  | pathrelse(search_path); | 
|  | return retval; | 
|  | } | 
|  | init_tb_struct(th, &s_paste_balance, th->t_super, search_path, | 
|  | pasted_size); | 
|  | #ifdef DISPLACE_NEW_PACKING_LOCALITIES | 
|  | s_paste_balance.key = key->on_disk_key; | 
|  | #endif | 
|  |  | 
|  | /* DQUOT_* can schedule, must check before the fix_nodes */ | 
|  | if (fs_changed(fs_gen, inode->i_sb)) { | 
|  | goto search_again; | 
|  | } | 
|  |  | 
|  | while ((retval = | 
|  | fix_nodes(M_PASTE, &s_paste_balance, NULL, | 
|  | body)) == REPEAT_SEARCH) { | 
|  | search_again: | 
|  | /* file system changed while we were in the fix_nodes */ | 
|  | PROC_INFO_INC(th->t_super, paste_into_item_restarted); | 
|  | retval = | 
|  | search_for_position_by_key(th->t_super, key, | 
|  | search_path); | 
|  | if (retval == IO_ERROR) { | 
|  | retval = -EIO; | 
|  | goto error_out; | 
|  | } | 
|  | if (retval == POSITION_FOUND) { | 
|  | reiserfs_warning(inode->i_sb, "PAP-5710", | 
|  | "entry or pasted byte (%K) exists", | 
|  | key); | 
|  | retval = -EEXIST; | 
|  | goto error_out; | 
|  | } | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | check_research_for_paste(search_path, key); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform balancing after all resources are collected by fix_nodes, | 
|  | * and accessing them will not risk triggering schedule. | 
|  | */ | 
|  | if (retval == CARRY_ON) { | 
|  | do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE); | 
|  | return 0; | 
|  | } | 
|  | retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; | 
|  | error_out: | 
|  | /* this also releases the path */ | 
|  | unfix_nodes(&s_paste_balance); | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, | 
|  | "reiserquota paste_into_item(): freeing %u id=%u type=%c", | 
|  | pasted_size, inode->i_uid, | 
|  | key2type(&key->on_disk_key)); | 
|  | #endif | 
|  | depth = reiserfs_write_unlock_nested(sb); | 
|  | dquot_free_space_nodirty(inode, pasted_size); | 
|  | reiserfs_write_lock_nested(sb, depth); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert new item into the buffer at the path. | 
|  | * th   - active transaction handle | 
|  | * path - path to the inserted item | 
|  | * ih   - pointer to the item header to insert | 
|  | * body - pointer to the bytes to insert | 
|  | */ | 
|  | int reiserfs_insert_item(struct reiserfs_transaction_handle *th, | 
|  | struct treepath *path, const struct cpu_key *key, | 
|  | struct item_head *ih, struct inode *inode, | 
|  | const char *body) | 
|  | { | 
|  | struct tree_balance s_ins_balance; | 
|  | int retval; | 
|  | int fs_gen = 0; | 
|  | int quota_bytes = 0; | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | if (inode) {		/* Do we count quotas for item? */ | 
|  | int depth; | 
|  | fs_gen = get_generation(inode->i_sb); | 
|  | quota_bytes = ih_item_len(ih); | 
|  |  | 
|  | /* | 
|  | * hack so the quota code doesn't have to guess | 
|  | * if the file has a tail, links are always tails, | 
|  | * so there's no guessing needed | 
|  | */ | 
|  | if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih)) | 
|  | quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE; | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE, | 
|  | "reiserquota insert_item(): allocating %u id=%u type=%c", | 
|  | quota_bytes, inode->i_uid, head2type(ih)); | 
|  | #endif | 
|  | /* | 
|  | * We can't dirty inode here. It would be immediately | 
|  | * written but appropriate stat item isn't inserted yet... | 
|  | */ | 
|  | depth = reiserfs_write_unlock_nested(inode->i_sb); | 
|  | retval = dquot_alloc_space_nodirty(inode, quota_bytes); | 
|  | reiserfs_write_lock_nested(inode->i_sb, depth); | 
|  | if (retval) { | 
|  | pathrelse(path); | 
|  | return retval; | 
|  | } | 
|  | } | 
|  | init_tb_struct(th, &s_ins_balance, th->t_super, path, | 
|  | IH_SIZE + ih_item_len(ih)); | 
|  | #ifdef DISPLACE_NEW_PACKING_LOCALITIES | 
|  | s_ins_balance.key = key->on_disk_key; | 
|  | #endif | 
|  | /* | 
|  | * DQUOT_* can schedule, must check to be sure calling | 
|  | * fix_nodes is safe | 
|  | */ | 
|  | if (inode && fs_changed(fs_gen, inode->i_sb)) { | 
|  | goto search_again; | 
|  | } | 
|  |  | 
|  | while ((retval = | 
|  | fix_nodes(M_INSERT, &s_ins_balance, ih, | 
|  | body)) == REPEAT_SEARCH) { | 
|  | search_again: | 
|  | /* file system changed while we were in the fix_nodes */ | 
|  | PROC_INFO_INC(th->t_super, insert_item_restarted); | 
|  | retval = search_item(th->t_super, key, path); | 
|  | if (retval == IO_ERROR) { | 
|  | retval = -EIO; | 
|  | goto error_out; | 
|  | } | 
|  | if (retval == ITEM_FOUND) { | 
|  | reiserfs_warning(th->t_super, "PAP-5760", | 
|  | "key %K already exists in the tree", | 
|  | key); | 
|  | retval = -EEXIST; | 
|  | goto error_out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* make balancing after all resources will be collected at a time */ | 
|  | if (retval == CARRY_ON) { | 
|  | do_balance(&s_ins_balance, ih, body, M_INSERT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; | 
|  | error_out: | 
|  | /* also releases the path */ | 
|  | unfix_nodes(&s_ins_balance); | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE, | 
|  | "reiserquota insert_item(): freeing %u id=%u type=%c", | 
|  | quota_bytes, inode->i_uid, head2type(ih)); | 
|  | #endif | 
|  | if (inode) { | 
|  | int depth = reiserfs_write_unlock_nested(inode->i_sb); | 
|  | dquot_free_space_nodirty(inode, quota_bytes); | 
|  | reiserfs_write_lock_nested(inode->i_sb, depth); | 
|  | } | 
|  | return retval; | 
|  | } |