|  | /* | 
|  | * zsmalloc memory allocator | 
|  | * | 
|  | * Copyright (C) 2011  Nitin Gupta | 
|  | * Copyright (C) 2012, 2013 Minchan Kim | 
|  | * | 
|  | * This code is released using a dual license strategy: BSD/GPL | 
|  | * You can choose the license that better fits your requirements. | 
|  | * | 
|  | * Released under the terms of 3-clause BSD License | 
|  | * Released under the terms of GNU General Public License Version 2.0 | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Following is how we use various fields and flags of underlying | 
|  | * struct page(s) to form a zspage. | 
|  | * | 
|  | * Usage of struct page fields: | 
|  | *	page->private: points to the first component (0-order) page | 
|  | *	page->index (union with page->freelist): offset of the first object | 
|  | *		starting in this page. For the first page, this is | 
|  | *		always 0, so we use this field (aka freelist) to point | 
|  | *		to the first free object in zspage. | 
|  | *	page->lru: links together all component pages (except the first page) | 
|  | *		of a zspage | 
|  | * | 
|  | *	For _first_ page only: | 
|  | * | 
|  | *	page->private: refers to the component page after the first page | 
|  | *		If the page is first_page for huge object, it stores handle. | 
|  | *		Look at size_class->huge. | 
|  | *	page->freelist: points to the first free object in zspage. | 
|  | *		Free objects are linked together using in-place | 
|  | *		metadata. | 
|  | *	page->objects: maximum number of objects we can store in this | 
|  | *		zspage (class->zspage_order * PAGE_SIZE / class->size) | 
|  | *	page->lru: links together first pages of various zspages. | 
|  | *		Basically forming list of zspages in a fullness group. | 
|  | *	page->mapping: class index and fullness group of the zspage | 
|  | *	page->inuse: the number of objects that are used in this zspage | 
|  | * | 
|  | * Usage of struct page flags: | 
|  | *	PG_private: identifies the first component page | 
|  | *	PG_private2: identifies the last component page | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/slab.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/zsmalloc.h> | 
|  | #include <linux/zpool.h> | 
|  |  | 
|  | /* | 
|  | * This must be power of 2 and greater than of equal to sizeof(link_free). | 
|  | * These two conditions ensure that any 'struct link_free' itself doesn't | 
|  | * span more than 1 page which avoids complex case of mapping 2 pages simply | 
|  | * to restore link_free pointer values. | 
|  | */ | 
|  | #define ZS_ALIGN		8 | 
|  |  | 
|  | /* | 
|  | * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) | 
|  | * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. | 
|  | */ | 
|  | #define ZS_MAX_ZSPAGE_ORDER 2 | 
|  | #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) | 
|  |  | 
|  | #define ZS_HANDLE_SIZE (sizeof(unsigned long)) | 
|  |  | 
|  | /* | 
|  | * Object location (<PFN>, <obj_idx>) is encoded as | 
|  | * as single (unsigned long) handle value. | 
|  | * | 
|  | * Note that object index <obj_idx> is relative to system | 
|  | * page <PFN> it is stored in, so for each sub-page belonging | 
|  | * to a zspage, obj_idx starts with 0. | 
|  | * | 
|  | * This is made more complicated by various memory models and PAE. | 
|  | */ | 
|  |  | 
|  | #ifndef MAX_PHYSMEM_BITS | 
|  | #ifdef CONFIG_HIGHMEM64G | 
|  | #define MAX_PHYSMEM_BITS 36 | 
|  | #else /* !CONFIG_HIGHMEM64G */ | 
|  | /* | 
|  | * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just | 
|  | * be PAGE_SHIFT | 
|  | */ | 
|  | #define MAX_PHYSMEM_BITS BITS_PER_LONG | 
|  | #endif | 
|  | #endif | 
|  | #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT) | 
|  |  | 
|  | /* | 
|  | * Memory for allocating for handle keeps object position by | 
|  | * encoding <page, obj_idx> and the encoded value has a room | 
|  | * in least bit(ie, look at obj_to_location). | 
|  | * We use the bit to synchronize between object access by | 
|  | * user and migration. | 
|  | */ | 
|  | #define HANDLE_PIN_BIT	0 | 
|  |  | 
|  | /* | 
|  | * Head in allocated object should have OBJ_ALLOCATED_TAG | 
|  | * to identify the object was allocated or not. | 
|  | * It's okay to add the status bit in the least bit because | 
|  | * header keeps handle which is 4byte-aligned address so we | 
|  | * have room for two bit at least. | 
|  | */ | 
|  | #define OBJ_ALLOCATED_TAG 1 | 
|  | #define OBJ_TAG_BITS 1 | 
|  | #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) | 
|  | #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1) | 
|  |  | 
|  | #define MAX(a, b) ((a) >= (b) ? (a) : (b)) | 
|  | /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ | 
|  | #define ZS_MIN_ALLOC_SIZE \ | 
|  | MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) | 
|  | /* each chunk includes extra space to keep handle */ | 
|  | #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE | 
|  |  | 
|  | /* | 
|  | * On systems with 4K page size, this gives 255 size classes! There is a | 
|  | * trader-off here: | 
|  | *  - Large number of size classes is potentially wasteful as free page are | 
|  | *    spread across these classes | 
|  | *  - Small number of size classes causes large internal fragmentation | 
|  | *  - Probably its better to use specific size classes (empirically | 
|  | *    determined). NOTE: all those class sizes must be set as multiple of | 
|  | *    ZS_ALIGN to make sure link_free itself never has to span 2 pages. | 
|  | * | 
|  | *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN | 
|  | *  (reason above) | 
|  | */ | 
|  | #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8) | 
|  |  | 
|  | /* | 
|  | * We do not maintain any list for completely empty or full pages | 
|  | */ | 
|  | enum fullness_group { | 
|  | ZS_ALMOST_FULL, | 
|  | ZS_ALMOST_EMPTY, | 
|  | _ZS_NR_FULLNESS_GROUPS, | 
|  |  | 
|  | ZS_EMPTY, | 
|  | ZS_FULL | 
|  | }; | 
|  |  | 
|  | enum zs_stat_type { | 
|  | OBJ_ALLOCATED, | 
|  | OBJ_USED, | 
|  | CLASS_ALMOST_FULL, | 
|  | CLASS_ALMOST_EMPTY, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_ZSMALLOC_STAT | 
|  | #define NR_ZS_STAT_TYPE	(CLASS_ALMOST_EMPTY + 1) | 
|  | #else | 
|  | #define NR_ZS_STAT_TYPE	(OBJ_USED + 1) | 
|  | #endif | 
|  |  | 
|  | struct zs_size_stat { | 
|  | unsigned long objs[NR_ZS_STAT_TYPE]; | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_ZSMALLOC_STAT | 
|  | static struct dentry *zs_stat_root; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * number of size_classes | 
|  | */ | 
|  | static int zs_size_classes; | 
|  |  | 
|  | /* | 
|  | * We assign a page to ZS_ALMOST_EMPTY fullness group when: | 
|  | *	n <= N / f, where | 
|  | * n = number of allocated objects | 
|  | * N = total number of objects zspage can store | 
|  | * f = fullness_threshold_frac | 
|  | * | 
|  | * Similarly, we assign zspage to: | 
|  | *	ZS_ALMOST_FULL	when n > N / f | 
|  | *	ZS_EMPTY	when n == 0 | 
|  | *	ZS_FULL		when n == N | 
|  | * | 
|  | * (see: fix_fullness_group()) | 
|  | */ | 
|  | static const int fullness_threshold_frac = 4; | 
|  |  | 
|  | struct size_class { | 
|  | spinlock_t lock; | 
|  | struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS]; | 
|  | /* | 
|  | * Size of objects stored in this class. Must be multiple | 
|  | * of ZS_ALIGN. | 
|  | */ | 
|  | int size; | 
|  | unsigned int index; | 
|  |  | 
|  | struct zs_size_stat stats; | 
|  |  | 
|  | /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ | 
|  | int pages_per_zspage; | 
|  | /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ | 
|  | bool huge; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Placed within free objects to form a singly linked list. | 
|  | * For every zspage, first_page->freelist gives head of this list. | 
|  | * | 
|  | * This must be power of 2 and less than or equal to ZS_ALIGN | 
|  | */ | 
|  | struct link_free { | 
|  | union { | 
|  | /* | 
|  | * Position of next free chunk (encodes <PFN, obj_idx>) | 
|  | * It's valid for non-allocated object | 
|  | */ | 
|  | void *next; | 
|  | /* | 
|  | * Handle of allocated object. | 
|  | */ | 
|  | unsigned long handle; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | struct zs_pool { | 
|  | const char *name; | 
|  |  | 
|  | struct size_class **size_class; | 
|  | struct kmem_cache *handle_cachep; | 
|  |  | 
|  | atomic_long_t pages_allocated; | 
|  |  | 
|  | struct zs_pool_stats stats; | 
|  |  | 
|  | /* Compact classes */ | 
|  | struct shrinker shrinker; | 
|  | /* | 
|  | * To signify that register_shrinker() was successful | 
|  | * and unregister_shrinker() will not Oops. | 
|  | */ | 
|  | bool shrinker_enabled; | 
|  | #ifdef CONFIG_ZSMALLOC_STAT | 
|  | struct dentry *stat_dentry; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * A zspage's class index and fullness group | 
|  | * are encoded in its (first)page->mapping | 
|  | */ | 
|  | #define CLASS_IDX_BITS	28 | 
|  | #define FULLNESS_BITS	4 | 
|  | #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1) | 
|  | #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1) | 
|  |  | 
|  | struct mapping_area { | 
|  | #ifdef CONFIG_PGTABLE_MAPPING | 
|  | struct vm_struct *vm; /* vm area for mapping object that span pages */ | 
|  | #else | 
|  | char *vm_buf; /* copy buffer for objects that span pages */ | 
|  | #endif | 
|  | char *vm_addr; /* address of kmap_atomic()'ed pages */ | 
|  | enum zs_mapmode vm_mm; /* mapping mode */ | 
|  | }; | 
|  |  | 
|  | static int create_handle_cache(struct zs_pool *pool) | 
|  | { | 
|  | pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, | 
|  | 0, 0, NULL); | 
|  | return pool->handle_cachep ? 0 : 1; | 
|  | } | 
|  |  | 
|  | static void destroy_handle_cache(struct zs_pool *pool) | 
|  | { | 
|  | kmem_cache_destroy(pool->handle_cachep); | 
|  | } | 
|  |  | 
|  | static unsigned long alloc_handle(struct zs_pool *pool, gfp_t gfp) | 
|  | { | 
|  | return (unsigned long)kmem_cache_alloc(pool->handle_cachep, | 
|  | gfp & ~__GFP_HIGHMEM); | 
|  | } | 
|  |  | 
|  | static void free_handle(struct zs_pool *pool, unsigned long handle) | 
|  | { | 
|  | kmem_cache_free(pool->handle_cachep, (void *)handle); | 
|  | } | 
|  |  | 
|  | static void record_obj(unsigned long handle, unsigned long obj) | 
|  | { | 
|  | /* | 
|  | * lsb of @obj represents handle lock while other bits | 
|  | * represent object value the handle is pointing so | 
|  | * updating shouldn't do store tearing. | 
|  | */ | 
|  | WRITE_ONCE(*(unsigned long *)handle, obj); | 
|  | } | 
|  |  | 
|  | /* zpool driver */ | 
|  |  | 
|  | #ifdef CONFIG_ZPOOL | 
|  |  | 
|  | static void *zs_zpool_create(const char *name, gfp_t gfp, | 
|  | const struct zpool_ops *zpool_ops, | 
|  | struct zpool *zpool) | 
|  | { | 
|  | /* | 
|  | * Ignore global gfp flags: zs_malloc() may be invoked from | 
|  | * different contexts and its caller must provide a valid | 
|  | * gfp mask. | 
|  | */ | 
|  | return zs_create_pool(name); | 
|  | } | 
|  |  | 
|  | static void zs_zpool_destroy(void *pool) | 
|  | { | 
|  | zs_destroy_pool(pool); | 
|  | } | 
|  |  | 
|  | static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, | 
|  | unsigned long *handle) | 
|  | { | 
|  | *handle = zs_malloc(pool, size, gfp); | 
|  | return *handle ? 0 : -1; | 
|  | } | 
|  | static void zs_zpool_free(void *pool, unsigned long handle) | 
|  | { | 
|  | zs_free(pool, handle); | 
|  | } | 
|  |  | 
|  | static int zs_zpool_shrink(void *pool, unsigned int pages, | 
|  | unsigned int *reclaimed) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void *zs_zpool_map(void *pool, unsigned long handle, | 
|  | enum zpool_mapmode mm) | 
|  | { | 
|  | enum zs_mapmode zs_mm; | 
|  |  | 
|  | switch (mm) { | 
|  | case ZPOOL_MM_RO: | 
|  | zs_mm = ZS_MM_RO; | 
|  | break; | 
|  | case ZPOOL_MM_WO: | 
|  | zs_mm = ZS_MM_WO; | 
|  | break; | 
|  | case ZPOOL_MM_RW: /* fallthru */ | 
|  | default: | 
|  | zs_mm = ZS_MM_RW; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return zs_map_object(pool, handle, zs_mm); | 
|  | } | 
|  | static void zs_zpool_unmap(void *pool, unsigned long handle) | 
|  | { | 
|  | zs_unmap_object(pool, handle); | 
|  | } | 
|  |  | 
|  | static u64 zs_zpool_total_size(void *pool) | 
|  | { | 
|  | return zs_get_total_pages(pool) << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static struct zpool_driver zs_zpool_driver = { | 
|  | .type =		"zsmalloc", | 
|  | .owner =	THIS_MODULE, | 
|  | .create =	zs_zpool_create, | 
|  | .destroy =	zs_zpool_destroy, | 
|  | .malloc =	zs_zpool_malloc, | 
|  | .free =		zs_zpool_free, | 
|  | .shrink =	zs_zpool_shrink, | 
|  | .map =		zs_zpool_map, | 
|  | .unmap =	zs_zpool_unmap, | 
|  | .total_size =	zs_zpool_total_size, | 
|  | }; | 
|  |  | 
|  | MODULE_ALIAS("zpool-zsmalloc"); | 
|  | #endif /* CONFIG_ZPOOL */ | 
|  |  | 
|  | static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage) | 
|  | { | 
|  | return pages_per_zspage * PAGE_SIZE / size; | 
|  | } | 
|  |  | 
|  | /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ | 
|  | static DEFINE_PER_CPU(struct mapping_area, zs_map_area); | 
|  |  | 
|  | static int is_first_page(struct page *page) | 
|  | { | 
|  | return PagePrivate(page); | 
|  | } | 
|  |  | 
|  | static int is_last_page(struct page *page) | 
|  | { | 
|  | return PagePrivate2(page); | 
|  | } | 
|  |  | 
|  | static void get_zspage_mapping(struct page *first_page, | 
|  | unsigned int *class_idx, | 
|  | enum fullness_group *fullness) | 
|  | { | 
|  | unsigned long m; | 
|  | VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); | 
|  |  | 
|  | m = (unsigned long)first_page->mapping; | 
|  | *fullness = m & FULLNESS_MASK; | 
|  | *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK; | 
|  | } | 
|  |  | 
|  | static void set_zspage_mapping(struct page *first_page, | 
|  | unsigned int class_idx, | 
|  | enum fullness_group fullness) | 
|  | { | 
|  | unsigned long m; | 
|  | VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); | 
|  |  | 
|  | m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) | | 
|  | (fullness & FULLNESS_MASK); | 
|  | first_page->mapping = (struct address_space *)m; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * zsmalloc divides the pool into various size classes where each | 
|  | * class maintains a list of zspages where each zspage is divided | 
|  | * into equal sized chunks. Each allocation falls into one of these | 
|  | * classes depending on its size. This function returns index of the | 
|  | * size class which has chunk size big enough to hold the give size. | 
|  | */ | 
|  | static int get_size_class_index(int size) | 
|  | { | 
|  | int idx = 0; | 
|  |  | 
|  | if (likely(size > ZS_MIN_ALLOC_SIZE)) | 
|  | idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, | 
|  | ZS_SIZE_CLASS_DELTA); | 
|  |  | 
|  | return min(zs_size_classes - 1, idx); | 
|  | } | 
|  |  | 
|  | static inline void zs_stat_inc(struct size_class *class, | 
|  | enum zs_stat_type type, unsigned long cnt) | 
|  | { | 
|  | if (type < NR_ZS_STAT_TYPE) | 
|  | class->stats.objs[type] += cnt; | 
|  | } | 
|  |  | 
|  | static inline void zs_stat_dec(struct size_class *class, | 
|  | enum zs_stat_type type, unsigned long cnt) | 
|  | { | 
|  | if (type < NR_ZS_STAT_TYPE) | 
|  | class->stats.objs[type] -= cnt; | 
|  | } | 
|  |  | 
|  | static inline unsigned long zs_stat_get(struct size_class *class, | 
|  | enum zs_stat_type type) | 
|  | { | 
|  | if (type < NR_ZS_STAT_TYPE) | 
|  | return class->stats.objs[type]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ZSMALLOC_STAT | 
|  |  | 
|  | static void __init zs_stat_init(void) | 
|  | { | 
|  | if (!debugfs_initialized()) { | 
|  | pr_warn("debugfs not available, stat dir not created\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | zs_stat_root = debugfs_create_dir("zsmalloc", NULL); | 
|  | if (!zs_stat_root) | 
|  | pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); | 
|  | } | 
|  |  | 
|  | static void __exit zs_stat_exit(void) | 
|  | { | 
|  | debugfs_remove_recursive(zs_stat_root); | 
|  | } | 
|  |  | 
|  | static unsigned long zs_can_compact(struct size_class *class); | 
|  |  | 
|  | static int zs_stats_size_show(struct seq_file *s, void *v) | 
|  | { | 
|  | int i; | 
|  | struct zs_pool *pool = s->private; | 
|  | struct size_class *class; | 
|  | int objs_per_zspage; | 
|  | unsigned long class_almost_full, class_almost_empty; | 
|  | unsigned long obj_allocated, obj_used, pages_used, freeable; | 
|  | unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; | 
|  | unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; | 
|  | unsigned long total_freeable = 0; | 
|  |  | 
|  | seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", | 
|  | "class", "size", "almost_full", "almost_empty", | 
|  | "obj_allocated", "obj_used", "pages_used", | 
|  | "pages_per_zspage", "freeable"); | 
|  |  | 
|  | for (i = 0; i < zs_size_classes; i++) { | 
|  | class = pool->size_class[i]; | 
|  |  | 
|  | if (class->index != i) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&class->lock); | 
|  | class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); | 
|  | class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); | 
|  | obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); | 
|  | obj_used = zs_stat_get(class, OBJ_USED); | 
|  | freeable = zs_can_compact(class); | 
|  | spin_unlock(&class->lock); | 
|  |  | 
|  | objs_per_zspage = get_maxobj_per_zspage(class->size, | 
|  | class->pages_per_zspage); | 
|  | pages_used = obj_allocated / objs_per_zspage * | 
|  | class->pages_per_zspage; | 
|  |  | 
|  | seq_printf(s, " %5u %5u %11lu %12lu %13lu" | 
|  | " %10lu %10lu %16d %8lu\n", | 
|  | i, class->size, class_almost_full, class_almost_empty, | 
|  | obj_allocated, obj_used, pages_used, | 
|  | class->pages_per_zspage, freeable); | 
|  |  | 
|  | total_class_almost_full += class_almost_full; | 
|  | total_class_almost_empty += class_almost_empty; | 
|  | total_objs += obj_allocated; | 
|  | total_used_objs += obj_used; | 
|  | total_pages += pages_used; | 
|  | total_freeable += freeable; | 
|  | } | 
|  |  | 
|  | seq_puts(s, "\n"); | 
|  | seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", | 
|  | "Total", "", total_class_almost_full, | 
|  | total_class_almost_empty, total_objs, | 
|  | total_used_objs, total_pages, "", total_freeable); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int zs_stats_size_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, zs_stats_size_show, inode->i_private); | 
|  | } | 
|  |  | 
|  | static const struct file_operations zs_stat_size_ops = { | 
|  | .open           = zs_stats_size_open, | 
|  | .read           = seq_read, | 
|  | .llseek         = seq_lseek, | 
|  | .release        = single_release, | 
|  | }; | 
|  |  | 
|  | static void zs_pool_stat_create(struct zs_pool *pool, const char *name) | 
|  | { | 
|  | struct dentry *entry; | 
|  |  | 
|  | if (!zs_stat_root) { | 
|  | pr_warn("no root stat dir, not creating <%s> stat dir\n", name); | 
|  | return; | 
|  | } | 
|  |  | 
|  | entry = debugfs_create_dir(name, zs_stat_root); | 
|  | if (!entry) { | 
|  | pr_warn("debugfs dir <%s> creation failed\n", name); | 
|  | return; | 
|  | } | 
|  | pool->stat_dentry = entry; | 
|  |  | 
|  | entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, | 
|  | pool->stat_dentry, pool, &zs_stat_size_ops); | 
|  | if (!entry) { | 
|  | pr_warn("%s: debugfs file entry <%s> creation failed\n", | 
|  | name, "classes"); | 
|  | debugfs_remove_recursive(pool->stat_dentry); | 
|  | pool->stat_dentry = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void zs_pool_stat_destroy(struct zs_pool *pool) | 
|  | { | 
|  | debugfs_remove_recursive(pool->stat_dentry); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_ZSMALLOC_STAT */ | 
|  | static void __init zs_stat_init(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void __exit zs_stat_exit(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void zs_pool_stat_destroy(struct zs_pool *pool) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * For each size class, zspages are divided into different groups | 
|  | * depending on how "full" they are. This was done so that we could | 
|  | * easily find empty or nearly empty zspages when we try to shrink | 
|  | * the pool (not yet implemented). This function returns fullness | 
|  | * status of the given page. | 
|  | */ | 
|  | static enum fullness_group get_fullness_group(struct page *first_page) | 
|  | { | 
|  | int inuse, max_objects; | 
|  | enum fullness_group fg; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); | 
|  |  | 
|  | inuse = first_page->inuse; | 
|  | max_objects = first_page->objects; | 
|  |  | 
|  | if (inuse == 0) | 
|  | fg = ZS_EMPTY; | 
|  | else if (inuse == max_objects) | 
|  | fg = ZS_FULL; | 
|  | else if (inuse <= 3 * max_objects / fullness_threshold_frac) | 
|  | fg = ZS_ALMOST_EMPTY; | 
|  | else | 
|  | fg = ZS_ALMOST_FULL; | 
|  |  | 
|  | return fg; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each size class maintains various freelists and zspages are assigned | 
|  | * to one of these freelists based on the number of live objects they | 
|  | * have. This functions inserts the given zspage into the freelist | 
|  | * identified by <class, fullness_group>. | 
|  | */ | 
|  | static void insert_zspage(struct size_class *class, | 
|  | enum fullness_group fullness, | 
|  | struct page *first_page) | 
|  | { | 
|  | struct page **head; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); | 
|  |  | 
|  | if (fullness >= _ZS_NR_FULLNESS_GROUPS) | 
|  | return; | 
|  |  | 
|  | zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ? | 
|  | CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1); | 
|  |  | 
|  | head = &class->fullness_list[fullness]; | 
|  | if (!*head) { | 
|  | *head = first_page; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We want to see more ZS_FULL pages and less almost | 
|  | * empty/full. Put pages with higher ->inuse first. | 
|  | */ | 
|  | list_add_tail(&first_page->lru, &(*head)->lru); | 
|  | if (first_page->inuse >= (*head)->inuse) | 
|  | *head = first_page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function removes the given zspage from the freelist identified | 
|  | * by <class, fullness_group>. | 
|  | */ | 
|  | static void remove_zspage(struct size_class *class, | 
|  | enum fullness_group fullness, | 
|  | struct page *first_page) | 
|  | { | 
|  | struct page **head; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); | 
|  |  | 
|  | if (fullness >= _ZS_NR_FULLNESS_GROUPS) | 
|  | return; | 
|  |  | 
|  | head = &class->fullness_list[fullness]; | 
|  | VM_BUG_ON_PAGE(!*head, first_page); | 
|  | if (list_empty(&(*head)->lru)) | 
|  | *head = NULL; | 
|  | else if (*head == first_page) | 
|  | *head = (struct page *)list_entry((*head)->lru.next, | 
|  | struct page, lru); | 
|  |  | 
|  | list_del_init(&first_page->lru); | 
|  | zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ? | 
|  | CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each size class maintains zspages in different fullness groups depending | 
|  | * on the number of live objects they contain. When allocating or freeing | 
|  | * objects, the fullness status of the page can change, say, from ALMOST_FULL | 
|  | * to ALMOST_EMPTY when freeing an object. This function checks if such | 
|  | * a status change has occurred for the given page and accordingly moves the | 
|  | * page from the freelist of the old fullness group to that of the new | 
|  | * fullness group. | 
|  | */ | 
|  | static enum fullness_group fix_fullness_group(struct size_class *class, | 
|  | struct page *first_page) | 
|  | { | 
|  | int class_idx; | 
|  | enum fullness_group currfg, newfg; | 
|  |  | 
|  | get_zspage_mapping(first_page, &class_idx, &currfg); | 
|  | newfg = get_fullness_group(first_page); | 
|  | if (newfg == currfg) | 
|  | goto out; | 
|  |  | 
|  | remove_zspage(class, currfg, first_page); | 
|  | insert_zspage(class, newfg, first_page); | 
|  | set_zspage_mapping(first_page, class_idx, newfg); | 
|  |  | 
|  | out: | 
|  | return newfg; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have to decide on how many pages to link together | 
|  | * to form a zspage for each size class. This is important | 
|  | * to reduce wastage due to unusable space left at end of | 
|  | * each zspage which is given as: | 
|  | *     wastage = Zp % class_size | 
|  | *     usage = Zp - wastage | 
|  | * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... | 
|  | * | 
|  | * For example, for size class of 3/8 * PAGE_SIZE, we should | 
|  | * link together 3 PAGE_SIZE sized pages to form a zspage | 
|  | * since then we can perfectly fit in 8 such objects. | 
|  | */ | 
|  | static int get_pages_per_zspage(int class_size) | 
|  | { | 
|  | int i, max_usedpc = 0; | 
|  | /* zspage order which gives maximum used size per KB */ | 
|  | int max_usedpc_order = 1; | 
|  |  | 
|  | for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { | 
|  | int zspage_size; | 
|  | int waste, usedpc; | 
|  |  | 
|  | zspage_size = i * PAGE_SIZE; | 
|  | waste = zspage_size % class_size; | 
|  | usedpc = (zspage_size - waste) * 100 / zspage_size; | 
|  |  | 
|  | if (usedpc > max_usedpc) { | 
|  | max_usedpc = usedpc; | 
|  | max_usedpc_order = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | return max_usedpc_order; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A single 'zspage' is composed of many system pages which are | 
|  | * linked together using fields in struct page. This function finds | 
|  | * the first/head page, given any component page of a zspage. | 
|  | */ | 
|  | static struct page *get_first_page(struct page *page) | 
|  | { | 
|  | if (is_first_page(page)) | 
|  | return page; | 
|  | else | 
|  | return (struct page *)page_private(page); | 
|  | } | 
|  |  | 
|  | static struct page *get_next_page(struct page *page) | 
|  | { | 
|  | struct page *next; | 
|  |  | 
|  | if (is_last_page(page)) | 
|  | next = NULL; | 
|  | else if (is_first_page(page)) | 
|  | next = (struct page *)page_private(page); | 
|  | else | 
|  | next = list_entry(page->lru.next, struct page, lru); | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Encode <page, obj_idx> as a single handle value. | 
|  | * We use the least bit of handle for tagging. | 
|  | */ | 
|  | static void *location_to_obj(struct page *page, unsigned long obj_idx) | 
|  | { | 
|  | unsigned long obj; | 
|  |  | 
|  | if (!page) { | 
|  | VM_BUG_ON(obj_idx); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | obj = page_to_pfn(page) << OBJ_INDEX_BITS; | 
|  | obj |= ((obj_idx) & OBJ_INDEX_MASK); | 
|  | obj <<= OBJ_TAG_BITS; | 
|  |  | 
|  | return (void *)obj; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decode <page, obj_idx> pair from the given object handle. We adjust the | 
|  | * decoded obj_idx back to its original value since it was adjusted in | 
|  | * location_to_obj(). | 
|  | */ | 
|  | static void obj_to_location(unsigned long obj, struct page **page, | 
|  | unsigned long *obj_idx) | 
|  | { | 
|  | obj >>= OBJ_TAG_BITS; | 
|  | *page = pfn_to_page(obj >> OBJ_INDEX_BITS); | 
|  | *obj_idx = (obj & OBJ_INDEX_MASK); | 
|  | } | 
|  |  | 
|  | static unsigned long handle_to_obj(unsigned long handle) | 
|  | { | 
|  | return *(unsigned long *)handle; | 
|  | } | 
|  |  | 
|  | static unsigned long obj_to_head(struct size_class *class, struct page *page, | 
|  | void *obj) | 
|  | { | 
|  | if (class->huge) { | 
|  | VM_BUG_ON_PAGE(!is_first_page(page), page); | 
|  | return page_private(page); | 
|  | } else | 
|  | return *(unsigned long *)obj; | 
|  | } | 
|  |  | 
|  | static unsigned long obj_idx_to_offset(struct page *page, | 
|  | unsigned long obj_idx, int class_size) | 
|  | { | 
|  | unsigned long off = 0; | 
|  |  | 
|  | if (!is_first_page(page)) | 
|  | off = page->index; | 
|  |  | 
|  | return off + obj_idx * class_size; | 
|  | } | 
|  |  | 
|  | static inline int trypin_tag(unsigned long handle) | 
|  | { | 
|  | unsigned long *ptr = (unsigned long *)handle; | 
|  |  | 
|  | return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr); | 
|  | } | 
|  |  | 
|  | static void pin_tag(unsigned long handle) | 
|  | { | 
|  | while (!trypin_tag(handle)); | 
|  | } | 
|  |  | 
|  | static void unpin_tag(unsigned long handle) | 
|  | { | 
|  | unsigned long *ptr = (unsigned long *)handle; | 
|  |  | 
|  | clear_bit_unlock(HANDLE_PIN_BIT, ptr); | 
|  | } | 
|  |  | 
|  | static void reset_page(struct page *page) | 
|  | { | 
|  | clear_bit(PG_private, &page->flags); | 
|  | clear_bit(PG_private_2, &page->flags); | 
|  | set_page_private(page, 0); | 
|  | page->mapping = NULL; | 
|  | page->freelist = NULL; | 
|  | page_mapcount_reset(page); | 
|  | } | 
|  |  | 
|  | static void free_zspage(struct page *first_page) | 
|  | { | 
|  | struct page *nextp, *tmp, *head_extra; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); | 
|  | VM_BUG_ON_PAGE(first_page->inuse, first_page); | 
|  |  | 
|  | head_extra = (struct page *)page_private(first_page); | 
|  |  | 
|  | reset_page(first_page); | 
|  | __free_page(first_page); | 
|  |  | 
|  | /* zspage with only 1 system page */ | 
|  | if (!head_extra) | 
|  | return; | 
|  |  | 
|  | list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) { | 
|  | list_del(&nextp->lru); | 
|  | reset_page(nextp); | 
|  | __free_page(nextp); | 
|  | } | 
|  | reset_page(head_extra); | 
|  | __free_page(head_extra); | 
|  | } | 
|  |  | 
|  | /* Initialize a newly allocated zspage */ | 
|  | static void init_zspage(struct size_class *class, struct page *first_page) | 
|  | { | 
|  | unsigned long off = 0; | 
|  | struct page *page = first_page; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); | 
|  |  | 
|  | while (page) { | 
|  | struct page *next_page; | 
|  | struct link_free *link; | 
|  | unsigned int i = 1; | 
|  | void *vaddr; | 
|  |  | 
|  | /* | 
|  | * page->index stores offset of first object starting | 
|  | * in the page. For the first page, this is always 0, | 
|  | * so we use first_page->index (aka ->freelist) to store | 
|  | * head of corresponding zspage's freelist. | 
|  | */ | 
|  | if (page != first_page) | 
|  | page->index = off; | 
|  |  | 
|  | vaddr = kmap_atomic(page); | 
|  | link = (struct link_free *)vaddr + off / sizeof(*link); | 
|  |  | 
|  | while ((off += class->size) < PAGE_SIZE) { | 
|  | link->next = location_to_obj(page, i++); | 
|  | link += class->size / sizeof(*link); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We now come to the last (full or partial) object on this | 
|  | * page, which must point to the first object on the next | 
|  | * page (if present) | 
|  | */ | 
|  | next_page = get_next_page(page); | 
|  | link->next = location_to_obj(next_page, 0); | 
|  | kunmap_atomic(vaddr); | 
|  | page = next_page; | 
|  | off %= PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a zspage for the given size class | 
|  | */ | 
|  | static struct page *alloc_zspage(struct size_class *class, gfp_t flags) | 
|  | { | 
|  | int i, error; | 
|  | struct page *first_page = NULL, *uninitialized_var(prev_page); | 
|  |  | 
|  | /* | 
|  | * Allocate individual pages and link them together as: | 
|  | * 1. first page->private = first sub-page | 
|  | * 2. all sub-pages are linked together using page->lru | 
|  | * 3. each sub-page is linked to the first page using page->private | 
|  | * | 
|  | * For each size class, First/Head pages are linked together using | 
|  | * page->lru. Also, we set PG_private to identify the first page | 
|  | * (i.e. no other sub-page has this flag set) and PG_private_2 to | 
|  | * identify the last page. | 
|  | */ | 
|  | error = -ENOMEM; | 
|  | for (i = 0; i < class->pages_per_zspage; i++) { | 
|  | struct page *page; | 
|  |  | 
|  | page = alloc_page(flags); | 
|  | if (!page) | 
|  | goto cleanup; | 
|  |  | 
|  | INIT_LIST_HEAD(&page->lru); | 
|  | if (i == 0) {	/* first page */ | 
|  | SetPagePrivate(page); | 
|  | set_page_private(page, 0); | 
|  | first_page = page; | 
|  | first_page->inuse = 0; | 
|  | } | 
|  | if (i == 1) | 
|  | set_page_private(first_page, (unsigned long)page); | 
|  | if (i >= 1) | 
|  | set_page_private(page, (unsigned long)first_page); | 
|  | if (i >= 2) | 
|  | list_add(&page->lru, &prev_page->lru); | 
|  | if (i == class->pages_per_zspage - 1)	/* last page */ | 
|  | SetPagePrivate2(page); | 
|  | prev_page = page; | 
|  | } | 
|  |  | 
|  | init_zspage(class, first_page); | 
|  |  | 
|  | first_page->freelist = location_to_obj(first_page, 0); | 
|  | /* Maximum number of objects we can store in this zspage */ | 
|  | first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size; | 
|  |  | 
|  | error = 0; /* Success */ | 
|  |  | 
|  | cleanup: | 
|  | if (unlikely(error) && first_page) { | 
|  | free_zspage(first_page); | 
|  | first_page = NULL; | 
|  | } | 
|  |  | 
|  | return first_page; | 
|  | } | 
|  |  | 
|  | static struct page *find_get_zspage(struct size_class *class) | 
|  | { | 
|  | int i; | 
|  | struct page *page; | 
|  |  | 
|  | for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { | 
|  | page = class->fullness_list[i]; | 
|  | if (page) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PGTABLE_MAPPING | 
|  | static inline int __zs_cpu_up(struct mapping_area *area) | 
|  | { | 
|  | /* | 
|  | * Make sure we don't leak memory if a cpu UP notification | 
|  | * and zs_init() race and both call zs_cpu_up() on the same cpu | 
|  | */ | 
|  | if (area->vm) | 
|  | return 0; | 
|  | area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); | 
|  | if (!area->vm) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void __zs_cpu_down(struct mapping_area *area) | 
|  | { | 
|  | if (area->vm) | 
|  | free_vm_area(area->vm); | 
|  | area->vm = NULL; | 
|  | } | 
|  |  | 
|  | static inline void *__zs_map_object(struct mapping_area *area, | 
|  | struct page *pages[2], int off, int size) | 
|  | { | 
|  | BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); | 
|  | area->vm_addr = area->vm->addr; | 
|  | return area->vm_addr + off; | 
|  | } | 
|  |  | 
|  | static inline void __zs_unmap_object(struct mapping_area *area, | 
|  | struct page *pages[2], int off, int size) | 
|  | { | 
|  | unsigned long addr = (unsigned long)area->vm_addr; | 
|  |  | 
|  | unmap_kernel_range(addr, PAGE_SIZE * 2); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_PGTABLE_MAPPING */ | 
|  |  | 
|  | static inline int __zs_cpu_up(struct mapping_area *area) | 
|  | { | 
|  | /* | 
|  | * Make sure we don't leak memory if a cpu UP notification | 
|  | * and zs_init() race and both call zs_cpu_up() on the same cpu | 
|  | */ | 
|  | if (area->vm_buf) | 
|  | return 0; | 
|  | area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); | 
|  | if (!area->vm_buf) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void __zs_cpu_down(struct mapping_area *area) | 
|  | { | 
|  | kfree(area->vm_buf); | 
|  | area->vm_buf = NULL; | 
|  | } | 
|  |  | 
|  | static void *__zs_map_object(struct mapping_area *area, | 
|  | struct page *pages[2], int off, int size) | 
|  | { | 
|  | int sizes[2]; | 
|  | void *addr; | 
|  | char *buf = area->vm_buf; | 
|  |  | 
|  | /* disable page faults to match kmap_atomic() return conditions */ | 
|  | pagefault_disable(); | 
|  |  | 
|  | /* no read fastpath */ | 
|  | if (area->vm_mm == ZS_MM_WO) | 
|  | goto out; | 
|  |  | 
|  | sizes[0] = PAGE_SIZE - off; | 
|  | sizes[1] = size - sizes[0]; | 
|  |  | 
|  | /* copy object to per-cpu buffer */ | 
|  | addr = kmap_atomic(pages[0]); | 
|  | memcpy(buf, addr + off, sizes[0]); | 
|  | kunmap_atomic(addr); | 
|  | addr = kmap_atomic(pages[1]); | 
|  | memcpy(buf + sizes[0], addr, sizes[1]); | 
|  | kunmap_atomic(addr); | 
|  | out: | 
|  | return area->vm_buf; | 
|  | } | 
|  |  | 
|  | static void __zs_unmap_object(struct mapping_area *area, | 
|  | struct page *pages[2], int off, int size) | 
|  | { | 
|  | int sizes[2]; | 
|  | void *addr; | 
|  | char *buf; | 
|  |  | 
|  | /* no write fastpath */ | 
|  | if (area->vm_mm == ZS_MM_RO) | 
|  | goto out; | 
|  |  | 
|  | buf = area->vm_buf; | 
|  | buf = buf + ZS_HANDLE_SIZE; | 
|  | size -= ZS_HANDLE_SIZE; | 
|  | off += ZS_HANDLE_SIZE; | 
|  |  | 
|  | sizes[0] = PAGE_SIZE - off; | 
|  | sizes[1] = size - sizes[0]; | 
|  |  | 
|  | /* copy per-cpu buffer to object */ | 
|  | addr = kmap_atomic(pages[0]); | 
|  | memcpy(addr + off, buf, sizes[0]); | 
|  | kunmap_atomic(addr); | 
|  | addr = kmap_atomic(pages[1]); | 
|  | memcpy(addr, buf + sizes[0], sizes[1]); | 
|  | kunmap_atomic(addr); | 
|  |  | 
|  | out: | 
|  | /* enable page faults to match kunmap_atomic() return conditions */ | 
|  | pagefault_enable(); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PGTABLE_MAPPING */ | 
|  |  | 
|  | static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action, | 
|  | void *pcpu) | 
|  | { | 
|  | int ret, cpu = (long)pcpu; | 
|  | struct mapping_area *area; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | area = &per_cpu(zs_map_area, cpu); | 
|  | ret = __zs_cpu_up(area); | 
|  | if (ret) | 
|  | return notifier_from_errno(ret); | 
|  | break; | 
|  | case CPU_DEAD: | 
|  | case CPU_UP_CANCELED: | 
|  | area = &per_cpu(zs_map_area, cpu); | 
|  | __zs_cpu_down(area); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block zs_cpu_nb = { | 
|  | .notifier_call = zs_cpu_notifier | 
|  | }; | 
|  |  | 
|  | static int zs_register_cpu_notifier(void) | 
|  | { | 
|  | int cpu, uninitialized_var(ret); | 
|  |  | 
|  | cpu_notifier_register_begin(); | 
|  |  | 
|  | __register_cpu_notifier(&zs_cpu_nb); | 
|  | for_each_online_cpu(cpu) { | 
|  | ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu); | 
|  | if (notifier_to_errno(ret)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | cpu_notifier_register_done(); | 
|  | return notifier_to_errno(ret); | 
|  | } | 
|  |  | 
|  | static void zs_unregister_cpu_notifier(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | cpu_notifier_register_begin(); | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu); | 
|  | __unregister_cpu_notifier(&zs_cpu_nb); | 
|  |  | 
|  | cpu_notifier_register_done(); | 
|  | } | 
|  |  | 
|  | static void init_zs_size_classes(void) | 
|  | { | 
|  | int nr; | 
|  |  | 
|  | nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1; | 
|  | if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA) | 
|  | nr += 1; | 
|  |  | 
|  | zs_size_classes = nr; | 
|  | } | 
|  |  | 
|  | static bool can_merge(struct size_class *prev, int size, int pages_per_zspage) | 
|  | { | 
|  | if (prev->pages_per_zspage != pages_per_zspage) | 
|  | return false; | 
|  |  | 
|  | if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage) | 
|  | != get_maxobj_per_zspage(size, pages_per_zspage)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool zspage_full(struct page *first_page) | 
|  | { | 
|  | VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); | 
|  |  | 
|  | return first_page->inuse == first_page->objects; | 
|  | } | 
|  |  | 
|  | unsigned long zs_get_total_pages(struct zs_pool *pool) | 
|  | { | 
|  | return atomic_long_read(&pool->pages_allocated); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_get_total_pages); | 
|  |  | 
|  | /** | 
|  | * zs_map_object - get address of allocated object from handle. | 
|  | * @pool: pool from which the object was allocated | 
|  | * @handle: handle returned from zs_malloc | 
|  | * | 
|  | * Before using an object allocated from zs_malloc, it must be mapped using | 
|  | * this function. When done with the object, it must be unmapped using | 
|  | * zs_unmap_object. | 
|  | * | 
|  | * Only one object can be mapped per cpu at a time. There is no protection | 
|  | * against nested mappings. | 
|  | * | 
|  | * This function returns with preemption and page faults disabled. | 
|  | */ | 
|  | void *zs_map_object(struct zs_pool *pool, unsigned long handle, | 
|  | enum zs_mapmode mm) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long obj, obj_idx, off; | 
|  |  | 
|  | unsigned int class_idx; | 
|  | enum fullness_group fg; | 
|  | struct size_class *class; | 
|  | struct mapping_area *area; | 
|  | struct page *pages[2]; | 
|  | void *ret; | 
|  |  | 
|  | /* | 
|  | * Because we use per-cpu mapping areas shared among the | 
|  | * pools/users, we can't allow mapping in interrupt context | 
|  | * because it can corrupt another users mappings. | 
|  | */ | 
|  | WARN_ON_ONCE(in_interrupt()); | 
|  |  | 
|  | /* From now on, migration cannot move the object */ | 
|  | pin_tag(handle); | 
|  |  | 
|  | obj = handle_to_obj(handle); | 
|  | obj_to_location(obj, &page, &obj_idx); | 
|  | get_zspage_mapping(get_first_page(page), &class_idx, &fg); | 
|  | class = pool->size_class[class_idx]; | 
|  | off = obj_idx_to_offset(page, obj_idx, class->size); | 
|  |  | 
|  | area = &get_cpu_var(zs_map_area); | 
|  | area->vm_mm = mm; | 
|  | if (off + class->size <= PAGE_SIZE) { | 
|  | /* this object is contained entirely within a page */ | 
|  | area->vm_addr = kmap_atomic(page); | 
|  | ret = area->vm_addr + off; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* this object spans two pages */ | 
|  | pages[0] = page; | 
|  | pages[1] = get_next_page(page); | 
|  | BUG_ON(!pages[1]); | 
|  |  | 
|  | ret = __zs_map_object(area, pages, off, class->size); | 
|  | out: | 
|  | if (!class->huge) | 
|  | ret += ZS_HANDLE_SIZE; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_map_object); | 
|  |  | 
|  | void zs_unmap_object(struct zs_pool *pool, unsigned long handle) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long obj, obj_idx, off; | 
|  |  | 
|  | unsigned int class_idx; | 
|  | enum fullness_group fg; | 
|  | struct size_class *class; | 
|  | struct mapping_area *area; | 
|  |  | 
|  | obj = handle_to_obj(handle); | 
|  | obj_to_location(obj, &page, &obj_idx); | 
|  | get_zspage_mapping(get_first_page(page), &class_idx, &fg); | 
|  | class = pool->size_class[class_idx]; | 
|  | off = obj_idx_to_offset(page, obj_idx, class->size); | 
|  |  | 
|  | area = this_cpu_ptr(&zs_map_area); | 
|  | if (off + class->size <= PAGE_SIZE) | 
|  | kunmap_atomic(area->vm_addr); | 
|  | else { | 
|  | struct page *pages[2]; | 
|  |  | 
|  | pages[0] = page; | 
|  | pages[1] = get_next_page(page); | 
|  | BUG_ON(!pages[1]); | 
|  |  | 
|  | __zs_unmap_object(area, pages, off, class->size); | 
|  | } | 
|  | put_cpu_var(zs_map_area); | 
|  | unpin_tag(handle); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_unmap_object); | 
|  |  | 
|  | static unsigned long obj_malloc(struct size_class *class, | 
|  | struct page *first_page, unsigned long handle) | 
|  | { | 
|  | unsigned long obj; | 
|  | struct link_free *link; | 
|  |  | 
|  | struct page *m_page; | 
|  | unsigned long m_objidx, m_offset; | 
|  | void *vaddr; | 
|  |  | 
|  | handle |= OBJ_ALLOCATED_TAG; | 
|  | obj = (unsigned long)first_page->freelist; | 
|  | obj_to_location(obj, &m_page, &m_objidx); | 
|  | m_offset = obj_idx_to_offset(m_page, m_objidx, class->size); | 
|  |  | 
|  | vaddr = kmap_atomic(m_page); | 
|  | link = (struct link_free *)vaddr + m_offset / sizeof(*link); | 
|  | first_page->freelist = link->next; | 
|  | if (!class->huge) | 
|  | /* record handle in the header of allocated chunk */ | 
|  | link->handle = handle; | 
|  | else | 
|  | /* record handle in first_page->private */ | 
|  | set_page_private(first_page, handle); | 
|  | kunmap_atomic(vaddr); | 
|  | first_page->inuse++; | 
|  | zs_stat_inc(class, OBJ_USED, 1); | 
|  |  | 
|  | return obj; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * zs_malloc - Allocate block of given size from pool. | 
|  | * @pool: pool to allocate from | 
|  | * @size: size of block to allocate | 
|  | * | 
|  | * On success, handle to the allocated object is returned, | 
|  | * otherwise 0. | 
|  | * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. | 
|  | */ | 
|  | unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) | 
|  | { | 
|  | unsigned long handle, obj; | 
|  | struct size_class *class; | 
|  | struct page *first_page; | 
|  |  | 
|  | if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) | 
|  | return 0; | 
|  |  | 
|  | handle = alloc_handle(pool, gfp); | 
|  | if (!handle) | 
|  | return 0; | 
|  |  | 
|  | /* extra space in chunk to keep the handle */ | 
|  | size += ZS_HANDLE_SIZE; | 
|  | class = pool->size_class[get_size_class_index(size)]; | 
|  |  | 
|  | spin_lock(&class->lock); | 
|  | first_page = find_get_zspage(class); | 
|  |  | 
|  | if (!first_page) { | 
|  | spin_unlock(&class->lock); | 
|  | first_page = alloc_zspage(class, gfp); | 
|  | if (unlikely(!first_page)) { | 
|  | free_handle(pool, handle); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | set_zspage_mapping(first_page, class->index, ZS_EMPTY); | 
|  | atomic_long_add(class->pages_per_zspage, | 
|  | &pool->pages_allocated); | 
|  |  | 
|  | spin_lock(&class->lock); | 
|  | zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage( | 
|  | class->size, class->pages_per_zspage)); | 
|  | } | 
|  |  | 
|  | obj = obj_malloc(class, first_page, handle); | 
|  | /* Now move the zspage to another fullness group, if required */ | 
|  | fix_fullness_group(class, first_page); | 
|  | record_obj(handle, obj); | 
|  | spin_unlock(&class->lock); | 
|  |  | 
|  | return handle; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_malloc); | 
|  |  | 
|  | static void obj_free(struct size_class *class, unsigned long obj) | 
|  | { | 
|  | struct link_free *link; | 
|  | struct page *first_page, *f_page; | 
|  | unsigned long f_objidx, f_offset; | 
|  | void *vaddr; | 
|  |  | 
|  | obj &= ~OBJ_ALLOCATED_TAG; | 
|  | obj_to_location(obj, &f_page, &f_objidx); | 
|  | first_page = get_first_page(f_page); | 
|  |  | 
|  | f_offset = obj_idx_to_offset(f_page, f_objidx, class->size); | 
|  |  | 
|  | vaddr = kmap_atomic(f_page); | 
|  |  | 
|  | /* Insert this object in containing zspage's freelist */ | 
|  | link = (struct link_free *)(vaddr + f_offset); | 
|  | link->next = first_page->freelist; | 
|  | if (class->huge) | 
|  | set_page_private(first_page, 0); | 
|  | kunmap_atomic(vaddr); | 
|  | first_page->freelist = (void *)obj; | 
|  | first_page->inuse--; | 
|  | zs_stat_dec(class, OBJ_USED, 1); | 
|  | } | 
|  |  | 
|  | void zs_free(struct zs_pool *pool, unsigned long handle) | 
|  | { | 
|  | struct page *first_page, *f_page; | 
|  | unsigned long obj, f_objidx; | 
|  | int class_idx; | 
|  | struct size_class *class; | 
|  | enum fullness_group fullness; | 
|  |  | 
|  | if (unlikely(!handle)) | 
|  | return; | 
|  |  | 
|  | pin_tag(handle); | 
|  | obj = handle_to_obj(handle); | 
|  | obj_to_location(obj, &f_page, &f_objidx); | 
|  | first_page = get_first_page(f_page); | 
|  |  | 
|  | get_zspage_mapping(first_page, &class_idx, &fullness); | 
|  | class = pool->size_class[class_idx]; | 
|  |  | 
|  | spin_lock(&class->lock); | 
|  | obj_free(class, obj); | 
|  | fullness = fix_fullness_group(class, first_page); | 
|  | if (fullness == ZS_EMPTY) { | 
|  | zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage( | 
|  | class->size, class->pages_per_zspage)); | 
|  | atomic_long_sub(class->pages_per_zspage, | 
|  | &pool->pages_allocated); | 
|  | free_zspage(first_page); | 
|  | } | 
|  | spin_unlock(&class->lock); | 
|  | unpin_tag(handle); | 
|  |  | 
|  | free_handle(pool, handle); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_free); | 
|  |  | 
|  | static void zs_object_copy(struct size_class *class, unsigned long dst, | 
|  | unsigned long src) | 
|  | { | 
|  | struct page *s_page, *d_page; | 
|  | unsigned long s_objidx, d_objidx; | 
|  | unsigned long s_off, d_off; | 
|  | void *s_addr, *d_addr; | 
|  | int s_size, d_size, size; | 
|  | int written = 0; | 
|  |  | 
|  | s_size = d_size = class->size; | 
|  |  | 
|  | obj_to_location(src, &s_page, &s_objidx); | 
|  | obj_to_location(dst, &d_page, &d_objidx); | 
|  |  | 
|  | s_off = obj_idx_to_offset(s_page, s_objidx, class->size); | 
|  | d_off = obj_idx_to_offset(d_page, d_objidx, class->size); | 
|  |  | 
|  | if (s_off + class->size > PAGE_SIZE) | 
|  | s_size = PAGE_SIZE - s_off; | 
|  |  | 
|  | if (d_off + class->size > PAGE_SIZE) | 
|  | d_size = PAGE_SIZE - d_off; | 
|  |  | 
|  | s_addr = kmap_atomic(s_page); | 
|  | d_addr = kmap_atomic(d_page); | 
|  |  | 
|  | while (1) { | 
|  | size = min(s_size, d_size); | 
|  | memcpy(d_addr + d_off, s_addr + s_off, size); | 
|  | written += size; | 
|  |  | 
|  | if (written == class->size) | 
|  | break; | 
|  |  | 
|  | s_off += size; | 
|  | s_size -= size; | 
|  | d_off += size; | 
|  | d_size -= size; | 
|  |  | 
|  | if (s_off >= PAGE_SIZE) { | 
|  | kunmap_atomic(d_addr); | 
|  | kunmap_atomic(s_addr); | 
|  | s_page = get_next_page(s_page); | 
|  | s_addr = kmap_atomic(s_page); | 
|  | d_addr = kmap_atomic(d_page); | 
|  | s_size = class->size - written; | 
|  | s_off = 0; | 
|  | } | 
|  |  | 
|  | if (d_off >= PAGE_SIZE) { | 
|  | kunmap_atomic(d_addr); | 
|  | d_page = get_next_page(d_page); | 
|  | d_addr = kmap_atomic(d_page); | 
|  | d_size = class->size - written; | 
|  | d_off = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | kunmap_atomic(d_addr); | 
|  | kunmap_atomic(s_addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find alloced object in zspage from index object and | 
|  | * return handle. | 
|  | */ | 
|  | static unsigned long find_alloced_obj(struct size_class *class, | 
|  | struct page *page, int index) | 
|  | { | 
|  | unsigned long head; | 
|  | int offset = 0; | 
|  | unsigned long handle = 0; | 
|  | void *addr = kmap_atomic(page); | 
|  |  | 
|  | if (!is_first_page(page)) | 
|  | offset = page->index; | 
|  | offset += class->size * index; | 
|  |  | 
|  | while (offset < PAGE_SIZE) { | 
|  | head = obj_to_head(class, page, addr + offset); | 
|  | if (head & OBJ_ALLOCATED_TAG) { | 
|  | handle = head & ~OBJ_ALLOCATED_TAG; | 
|  | if (trypin_tag(handle)) | 
|  | break; | 
|  | handle = 0; | 
|  | } | 
|  |  | 
|  | offset += class->size; | 
|  | index++; | 
|  | } | 
|  |  | 
|  | kunmap_atomic(addr); | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | struct zs_compact_control { | 
|  | /* Source page for migration which could be a subpage of zspage. */ | 
|  | struct page *s_page; | 
|  | /* Destination page for migration which should be a first page | 
|  | * of zspage. */ | 
|  | struct page *d_page; | 
|  | /* Starting object index within @s_page which used for live object | 
|  | * in the subpage. */ | 
|  | int index; | 
|  | }; | 
|  |  | 
|  | static int migrate_zspage(struct zs_pool *pool, struct size_class *class, | 
|  | struct zs_compact_control *cc) | 
|  | { | 
|  | unsigned long used_obj, free_obj; | 
|  | unsigned long handle; | 
|  | struct page *s_page = cc->s_page; | 
|  | struct page *d_page = cc->d_page; | 
|  | unsigned long index = cc->index; | 
|  | int ret = 0; | 
|  |  | 
|  | while (1) { | 
|  | handle = find_alloced_obj(class, s_page, index); | 
|  | if (!handle) { | 
|  | s_page = get_next_page(s_page); | 
|  | if (!s_page) | 
|  | break; | 
|  | index = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Stop if there is no more space */ | 
|  | if (zspage_full(d_page)) { | 
|  | unpin_tag(handle); | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | used_obj = handle_to_obj(handle); | 
|  | free_obj = obj_malloc(class, d_page, handle); | 
|  | zs_object_copy(class, free_obj, used_obj); | 
|  | index++; | 
|  | /* | 
|  | * record_obj updates handle's value to free_obj and it will | 
|  | * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which | 
|  | * breaks synchronization using pin_tag(e,g, zs_free) so | 
|  | * let's keep the lock bit. | 
|  | */ | 
|  | free_obj |= BIT(HANDLE_PIN_BIT); | 
|  | record_obj(handle, free_obj); | 
|  | unpin_tag(handle); | 
|  | obj_free(class, used_obj); | 
|  | } | 
|  |  | 
|  | /* Remember last position in this iteration */ | 
|  | cc->s_page = s_page; | 
|  | cc->index = index; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct page *isolate_target_page(struct size_class *class) | 
|  | { | 
|  | int i; | 
|  | struct page *page; | 
|  |  | 
|  | for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { | 
|  | page = class->fullness_list[i]; | 
|  | if (page) { | 
|  | remove_zspage(class, i, page); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * putback_zspage - add @first_page into right class's fullness list | 
|  | * @pool: target pool | 
|  | * @class: destination class | 
|  | * @first_page: target page | 
|  | * | 
|  | * Return @fist_page's fullness_group | 
|  | */ | 
|  | static enum fullness_group putback_zspage(struct zs_pool *pool, | 
|  | struct size_class *class, | 
|  | struct page *first_page) | 
|  | { | 
|  | enum fullness_group fullness; | 
|  |  | 
|  | fullness = get_fullness_group(first_page); | 
|  | insert_zspage(class, fullness, first_page); | 
|  | set_zspage_mapping(first_page, class->index, fullness); | 
|  |  | 
|  | if (fullness == ZS_EMPTY) { | 
|  | zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage( | 
|  | class->size, class->pages_per_zspage)); | 
|  | atomic_long_sub(class->pages_per_zspage, | 
|  | &pool->pages_allocated); | 
|  |  | 
|  | free_zspage(first_page); | 
|  | } | 
|  |  | 
|  | return fullness; | 
|  | } | 
|  |  | 
|  | static struct page *isolate_source_page(struct size_class *class) | 
|  | { | 
|  | int i; | 
|  | struct page *page = NULL; | 
|  |  | 
|  | for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) { | 
|  | page = class->fullness_list[i]; | 
|  | if (!page) | 
|  | continue; | 
|  |  | 
|  | remove_zspage(class, i, page); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * | 
|  | * Based on the number of unused allocated objects calculate | 
|  | * and return the number of pages that we can free. | 
|  | */ | 
|  | static unsigned long zs_can_compact(struct size_class *class) | 
|  | { | 
|  | unsigned long obj_wasted; | 
|  | unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); | 
|  | unsigned long obj_used = zs_stat_get(class, OBJ_USED); | 
|  |  | 
|  | if (obj_allocated <= obj_used) | 
|  | return 0; | 
|  |  | 
|  | obj_wasted = obj_allocated - obj_used; | 
|  | obj_wasted /= get_maxobj_per_zspage(class->size, | 
|  | class->pages_per_zspage); | 
|  |  | 
|  | return obj_wasted * class->pages_per_zspage; | 
|  | } | 
|  |  | 
|  | static void __zs_compact(struct zs_pool *pool, struct size_class *class) | 
|  | { | 
|  | struct zs_compact_control cc; | 
|  | struct page *src_page; | 
|  | struct page *dst_page = NULL; | 
|  |  | 
|  | spin_lock(&class->lock); | 
|  | while ((src_page = isolate_source_page(class))) { | 
|  |  | 
|  | if (!zs_can_compact(class)) | 
|  | break; | 
|  |  | 
|  | cc.index = 0; | 
|  | cc.s_page = src_page; | 
|  |  | 
|  | while ((dst_page = isolate_target_page(class))) { | 
|  | cc.d_page = dst_page; | 
|  | /* | 
|  | * If there is no more space in dst_page, resched | 
|  | * and see if anyone had allocated another zspage. | 
|  | */ | 
|  | if (!migrate_zspage(pool, class, &cc)) | 
|  | break; | 
|  |  | 
|  | putback_zspage(pool, class, dst_page); | 
|  | } | 
|  |  | 
|  | /* Stop if we couldn't find slot */ | 
|  | if (dst_page == NULL) | 
|  | break; | 
|  |  | 
|  | putback_zspage(pool, class, dst_page); | 
|  | if (putback_zspage(pool, class, src_page) == ZS_EMPTY) | 
|  | pool->stats.pages_compacted += class->pages_per_zspage; | 
|  | spin_unlock(&class->lock); | 
|  | cond_resched(); | 
|  | spin_lock(&class->lock); | 
|  | } | 
|  |  | 
|  | if (src_page) | 
|  | putback_zspage(pool, class, src_page); | 
|  |  | 
|  | spin_unlock(&class->lock); | 
|  | } | 
|  |  | 
|  | unsigned long zs_compact(struct zs_pool *pool) | 
|  | { | 
|  | int i; | 
|  | struct size_class *class; | 
|  |  | 
|  | for (i = zs_size_classes - 1; i >= 0; i--) { | 
|  | class = pool->size_class[i]; | 
|  | if (!class) | 
|  | continue; | 
|  | if (class->index != i) | 
|  | continue; | 
|  | __zs_compact(pool, class); | 
|  | } | 
|  |  | 
|  | return pool->stats.pages_compacted; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_compact); | 
|  |  | 
|  | void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) | 
|  | { | 
|  | memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_pool_stats); | 
|  |  | 
|  | static unsigned long zs_shrinker_scan(struct shrinker *shrinker, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | unsigned long pages_freed; | 
|  | struct zs_pool *pool = container_of(shrinker, struct zs_pool, | 
|  | shrinker); | 
|  |  | 
|  | pages_freed = pool->stats.pages_compacted; | 
|  | /* | 
|  | * Compact classes and calculate compaction delta. | 
|  | * Can run concurrently with a manually triggered | 
|  | * (by user) compaction. | 
|  | */ | 
|  | pages_freed = zs_compact(pool) - pages_freed; | 
|  |  | 
|  | return pages_freed ? pages_freed : SHRINK_STOP; | 
|  | } | 
|  |  | 
|  | static unsigned long zs_shrinker_count(struct shrinker *shrinker, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | int i; | 
|  | struct size_class *class; | 
|  | unsigned long pages_to_free = 0; | 
|  | struct zs_pool *pool = container_of(shrinker, struct zs_pool, | 
|  | shrinker); | 
|  |  | 
|  | for (i = zs_size_classes - 1; i >= 0; i--) { | 
|  | class = pool->size_class[i]; | 
|  | if (!class) | 
|  | continue; | 
|  | if (class->index != i) | 
|  | continue; | 
|  |  | 
|  | pages_to_free += zs_can_compact(class); | 
|  | } | 
|  |  | 
|  | return pages_to_free; | 
|  | } | 
|  |  | 
|  | static void zs_unregister_shrinker(struct zs_pool *pool) | 
|  | { | 
|  | if (pool->shrinker_enabled) { | 
|  | unregister_shrinker(&pool->shrinker); | 
|  | pool->shrinker_enabled = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int zs_register_shrinker(struct zs_pool *pool) | 
|  | { | 
|  | pool->shrinker.scan_objects = zs_shrinker_scan; | 
|  | pool->shrinker.count_objects = zs_shrinker_count; | 
|  | pool->shrinker.batch = 0; | 
|  | pool->shrinker.seeks = DEFAULT_SEEKS; | 
|  |  | 
|  | return register_shrinker(&pool->shrinker); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zs_create_pool - Creates an allocation pool to work from. | 
|  | * @flags: allocation flags used to allocate pool metadata | 
|  | * | 
|  | * This function must be called before anything when using | 
|  | * the zsmalloc allocator. | 
|  | * | 
|  | * On success, a pointer to the newly created pool is returned, | 
|  | * otherwise NULL. | 
|  | */ | 
|  | struct zs_pool *zs_create_pool(const char *name) | 
|  | { | 
|  | int i; | 
|  | struct zs_pool *pool; | 
|  | struct size_class *prev_class = NULL; | 
|  |  | 
|  | pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
|  | if (!pool) | 
|  | return NULL; | 
|  |  | 
|  | pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *), | 
|  | GFP_KERNEL); | 
|  | if (!pool->size_class) { | 
|  | kfree(pool); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pool->name = kstrdup(name, GFP_KERNEL); | 
|  | if (!pool->name) | 
|  | goto err; | 
|  |  | 
|  | if (create_handle_cache(pool)) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * Iterate reversly, because, size of size_class that we want to use | 
|  | * for merging should be larger or equal to current size. | 
|  | */ | 
|  | for (i = zs_size_classes - 1; i >= 0; i--) { | 
|  | int size; | 
|  | int pages_per_zspage; | 
|  | struct size_class *class; | 
|  |  | 
|  | size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; | 
|  | if (size > ZS_MAX_ALLOC_SIZE) | 
|  | size = ZS_MAX_ALLOC_SIZE; | 
|  | pages_per_zspage = get_pages_per_zspage(size); | 
|  |  | 
|  | /* | 
|  | * size_class is used for normal zsmalloc operation such | 
|  | * as alloc/free for that size. Although it is natural that we | 
|  | * have one size_class for each size, there is a chance that we | 
|  | * can get more memory utilization if we use one size_class for | 
|  | * many different sizes whose size_class have same | 
|  | * characteristics. So, we makes size_class point to | 
|  | * previous size_class if possible. | 
|  | */ | 
|  | if (prev_class) { | 
|  | if (can_merge(prev_class, size, pages_per_zspage)) { | 
|  | pool->size_class[i] = prev_class; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | class = kzalloc(sizeof(struct size_class), GFP_KERNEL); | 
|  | if (!class) | 
|  | goto err; | 
|  |  | 
|  | class->size = size; | 
|  | class->index = i; | 
|  | class->pages_per_zspage = pages_per_zspage; | 
|  | if (pages_per_zspage == 1 && | 
|  | get_maxobj_per_zspage(size, pages_per_zspage) == 1) | 
|  | class->huge = true; | 
|  | spin_lock_init(&class->lock); | 
|  | pool->size_class[i] = class; | 
|  |  | 
|  | prev_class = class; | 
|  | } | 
|  |  | 
|  | /* debug only, don't abort if it fails */ | 
|  | zs_pool_stat_create(pool, name); | 
|  |  | 
|  | /* | 
|  | * Not critical, we still can use the pool | 
|  | * and user can trigger compaction manually. | 
|  | */ | 
|  | if (zs_register_shrinker(pool) == 0) | 
|  | pool->shrinker_enabled = true; | 
|  | return pool; | 
|  |  | 
|  | err: | 
|  | zs_destroy_pool(pool); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_create_pool); | 
|  |  | 
|  | void zs_destroy_pool(struct zs_pool *pool) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | zs_unregister_shrinker(pool); | 
|  | zs_pool_stat_destroy(pool); | 
|  |  | 
|  | for (i = 0; i < zs_size_classes; i++) { | 
|  | int fg; | 
|  | struct size_class *class = pool->size_class[i]; | 
|  |  | 
|  | if (!class) | 
|  | continue; | 
|  |  | 
|  | if (class->index != i) | 
|  | continue; | 
|  |  | 
|  | for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) { | 
|  | if (class->fullness_list[fg]) { | 
|  | pr_info("Freeing non-empty class with size %db, fullness group %d\n", | 
|  | class->size, fg); | 
|  | } | 
|  | } | 
|  | kfree(class); | 
|  | } | 
|  |  | 
|  | destroy_handle_cache(pool); | 
|  | kfree(pool->size_class); | 
|  | kfree(pool->name); | 
|  | kfree(pool); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zs_destroy_pool); | 
|  |  | 
|  | static int __init zs_init(void) | 
|  | { | 
|  | int ret = zs_register_cpu_notifier(); | 
|  |  | 
|  | if (ret) | 
|  | goto notifier_fail; | 
|  |  | 
|  | init_zs_size_classes(); | 
|  |  | 
|  | #ifdef CONFIG_ZPOOL | 
|  | zpool_register_driver(&zs_zpool_driver); | 
|  | #endif | 
|  |  | 
|  | zs_stat_init(); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | notifier_fail: | 
|  | zs_unregister_cpu_notifier(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __exit zs_exit(void) | 
|  | { | 
|  | #ifdef CONFIG_ZPOOL | 
|  | zpool_unregister_driver(&zs_zpool_driver); | 
|  | #endif | 
|  | zs_unregister_cpu_notifier(); | 
|  |  | 
|  | zs_stat_exit(); | 
|  | } | 
|  |  | 
|  | module_init(zs_init); | 
|  | module_exit(zs_exit); | 
|  |  | 
|  | MODULE_LICENSE("Dual BSD/GPL"); | 
|  | MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |