| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (c) 2015 MediaTek Inc. | 
 |  * Author: | 
 |  *  Zhigang.Wei <zhigang.wei@mediatek.com> | 
 |  *  Chunfeng.Yun <chunfeng.yun@mediatek.com> | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include "xhci.h" | 
 | #include "xhci-mtk.h" | 
 |  | 
 | #define SSP_BW_BOUNDARY	130000 | 
 | #define SS_BW_BOUNDARY	51000 | 
 | /* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */ | 
 | #define HS_BW_BOUNDARY	6144 | 
 | /* usb2 spec section11.18.1: at most 188 FS bytes per microframe */ | 
 | #define FS_PAYLOAD_MAX 188 | 
 | #define LS_PAYLOAD_MAX 18 | 
 | /* section 11.18.1, per fs frame */ | 
 | #define FS_BW_BOUNDARY	1157 | 
 | #define LS_BW_BOUNDARY	144 | 
 |  | 
 | /* | 
 |  * max number of microframes for split transfer, assume extra-cs budget is 0 | 
 |  * for fs isoc in : 1 ss + 1 idle + 6 cs (roundup(1023/188)) | 
 |  */ | 
 | #define TT_MICROFRAMES_MAX	8 | 
 | /* offset from SS for fs/ls isoc/intr ep (ss + idle) */ | 
 | #define CS_OFFSET	2 | 
 |  | 
 | #define DBG_BUF_EN	64 | 
 |  | 
 | /* schedule error type */ | 
 | #define ESCH_SS_Y6		1001 | 
 | #define ESCH_SS_OVERLAP		1002 | 
 | #define ESCH_CS_OVERFLOW	1003 | 
 | #define ESCH_BW_OVERFLOW	1004 | 
 | #define ESCH_FIXME		1005 | 
 |  | 
 | /* mtk scheduler bitmasks */ | 
 | #define EP_BPKTS(p)	((p) & 0x7f) | 
 | #define EP_BCSCOUNT(p)	(((p) & 0x7) << 8) | 
 | #define EP_BBM(p)	((p) << 11) | 
 | #define EP_BOFFSET(p)	((p) & 0x3fff) | 
 | #define EP_BREPEAT(p)	(((p) & 0x7fff) << 16) | 
 |  | 
 | static char *sch_error_string(int err_num) | 
 | { | 
 | 	switch (err_num) { | 
 | 	case ESCH_SS_Y6: | 
 | 		return "Can't schedule Start-Split in Y6"; | 
 | 	case ESCH_SS_OVERLAP: | 
 | 		return "Can't find a suitable Start-Split location"; | 
 | 	case ESCH_CS_OVERFLOW: | 
 | 		return "The last Complete-Split is greater than 7"; | 
 | 	case ESCH_BW_OVERFLOW: | 
 | 		return "Bandwidth exceeds the maximum limit"; | 
 | 	case ESCH_FIXME: | 
 | 		return "FIXME, to be resolved"; | 
 | 	default: | 
 | 		return "Unknown"; | 
 | 	} | 
 | } | 
 |  | 
 | static int is_fs_or_ls(enum usb_device_speed speed) | 
 | { | 
 | 	return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW; | 
 | } | 
 |  | 
 | static const char * | 
 | decode_ep(struct usb_host_endpoint *ep, enum usb_device_speed speed) | 
 | { | 
 | 	static char buf[DBG_BUF_EN]; | 
 | 	struct usb_endpoint_descriptor *epd = &ep->desc; | 
 | 	unsigned int interval; | 
 | 	const char *unit; | 
 |  | 
 | 	interval = usb_decode_interval(epd, speed); | 
 | 	if (interval % 1000) { | 
 | 		unit = "us"; | 
 | 	} else { | 
 | 		unit = "ms"; | 
 | 		interval /= 1000; | 
 | 	} | 
 |  | 
 | 	snprintf(buf, DBG_BUF_EN, "%s ep%d%s %s, mpkt:%d, interval:%d/%d%s", | 
 | 		 usb_speed_string(speed), usb_endpoint_num(epd), | 
 | 		 usb_endpoint_dir_in(epd) ? "in" : "out", | 
 | 		 usb_ep_type_string(usb_endpoint_type(epd)), | 
 | 		 usb_endpoint_maxp(epd), epd->bInterval, interval, unit); | 
 |  | 
 | 	return buf; | 
 | } | 
 |  | 
 | static u32 get_bw_boundary(enum usb_device_speed speed) | 
 | { | 
 | 	u32 boundary; | 
 |  | 
 | 	switch (speed) { | 
 | 	case USB_SPEED_SUPER_PLUS: | 
 | 		boundary = SSP_BW_BOUNDARY; | 
 | 		break; | 
 | 	case USB_SPEED_SUPER: | 
 | 		boundary = SS_BW_BOUNDARY; | 
 | 		break; | 
 | 	default: | 
 | 		boundary = HS_BW_BOUNDARY; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return boundary; | 
 | } | 
 |  | 
 | /* | 
 | * get the bandwidth domain which @ep belongs to. | 
 | * | 
 | * the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk, | 
 | * each HS root port is treated as a single bandwidth domain, | 
 | * but each SS root port is treated as two bandwidth domains, one for IN eps, | 
 | * one for OUT eps. | 
 | */ | 
 | static struct mu3h_sch_bw_info * | 
 | get_bw_info(struct xhci_hcd_mtk *mtk, struct usb_device *udev, | 
 | 	    struct usb_host_endpoint *ep) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	int bw_index; | 
 |  | 
 | 	virt_dev = xhci->devs[udev->slot_id]; | 
 | 	if (!virt_dev->rhub_port) { | 
 | 		WARN_ONCE(1, "%s invalid rhub port\n", dev_name(&udev->dev)); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (udev->speed >= USB_SPEED_SUPER) { | 
 | 		if (usb_endpoint_dir_out(&ep->desc)) | 
 | 			bw_index = (virt_dev->rhub_port->hw_portnum) * 2; | 
 | 		else | 
 | 			bw_index = (virt_dev->rhub_port->hw_portnum) * 2 + 1; | 
 | 	} else { | 
 | 		/* add one more for each SS port */ | 
 | 		bw_index = virt_dev->rhub_port->hw_portnum + xhci->usb3_rhub.num_ports; | 
 | 	} | 
 |  | 
 | 	return &mtk->sch_array[bw_index]; | 
 | } | 
 |  | 
 | static u32 get_esit(struct xhci_ep_ctx *ep_ctx) | 
 | { | 
 | 	u32 esit; | 
 |  | 
 | 	esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info)); | 
 | 	if (esit > XHCI_MTK_MAX_ESIT) | 
 | 		esit = XHCI_MTK_MAX_ESIT; | 
 |  | 
 | 	return esit; | 
 | } | 
 |  | 
 | static struct mu3h_sch_tt *find_tt(struct usb_device *udev) | 
 | { | 
 | 	struct usb_tt *utt = udev->tt; | 
 | 	struct mu3h_sch_tt *tt, **tt_index, **ptt; | 
 | 	bool allocated_index = false; | 
 |  | 
 | 	if (!utt) | 
 | 		return NULL;	/* Not below a TT */ | 
 |  | 
 | 	/* | 
 | 	 * Find/create our data structure. | 
 | 	 * For hubs with a single TT, we get it directly. | 
 | 	 * For hubs with multiple TTs, there's an extra level of pointers. | 
 | 	 */ | 
 | 	tt_index = NULL; | 
 | 	if (utt->multi) { | 
 | 		tt_index = utt->hcpriv; | 
 | 		if (!tt_index) {	/* Create the index array */ | 
 | 			tt_index = kcalloc(utt->hub->maxchild, | 
 | 					sizeof(*tt_index), GFP_KERNEL); | 
 | 			if (!tt_index) | 
 | 				return ERR_PTR(-ENOMEM); | 
 | 			utt->hcpriv = tt_index; | 
 | 			allocated_index = true; | 
 | 		} | 
 | 		ptt = &tt_index[udev->ttport - 1]; | 
 | 	} else { | 
 | 		ptt = (struct mu3h_sch_tt **) &utt->hcpriv; | 
 | 	} | 
 |  | 
 | 	tt = *ptt; | 
 | 	if (!tt) {	/* Create the mu3h_sch_tt */ | 
 | 		tt = kzalloc(sizeof(*tt), GFP_KERNEL); | 
 | 		if (!tt) { | 
 | 			if (allocated_index) { | 
 | 				utt->hcpriv = NULL; | 
 | 				kfree(tt_index); | 
 | 			} | 
 | 			return ERR_PTR(-ENOMEM); | 
 | 		} | 
 | 		INIT_LIST_HEAD(&tt->ep_list); | 
 | 		*ptt = tt; | 
 | 	} | 
 |  | 
 | 	return tt; | 
 | } | 
 |  | 
 | /* Release the TT above udev, if it's not in use */ | 
 | static void drop_tt(struct usb_device *udev) | 
 | { | 
 | 	struct usb_tt *utt = udev->tt; | 
 | 	struct mu3h_sch_tt *tt, **tt_index, **ptt; | 
 | 	int i, cnt; | 
 |  | 
 | 	if (!utt || !utt->hcpriv) | 
 | 		return;		/* Not below a TT, or never allocated */ | 
 |  | 
 | 	cnt = 0; | 
 | 	if (utt->multi) { | 
 | 		tt_index = utt->hcpriv; | 
 | 		ptt = &tt_index[udev->ttport - 1]; | 
 | 		/*  How many entries are left in tt_index? */ | 
 | 		for (i = 0; i < utt->hub->maxchild; ++i) | 
 | 			cnt += !!tt_index[i]; | 
 | 	} else { | 
 | 		tt_index = NULL; | 
 | 		ptt = (struct mu3h_sch_tt **)&utt->hcpriv; | 
 | 	} | 
 |  | 
 | 	tt = *ptt; | 
 | 	if (!tt || !list_empty(&tt->ep_list)) | 
 | 		return;		/* never allocated , or still in use*/ | 
 |  | 
 | 	*ptt = NULL; | 
 | 	kfree(tt); | 
 |  | 
 | 	if (cnt == 1) { | 
 | 		utt->hcpriv = NULL; | 
 | 		kfree(tt_index); | 
 | 	} | 
 | } | 
 |  | 
 | static struct mu3h_sch_ep_info * | 
 | create_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev, | 
 | 	      struct usb_host_endpoint *ep, struct xhci_ep_ctx *ep_ctx) | 
 | { | 
 | 	struct mu3h_sch_ep_info *sch_ep; | 
 | 	struct mu3h_sch_bw_info *bw_info; | 
 | 	struct mu3h_sch_tt *tt = NULL; | 
 | 	u32 len; | 
 |  | 
 | 	bw_info = get_bw_info(mtk, udev, ep); | 
 | 	if (!bw_info) | 
 | 		return ERR_PTR(-ENODEV); | 
 |  | 
 | 	if (is_fs_or_ls(udev->speed)) | 
 | 		len = TT_MICROFRAMES_MAX; | 
 | 	else if ((udev->speed >= USB_SPEED_SUPER) && | 
 | 		 usb_endpoint_xfer_isoc(&ep->desc)) | 
 | 		len = get_esit(ep_ctx); | 
 | 	else | 
 | 		len = 1; | 
 |  | 
 | 	sch_ep = kzalloc(struct_size(sch_ep, bw_budget_table, len), GFP_KERNEL); | 
 | 	if (!sch_ep) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	if (is_fs_or_ls(udev->speed)) { | 
 | 		tt = find_tt(udev); | 
 | 		if (IS_ERR(tt)) { | 
 | 			kfree(sch_ep); | 
 | 			return ERR_PTR(-ENOMEM); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	sch_ep->bw_info = bw_info; | 
 | 	sch_ep->sch_tt = tt; | 
 | 	sch_ep->ep = ep; | 
 | 	sch_ep->speed = udev->speed; | 
 | 	INIT_LIST_HEAD(&sch_ep->endpoint); | 
 | 	INIT_LIST_HEAD(&sch_ep->tt_endpoint); | 
 | 	INIT_HLIST_NODE(&sch_ep->hentry); | 
 |  | 
 | 	return sch_ep; | 
 | } | 
 |  | 
 | static void setup_sch_info(struct xhci_ep_ctx *ep_ctx, | 
 | 			   struct mu3h_sch_ep_info *sch_ep) | 
 | { | 
 | 	u32 ep_type; | 
 | 	u32 maxpkt; | 
 | 	u32 max_burst; | 
 | 	u32 mult; | 
 | 	u32 esit_pkts; | 
 | 	u32 max_esit_payload; | 
 | 	u32 bw_per_microframe; | 
 | 	u32 *bwb_table; | 
 | 	int i; | 
 |  | 
 | 	bwb_table = sch_ep->bw_budget_table; | 
 | 	ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); | 
 | 	maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); | 
 | 	max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2)); | 
 | 	mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info)); | 
 | 	max_esit_payload = | 
 | 		(CTX_TO_MAX_ESIT_PAYLOAD_HI( | 
 | 			le32_to_cpu(ep_ctx->ep_info)) << 16) | | 
 | 		 CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info)); | 
 |  | 
 | 	sch_ep->esit = get_esit(ep_ctx); | 
 | 	sch_ep->num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; | 
 | 	sch_ep->ep_type = ep_type; | 
 | 	sch_ep->maxpkt = maxpkt; | 
 | 	sch_ep->offset = 0; | 
 | 	sch_ep->burst_mode = 0; | 
 | 	sch_ep->repeat = 0; | 
 |  | 
 | 	if (sch_ep->speed == USB_SPEED_HIGH) { | 
 | 		sch_ep->cs_count = 0; | 
 |  | 
 | 		/* | 
 | 		 * usb_20 spec section5.9 | 
 | 		 * a single microframe is enough for HS synchromous endpoints | 
 | 		 * in a interval | 
 | 		 */ | 
 | 		sch_ep->num_budget_microframes = 1; | 
 |  | 
 | 		/* | 
 | 		 * xHCI spec section6.2.3.4 | 
 | 		 * @max_burst is the number of additional transactions | 
 | 		 * opportunities per microframe | 
 | 		 */ | 
 | 		sch_ep->pkts = max_burst + 1; | 
 | 		bwb_table[0] = maxpkt * sch_ep->pkts; | 
 | 	} else if (sch_ep->speed >= USB_SPEED_SUPER) { | 
 | 		/* usb3_r1 spec section4.4.7 & 4.4.8 */ | 
 | 		sch_ep->cs_count = 0; | 
 | 		sch_ep->burst_mode = 1; | 
 | 		/* | 
 | 		 * some device's (d)wBytesPerInterval is set as 0, | 
 | 		 * then max_esit_payload is 0, so evaluate esit_pkts from | 
 | 		 * mult and burst | 
 | 		 */ | 
 | 		esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt); | 
 | 		if (esit_pkts == 0) | 
 | 			esit_pkts = (mult + 1) * (max_burst + 1); | 
 |  | 
 | 		if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) { | 
 | 			sch_ep->pkts = esit_pkts; | 
 | 			sch_ep->num_budget_microframes = 1; | 
 | 			bwb_table[0] = maxpkt * sch_ep->pkts; | 
 | 		} | 
 |  | 
 | 		if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) { | 
 |  | 
 | 			if (sch_ep->esit == 1) | 
 | 				sch_ep->pkts = esit_pkts; | 
 | 			else if (esit_pkts <= sch_ep->esit) | 
 | 				sch_ep->pkts = 1; | 
 | 			else | 
 | 				sch_ep->pkts = roundup_pow_of_two(esit_pkts) | 
 | 					/ sch_ep->esit; | 
 |  | 
 | 			sch_ep->num_budget_microframes = | 
 | 				DIV_ROUND_UP(esit_pkts, sch_ep->pkts); | 
 |  | 
 | 			sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1); | 
 | 			bw_per_microframe = maxpkt * sch_ep->pkts; | 
 |  | 
 | 			for (i = 0; i < sch_ep->num_budget_microframes - 1; i++) | 
 | 				bwb_table[i] = bw_per_microframe; | 
 |  | 
 | 			/* last one <= bw_per_microframe */ | 
 | 			bwb_table[i] = maxpkt * esit_pkts - i * bw_per_microframe; | 
 | 		} | 
 | 	} else if (is_fs_or_ls(sch_ep->speed)) { | 
 | 		sch_ep->pkts = 1; /* at most one packet for each microframe */ | 
 |  | 
 | 		/* | 
 | 		 * @cs_count will be updated to add extra-cs when | 
 | 		 * check TT for INT_OUT_EP, ISOC/INT_IN_EP type | 
 | 		 * @maxpkt <= 1023; | 
 | 		 */ | 
 | 		sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX); | 
 | 		sch_ep->num_budget_microframes = sch_ep->cs_count; | 
 |  | 
 | 		/* init budget table */ | 
 | 		if (ep_type == ISOC_OUT_EP) { | 
 | 			for (i = 0; i < sch_ep->cs_count - 1; i++) | 
 | 				bwb_table[i] = FS_PAYLOAD_MAX; | 
 |  | 
 | 			bwb_table[i] = maxpkt - i * FS_PAYLOAD_MAX; | 
 | 		} else if (ep_type == INT_OUT_EP) { | 
 | 			/* only first one used (maxpkt <= 64), others zero */ | 
 | 			bwb_table[0] = maxpkt; | 
 | 		} else { /* INT_IN_EP or ISOC_IN_EP */ | 
 | 			bwb_table[0] = 0; /* start split */ | 
 | 			bwb_table[1] = 0; /* idle */ | 
 | 			/* | 
 | 			 * @cs_count will be updated according to cs position | 
 | 			 * (add 1 or 2 extra-cs), but assume only first | 
 | 			 * @num_budget_microframes elements will be used later, | 
 | 			 * although in fact it does not (extra-cs budget many receive | 
 | 			 * some data for IN ep); | 
 | 			 * @cs_count is 1 for INT_IN_EP (maxpkt <= 64); | 
 | 			 */ | 
 | 			for (i = 0; i < sch_ep->cs_count - 1; i++) | 
 | 				bwb_table[i + CS_OFFSET] = FS_PAYLOAD_MAX; | 
 |  | 
 | 			bwb_table[i + CS_OFFSET] = maxpkt - i * FS_PAYLOAD_MAX; | 
 | 			/* ss + idle */ | 
 | 			sch_ep->num_budget_microframes += CS_OFFSET; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Get maximum bandwidth when we schedule at offset slot. */ | 
 | static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw, | 
 | 	struct mu3h_sch_ep_info *sch_ep, u32 offset) | 
 | { | 
 | 	u32 max_bw = 0; | 
 | 	u32 bw; | 
 | 	int i, j, k; | 
 |  | 
 | 	for (i = 0; i < sch_ep->num_esit; i++) { | 
 | 		u32 base = offset + i * sch_ep->esit; | 
 |  | 
 | 		for (j = 0; j < sch_ep->num_budget_microframes; j++) { | 
 | 			k = XHCI_MTK_BW_INDEX(base + j); | 
 | 			bw = sch_bw->bus_bw[k] + sch_ep->bw_budget_table[j]; | 
 | 			if (bw > max_bw) | 
 | 				max_bw = bw; | 
 | 		} | 
 | 	} | 
 | 	return max_bw; | 
 | } | 
 |  | 
 | /* | 
 |  * for OUT: get first SS consumed bw; | 
 |  * for IN: get first CS consumed bw; | 
 |  */ | 
 | static u16 get_fs_bw(struct mu3h_sch_ep_info *sch_ep, int offset) | 
 | { | 
 | 	struct mu3h_sch_tt *tt = sch_ep->sch_tt; | 
 | 	u16 fs_bw; | 
 |  | 
 | 	if (sch_ep->ep_type == ISOC_OUT_EP || sch_ep->ep_type == INT_OUT_EP) | 
 | 		fs_bw = tt->fs_bus_bw_out[XHCI_MTK_BW_INDEX(offset)]; | 
 | 	else	/* skip ss + idle */ | 
 | 		fs_bw = tt->fs_bus_bw_in[XHCI_MTK_BW_INDEX(offset + CS_OFFSET)]; | 
 |  | 
 | 	return fs_bw; | 
 | } | 
 |  | 
 | static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw, | 
 | 	struct mu3h_sch_ep_info *sch_ep, bool used) | 
 | { | 
 | 	u32 base; | 
 | 	int i, j, k; | 
 |  | 
 | 	for (i = 0; i < sch_ep->num_esit; i++) { | 
 | 		base = sch_ep->offset + i * sch_ep->esit; | 
 | 		for (j = 0; j < sch_ep->num_budget_microframes; j++) { | 
 | 			k = XHCI_MTK_BW_INDEX(base + j); | 
 | 			if (used) | 
 | 				sch_bw->bus_bw[k] += sch_ep->bw_budget_table[j]; | 
 | 			else | 
 | 				sch_bw->bus_bw[k] -= sch_ep->bw_budget_table[j]; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int check_ls_budget_microframes(struct mu3h_sch_ep_info *sch_ep, int offset) | 
 | { | 
 | 	struct mu3h_sch_tt *tt = sch_ep->sch_tt; | 
 | 	int i; | 
 |  | 
 | 	if (sch_ep->speed != USB_SPEED_LOW) | 
 | 		return 0; | 
 |  | 
 | 	if (sch_ep->ep_type == INT_OUT_EP) | 
 | 		i = XHCI_MTK_BW_INDEX(offset); | 
 | 	else if (sch_ep->ep_type == INT_IN_EP) | 
 | 		i = XHCI_MTK_BW_INDEX(offset + CS_OFFSET); /* skip ss + idle */ | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (tt->ls_bus_bw[i] + sch_ep->maxpkt > LS_PAYLOAD_MAX) | 
 | 		return -ESCH_BW_OVERFLOW; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_fs_budget_microframes(struct mu3h_sch_ep_info *sch_ep, int offset) | 
 | { | 
 | 	struct mu3h_sch_tt *tt = sch_ep->sch_tt; | 
 | 	u32 tmp; | 
 | 	int i, k; | 
 |  | 
 | 	/* | 
 | 	 * for OUT eps, will transfer exactly assigned length of data, | 
 | 	 * so can't allocate more than 188 bytes; | 
 | 	 * but it's not for IN eps, usually it can't receive full | 
 | 	 * 188 bytes in a uframe, if it not assign full 188 bytes, | 
 | 	 * can add another one; | 
 | 	 */ | 
 | 	for (i = 0; i < sch_ep->num_budget_microframes; i++) { | 
 | 		k = XHCI_MTK_BW_INDEX(offset + i); | 
 | 		if (sch_ep->ep_type == ISOC_OUT_EP || sch_ep->ep_type == INT_OUT_EP) | 
 | 			tmp = tt->fs_bus_bw_out[k] + sch_ep->bw_budget_table[i]; | 
 | 		else /* ep_type : ISOC IN / INTR IN */ | 
 | 			tmp = tt->fs_bus_bw_in[k]; | 
 |  | 
 | 		if (tmp > FS_PAYLOAD_MAX) | 
 | 			return -ESCH_BW_OVERFLOW; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_fs_budget_frames(struct mu3h_sch_ep_info *sch_ep, int offset) | 
 | { | 
 | 	struct mu3h_sch_tt *tt = sch_ep->sch_tt; | 
 | 	u32 head, tail; | 
 | 	int i, j, k; | 
 |  | 
 | 	/* bugdet scheduled may cross at most two fs frames */ | 
 | 	j = XHCI_MTK_BW_INDEX(offset) / UFRAMES_PER_FRAME; | 
 | 	k = XHCI_MTK_BW_INDEX(offset + sch_ep->num_budget_microframes - 1) / UFRAMES_PER_FRAME; | 
 |  | 
 | 	if (j != k) { | 
 | 		head = tt->fs_frame_bw[j]; | 
 | 		tail = tt->fs_frame_bw[k]; | 
 | 	} else { | 
 | 		head = tt->fs_frame_bw[j]; | 
 | 		tail = 0; | 
 | 	} | 
 |  | 
 | 	j = roundup(offset, UFRAMES_PER_FRAME); | 
 | 	for (i = 0; i < sch_ep->num_budget_microframes; i++) { | 
 | 		if ((offset + i) < j) | 
 | 			head += sch_ep->bw_budget_table[i]; | 
 | 		else | 
 | 			tail += sch_ep->bw_budget_table[i]; | 
 | 	} | 
 |  | 
 | 	if (head > FS_BW_BOUNDARY || tail > FS_BW_BOUNDARY) | 
 | 		return -ESCH_BW_OVERFLOW; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_fs_bus_bw(struct mu3h_sch_ep_info *sch_ep, int offset) | 
 | { | 
 | 	int i, base; | 
 | 	int ret = 0; | 
 |  | 
 | 	for (i = 0; i < sch_ep->num_esit; i++) { | 
 | 		base = offset + i * sch_ep->esit; | 
 |  | 
 | 		ret = check_ls_budget_microframes(sch_ep, base); | 
 | 		if (ret) | 
 | 			goto err; | 
 |  | 
 | 		ret = check_fs_budget_microframes(sch_ep, base); | 
 | 		if (ret) | 
 | 			goto err; | 
 |  | 
 | 		ret = check_fs_budget_frames(sch_ep, base); | 
 | 		if (ret) | 
 | 			goto err; | 
 | 	} | 
 |  | 
 | err: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int check_ss_and_cs(struct mu3h_sch_ep_info *sch_ep, u32 offset) | 
 | { | 
 | 	u32 start_ss, last_ss; | 
 | 	u32 start_cs, last_cs; | 
 |  | 
 | 	start_ss = offset % UFRAMES_PER_FRAME; | 
 |  | 
 | 	if (sch_ep->ep_type == ISOC_OUT_EP) { | 
 | 		last_ss = start_ss + sch_ep->cs_count - 1; | 
 |  | 
 | 		/* | 
 | 		 * usb_20 spec section11.18: | 
 | 		 * must never schedule Start-Split in Y6 | 
 | 		 */ | 
 | 		if (!(start_ss == 7 || last_ss < 6)) | 
 | 			return -ESCH_SS_Y6; | 
 |  | 
 | 	} else { | 
 | 		/* maxpkt <= 1023, cs <= 6 */ | 
 | 		u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX); | 
 |  | 
 | 		/* | 
 | 		 * usb_20 spec section11.18: | 
 | 		 * must never schedule Start-Split in Y6 | 
 | 		 */ | 
 | 		if (start_ss == 6) | 
 | 			return -ESCH_SS_Y6; | 
 |  | 
 | 		/* one uframe for ss + one uframe for idle */ | 
 | 		start_cs = (start_ss + CS_OFFSET) % UFRAMES_PER_FRAME; | 
 | 		last_cs = start_cs + cs_count - 1; | 
 | 		if (last_cs > 7) | 
 | 			return -ESCH_CS_OVERFLOW; | 
 |  | 
 | 		/* add extra-cs */ | 
 | 		cs_count += (last_cs == 7) ? 1 : 2; | 
 | 		if (cs_count > 7) | 
 | 			cs_count = 7; /* HW limit */ | 
 |  | 
 | 		sch_ep->cs_count = cs_count; | 
 |  | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * when isoc-out transfers 188 bytes in a uframe, and send isoc/intr's | 
 |  * ss token in the uframe, may cause 'bit stuff error' in downstream | 
 |  * port; | 
 |  * when isoc-out transfer less than 188 bytes in a uframe, shall send | 
 |  * isoc-in's ss after isoc-out's ss (but hw can't ensure the sequence, | 
 |  * so just avoid overlap). | 
 |  */ | 
 | static int check_isoc_ss_overlap(struct mu3h_sch_ep_info *sch_ep, u32 offset) | 
 | { | 
 | 	struct mu3h_sch_tt *tt = sch_ep->sch_tt; | 
 | 	int base; | 
 | 	int i, j, k; | 
 |  | 
 | 	if (!tt) | 
 | 		return 0; | 
 |  | 
 | 	for (i = 0; i < sch_ep->num_esit; i++) { | 
 | 		base = offset + i * sch_ep->esit; | 
 |  | 
 | 		if (sch_ep->ep_type == ISOC_OUT_EP) { | 
 | 			for (j = 0; j < sch_ep->num_budget_microframes; j++) { | 
 | 				k = XHCI_MTK_BW_INDEX(base + j); | 
 | 				if (tt->in_ss_cnt[k]) | 
 | 					return -ESCH_SS_OVERLAP; | 
 | 			} | 
 | 		} else if (sch_ep->ep_type == ISOC_IN_EP || sch_ep->ep_type == INT_IN_EP) { | 
 | 			k = XHCI_MTK_BW_INDEX(base); | 
 | 			/* only check IN's ss */ | 
 | 			if (tt->fs_bus_bw_out[k]) | 
 | 				return -ESCH_SS_OVERLAP; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_sch_tt_budget(struct mu3h_sch_ep_info *sch_ep, u32 offset) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = check_ss_and_cs(sch_ep, offset); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = check_isoc_ss_overlap(sch_ep, offset); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return check_fs_bus_bw(sch_ep, offset); | 
 | } | 
 |  | 
 | /* allocate microframes in the ls/fs frame */ | 
 | static int alloc_sch_portion_of_frame(struct mu3h_sch_ep_info *sch_ep) | 
 | { | 
 | 	struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info; | 
 | 	const u32 bw_boundary = get_bw_boundary(sch_ep->speed); | 
 | 	u32 bw_max, fs_bw_min; | 
 | 	u32 offset, offset_min; | 
 | 	u16 fs_bw; | 
 | 	int frames; | 
 | 	int i, j; | 
 | 	int ret; | 
 |  | 
 | 	frames = sch_ep->esit / UFRAMES_PER_FRAME; | 
 |  | 
 | 	for (i = 0; i < UFRAMES_PER_FRAME; i++) { | 
 | 		fs_bw_min = FS_PAYLOAD_MAX; | 
 | 		offset_min = XHCI_MTK_MAX_ESIT; | 
 |  | 
 | 		for (j = 0; j < frames; j++) { | 
 | 			offset = (i + j * UFRAMES_PER_FRAME) % sch_ep->esit; | 
 |  | 
 | 			ret = check_sch_tt_budget(sch_ep, offset); | 
 | 			if (ret) | 
 | 				continue; | 
 |  | 
 | 			/* check hs bw domain */ | 
 | 			bw_max = get_max_bw(sch_bw, sch_ep, offset); | 
 | 			if (bw_max > bw_boundary) { | 
 | 				ret = -ESCH_BW_OVERFLOW; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* use best-fit between frames */ | 
 | 			fs_bw = get_fs_bw(sch_ep, offset); | 
 | 			if (fs_bw < fs_bw_min) { | 
 | 				fs_bw_min = fs_bw; | 
 | 				offset_min = offset; | 
 | 			} | 
 |  | 
 | 			if (!fs_bw_min) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		/* use first-fit between microframes in a frame */ | 
 | 		if (offset_min < XHCI_MTK_MAX_ESIT) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (offset_min == XHCI_MTK_MAX_ESIT) | 
 | 		return -ESCH_BW_OVERFLOW; | 
 |  | 
 | 	sch_ep->offset = offset_min; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void update_sch_tt(struct mu3h_sch_ep_info *sch_ep, bool used) | 
 | { | 
 | 	struct mu3h_sch_tt *tt = sch_ep->sch_tt; | 
 | 	u16 *fs_bus_bw; | 
 | 	u32 base; | 
 | 	int i, j, k, f; | 
 |  | 
 | 	if (sch_ep->ep_type == ISOC_OUT_EP || sch_ep->ep_type == INT_OUT_EP) | 
 | 		fs_bus_bw = tt->fs_bus_bw_out; | 
 | 	else | 
 | 		fs_bus_bw = tt->fs_bus_bw_in; | 
 |  | 
 | 	for (i = 0; i < sch_ep->num_esit; i++) { | 
 | 		base = sch_ep->offset + i * sch_ep->esit; | 
 |  | 
 | 		for (j = 0; j < sch_ep->num_budget_microframes; j++) { | 
 | 			k = XHCI_MTK_BW_INDEX(base + j); | 
 | 			f = k / UFRAMES_PER_FRAME; | 
 | 			if (used) { | 
 | 				if (sch_ep->speed == USB_SPEED_LOW) | 
 | 					tt->ls_bus_bw[k] += (u8)sch_ep->bw_budget_table[j]; | 
 |  | 
 | 				fs_bus_bw[k] += (u16)sch_ep->bw_budget_table[j]; | 
 | 				tt->fs_frame_bw[f] += (u16)sch_ep->bw_budget_table[j]; | 
 | 			} else { | 
 | 				if (sch_ep->speed == USB_SPEED_LOW) | 
 | 					tt->ls_bus_bw[k] -= (u8)sch_ep->bw_budget_table[j]; | 
 |  | 
 | 				fs_bus_bw[k] -= (u16)sch_ep->bw_budget_table[j]; | 
 | 				tt->fs_frame_bw[f] -= (u16)sch_ep->bw_budget_table[j]; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (sch_ep->ep_type == ISOC_IN_EP || sch_ep->ep_type == INT_IN_EP) { | 
 | 			k = XHCI_MTK_BW_INDEX(base); | 
 | 			if (used) | 
 | 				tt->in_ss_cnt[k]++; | 
 | 			else | 
 | 				tt->in_ss_cnt[k]--; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (used) | 
 | 		list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list); | 
 | 	else | 
 | 		list_del(&sch_ep->tt_endpoint); | 
 | } | 
 |  | 
 | static int load_ep_bw(struct mu3h_sch_bw_info *sch_bw, | 
 | 		      struct mu3h_sch_ep_info *sch_ep, bool loaded) | 
 | { | 
 | 	if (sch_ep->sch_tt) | 
 | 		update_sch_tt(sch_ep, loaded); | 
 |  | 
 | 	/* update bus bandwidth info */ | 
 | 	update_bus_bw(sch_bw, sch_ep, loaded); | 
 | 	sch_ep->allocated = loaded; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* allocate microframes for hs/ss/ssp */ | 
 | static int alloc_sch_microframes(struct mu3h_sch_ep_info *sch_ep) | 
 | { | 
 | 	struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info; | 
 | 	const u32 bw_boundary = get_bw_boundary(sch_ep->speed); | 
 | 	u32 offset; | 
 | 	u32 worst_bw; | 
 | 	u32 min_bw = ~0; | 
 | 	int min_index = -1; | 
 |  | 
 | 	/* | 
 | 	 * Search through all possible schedule microframes. | 
 | 	 * and find a microframe where its worst bandwidth is minimum. | 
 | 	 */ | 
 | 	for (offset = 0; offset < sch_ep->esit; offset++) { | 
 |  | 
 | 		worst_bw = get_max_bw(sch_bw, sch_ep, offset); | 
 | 		if (worst_bw > bw_boundary) | 
 | 			continue; | 
 |  | 
 | 		if (min_bw > worst_bw) { | 
 | 			min_bw = worst_bw; | 
 | 			min_index = offset; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (min_index < 0) | 
 | 		return -ESCH_BW_OVERFLOW; | 
 |  | 
 | 	sch_ep->offset = min_index; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_sch_bw(struct mu3h_sch_ep_info *sch_ep) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (sch_ep->sch_tt) | 
 | 		ret = alloc_sch_portion_of_frame(sch_ep); | 
 | 	else | 
 | 		ret = alloc_sch_microframes(sch_ep); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return load_ep_bw(sch_ep->bw_info, sch_ep, true); | 
 | } | 
 |  | 
 | static void destroy_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev, | 
 | 			   struct mu3h_sch_ep_info *sch_ep) | 
 | { | 
 | 	/* only release ep bw check passed by check_sch_bw() */ | 
 | 	if (sch_ep->allocated) | 
 | 		load_ep_bw(sch_ep->bw_info, sch_ep, false); | 
 |  | 
 | 	if (sch_ep->sch_tt) | 
 | 		drop_tt(udev); | 
 |  | 
 | 	list_del(&sch_ep->endpoint); | 
 | 	hlist_del(&sch_ep->hentry); | 
 | 	kfree(sch_ep); | 
 | } | 
 |  | 
 | static bool need_bw_sch(struct usb_device *udev, | 
 | 			struct usb_host_endpoint *ep) | 
 | { | 
 | 	bool has_tt = udev->tt && udev->tt->hub->parent; | 
 |  | 
 | 	/* only for periodic endpoints */ | 
 | 	if (usb_endpoint_xfer_control(&ep->desc) | 
 | 		|| usb_endpoint_xfer_bulk(&ep->desc)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * for LS & FS periodic endpoints which its device is not behind | 
 | 	 * a TT are also ignored, root-hub will schedule them directly, | 
 | 	 * but need set @bpkts field of endpoint context to 1. | 
 | 	 */ | 
 | 	if (is_fs_or_ls(udev->speed) && !has_tt) | 
 | 		return false; | 
 |  | 
 | 	/* skip endpoint with zero maxpkt */ | 
 | 	if (usb_endpoint_maxp(&ep->desc) == 0) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); | 
 | 	struct mu3h_sch_bw_info *sch_array; | 
 | 	int num_usb_bus; | 
 |  | 
 | 	/* ss IN and OUT are separated */ | 
 | 	num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports; | 
 |  | 
 | 	sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL); | 
 | 	if (sch_array == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	mtk->sch_array = sch_array; | 
 |  | 
 | 	INIT_LIST_HEAD(&mtk->bw_ep_chk_list); | 
 | 	hash_init(mtk->sch_ep_hash); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk) | 
 | { | 
 | 	kfree(mtk->sch_array); | 
 | } | 
 |  | 
 | static int add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, | 
 | 			struct usb_host_endpoint *ep) | 
 | { | 
 | 	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	struct mu3h_sch_ep_info *sch_ep; | 
 | 	unsigned int ep_index; | 
 |  | 
 | 	virt_dev = xhci->devs[udev->slot_id]; | 
 | 	ep_index = xhci_get_endpoint_index(&ep->desc); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); | 
 |  | 
 | 	if (!need_bw_sch(udev, ep)) { | 
 | 		/* | 
 | 		 * set @bpkts to 1 if it is LS or FS periodic endpoint, and its | 
 | 		 * device does not connected through an external HS hub | 
 | 		 */ | 
 | 		if (usb_endpoint_xfer_int(&ep->desc) | 
 | 			|| usb_endpoint_xfer_isoc(&ep->desc)) | 
 | 			ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(1)); | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed)); | 
 |  | 
 | 	sch_ep = create_sch_ep(mtk, udev, ep, ep_ctx); | 
 | 	if (IS_ERR_OR_NULL(sch_ep)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	setup_sch_info(ep_ctx, sch_ep); | 
 |  | 
 | 	list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list); | 
 | 	hash_add(mtk->sch_ep_hash, &sch_ep->hentry, (unsigned long)ep); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, | 
 | 			  struct usb_host_endpoint *ep) | 
 | { | 
 | 	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	struct mu3h_sch_ep_info *sch_ep; | 
 | 	struct hlist_node *hn; | 
 |  | 
 | 	if (!need_bw_sch(udev, ep)) | 
 | 		return; | 
 |  | 
 | 	xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed)); | 
 |  | 
 | 	hash_for_each_possible_safe(mtk->sch_ep_hash, sch_ep, | 
 | 				    hn, hentry, (unsigned long)ep) { | 
 | 		if (sch_ep->ep == ep) { | 
 | 			destroy_sch_ep(mtk, udev, sch_ep); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; | 
 | 	struct mu3h_sch_ep_info *sch_ep; | 
 | 	int ret; | 
 |  | 
 | 	xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev)); | 
 |  | 
 | 	list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) { | 
 | 		struct xhci_ep_ctx *ep_ctx; | 
 | 		struct usb_host_endpoint *ep = sch_ep->ep; | 
 | 		unsigned int ep_index = xhci_get_endpoint_index(&ep->desc); | 
 |  | 
 | 		ret = check_sch_bw(sch_ep); | 
 | 		if (ret) { | 
 | 			xhci_err(xhci, "Not enough bandwidth! (%s)\n", | 
 | 				 sch_error_string(-ret)); | 
 | 			return -ENOSPC; | 
 | 		} | 
 |  | 
 | 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); | 
 | 		ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts) | 
 | 			| EP_BCSCOUNT(sch_ep->cs_count) | 
 | 			| EP_BBM(sch_ep->burst_mode)); | 
 | 		ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset) | 
 | 			| EP_BREPEAT(sch_ep->repeat)); | 
 |  | 
 | 		xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n", | 
 | 			sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode, | 
 | 			sch_ep->offset, sch_ep->repeat); | 
 | 	} | 
 |  | 
 | 	ret = xhci_check_bandwidth(hcd, udev); | 
 | 	if (!ret) | 
 | 		list_del_init(&mtk->bw_ep_chk_list); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	struct mu3h_sch_ep_info *sch_ep, *tmp; | 
 |  | 
 | 	xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev)); | 
 |  | 
 | 	list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint) | 
 | 		destroy_sch_ep(mtk, udev, sch_ep); | 
 |  | 
 | 	xhci_reset_bandwidth(hcd, udev); | 
 | } | 
 |  | 
 | int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev, | 
 | 		    struct usb_host_endpoint *ep) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = xhci_add_endpoint(hcd, udev, ep); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (ep->hcpriv) | 
 | 		ret = add_ep_quirk(hcd, udev, ep); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev, | 
 | 		     struct usb_host_endpoint *ep) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = xhci_drop_endpoint(hcd, udev, ep); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* needn't check @ep->hcpriv, xhci_endpoint_disable set it NULL */ | 
 | 	drop_ep_quirk(hcd, udev, ep); | 
 |  | 
 | 	return 0; | 
 | } |