blob: f38cfd134f781bdbe35ef5ce8a4f3b97d168485e [file] [log] [blame]
#ifndef _ASM_IA64_PROCESSOR_H
#define _ASM_IA64_PROCESSOR_H
/*
* Copyright (C) 1998-2002 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
* Stephane Eranian <eranian@hpl.hp.com>
* Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
* Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
*
* 11/24/98 S.Eranian added ia64_set_iva()
* 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API
* 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support
*/
#include <linux/config.h>
#include <linux/cache.h>
#include <asm/ptrace.h>
#include <asm/kregs.h>
#include <asm/types.h>
#include <asm/ustack.h>
#define IA64_NUM_DBG_REGS 8
/*
* Limits for PMC and PMD are set to less than maximum architected values
* but should be sufficient for a while
*/
#define IA64_NUM_PMC_REGS 32
#define IA64_NUM_PMD_REGS 32
#define DEFAULT_MAP_BASE 0x2000000000000000
#define DEFAULT_TASK_SIZE 0xa000000000000000
/*
* TASK_SIZE really is a mis-named. It really is the maximum user
* space address (plus one). On IA-64, there are five regions of 2TB
* each (assuming 8KB page size), for a total of 8TB of user virtual
* address space.
*/
#define TASK_SIZE (current->thread.task_size)
/*
* This decides where the kernel will search for a free chunk of vm
* space during mmap's.
*/
#define TASK_UNMAPPED_BASE (current->thread.map_base)
/*
* Bus types
*/
#define EISA_bus 0
#define EISA_bus__is_a_macro /* for versions in ksyms.c */
#define MCA_bus 0
#define MCA_bus__is_a_macro /* for versions in ksyms.c */
#define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */
#define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */
#define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */
#define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */
#define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */
#define IA64_THREAD_KRBS_SYNCED (__IA64_UL(1) << 5) /* krbs synced with process vm? */
#define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */
#define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */
#define IA64_THREAD_XSTACK (__IA64_UL(1) << 8) /* stack executable by default? */
#define IA64_THREAD_UAC_SHIFT 3
#define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
#define IA64_THREAD_FPEMU_SHIFT 6
#define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
/*
* This shift should be large enough to be able to represent
* 1000000/itc_freq with good accuracy while being small enough to fit
* 1000000<<IA64_USEC_PER_CYC_SHIFT in 64 bits.
*/
#define IA64_USEC_PER_CYC_SHIFT 41
#ifndef __ASSEMBLY__
#include <linux/threads.h>
#include <linux/cache.h>
#include <asm/fpu.h>
#include <asm/offsets.h>
#include <asm/page.h>
#include <asm/rse.h>
#include <asm/unwind.h>
#include <asm/atomic.h>
#ifdef CONFIG_NUMA
#include <asm/nodedata.h>
#endif
/* like above but expressed as bitfields for more efficient access: */
struct ia64_psr {
__u64 reserved0 : 1;
__u64 be : 1;
__u64 up : 1;
__u64 ac : 1;
__u64 mfl : 1;
__u64 mfh : 1;
__u64 reserved1 : 7;
__u64 ic : 1;
__u64 i : 1;
__u64 pk : 1;
__u64 reserved2 : 1;
__u64 dt : 1;
__u64 dfl : 1;
__u64 dfh : 1;
__u64 sp : 1;
__u64 pp : 1;
__u64 di : 1;
__u64 si : 1;
__u64 db : 1;
__u64 lp : 1;
__u64 tb : 1;
__u64 rt : 1;
__u64 reserved3 : 4;
__u64 cpl : 2;
__u64 is : 1;
__u64 mc : 1;
__u64 it : 1;
__u64 id : 1;
__u64 da : 1;
__u64 dd : 1;
__u64 ss : 1;
__u64 ri : 2;
__u64 ed : 1;
__u64 bn : 1;
__u64 reserved4 : 19;
};
/*
* CPU type, hardware bug flags, and per-CPU state. Frequently used
* state comes earlier:
*/
struct cpuinfo_ia64 {
/* irq_stat must be 64-bit aligned */
union {
struct {
__u32 irq_count;
__u32 bh_count;
} f;
__u64 irq_and_bh_counts;
} irq_stat;
__u32 softirq_pending;
__u32 phys_stacked_size_p8; /* size of physical stacked registers + 8 */
__u64 itm_delta; /* # of clock cycles between clock ticks */
__u64 itm_next; /* interval timer mask value to use for next clock tick */
__u64 *pgd_quick;
__u64 *pmd_quick;
__u64 *pte_quick;
__u64 pgtable_cache_sz;
/* CPUID-derived information: */
__u64 ppn;
__u64 features;
__u8 number;
__u8 revision;
__u8 model;
__u8 family;
__u8 archrev;
char vendor[16];
__u8 need_tlb_flush;
__u64 itc_freq; /* frequency of ITC counter */
__u64 proc_freq; /* frequency of processor */
__u64 cyc_per_usec; /* itc_freq/1000000 */
__u64 usec_per_cyc; /* 2^IA64_USEC_PER_CYC_SHIFT*1000000/itc_freq */
__u64 unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */
__u64 unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */
__u64 ptce_base;
__u32 ptce_count[2];
__u32 ptce_stride[2];
struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */
void *mmu_gathers;
# ifdef CONFIG_PERFMON
unsigned long pfm_syst_info;
# endif
#ifdef CONFIG_SMP
int processor;
__u64 loops_per_jiffy;
__u64 ipi_count;
__u64 prof_counter;
__u64 prof_multiplier;
union {
/*
* This is written to by *other* CPUs,
* so isolate it in its own cacheline.
*/
__u64 operation;
char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
} ipi;
#endif
#ifdef CONFIG_NUMA
struct ia64_node_data *node_data;
int nodeid;
struct cpuinfo_ia64 *cpu_data[NR_CPUS];
#endif
/* Platform specific word. MUST BE LAST IN STRUCT */
__u64 platform_specific;
} __attribute__ ((aligned (PAGE_SIZE)));
/*
* The "local" data pointer. It points to the per-CPU data of the currently executing
* CPU, much like "current" points to the per-task data of the currently executing task.
*/
#define local_cpu_data ((struct cpuinfo_ia64 *) PERCPU_ADDR)
/*
* On NUMA systems, cpu_data for each cpu is allocated during cpu_init() & is allocated on
* the node that contains the cpu. This minimizes off-node memory references. cpu_data
* for each cpu contains an array of pointers to the cpu_data structures of each of the
* other cpus.
*
* On non-NUMA systems, cpu_data is a static array allocated at compile time. References
* to the cpu_data of another cpu is done by direct references to the appropriate entry of
* the array.
*/
#ifdef CONFIG_NUMA
# define cpu_data(cpu) local_cpu_data->cpu_data[cpu]
# define numa_node_id() (local_cpu_data->nodeid)
#else
extern struct cpuinfo_ia64 _cpu_data[NR_CPUS];
# define cpu_data(cpu) (&_cpu_data[cpu])
#endif
extern void identify_cpu (struct cpuinfo_ia64 *);
extern void print_cpu_info (struct cpuinfo_ia64 *);
typedef struct {
unsigned long seg;
} mm_segment_t;
#define SET_UNALIGN_CTL(task,value) \
({ \
(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \
| (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \
0; \
})
#define GET_UNALIGN_CTL(task,addr) \
({ \
put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \
(int *) (addr)); \
})
#define SET_FPEMU_CTL(task,value) \
({ \
(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \
| (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \
0; \
})
#define GET_FPEMU_CTL(task,addr) \
({ \
put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \
(int *) (addr)); \
})
struct siginfo;
struct thread_struct {
__u64 ksp; /* kernel stack pointer */
unsigned long flags; /* various flags */
__u64 map_base; /* base address for get_unmapped_area() */
__u64 task_size; /* limit for task size */
__u64 rbs_bot; /* the base address for the RBS */
struct siginfo *siginfo; /* current siginfo struct for ptrace() */
#ifdef CONFIG_IA32_SUPPORT
__u64 eflag; /* IA32 EFLAGS reg */
__u64 fsr; /* IA32 floating pt status reg */
__u64 fcr; /* IA32 floating pt control reg */
__u64 fir; /* IA32 fp except. instr. reg */
__u64 fdr; /* IA32 fp except. data reg */
__u64 old_k1; /* old value of ar.k1 */
__u64 old_iob; /* old IOBase value */
# define INIT_THREAD_IA32 0, 0, 0x17800000037fULL, 0, 0, 0, 0,
#else
# define INIT_THREAD_IA32
#endif /* CONFIG_IA32_SUPPORT */
#ifdef CONFIG_PERFMON
__u64 pmc[IA64_NUM_PMC_REGS];
__u64 pmd[IA64_NUM_PMD_REGS];
unsigned long pfm_ovfl_block_reset;/* non-zero if we need to block or reset regs on ovfl */
void *pfm_context; /* pointer to detailed PMU context */
atomic_t pfm_notifiers_check; /* when >0, will cleanup ctx_notify_task in tasklist */
atomic_t pfm_owners_check; /* when >0, will cleanup ctx_owner in tasklist */
void *pfm_smpl_buf_list; /* list of sampling buffers to vfree */
# define INIT_THREAD_PM {0, }, {0, }, 0, NULL, {0}, {0}, NULL,
#else
# define INIT_THREAD_PM
#endif
__u64 dbr[IA64_NUM_DBG_REGS];
__u64 ibr[IA64_NUM_DBG_REGS];
struct ia64_fpreg fph[96]; /* saved/loaded on demand */
int last_fph_cpu;
};
#define INIT_THREAD { \
0, /* ksp */ \
0, /* flags */ \
DEFAULT_MAP_BASE, /* map_base */ \
DEFAULT_TASK_SIZE, /* task_size */ \
DEFAULT_USER_STACK_SIZE, /* rbs_bot */ \
0, /* siginfo */ \
INIT_THREAD_IA32 \
INIT_THREAD_PM \
{0, }, /* dbr */ \
{0, }, /* ibr */ \
{{{{0}}}, }, /* fph */ \
-1 /* last_fph_cpu*/ \
}
#define start_thread(regs,new_ip,new_sp) do { \
set_fs(USER_DS); \
regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \
& ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \
regs->cr_iip = new_ip; \
regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \
regs->ar_rnat = 0; \
regs->ar_bspstore = current->thread.rbs_bot; \
regs->ar_fpsr = FPSR_DEFAULT; \
regs->loadrs = 0; \
regs->r8 = current->mm->dumpable; /* set "don't zap registers" flag */ \
regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \
if (!__builtin_expect (current->mm->dumpable, 1)) { \
/* \
* Zap scratch regs to avoid leaking bits between processes with different \
* uid/privileges. \
*/ \
regs->ar_pfs = 0; \
regs->pr = 0; \
/* \
* XXX fix me: everything below can go away once we stop preserving scratch \
* regs on a system call. \
*/ \
regs->b6 = 0; \
regs->r1 = 0; regs->r2 = 0; regs->r3 = 0; \
regs->r13 = 0; regs->r14 = 0; regs->r15 = 0; \
regs->r9 = 0; regs->r11 = 0; \
regs->r16 = 0; regs->r17 = 0; regs->r18 = 0; regs->r19 = 0; \
regs->r20 = 0; regs->r21 = 0; regs->r22 = 0; regs->r23 = 0; \
regs->r24 = 0; regs->r25 = 0; regs->r26 = 0; regs->r27 = 0; \
regs->r28 = 0; regs->r29 = 0; regs->r30 = 0; regs->r31 = 0; \
regs->ar_ccv = 0; \
regs->ar_csd = 0; \
regs->ar_ssd = 0; \
regs->b0 = 0; regs->b7 = 0; \
regs->f6.u.bits[0] = 0; regs->f6.u.bits[1] = 0; \
regs->f7.u.bits[0] = 0; regs->f7.u.bits[1] = 0; \
regs->f8.u.bits[0] = 0; regs->f8.u.bits[1] = 0; \
regs->f9.u.bits[0] = 0; regs->f9.u.bits[1] = 0; \
regs->f10.u.bits[0] = 0; regs->f10.u.bits[1] = 0; \
regs->f11.u.bits[0] = 0; regs->f11.u.bits[1] = 0; \
} \
} while (0)
/* Forward declarations, a strange C thing... */
struct mm_struct;
struct task_struct;
/*
* Free all resources held by a thread. This is called after the
* parent of DEAD_TASK has collected the exist status of the task via
* wait().
*/
#ifdef CONFIG_PERFMON
extern void release_thread (struct task_struct *task);
#else
# define release_thread(dead_task)
#endif
/*
* This is the mechanism for creating a new kernel thread.
*
* NOTE 1: Only a kernel-only process (ie the swapper or direct
* descendants who haven't done an "execve()") should use this: it
* will work within a system call from a "real" process, but the
* process memory space will not be free'd until both the parent and
* the child have exited.
*
* NOTE 2: This MUST NOT be an inlined function. Otherwise, we get
* into trouble in init/main.c when the child thread returns to
* do_basic_setup() and the timing is such that free_initmem() has
* been called already.
*/
extern int arch_kernel_thread (int (*fn)(void *), void *arg, unsigned long flags);
/* Copy and release all segment info associated with a VM */
#define copy_segments(tsk, mm) do { } while (0)
#define release_segments(mm) do { } while (0)
/* Get wait channel for task P. */
extern unsigned long get_wchan (struct task_struct *p);
/* Return instruction pointer of blocked task TSK. */
#define KSTK_EIP(tsk) \
({ \
struct pt_regs *_regs = ia64_task_regs(tsk); \
_regs->cr_iip + ia64_psr(_regs)->ri; \
})
/* Return stack pointer of blocked task TSK. */
#define KSTK_ESP(tsk) ((tsk)->thread.ksp)
static inline unsigned long
ia64_get_kr (unsigned long regnum)
{
unsigned long r = 0;
switch (regnum) {
case 0: asm volatile ("mov %0=ar.k0" : "=r"(r)); break;
case 1: asm volatile ("mov %0=ar.k1" : "=r"(r)); break;
case 2: asm volatile ("mov %0=ar.k2" : "=r"(r)); break;
case 3: asm volatile ("mov %0=ar.k3" : "=r"(r)); break;
case 4: asm volatile ("mov %0=ar.k4" : "=r"(r)); break;
case 5: asm volatile ("mov %0=ar.k5" : "=r"(r)); break;
case 6: asm volatile ("mov %0=ar.k6" : "=r"(r)); break;
case 7: asm volatile ("mov %0=ar.k7" : "=r"(r)); break;
}
return r;
}
static inline void
ia64_set_kr (unsigned long regnum, unsigned long r)
{
switch (regnum) {
case 0: asm volatile ("mov ar.k0=%0" :: "r"(r)); break;
case 1: asm volatile ("mov ar.k1=%0" :: "r"(r)); break;
case 2: asm volatile ("mov ar.k2=%0" :: "r"(r)); break;
case 3: asm volatile ("mov ar.k3=%0" :: "r"(r)); break;
case 4: asm volatile ("mov ar.k4=%0" :: "r"(r)); break;
case 5: asm volatile ("mov ar.k5=%0" :: "r"(r)); break;
case 6: asm volatile ("mov ar.k6=%0" :: "r"(r)); break;
case 7: asm volatile ("mov ar.k7=%0" :: "r"(r)); break;
}
}
/* Return TRUE if task T owns the fph partition of the CPU we're running on. */
#define ia64_is_local_fpu_owner(t) \
({ \
struct task_struct *__ia64_islfo_task = (t); \
(__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \
&& __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \
})
/* Mark task T as owning the fph partition of the CPU we're running on. */
#define ia64_set_local_fpu_owner(t) do { \
struct task_struct *__ia64_slfo_task = (t); \
__ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \
ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \
} while (0)
/* Mark the fph partition of task T as being invalid on all CPUs. */
#define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1)
extern void __ia64_init_fpu (void);
extern void __ia64_save_fpu (struct ia64_fpreg *fph);
extern void __ia64_load_fpu (struct ia64_fpreg *fph);
extern void ia64_save_debug_regs (unsigned long *save_area);
extern void ia64_load_debug_regs (unsigned long *save_area);
#ifdef CONFIG_IA32_SUPPORT
extern void ia32_save_state (struct task_struct *task);
extern void ia32_load_state (struct task_struct *task);
#endif
#define ia64_fph_enable() asm volatile (";; rsm psr.dfh;; srlz.d;;" ::: "memory");
#define ia64_fph_disable() asm volatile (";; ssm psr.dfh;; srlz.d;;" ::: "memory");
/* load fp 0.0 into fph */
static inline void
ia64_init_fpu (void) {
ia64_fph_enable();
__ia64_init_fpu();
ia64_fph_disable();
}
/* save f32-f127 at FPH */
static inline void
ia64_save_fpu (struct ia64_fpreg *fph) {
ia64_fph_enable();
__ia64_save_fpu(fph);
ia64_fph_disable();
}
/* load f32-f127 from FPH */
static inline void
ia64_load_fpu (struct ia64_fpreg *fph) {
ia64_fph_enable();
__ia64_load_fpu(fph);
ia64_fph_disable();
}
static inline void
ia64_fc (void *addr)
{
asm volatile ("fc %0" :: "r"(addr) : "memory");
}
static inline void
ia64_sync_i (void)
{
asm volatile (";; sync.i" ::: "memory");
}
static inline void
ia64_srlz_i (void)
{
asm volatile (";; srlz.i ;;" ::: "memory");
}
static inline void
ia64_srlz_d (void)
{
asm volatile (";; srlz.d" ::: "memory");
}
static inline __u64
ia64_get_rr (__u64 reg_bits)
{
__u64 r;
asm volatile ("mov %0=rr[%1]" : "=r"(r) : "r"(reg_bits) : "memory");
return r;
}
static inline void
ia64_set_rr (__u64 reg_bits, __u64 rr_val)
{
asm volatile ("mov rr[%0]=%1" :: "r"(reg_bits), "r"(rr_val) : "memory");
}
static inline __u64
ia64_get_dcr (void)
{
__u64 r;
asm volatile ("mov %0=cr.dcr" : "=r"(r));
return r;
}
static inline void
ia64_set_dcr (__u64 val)
{
asm volatile ("mov cr.dcr=%0;;" :: "r"(val) : "memory");
ia64_srlz_d();
}
static inline __u64
ia64_get_lid (void)
{
__u64 r;
asm volatile ("mov %0=cr.lid" : "=r"(r));
return r;
}
static inline void
ia64_invala (void)
{
asm volatile ("invala" ::: "memory");
}
/*
* Save the processor status flags in FLAGS and then clear the interrupt collection and
* interrupt enable bits. Don't trigger any mandatory RSE references while this bit is
* off!
*/
static inline __u64
ia64_clear_ic (void)
{
__u64 psr;
asm volatile ("mov %0=psr;; rsm psr.i | psr.ic;; srlz.i;;" : "=r"(psr) :: "memory");
return psr;
}
/*
* Restore the psr.
*/
static inline void
ia64_set_psr (__u64 psr)
{
asm volatile (";; mov psr.l=%0;; srlz.d" :: "r" (psr) : "memory");
}
/*
* Insert a translation into an instruction and/or data translation
* register.
*/
static inline void
ia64_itr (__u64 target_mask, __u64 tr_num,
__u64 vmaddr, __u64 pte,
__u64 log_page_size)
{
asm volatile ("mov cr.itir=%0" :: "r"(log_page_size << 2) : "memory");
asm volatile ("mov cr.ifa=%0;;" :: "r"(vmaddr) : "memory");
if (target_mask & 0x1)
asm volatile ("itr.i itr[%0]=%1"
:: "r"(tr_num), "r"(pte) : "memory");
if (target_mask & 0x2)
asm volatile (";;itr.d dtr[%0]=%1"
:: "r"(tr_num), "r"(pte) : "memory");
}
/*
* Insert a translation into the instruction and/or data translation
* cache.
*/
static inline void
ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
__u64 log_page_size)
{
asm volatile ("mov cr.itir=%0" :: "r"(log_page_size << 2) : "memory");
asm volatile ("mov cr.ifa=%0;;" :: "r"(vmaddr) : "memory");
/* as per EAS2.6, itc must be the last instruction in an instruction group */
if (target_mask & 0x1)
asm volatile ("itc.i %0;;" :: "r"(pte) : "memory");
if (target_mask & 0x2)
asm volatile (";;itc.d %0;;" :: "r"(pte) : "memory");
}
/*
* Purge a range of addresses from instruction and/or data translation
* register(s).
*/
static inline void
ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
{
if (target_mask & 0x1)
asm volatile ("ptr.i %0,%1" :: "r"(vmaddr), "r"(log_size << 2));
if (target_mask & 0x2)
asm volatile ("ptr.d %0,%1" :: "r"(vmaddr), "r"(log_size << 2));
}
/* Set the interrupt vector address. The address must be suitably aligned (32KB). */
static inline void
ia64_set_iva (void *ivt_addr)
{
asm volatile ("mov cr.iva=%0;; srlz.i;;" :: "r"(ivt_addr) : "memory");
}
/* Set the page table address and control bits. */
static inline void
ia64_set_pta (__u64 pta)
{
/* Note: srlz.i implies srlz.d */
asm volatile ("mov cr.pta=%0;; srlz.i;;" :: "r"(pta) : "memory");
}
static inline __u64
ia64_get_cpuid (__u64 regnum)
{
__u64 r;
asm ("mov %0=cpuid[%r1]" : "=r"(r) : "rO"(regnum));
return r;
}
static inline void
ia64_eoi (void)
{
asm ("mov cr.eoi=r0;; srlz.d;;" ::: "memory");
}
static inline void
ia64_set_lrr0 (unsigned long val)
{
asm volatile ("mov cr.lrr0=%0;; srlz.d" :: "r"(val) : "memory");
}
#ifdef GAS_HAS_HINT_INSN
static inline void
ia64_hint_pause (void)
{
asm volatile ("hint @pause" ::: "memory");
}
#define cpu_relax() ia64_hint_pause()
#else
#define cpu_relax() barrier()
#endif
static inline void
ia64_set_lrr1 (unsigned long val)
{
asm volatile ("mov cr.lrr1=%0;; srlz.d" :: "r"(val) : "memory");
}
static inline void
ia64_set_pmv (__u64 val)
{
asm volatile ("mov cr.pmv=%0" :: "r"(val) : "memory");
}
static inline __u64
ia64_get_pmc (__u64 regnum)
{
__u64 retval;
asm volatile ("mov %0=pmc[%1]" : "=r"(retval) : "r"(regnum));
return retval;
}
static inline void
ia64_set_pmc (__u64 regnum, __u64 value)
{
asm volatile ("mov pmc[%0]=%1" :: "r"(regnum), "r"(value));
}
static inline __u64
ia64_get_pmd (__u64 regnum)
{
__u64 retval;
asm volatile ("mov %0=pmd[%1]" : "=r"(retval) : "r"(regnum));
return retval;
}
static inline void
ia64_set_pmd (__u64 regnum, __u64 value)
{
asm volatile ("mov pmd[%0]=%1" :: "r"(regnum), "r"(value));
}
/*
* Given the address to which a spill occurred, return the unat bit
* number that corresponds to this address.
*/
static inline __u64
ia64_unat_pos (void *spill_addr)
{
return ((__u64) spill_addr >> 3) & 0x3f;
}
/*
* Set the NaT bit of an integer register which was spilled at address
* SPILL_ADDR. UNAT is the mask to be updated.
*/
static inline void
ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
{
__u64 bit = ia64_unat_pos(spill_addr);
__u64 mask = 1UL << bit;
*unat = (*unat & ~mask) | (nat << bit);
}
/*
* Return saved PC of a blocked thread.
* Note that the only way T can block is through a call to schedule() -> switch_to().
*/
static inline unsigned long
thread_saved_pc (struct thread_struct *t)
{
struct unw_frame_info info;
unsigned long ip;
/* XXX ouch: Linus, please pass the task pointer to thread_saved_pc() instead! */
struct task_struct *p = (void *) ((unsigned long) t - IA64_TASK_THREAD_OFFSET);
unw_init_from_blocked_task(&info, p);
if (unw_unwind(&info) < 0)
return 0;
unw_get_ip(&info, &ip);
return ip;
}
/*
* Get the current instruction/program counter value.
*/
#define current_text_addr() \
({ void *_pc; asm volatile ("mov %0=ip" : "=r" (_pc)); _pc; })
#define THREAD_SIZE IA64_STK_OFFSET
/* NOTE: The task struct and the stacks are allocated together. */
#define alloc_task_struct() \
((struct task_struct *) __get_free_pages(GFP_KERNEL, IA64_TASK_STRUCT_LOG_NUM_PAGES))
#define free_task_struct(p) free_pages((unsigned long)(p), IA64_TASK_STRUCT_LOG_NUM_PAGES)
#define get_task_struct(tsk) atomic_inc(&virt_to_page(tsk)->count)
#define init_task (init_task_union.task)
#define init_stack (init_task_union.stack)
static inline void
ia64_set_cmcv (__u64 val)
{
asm volatile ("mov cr.cmcv=%0" :: "r"(val) : "memory");
}
static inline __u64
ia64_get_cmcv (void)
{
__u64 val;
asm volatile ("mov %0=cr.cmcv" : "=r"(val) :: "memory");
return val;
}
static inline __u64
ia64_get_ivr (void)
{
__u64 r;
asm volatile ("srlz.d;; mov %0=cr.ivr;; srlz.d;;" : "=r"(r));
return r;
}
static inline void
ia64_set_tpr (__u64 val)
{
asm volatile ("mov cr.tpr=%0" :: "r"(val));
}
static inline __u64
ia64_get_tpr (void)
{
__u64 r;
asm volatile ("mov %0=cr.tpr" : "=r"(r));
return r;
}
static inline void
ia64_set_irr0 (__u64 val)
{
asm volatile("mov cr.irr0=%0;;" :: "r"(val) : "memory");
ia64_srlz_d();
}
static inline __u64
ia64_get_irr0 (void)
{
__u64 val;
/* this is volatile because irr may change unbeknownst to gcc... */
asm volatile("mov %0=cr.irr0" : "=r"(val));
return val;
}
static inline void
ia64_set_irr1 (__u64 val)
{
asm volatile("mov cr.irr1=%0;;" :: "r"(val) : "memory");
ia64_srlz_d();
}
static inline __u64
ia64_get_irr1 (void)
{
__u64 val;
/* this is volatile because irr may change unbeknownst to gcc... */
asm volatile("mov %0=cr.irr1" : "=r"(val));
return val;
}
static inline void
ia64_set_irr2 (__u64 val)
{
asm volatile("mov cr.irr2=%0;;" :: "r"(val) : "memory");
ia64_srlz_d();
}
static inline __u64
ia64_get_irr2 (void)
{
__u64 val;
/* this is volatile because irr may change unbeknownst to gcc... */
asm volatile("mov %0=cr.irr2" : "=r"(val));
return val;
}
static inline void
ia64_set_irr3 (__u64 val)
{
asm volatile("mov cr.irr3=%0;;" :: "r"(val) : "memory");
ia64_srlz_d();
}
static inline __u64
ia64_get_irr3 (void)
{
__u64 val;
/* this is volatile because irr may change unbeknownst to gcc... */
asm volatile ("mov %0=cr.irr3" : "=r"(val));
return val;
}
static inline __u64
ia64_get_gp(void)
{
__u64 val;
asm ("mov %0=gp" : "=r"(val));
return val;
}
static inline void
ia64_set_ibr (__u64 regnum, __u64 value)
{
asm volatile ("mov ibr[%0]=%1" :: "r"(regnum), "r"(value));
}
static inline void
ia64_set_dbr (__u64 regnum, __u64 value)
{
asm volatile ("mov dbr[%0]=%1" :: "r"(regnum), "r"(value));
#ifdef CONFIG_ITANIUM
asm volatile (";; srlz.d");
#endif
}
static inline __u64
ia64_get_ibr (__u64 regnum)
{
__u64 retval;
asm volatile ("mov %0=ibr[%1]" : "=r"(retval) : "r"(regnum));
return retval;
}
static inline __u64
ia64_get_dbr (__u64 regnum)
{
__u64 retval;
asm volatile ("mov %0=dbr[%1]" : "=r"(retval) : "r"(regnum));
#ifdef CONFIG_ITANIUM
asm volatile (";; srlz.d");
#endif
return retval;
}
static inline __u64
ia64_rotr (__u64 w, __u64 n)
{
return (w >> n) | (w << (64 - n));
}
#define ia64_rotl(w,n) ia64_rotr((w), (64) - (n))
static inline __u64
ia64_thash (__u64 addr)
{
__u64 result;
asm ("thash %0=%1" : "=r"(result) : "r" (addr));
return result;
}
static inline __u64
ia64_tpa (__u64 addr)
{
__u64 result;
asm ("tpa %0=%1" : "=r"(result) : "r"(addr));
return result;
}
/*
* Take a mapped kernel address and return the equivalent address
* in the region 7 identity mapped virtual area.
*/
static inline void *
ia64_imva (void *addr)
{
void *result;
asm ("tpa %0=%1" : "=r"(result) : "r"(addr));
return __va(result);
}
#define ARCH_HAS_PREFETCH
#define ARCH_HAS_PREFETCHW
#define ARCH_HAS_SPINLOCK_PREFETCH
#define PREFETCH_STRIDE 256
extern inline void
prefetch (const void *x)
{
__asm__ __volatile__ ("lfetch [%0]" : : "r"(x));
}
extern inline void
prefetchw (const void *x)
{
__asm__ __volatile__ ("lfetch.excl [%0]" : : "r"(x));
}
#define spin_lock_prefetch(x) prefetchw(x)
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_IA64_PROCESSOR_H */