blob: 627cc7d0eeb20860209db024eb6f14118b318463 [file] [log] [blame]
#ifndef _PPC64_PGTABLE_H
#define _PPC64_PGTABLE_H
/*
* This file contains the functions and defines necessary to modify and use
* the ppc64 hashed page table.
*/
#ifndef __ASSEMBLY__
#include <asm/processor.h> /* For TASK_SIZE */
#include <asm/mmu.h>
#include <asm/page.h>
#endif /* __ASSEMBLY__ */
/* PMD_SHIFT determines what a second-level page table entry can map */
#define PMD_SHIFT (PAGE_SHIFT + PAGE_SHIFT - 3)
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3) + (PAGE_SHIFT - 2))
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* Entries per page directory level. The PTE level must use a 64b record
* for each page table entry. The PMD and PGD level use a 32b record for
* each entry by assuming that each entry is page aligned.
*/
#define PTE_INDEX_SIZE 9
#define PMD_INDEX_SIZE 10
#define PGD_INDEX_SIZE 10
#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
#define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
#if 0
/* DRENG / PPPBBB This is a compiler bug!!! */
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
#else
#define USER_PTRS_PER_PGD (1024)
#endif
#define FIRST_USER_PGD_NR 0
#define EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
PGD_INDEX_SIZE + PAGE_SHIFT)
/*
* Define the address range of the vmalloc VM area.
*/
#define VMALLOC_START (0xD000000000000000)
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#ifndef CONFIG_SHARED_MEMORY_ADDRESSING
#define VMALLOC_END (VMALLOC_START + VALID_EA_BITS)
#else
#define VMALLOC_END (VMALLOC_START + (VALID_EA_BITS >> 1))
#define SMALLOC_START (VMALLOC_START + (VALID_EA_BITS >> 1) + 1)
#define SMALLOC_END (VMALLOC_START + VALID_EA_BITS)
#define SMALLOC_EA_SHIFT 40
#define SMALLOC_ESID_SHIFT 12
#endif
/*
* Define the address range of the imalloc VM area.
* (used for ioremap)
*/
#define IMALLOC_START (ioremap_bot)
#define IMALLOC_VMADDR(x) ((unsigned long)(x))
#define IMALLOC_BASE (0xE000000000000000)
#define IMALLOC_END (IMALLOC_BASE + VALID_EA_BITS)
/*
* Define the address range mapped virt <-> physical
*/
#define KRANGE_START KERNELBASE
#define KRANGE_END (KRANGE_START + VALID_EA_BITS)
/*
* Define the user address range
*/
#define USER_START (0UL)
#define USER_END (USER_START + VALID_EA_BITS)
/*
* Bits in a linux-style PTE. These match the bits in the
* (hardware-defined) PowerPC PTE as closely as possible.
*/
#define _PAGE_PRESENT 0x001UL /* software: pte contains a translation */
#define _PAGE_USER 0x002UL /* matches one of the PP bits */
#define _PAGE_RW 0x004UL /* software: user write access allowed */
#define _PAGE_GUARDED 0x008UL
#define _PAGE_COHERENT 0x010UL /* M: enforce memory coherence (SMP systems) */
#define _PAGE_NO_CACHE 0x020UL /* I: cache inhibit */
#define _PAGE_WRITETHRU 0x040UL /* W: cache write-through */
#define _PAGE_DIRTY 0x080UL /* C: page changed */
#define _PAGE_ACCESSED 0x100UL /* R: page referenced */
#define _PAGE_HPTENOIX 0x200UL /* software: pte HPTE slot unknown */
#define _PAGE_HASHPTE 0x400UL /* software: pte has an associated HPTE */
#define _PAGE_EXEC 0x800UL /* software: i-cache coherence required */
#define _PAGE_SECONDARY 0x8000UL /* software: HPTE is in secondary group */
#define _PAGE_GROUP_IX 0x7000UL /* software: HPTE index within group */
/* Bits 0x7000 identify the index within an HPT Group */
#define _PAGE_HPTEFLAGS (_PAGE_HASHPTE | _PAGE_HPTENOIX | _PAGE_SECONDARY | _PAGE_GROUP_IX)
/* PAGE_MASK gives the right answer below, but only by accident */
/* It should be preserving the high 48 bits and then specifically */
/* preserving _PAGE_SECONDARY | _PAGE_GROUP_IX */
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_HPTEFLAGS)
#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
/* __pgprot defined in asm-ppc64/page.h */
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
#define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
_PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
/*
* The PowerPC can only do execute protection on a segment (256MB) basis,
* not on a page basis. So we consider execute permission the same as read.
* Also, write permissions imply read permissions.
* This is the closest we can get..
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY_X
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY_X
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY_X
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY_X
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY_X
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED_X
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY_X
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED_X
#ifndef __ASSEMBLY__
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
#endif /* __ASSEMBLY__ */
/* shift to put page number into pte */
#define PTE_SHIFT (16)
#ifndef __ASSEMBLY__
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*
* mk_pte_phys takes a physical address as input
*
* mk_pte takes a (struct page *) as input
*/
#define mk_pte_phys(physpage,pgprot) \
({ \
pte_t pte; \
pte_val(pte) = (((physpage)<<(PTE_SHIFT-PAGE_SHIFT)) | pgprot_val(pgprot)); \
pte; \
})
#define mk_pte(page,pgprot) \
({ \
pte_t pte; \
pte_val(pte) = ((unsigned long)((page) - mem_map) << PTE_SHIFT) | \
pgprot_val(pgprot); \
pte; \
})
#define pte_modify(_pte, newprot) \
(__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
#define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
/* pte_clear moved to later in this file */
#define pte_pagenr(x) ((unsigned long)((pte_val(x) >> PTE_SHIFT)))
#define pte_page(x) (mem_map+pte_pagenr(x))
#define pmd_set(pmdp, ptep) (pmd_val(*(pmdp)) = (__ba_to_bpn(ptep)))
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) ((pmd_val(pmd)) == 0)
#define pmd_present(pmd) ((pmd_val(pmd)) != 0)
#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
#define pmd_page(pmd) (__bpn_to_ba(pmd_val(pmd)))
#define pgd_set(pgdp, pmdp) (pgd_val(*(pgdp)) = (__ba_to_bpn(pmdp)))
#define pgd_none(pgd) (!pgd_val(pgd))
#define pgd_bad(pgd) ((pgd_val(pgd)) == 0)
#define pgd_present(pgd) (pgd_val(pgd) != 0UL)
#define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL)
#define pgd_page(pgd) (__bpn_to_ba(pgd_val(pgd)))
/*
* Find an entry in a page-table-directory. We combine the address region
* (the high order N bits) and the pgd portion of the address.
*/
#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD -1))
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
/* Find an entry in the second-level page table.. */
#define pmd_offset(dir,addr) \
((pmd_t *) pgd_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
/* Find an entry in the third-level page table.. */
#define pte_offset(dir,addr) \
((pte_t *) pmd_page(*(dir)) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
/* to find an entry in a kernel page-table-directory */
/* This now only contains the vmalloc pages */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* to find an entry in the ioremap page-table-directory */
#define pgd_offset_i(address) (ioremap_pgd + pgd_index(address))
#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
static inline pte_t pte_rdprotect(pte_t pte) {
pte_val(pte) &= ~_PAGE_USER; return pte; }
static inline pte_t pte_exprotect(pte_t pte) {
pte_val(pte) &= ~_PAGE_EXEC; return pte; }
static inline pte_t pte_wrprotect(pte_t pte) {
pte_val(pte) &= ~(_PAGE_RW); return pte; }
static inline pte_t pte_mkclean(pte_t pte) {
pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
static inline pte_t pte_mkold(pte_t pte) {
pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkread(pte_t pte) {
pte_val(pte) |= _PAGE_USER; return pte; }
static inline pte_t pte_mkexec(pte_t pte) {
pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
static inline pte_t pte_mkwrite(pte_t pte) {
pte_val(pte) |= _PAGE_RW; return pte; }
static inline pte_t pte_mkdirty(pte_t pte) {
pte_val(pte) |= _PAGE_DIRTY; return pte; }
static inline pte_t pte_mkyoung(pte_t pte) {
pte_val(pte) |= _PAGE_ACCESSED; return pte; }
/* Atomic PTE updates */
static inline unsigned long pte_update( pte_t *p, unsigned long clr,
unsigned long set )
{
unsigned long old, tmp;
__asm__ __volatile__("\n\
1: ldarx %0,0,%3 \n\
andc %1,%0,%4 \n\
or %1,%1,%5 \n\
stdcx. %1,0,%3 \n\
bne- 1b"
: "=&r" (old), "=&r" (tmp), "=m" (*p)
: "r" (p), "r" (clr), "r" (set), "m" (*p)
: "cc" );
return old;
}
static inline int ptep_test_and_clear_young(pte_t *ptep)
{
return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
}
static inline int ptep_test_and_clear_dirty(pte_t *ptep)
{
return (pte_update(ptep, _PAGE_DIRTY, 0) & _PAGE_DIRTY) != 0;
}
static inline pte_t ptep_get_and_clear(pte_t *ptep)
{
return __pte(pte_update(ptep, ~_PAGE_HPTEFLAGS, 0));
}
static inline void ptep_set_wrprotect(pte_t *ptep)
{
pte_update(ptep, _PAGE_RW, 0);
}
static inline void ptep_mkdirty(pte_t *ptep)
{
pte_update(ptep, 0, _PAGE_DIRTY);
}
#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
/*
* set_pte stores a linux PTE into the linux page table.
* On machines which use an MMU hash table we avoid changing the
* _PAGE_HASHPTE bit.
*/
static inline void set_pte(pte_t *ptep, pte_t pte)
{
pte_update(ptep, ~_PAGE_HPTEFLAGS, pte_val(pte) & ~_PAGE_HPTEFLAGS);
}
static inline void pte_clear(pte_t * ptep)
{
pte_update(ptep, ~_PAGE_HPTEFLAGS, 0);
}
struct mm_struct;
struct vm_area_struct;
extern void local_flush_tlb_all(void);
extern void local_flush_tlb_mm(struct mm_struct *mm);
extern void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr);
extern void local_flush_tlb_range(struct mm_struct *mm, unsigned long start,
unsigned long end);
#define flush_tlb_all local_flush_tlb_all
#define flush_tlb_mm local_flush_tlb_mm
#define flush_tlb_page local_flush_tlb_page
#define flush_tlb_range local_flush_tlb_range
static inline void flush_tlb_pgtables(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
/* PPC has hw page tables. */
}
/*
* No cache flushing is required when address mappings are
* changed, because the caches on PowerPCs are physically
* addressed.
*/
#define flush_cache_all() do { } while (0)
#define flush_cache_mm(mm) do { } while (0)
#define flush_cache_range(mm, a, b) do { } while (0)
#define flush_cache_page(vma, p) do { } while (0)
#define flush_page_to_ram(page) do { } while (0)
extern void flush_icache_user_range(struct vm_area_struct *vma,
struct page *page, unsigned long addr, int len);
extern void flush_icache_range(unsigned long, unsigned long);
extern void __flush_dcache_icache(void *page_va);
extern void flush_dcache_page(struct page *page);
extern void flush_icache_page(struct vm_area_struct *vma, struct page *page);
extern unsigned long va_to_phys(unsigned long address);
extern pte_t *va_to_pte(unsigned long address);
extern unsigned long ioremap_bot, ioremap_base;
#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
#define pte_ERROR(e) \
printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %08x.\n", __FILE__, __LINE__, pmd_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %08x.\n", __FILE__, __LINE__, pgd_val(e))
extern pgd_t swapper_pg_dir[1024];
extern pgd_t ioremap_dir[1024];
extern void paging_init(void);
/*
* Page tables may have changed. We don't need to do anything here
* as entries are faulted into the hash table by the low-level
* data/instruction access exception handlers.
*/
/*
* We won't be able to use update_mmu_cache to update the
* hardware page table because we need to update the pte
* as well, but we don't get the address of the pte, only
* its value.
*/
#define update_mmu_cache(vma, addr, pte) do { } while (0)
extern void flush_hash_segments(unsigned low_vsid, unsigned high_vsid);
extern void flush_hash_page(unsigned long context, unsigned long ea, pte_t *ptep);
extern void build_valid_hpte(unsigned long vsid, unsigned long ea,
unsigned long pa, pte_t * ptep,
unsigned hpteflags, unsigned bolted );
/* Encode and de-code a swap entry */
#define SWP_TYPE(entry) (((entry).val >> 1) & 0x3f)
#define SWP_OFFSET(entry) ((entry).val >> 8)
#define SWP_ENTRY(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
#define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> PTE_SHIFT })
#define swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_SHIFT })
/*
* kern_addr_valid is intended to indicate whether an address is a valid
* kernel address. Most 32-bit archs define it as always true (like this)
* but most 64-bit archs actually perform a test. What should we do here?
* The only use is in fs/ncpfs/dir.c
*/
#define kern_addr_valid(addr) (1)
#ifdef CONFIG_PPC_ISERIES
#define io_remap_page_range remap_page_range
#else
extern int io_remap_page_range(unsigned long from, unsigned long to, unsigned long size, pgprot_t prot);
#endif
/*
* No page table caches to initialise
*/
#define pgtable_cache_init() do { } while (0)
extern void updateBoltedHptePP(unsigned long newpp, unsigned long ea);
extern void hpte_init_pSeries(void);
extern void hpte_init_iSeries(void);
extern void make_pte(HPTE * htab, unsigned long va, unsigned long pa,
int mode, unsigned long hash_mask, int large);
#endif /* __ASSEMBLY__ */
#endif /* _PPC64_PGTABLE_H */