blob: 76c4c91d98c1de7683218f0ee03a82ccb18879fa [file] [log] [blame]
/*
* LCD, LED and Button interface for Cobalt
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1996, 1997 by Andrew Bose
*
* Linux kernel version history:
* March 2001: Ported from 2.0.34 by Liam Davies
*
*/
#define RTC_IO_EXTENT 0x10 /*Only really two ports, but... */
#include <linux/config.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/mc146818rtc.h>
#include <linux/netdevice.h>
#include <linux/sched.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <linux/delay.h>
#include "lcd.h"
static int lcd_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg);
static int lcd_present = 1;
int led_state = 0;
#if defined(CONFIG_TULIP) && 0
#define MAX_INTERFACES 8
static linkcheck_func_t linkcheck_callbacks[MAX_INTERFACES];
static void *linkcheck_cookies[MAX_INTERFACES];
int lcd_register_linkcheck_func(int iface_num, void *func, void *cookie)
{
if (iface_num < 0 ||
iface_num >= MAX_INTERFACES ||
linkcheck_callbacks[iface_num] != NULL)
return -1;
linkcheck_callbacks[iface_num] = (linkcheck_func_t) func;
linkcheck_cookies[iface_num] = cookie;
return 0;
}
#endif
static int lcd_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
{
struct lcd_display button_display;
unsigned long address, a;
int index;
switch (cmd) {
case LCD_On:
udelay(150);
BusyCheck();
LCDWriteInst(0x0F);
break;
case LCD_Off:
udelay(150);
BusyCheck();
LCDWriteInst(0x08);
break;
case LCD_Reset:
udelay(150);
LCDWriteInst(0x3F);
udelay(150);
LCDWriteInst(0x3F);
udelay(150);
LCDWriteInst(0x3F);
udelay(150);
LCDWriteInst(0x3F);
udelay(150);
LCDWriteInst(0x01);
udelay(150);
LCDWriteInst(0x06);
break;
case LCD_Clear:
udelay(150);
BusyCheck();
LCDWriteInst(0x01);
break;
case LCD_Cursor_Left:
udelay(150);
BusyCheck();
LCDWriteInst(0x10);
break;
case LCD_Cursor_Right:
udelay(150);
BusyCheck();
LCDWriteInst(0x14);
break;
case LCD_Cursor_Off:
udelay(150);
BusyCheck();
LCDWriteInst(0x0C);
break;
case LCD_Cursor_On:
udelay(150);
BusyCheck();
LCDWriteInst(0x0F);
break;
case LCD_Blink_Off:
udelay(150);
BusyCheck();
LCDWriteInst(0x0E);
break;
case LCD_Get_Cursor_Pos:{
struct lcd_display display;
udelay(150);
BusyCheck();
display.cursor_address = ( LCDReadInst );
display.cursor_address = ( display.cursor_address & 0x07F );
if(copy_to_user((struct lcd_display*)arg, &display, sizeof(struct lcd_display)))
return -EFAULT;
break;
}
case LCD_Set_Cursor_Pos: {
struct lcd_display display;
if(copy_from_user(&display, (struct lcd_display*)arg, sizeof(struct lcd_display)))
return -EFAULT;
a = (display.cursor_address | kLCD_Addr );
udelay(150);
BusyCheck();
LCDWriteInst( a );
break;
}
case LCD_Get_Cursor: {
struct lcd_display display;
udelay(150);
BusyCheck();
display.character = LCDReadData;
if(copy_to_user((struct lcd_display*)arg, &display, sizeof(struct lcd_display)))
return -EFAULT;
udelay(150);
BusyCheck();
LCDWriteInst(0x10);
break;
}
case LCD_Set_Cursor:{
struct lcd_display display;
if(copy_from_user(&display, (struct lcd_display*)arg, sizeof(struct lcd_display)))
return -EFAULT;
udelay(150);
BusyCheck();
LCDWriteData( display.character );
udelay(150);
BusyCheck();
LCDWriteInst(0x10);
break;
}
case LCD_Disp_Left:
udelay(150);
BusyCheck();
LCDWriteInst(0x18);
break;
case LCD_Disp_Right:
udelay(150);
BusyCheck();
LCDWriteInst(0x1C);
break;
case LCD_Home:
udelay(150);
BusyCheck();
LCDWriteInst(0x02);
break;
case LCD_Write: {
struct lcd_display display;
if(copy_from_user(&display, (struct lcd_display*)arg, sizeof(struct lcd_display)))
return -EFAULT;
udelay(150);
BusyCheck();
LCDWriteInst(0x80);
udelay(150);
BusyCheck();
for (index = 0; index < (display.size1); index++) {
udelay(150);
BusyCheck();
LCDWriteData( display.line1[index]);
BusyCheck();
}
udelay(150);
BusyCheck();
LCDWriteInst(0xC0);
udelay(150);
BusyCheck();
for (index = 0; index < (display.size2); index++) {
udelay(150);
BusyCheck();
LCDWriteData( display.line2[index]);
}
break;
}
case LCD_Read: {
struct lcd_display display;
BusyCheck();
for (address = kDD_R00; address <= kDD_R01; address++) {
a = (address | kLCD_Addr );
udelay(150);
BusyCheck();
LCDWriteInst( a );
udelay(150);
BusyCheck();
display.line1[address] = LCDReadData;
}
display.line1[ 0x27 ] = '\0';
for (address = kDD_R10; address <= kDD_R11; address++) {
a = (address | kLCD_Addr );
udelay(150);
BusyCheck();
LCDWriteInst( a );
udelay(150);
BusyCheck();
display.line2[address - 0x40 ] = LCDReadData;
}
display.line2[ 0x27 ] = '\0';
if(copy_to_user((struct lcd_display*)arg, &display,
sizeof(struct lcd_display)))
return -EFAULT;
break;
}
// set all GPIO leds to led_display.leds
case LED_Set: {
struct lcd_display led_display;
if(copy_from_user(&led_display, (struct lcd_display*)arg,
sizeof(struct lcd_display)))
return -EFAULT;
led_state = led_display.leds;
LEDSet(led_state);
break;
}
// set only bit led_display.leds
case LED_Bit_Set: {
int i;
int bit=1;
struct lcd_display led_display;
if(copy_from_user(&led_display, (struct lcd_display*)arg,
sizeof(struct lcd_display)))
return -EFAULT;
for (i=0;i<(int)led_display.leds;i++)
{
bit = 2*bit;
}
led_state = led_state | bit;
LEDSet(led_state);
break;
}
// clear only bit led_display.leds
case LED_Bit_Clear: {
int i;
int bit=1;
struct lcd_display led_display;
if(copy_from_user(&led_display, (struct lcd_display*)arg,
sizeof(struct lcd_display)))
return -EFAULT;
for (i=0;i<(int)led_display.leds;i++)
{
bit = 2*bit;
}
led_state = led_state & ~bit;
LEDSet(led_state);
break;
}
case BUTTON_Read: {
button_display.buttons = GPIRead;
if(copy_to_user((struct lcd_display*)arg, &button_display, sizeof(struct lcd_display)))
return -EFAULT;
break;
}
case LINK_Check: {
button_display.buttons = *((volatile unsigned long *) (0xB0100060) );
if(copy_to_user((struct lcd_display*)arg, &button_display, sizeof(struct lcd_display)))
return -EFAULT;
break;
}
case LINK_Check_2: {
int iface_num;
/* panel-utils should pass in the desired interface status is wanted for
* in "buttons" of the structure. We will set this to non-zero if the
* link is in fact up for the requested interface. --DaveM
*/
if(copy_from_user(&button_display, (struct lcd_display *)arg, sizeof(button_display)))
return -EFAULT;
iface_num = button_display.buttons;
#if defined(CONFIG_TULIP) && 0
if (iface_num >= 0 &&
iface_num < MAX_INTERFACES &&
linkcheck_callbacks[iface_num] != NULL) {
button_display.buttons =
linkcheck_callbacks[iface_num](linkcheck_cookies[iface_num]);
} else
#endif
button_display.buttons = 0;
if(__copy_to_user((struct lcd_display*)arg, &button_display, sizeof(struct lcd_display)))
return -EFAULT;
break;
}
// Erase the flash
case FLASH_Erase: {
int ctr=0;
if (!capable(CAP_SYS_ADMIN)) return -EPERM;
// Chip Erase Sequence
WRITE_FLASH( kFlash_Addr1, kFlash_Data1 );
WRITE_FLASH( kFlash_Addr2, kFlash_Data2 );
WRITE_FLASH( kFlash_Addr1, kFlash_Erase3 );
WRITE_FLASH( kFlash_Addr1, kFlash_Data1 );
WRITE_FLASH( kFlash_Addr2, kFlash_Data2 );
WRITE_FLASH( kFlash_Addr1, kFlash_Erase6 );
printk( "Erasing Flash.\n");
while ( (!dqpoll(0x00000000,0xFF)) && (!timeout(0x00000000)) ) {
ctr++;
}
printk("\n");
printk("\n");
printk("\n");
if (READ_FLASH(0x07FFF0)==0xFF) { printk("Erase Successful\r\n"); }
else if (timeout) { printk("Erase Timed Out\r\n"); }
break;
}
// burn the flash
case FLASH_Burn: {
volatile unsigned long burn_addr;
unsigned long flags;
int i;
unsigned char *rom;
struct lcd_display display;
if (!capable(CAP_SYS_ADMIN)) return -EPERM;
if(copy_from_user(&display, (struct lcd_display*)arg, sizeof(struct lcd_display)))
return -EFAULT;
rom = (unsigned char *) kmalloc((128),GFP_ATOMIC);
if ( rom == NULL ) {
printk ("broken\n");
return 1;
}
printk("Churning and Burning -");
save_flags(flags);
for (i=0; i<FLASH_SIZE; i=i+128) {
if(copy_from_user(rom, display.RomImage + i, 128)) {
kfree(rom);
return -EFAULT;
}
burn_addr = kFlashBase + i;
cli();
for ( index = 0; index < ( 128 ) ; index++ )
{
WRITE_FLASH( kFlash_Addr1, kFlash_Data1 );
WRITE_FLASH( kFlash_Addr2, kFlash_Data2 );
WRITE_FLASH( kFlash_Addr1, kFlash_Prog );
*((volatile unsigned char *)burn_addr) = (volatile unsigned char) rom[index];
while ( (!dqpoll(burn_addr,(volatile unsigned char) rom[index])) && (!timeout(burn_addr)) ) {
}
burn_addr++;
}
restore_flags(flags);
if ( *((volatile unsigned char *)(burn_addr-1)) == (volatile unsigned char) rom[index-1] ) {
} else if (timeout) {
printk("Program timed out\r\n");
}
}
kfree(rom);
break;
}
// read the flash all at once
case FLASH_Read: {
unsigned char *user_bytes;
volatile unsigned long read_addr;
int i;
user_bytes = &(((struct lcd_display *)arg)->RomImage[0]);
if(!access_ok(VERIFY_WRITE, user_bytes, FLASH_SIZE))
return -EFAULT;
printk("Reading Flash");
for (i=0; i<FLASH_SIZE; i++) {
unsigned char tmp_byte;
read_addr = kFlashBase + i;
tmp_byte = *((volatile unsigned char *)read_addr);
if(__put_user (tmp_byte, &user_bytes[i]))
return -EFAULT;
}
break;
}
default:
return 0;
break;
}
return 0;
}
static int lcd_open(struct inode *inode, struct file *file)
{
if (!lcd_present)
return -ENXIO;
else
return 0;
}
/* Only RESET or NEXT counts as button pressed */
static inline int button_pressed(void)
{
unsigned long buttons = GPIRead;
if ( (buttons == BUTTON_Next) || (buttons == BUTTON_Next_B) || (buttons == BUTTON_Reset_B) )
return buttons;
return 0;
}
/* LED daemon sits on this and we wake him up once a key is pressed. */
static int lcd_waiters = 0;
static long lcd_read(struct inode *inode, struct file *file, char *buf, unsigned long count)
{
long buttons_now;
if(lcd_waiters > 0)
return -EINVAL;
lcd_waiters++;
while(((buttons_now = (long)button_pressed()) == 0) &&
!(signal_pending(current))) {
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(2 * HZ);
}
lcd_waiters--;
if(signal_pending(current))
return -ERESTARTSYS;
return buttons_now;
}
/*
* The various file operations we support.
*/
static struct file_operations lcd_fops = {
read: lcd_read,
ioctl: lcd_ioctl,
open: lcd_open,
};
static struct miscdevice lcd_dev = {
MISC_DYNAMIC_MINOR,
"lcd",
&lcd_fops
};
int lcd_init(void)
{
unsigned long data;
printk("%s\n", LCD_DRIVER);
misc_register(&lcd_dev);
/* Check region? Naaah! Just snarf it up. */
/* request_region(RTC_PORT(0), RTC_IO_EXTENT, "lcd");*/
udelay(150);
data = LCDReadData;
if ( (data & 0x000000FF) == (0x00) ) {
lcd_present = 0;
printk("LCD Not Present\n");
}
else {
lcd_present = 1;
WRITE_GAL( kGal_DevBank2PReg, kGal_DevBank2Cfg );
WRITE_GAL( kGal_DevBank3PReg, kGal_DevBank3Cfg );
}
return 0;
}
//
// Function: dqpoll
//
// Description: Polls the data lines to see if the flash is busy
//
// In: address, byte data
//
// Out: 0 = busy, 1 = write or erase complete
//
//
int dqpoll( volatile unsigned long address, volatile unsigned char data ) {
volatile unsigned char dq7;
dq7 = data & 0x80;
return ( (READ_FLASH(address) & 0x80) == dq7 );
}
//
// Function: timeout
//
// Description: Checks to see if erase or write has timed out
// By polling dq5
//
// In: address
//
//
// Out: 0 = not timed out, 1 = timed out
int timeout( volatile unsigned long address ) {
return ( (READ_FLASH(address) & 0x20) == 0x20 );
}