blob: 3aaf13cae88dc0ebb8b374f208fe240b4137dd63 [file] [log] [blame]
/*
* linux/drivers/char/serial.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997,
* 1998, 1999 Theodore Ts'o
*
* Extensively rewritten by Theodore Ts'o, 8/16/92 -- 9/14/92. Now
* much more extensible to support other serial cards based on the
* 16450/16550A UART's. Added support for the AST FourPort and the
* Accent Async board.
*
* set_serial_info fixed to set the flags, custom divisor, and uart
* type fields. Fix suggested by Michael K. Johnson 12/12/92.
*
* 11/95: TIOCMIWAIT, TIOCGICOUNT by Angelo Haritsis <ah@doc.ic.ac.uk>
*
* 03/96: Modularised by Angelo Haritsis <ah@doc.ic.ac.uk>
*
* rs_set_termios fixed to look also for changes of the input
* flags INPCK, BRKINT, PARMRK, IGNPAR and IGNBRK.
* Bernd Anhäupl 05/17/96.
*
* 1/97: Extended dumb serial ports are a config option now.
* Saves 4k. Michael A. Griffith <grif@acm.org>
*
* 8/97: Fix bug in rs_set_termios with RTS
* Stanislav V. Voronyi <stas@uanet.kharkov.ua>
*
* 3/98: Change the IRQ detection, use of probe_irq_o*(),
* suppress TIOCSERGWILD and TIOCSERSWILD
* Etienne Lorrain <etienne.lorrain@ibm.net>
*
* 4/98: Added changes to support the ARM architecture proposed by
* Russell King
*
* 5/99: Updated to include support for the XR16C850 and ST16C654
* uarts. Stuart MacDonald <stuartm@connecttech.com>
*
* 8/99: Generalized PCI support added. Theodore Ts'o
*
* 3/00: Rid circular buffer of redundant xmit_cnt. Fix a
* few races on freeing buffers too.
* Alan Modra <alan@linuxcare.com>
*
* 5/00: Support for the RSA-DV II/S card added.
* Kiyokazu SUTO <suto@ks-and-ks.ne.jp>
*
* 6/00: Remove old-style timer, use timer_list
* Andrew Morton <andrewm@uow.edu.au>
*
* 7/00: Support Timedia/Sunix/Exsys PCI cards
*
* 7/00: fix some returns on failure not using MOD_DEC_USE_COUNT.
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>
*
* 10/00: add in optional software flow control for serial console.
* Kanoj Sarcar <kanoj@sgi.com> (Modified by Theodore Ts'o)
*
* 02/02: Fix for AMD Elan bug in transmit irq routine, by
* Christer Weinigel <wingel@hog.ctrl-c.liu.se>,
* Robert Schwebel <robert@schwebel.de>,
* Juergen Beisert <jbeisert@eurodsn.de>,
* Theodore Ts'o <tytso@mit.edu>
*/
static char *serial_version = "5.05c";
static char *serial_revdate = "2001-07-08";
/*
* Serial driver configuration section. Here are the various options:
*
* CONFIG_HUB6
* Enables support for the venerable Bell Technologies
* HUB6 card.
*
* CONFIG_SERIAL_MANY_PORTS
* Enables support for ports beyond the standard, stupid
* COM 1/2/3/4.
*
* CONFIG_SERIAL_MULTIPORT
* Enables support for special multiport board support.
*
* CONFIG_SERIAL_SHARE_IRQ
* Enables support for multiple serial ports on one IRQ
*
* CONFIG_SERIAL_DETECT_IRQ
* Enable the autodetection of IRQ on standart ports
*
* SERIAL_PARANOIA_CHECK
* Check the magic number for the async_structure where
* ever possible.
*
* CONFIG_SERIAL_ACPI
* Enable support for serial console port and serial
* debug port as defined by the SPCR and DBGP tables in
* ACPI 2.0.
*/
#include <linux/config.h>
#include <linux/version.h>
#undef SERIAL_PARANOIA_CHECK
#define CONFIG_SERIAL_NOPAUSE_IO
#define SERIAL_DO_RESTART
#if 0
/* These defines are normally controlled by the autoconf.h */
#define CONFIG_SERIAL_MANY_PORTS
#define CONFIG_SERIAL_SHARE_IRQ
#define CONFIG_SERIAL_DETECT_IRQ
#define CONFIG_SERIAL_MULTIPORT
#define CONFIG_HUB6
#endif
#ifdef CONFIG_PCI
#define ENABLE_SERIAL_PCI
#ifndef CONFIG_SERIAL_SHARE_IRQ
#define CONFIG_SERIAL_SHARE_IRQ
#endif
#ifndef CONFIG_SERIAL_MANY_PORTS
#define CONFIG_SERIAL_MANY_PORTS
#endif
#endif
#ifdef CONFIG_SERIAL_ACPI
#define ENABLE_SERIAL_ACPI
#endif
#if defined(CONFIG_ISAPNP)|| (defined(CONFIG_ISAPNP_MODULE) && defined(MODULE))
#ifndef ENABLE_SERIAL_PNP
#define ENABLE_SERIAL_PNP
#endif
#endif
/* Set of debugging defines */
#undef SERIAL_DEBUG_INTR
#undef SERIAL_DEBUG_OPEN
#undef SERIAL_DEBUG_FLOW
#undef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
#undef SERIAL_DEBUG_PCI
#undef SERIAL_DEBUG_AUTOCONF
/* Sanity checks */
#ifdef CONFIG_SERIAL_MULTIPORT
#ifndef CONFIG_SERIAL_SHARE_IRQ
#define CONFIG_SERIAL_SHARE_IRQ
#endif
#endif
#ifdef CONFIG_HUB6
#ifndef CONFIG_SERIAL_MANY_PORTS
#define CONFIG_SERIAL_MANY_PORTS
#endif
#ifndef CONFIG_SERIAL_SHARE_IRQ
#define CONFIG_SERIAL_SHARE_IRQ
#endif
#endif
#ifdef MODULE
#undef CONFIG_SERIAL_CONSOLE
#endif
#define CONFIG_SERIAL_RSA
#define RS_STROBE_TIME (10*HZ)
#define RS_ISR_PASS_LIMIT 256
#if defined(__i386__) && (defined(CONFIG_M386) || defined(CONFIG_M486))
#define SERIAL_INLINE
#endif
/*
* End of serial driver configuration section.
*/
#include <linux/module.h>
#include <linux/types.h>
#ifdef LOCAL_HEADERS
#include "serial_local.h"
#else
#include <linux/serial.h>
#include <linux/serialP.h>
#include <linux/serial_reg.h>
#include <asm/serial.h>
#define LOCAL_VERSTRING ""
#endif
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/slab.h>
#if (LINUX_VERSION_CODE >= 131343)
#include <linux/init.h>
#endif
#if (LINUX_VERSION_CODE >= 131336)
#include <asm/uaccess.h>
#endif
#include <linux/delay.h>
#ifdef CONFIG_SERIAL_CONSOLE
#include <linux/console.h>
#endif
#ifdef ENABLE_SERIAL_PCI
#include <linux/pci.h>
#endif
#ifdef ENABLE_SERIAL_PNP
#include <linux/isapnp.h>
#endif
#ifdef CONFIG_MAGIC_SYSRQ
#include <linux/sysrq.h>
#endif
/*
* All of the compatibilty code so we can compile serial.c against
* older kernels is hidden in serial_compat.h
*/
#if defined(LOCAL_HEADERS) || (LINUX_VERSION_CODE < 0x020317) /* 2.3.23 */
#include "serial_compat.h"
#endif
#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/bitops.h>
#if defined(CONFIG_MAC_SERIAL)
#define SERIAL_DEV_OFFSET ((_machine == _MACH_prep || _machine == _MACH_chrp) ? 0 : 2)
#else
#define SERIAL_DEV_OFFSET 0
#endif
#ifdef SERIAL_INLINE
#define _INLINE_ inline
#else
#define _INLINE_
#endif
static char *serial_name = "Serial driver";
static DECLARE_TASK_QUEUE(tq_serial);
static struct tty_driver serial_driver, callout_driver;
static int serial_refcount;
static struct timer_list serial_timer;
/* serial subtype definitions */
#ifndef SERIAL_TYPE_NORMAL
#define SERIAL_TYPE_NORMAL 1
#define SERIAL_TYPE_CALLOUT 2
#endif
/* number of characters left in xmit buffer before we ask for more */
#define WAKEUP_CHARS 256
/*
* IRQ_timeout - How long the timeout should be for each IRQ
* should be after the IRQ has been active.
*/
static struct async_struct *IRQ_ports[NR_IRQS];
#ifdef CONFIG_SERIAL_MULTIPORT
static struct rs_multiport_struct rs_multiport[NR_IRQS];
#endif
static int IRQ_timeout[NR_IRQS];
#ifdef CONFIG_SERIAL_CONSOLE
static struct console sercons;
static int lsr_break_flag;
#endif
#if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
static unsigned long break_pressed; /* break, really ... */
#endif
static unsigned detect_uart_irq (struct serial_state * state);
static void autoconfig(struct serial_state * state);
static void change_speed(struct async_struct *info, struct termios *old);
static void rs_wait_until_sent(struct tty_struct *tty, int timeout);
/*
* Here we define the default xmit fifo size used for each type of
* UART
*/
static struct serial_uart_config uart_config[] = {
{ "unknown", 1, 0 },
{ "8250", 1, 0 },
{ "16450", 1, 0 },
{ "16550", 1, 0 },
{ "16550A", 16, UART_CLEAR_FIFO | UART_USE_FIFO },
{ "cirrus", 1, 0 }, /* usurped by cyclades.c */
{ "ST16650", 1, UART_CLEAR_FIFO | UART_STARTECH },
{ "ST16650V2", 32, UART_CLEAR_FIFO | UART_USE_FIFO |
UART_STARTECH },
{ "TI16750", 64, UART_CLEAR_FIFO | UART_USE_FIFO},
{ "Startech", 1, 0}, /* usurped by cyclades.c */
{ "16C950/954", 128, UART_CLEAR_FIFO | UART_USE_FIFO},
{ "ST16654", 64, UART_CLEAR_FIFO | UART_USE_FIFO |
UART_STARTECH },
{ "XR16850", 128, UART_CLEAR_FIFO | UART_USE_FIFO |
UART_STARTECH },
{ "RSA", 2048, UART_CLEAR_FIFO | UART_USE_FIFO },
{ 0, 0}
};
#if defined(CONFIG_SERIAL_RSA) && defined(MODULE)
#define PORT_RSA_MAX 4
static int probe_rsa[PORT_RSA_MAX];
static int force_rsa[PORT_RSA_MAX];
MODULE_PARM(probe_rsa, "1-" __MODULE_STRING(PORT_RSA_MAX) "i");
MODULE_PARM_DESC(probe_rsa, "Probe I/O ports for RSA");
MODULE_PARM(force_rsa, "1-" __MODULE_STRING(PORT_RSA_MAX) "i");
MODULE_PARM_DESC(force_rsa, "Force I/O ports for RSA");
#endif /* CONFIG_SERIAL_RSA */
struct serial_state rs_table[RS_TABLE_SIZE] = {
SERIAL_PORT_DFNS /* Defined in serial.h */
};
#define NR_PORTS (sizeof(rs_table)/sizeof(struct serial_state))
int serial_nr_ports = NR_PORTS;
#if (defined(ENABLE_SERIAL_PCI) || defined(ENABLE_SERIAL_PNP))
#define NR_PCI_BOARDS 8
static struct pci_board_inst serial_pci_board[NR_PCI_BOARDS];
#ifndef IS_PCI_REGION_IOPORT
#define IS_PCI_REGION_IOPORT(dev, r) (pci_resource_flags((dev), (r)) & \
IORESOURCE_IO)
#endif
#ifndef IS_PCI_REGION_IOMEM
#define IS_PCI_REGION_IOMEM(dev, r) (pci_resource_flags((dev), (r)) & \
IORESOURCE_MEM)
#endif
#ifndef PCI_IRQ_RESOURCE
#define PCI_IRQ_RESOURCE(dev, r) ((dev)->irq_resource[r].start)
#endif
#ifndef pci_get_subvendor
#define pci_get_subvendor(dev) ((dev)->subsystem_vendor)
#define pci_get_subdevice(dev) ((dev)->subsystem_device)
#endif
#endif /* ENABLE_SERIAL_PCI || ENABLE_SERIAL_PNP */
#ifndef PREPARE_FUNC
#define PREPARE_FUNC(dev) (dev->prepare)
#define ACTIVATE_FUNC(dev) (dev->activate)
#define DEACTIVATE_FUNC(dev) (dev->deactivate)
#endif
#define HIGH_BITS_OFFSET ((sizeof(long)-sizeof(int))*8)
static struct tty_struct *serial_table[NR_PORTS];
static struct termios *serial_termios[NR_PORTS];
static struct termios *serial_termios_locked[NR_PORTS];
#if defined(MODULE) && defined(SERIAL_DEBUG_MCOUNT)
#define DBG_CNT(s) printk("(%s): [%x] refc=%d, serc=%d, ttyc=%d -> %s\n", \
kdevname(tty->device), (info->flags), serial_refcount,info->count,tty->count,s)
#else
#define DBG_CNT(s)
#endif
/*
* tmp_buf is used as a temporary buffer by serial_write. We need to
* lock it in case the copy_from_user blocks while swapping in a page,
* and some other program tries to do a serial write at the same time.
* Since the lock will only come under contention when the system is
* swapping and available memory is low, it makes sense to share one
* buffer across all the serial ports, since it significantly saves
* memory if large numbers of serial ports are open.
*/
static unsigned char *tmp_buf;
#ifdef DECLARE_MUTEX
static DECLARE_MUTEX(tmp_buf_sem);
#else
static struct semaphore tmp_buf_sem = MUTEX;
#endif
static inline int serial_paranoia_check(struct async_struct *info,
kdev_t device, const char *routine)
{
#ifdef SERIAL_PARANOIA_CHECK
static const char *badmagic =
"Warning: bad magic number for serial struct (%s) in %s\n";
static const char *badinfo =
"Warning: null async_struct for (%s) in %s\n";
if (!info) {
printk(badinfo, kdevname(device), routine);
return 1;
}
if (info->magic != SERIAL_MAGIC) {
printk(badmagic, kdevname(device), routine);
return 1;
}
#endif
return 0;
}
static _INLINE_ unsigned int serial_in(struct async_struct *info, int offset)
{
switch (info->io_type) {
#ifdef CONFIG_HUB6
case SERIAL_IO_HUB6:
outb(info->hub6 - 1 + offset, info->port);
return inb(info->port+1);
#endif
case SERIAL_IO_MEM:
return readb((unsigned long) info->iomem_base +
(offset<<info->iomem_reg_shift));
default:
return inb(info->port + offset);
}
}
static _INLINE_ void serial_out(struct async_struct *info, int offset,
int value)
{
switch (info->io_type) {
#ifdef CONFIG_HUB6
case SERIAL_IO_HUB6:
outb(info->hub6 - 1 + offset, info->port);
outb(value, info->port+1);
break;
#endif
case SERIAL_IO_MEM:
writeb(value, (unsigned long) info->iomem_base +
(offset<<info->iomem_reg_shift));
break;
default:
outb(value, info->port+offset);
}
}
/*
* We used to support using pause I/O for certain machines. We
* haven't supported this for a while, but just in case it's badly
* needed for certain old 386 machines, I've left these #define's
* in....
*/
#define serial_inp(info, offset) serial_in(info, offset)
#define serial_outp(info, offset, value) serial_out(info, offset, value)
/*
* For the 16C950
*/
void serial_icr_write(struct async_struct *info, int offset, int value)
{
serial_out(info, UART_SCR, offset);
serial_out(info, UART_ICR, value);
}
unsigned int serial_icr_read(struct async_struct *info, int offset)
{
int value;
serial_icr_write(info, UART_ACR, info->ACR | UART_ACR_ICRRD);
serial_out(info, UART_SCR, offset);
value = serial_in(info, UART_ICR);
serial_icr_write(info, UART_ACR, info->ACR);
return value;
}
/*
* ------------------------------------------------------------
* rs_stop() and rs_start()
*
* This routines are called before setting or resetting tty->stopped.
* They enable or disable transmitter interrupts, as necessary.
* ------------------------------------------------------------
*/
static void rs_stop(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "rs_stop"))
return;
save_flags(flags); cli();
if (info->IER & UART_IER_THRI) {
info->IER &= ~UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
}
if (info->state->type == PORT_16C950) {
info->ACR |= UART_ACR_TXDIS;
serial_icr_write(info, UART_ACR, info->ACR);
}
restore_flags(flags);
}
static void rs_start(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "rs_start"))
return;
save_flags(flags); cli();
if (info->xmit.head != info->xmit.tail
&& info->xmit.buf
&& !(info->IER & UART_IER_THRI)) {
info->IER |= UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
}
if (info->state->type == PORT_16C950) {
info->ACR &= ~UART_ACR_TXDIS;
serial_icr_write(info, UART_ACR, info->ACR);
}
restore_flags(flags);
}
/*
* ----------------------------------------------------------------------
*
* Here starts the interrupt handling routines. All of the following
* subroutines are declared as inline and are folded into
* rs_interrupt(). They were separated out for readability's sake.
*
* Note: rs_interrupt() is a "fast" interrupt, which means that it
* runs with interrupts turned off. People who may want to modify
* rs_interrupt() should try to keep the interrupt handler as fast as
* possible. After you are done making modifications, it is not a bad
* idea to do:
*
* gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c
*
* and look at the resulting assemble code in serial.s.
*
* - Ted Ts'o (tytso@mit.edu), 7-Mar-93
* -----------------------------------------------------------------------
*/
/*
* This routine is used by the interrupt handler to schedule
* processing in the software interrupt portion of the driver.
*/
static _INLINE_ void rs_sched_event(struct async_struct *info,
int event)
{
info->event |= 1 << event;
queue_task(&info->tqueue, &tq_serial);
mark_bh(SERIAL_BH);
}
static _INLINE_ void receive_chars(struct async_struct *info,
int *status, struct pt_regs * regs)
{
struct tty_struct *tty = info->tty;
unsigned char ch;
struct async_icount *icount;
int max_count = 256;
icount = &info->state->icount;
do {
if (tty->flip.count >= TTY_FLIPBUF_SIZE) {
tty->flip.tqueue.routine((void *) tty);
if (tty->flip.count >= TTY_FLIPBUF_SIZE) {
/* no room in flip buffer, discard rx FIFO contents to clear IRQ
* *FIXME* Hardware with auto flow control
* would benefit from leaving the data in the FIFO and
* disabling the rx IRQ until space becomes available.
*/
do {
serial_inp(info, UART_RX);
icount->overrun++;
*status = serial_inp(info, UART_LSR);
} while ((*status & UART_LSR_DR) && (max_count-- > 0));
return; // if TTY_DONT_FLIP is set
}
}
ch = serial_inp(info, UART_RX);
*tty->flip.char_buf_ptr = ch;
icount->rx++;
#ifdef SERIAL_DEBUG_INTR
printk("DR%02x:%02x...", ch, *status);
#endif
*tty->flip.flag_buf_ptr = 0;
if (*status & (UART_LSR_BI | UART_LSR_PE |
UART_LSR_FE | UART_LSR_OE)) {
/*
* For statistics only
*/
if (*status & UART_LSR_BI) {
*status &= ~(UART_LSR_FE | UART_LSR_PE);
icount->brk++;
/*
* We do the SysRQ and SAK checking
* here because otherwise the break
* may get masked by ignore_status_mask
* or read_status_mask.
*/
#if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
if (info->line == sercons.index) {
if (!break_pressed) {
break_pressed = jiffies;
goto ignore_char;
}
break_pressed = 0;
}
#endif
if (info->flags & ASYNC_SAK)
do_SAK(tty);
} else if (*status & UART_LSR_PE)
icount->parity++;
else if (*status & UART_LSR_FE)
icount->frame++;
if (*status & UART_LSR_OE)
icount->overrun++;
/*
* Mask off conditions which should be ignored.
*/
*status &= info->read_status_mask;
#ifdef CONFIG_SERIAL_CONSOLE
if (info->line == sercons.index) {
/* Recover the break flag from console xmit */
*status |= lsr_break_flag;
lsr_break_flag = 0;
}
#endif
if (*status & (UART_LSR_BI)) {
#ifdef SERIAL_DEBUG_INTR
printk("handling break....");
#endif
*tty->flip.flag_buf_ptr = TTY_BREAK;
} else if (*status & UART_LSR_PE)
*tty->flip.flag_buf_ptr = TTY_PARITY;
else if (*status & UART_LSR_FE)
*tty->flip.flag_buf_ptr = TTY_FRAME;
}
#if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
if (break_pressed && info->line == sercons.index) {
if (ch != 0 &&
time_before(jiffies, break_pressed + HZ*5)) {
handle_sysrq(ch, regs, NULL, NULL);
break_pressed = 0;
goto ignore_char;
}
break_pressed = 0;
}
#endif
if ((*status & info->ignore_status_mask) == 0) {
tty->flip.flag_buf_ptr++;
tty->flip.char_buf_ptr++;
tty->flip.count++;
}
if ((*status & UART_LSR_OE) &&
(tty->flip.count < TTY_FLIPBUF_SIZE)) {
/*
* Overrun is special, since it's reported
* immediately, and doesn't affect the current
* character
*/
*tty->flip.flag_buf_ptr = TTY_OVERRUN;
tty->flip.count++;
tty->flip.flag_buf_ptr++;
tty->flip.char_buf_ptr++;
}
#if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
ignore_char:
#endif
*status = serial_inp(info, UART_LSR);
} while ((*status & UART_LSR_DR) && (max_count-- > 0));
#if (LINUX_VERSION_CODE > 131394) /* 2.1.66 */
tty_flip_buffer_push(tty);
#else
queue_task_irq_off(&tty->flip.tqueue, &tq_timer);
#endif
}
static _INLINE_ void transmit_chars(struct async_struct *info, int *intr_done)
{
int count;
if (info->x_char) {
serial_outp(info, UART_TX, info->x_char);
info->state->icount.tx++;
info->x_char = 0;
if (intr_done)
*intr_done = 0;
return;
}
if (info->xmit.head == info->xmit.tail
|| info->tty->stopped
|| info->tty->hw_stopped) {
info->IER &= ~UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
return;
}
count = info->xmit_fifo_size;
do {
serial_out(info, UART_TX, info->xmit.buf[info->xmit.tail]);
info->xmit.tail = (info->xmit.tail + 1) & (SERIAL_XMIT_SIZE-1);
info->state->icount.tx++;
if (info->xmit.head == info->xmit.tail)
break;
} while (--count > 0);
if (CIRC_CNT(info->xmit.head,
info->xmit.tail,
SERIAL_XMIT_SIZE) < WAKEUP_CHARS)
rs_sched_event(info, RS_EVENT_WRITE_WAKEUP);
#ifdef SERIAL_DEBUG_INTR
printk("THRE...");
#endif
if (intr_done)
*intr_done = 0;
if (info->xmit.head == info->xmit.tail) {
info->IER &= ~UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
}
}
static _INLINE_ void check_modem_status(struct async_struct *info)
{
int status;
struct async_icount *icount;
status = serial_in(info, UART_MSR);
if (status & UART_MSR_ANY_DELTA) {
icount = &info->state->icount;
/* update input line counters */
if (status & UART_MSR_TERI)
icount->rng++;
if (status & UART_MSR_DDSR)
icount->dsr++;
if (status & UART_MSR_DDCD) {
icount->dcd++;
#ifdef CONFIG_HARD_PPS
if ((info->flags & ASYNC_HARDPPS_CD) &&
(status & UART_MSR_DCD))
hardpps();
#endif
}
if (status & UART_MSR_DCTS)
icount->cts++;
wake_up_interruptible(&info->delta_msr_wait);
}
if ((info->flags & ASYNC_CHECK_CD) && (status & UART_MSR_DDCD)) {
#if (defined(SERIAL_DEBUG_OPEN) || defined(SERIAL_DEBUG_INTR))
printk("ttys%d CD now %s...", info->line,
(status & UART_MSR_DCD) ? "on" : "off");
#endif
if (status & UART_MSR_DCD)
wake_up_interruptible(&info->open_wait);
else if (!((info->flags & ASYNC_CALLOUT_ACTIVE) &&
(info->flags & ASYNC_CALLOUT_NOHUP))) {
#ifdef SERIAL_DEBUG_OPEN
printk("doing serial hangup...");
#endif
if (info->tty)
tty_hangup(info->tty);
}
}
if (info->flags & ASYNC_CTS_FLOW) {
if (info->tty->hw_stopped) {
if (status & UART_MSR_CTS) {
#if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW))
printk("CTS tx start...");
#endif
info->tty->hw_stopped = 0;
info->IER |= UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
rs_sched_event(info, RS_EVENT_WRITE_WAKEUP);
return;
}
} else {
if (!(status & UART_MSR_CTS)) {
#if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW))
printk("CTS tx stop...");
#endif
info->tty->hw_stopped = 1;
info->IER &= ~UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
}
}
}
}
#ifdef CONFIG_SERIAL_SHARE_IRQ
/*
* This is the serial driver's generic interrupt routine
*/
static void rs_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
int status, iir;
struct async_struct * info;
int pass_counter = 0;
struct async_struct *end_mark = 0;
#ifdef CONFIG_SERIAL_MULTIPORT
int first_multi = 0;
struct rs_multiport_struct *multi;
#endif
#ifdef SERIAL_DEBUG_INTR
printk("rs_interrupt(%d)...", irq);
#endif
info = IRQ_ports[irq];
if (!info)
return;
#ifdef CONFIG_SERIAL_MULTIPORT
multi = &rs_multiport[irq];
if (multi->port_monitor)
first_multi = inb(multi->port_monitor);
#endif
do {
if (!info->tty ||
((iir=serial_in(info, UART_IIR)) & UART_IIR_NO_INT)) {
if (!end_mark)
end_mark = info;
goto next;
}
#ifdef SERIAL_DEBUG_INTR
printk("IIR = %x...", serial_in(info, UART_IIR));
#endif
end_mark = 0;
info->last_active = jiffies;
status = serial_inp(info, UART_LSR);
#ifdef SERIAL_DEBUG_INTR
printk("status = %x...", status);
#endif
if (status & UART_LSR_DR)
receive_chars(info, &status, regs);
check_modem_status(info);
#ifdef CONFIG_MELAN
if ((status & UART_LSR_THRE) ||
/* for buggy ELAN processors */
((iir & UART_IIR_ID) == UART_IIR_THRI))
transmit_chars(info, 0);
#else
if (status & UART_LSR_THRE)
transmit_chars(info, 0);
#endif
next:
info = info->next_port;
if (!info) {
info = IRQ_ports[irq];
if (pass_counter++ > RS_ISR_PASS_LIMIT) {
#if 0
printk("rs loop break\n");
#endif
break; /* Prevent infinite loops */
}
continue;
}
} while (end_mark != info);
#ifdef CONFIG_SERIAL_MULTIPORT
if (multi->port_monitor)
printk("rs port monitor (normal) irq %d: 0x%x, 0x%x\n",
info->state->irq, first_multi,
inb(multi->port_monitor));
#endif
#ifdef SERIAL_DEBUG_INTR
printk("end.\n");
#endif
}
#endif /* #ifdef CONFIG_SERIAL_SHARE_IRQ */
/*
* This is the serial driver's interrupt routine for a single port
*/
static void rs_interrupt_single(int irq, void *dev_id, struct pt_regs * regs)
{
int status, iir;
int pass_counter = 0;
struct async_struct * info;
#ifdef CONFIG_SERIAL_MULTIPORT
int first_multi = 0;
struct rs_multiport_struct *multi;
#endif
#ifdef SERIAL_DEBUG_INTR
printk("rs_interrupt_single(%d)...", irq);
#endif
info = IRQ_ports[irq];
if (!info || !info->tty)
return;
#ifdef CONFIG_SERIAL_MULTIPORT
multi = &rs_multiport[irq];
if (multi->port_monitor)
first_multi = inb(multi->port_monitor);
#endif
iir = serial_in(info, UART_IIR);
do {
status = serial_inp(info, UART_LSR);
#ifdef SERIAL_DEBUG_INTR
printk("status = %x...", status);
#endif
if (status & UART_LSR_DR)
receive_chars(info, &status, regs);
check_modem_status(info);
#ifdef CONFIG_MELAN
if ((status & UART_LSR_THRE) ||
/* For buggy ELAN processors */
((iir & UART_IIR_ID) == UART_IIR_THRI))
transmit_chars(info, 0);
#else
if (status & UART_LSR_THRE)
transmit_chars(info, 0);
#endif
if (pass_counter++ > RS_ISR_PASS_LIMIT) {
#ifdef SERIAL_DEBUG_INTR
printk("rs_single loop break.\n");
#endif
break;
}
iir = serial_in(info, UART_IIR);
#ifdef SERIAL_DEBUG_INTR
printk("IIR = %x...", iir);
#endif
} while ((iir & UART_IIR_NO_INT) == 0);
info->last_active = jiffies;
#ifdef CONFIG_SERIAL_MULTIPORT
if (multi->port_monitor)
printk("rs port monitor (single) irq %d: 0x%x, 0x%x\n",
info->state->irq, first_multi,
inb(multi->port_monitor));
#endif
#ifdef SERIAL_DEBUG_INTR
printk("end.\n");
#endif
}
#ifdef CONFIG_SERIAL_MULTIPORT
/*
* This is the serial driver's for multiport boards
*/
static void rs_interrupt_multi(int irq, void *dev_id, struct pt_regs * regs)
{
int status;
struct async_struct * info;
int pass_counter = 0;
int first_multi= 0;
struct rs_multiport_struct *multi;
#ifdef SERIAL_DEBUG_INTR
printk("rs_interrupt_multi(%d)...", irq);
#endif
info = IRQ_ports[irq];
if (!info)
return;
multi = &rs_multiport[irq];
if (!multi->port1) {
/* Should never happen */
printk("rs_interrupt_multi: NULL port1!\n");
return;
}
if (multi->port_monitor)
first_multi = inb(multi->port_monitor);
while (1) {
if (!info->tty ||
(serial_in(info, UART_IIR) & UART_IIR_NO_INT))
goto next;
info->last_active = jiffies;
status = serial_inp(info, UART_LSR);
#ifdef SERIAL_DEBUG_INTR
printk("status = %x...", status);
#endif
if (status & UART_LSR_DR)
receive_chars(info, &status, regs);
check_modem_status(info);
if (status & UART_LSR_THRE)
transmit_chars(info, 0);
next:
info = info->next_port;
if (info)
continue;
info = IRQ_ports[irq];
/*
* The user was a bonehead, and misconfigured their
* multiport info. Rather than lock up the kernel
* in an infinite loop, if we loop too many times,
* print a message and break out of the loop.
*/
if (pass_counter++ > RS_ISR_PASS_LIMIT) {
printk("Misconfigured multiport serial info "
"for irq %d. Breaking out irq loop\n", irq);
break;
}
if (multi->port_monitor)
printk("rs port monitor irq %d: 0x%x, 0x%x\n",
info->state->irq, first_multi,
inb(multi->port_monitor));
if ((inb(multi->port1) & multi->mask1) != multi->match1)
continue;
if (!multi->port2)
break;
if ((inb(multi->port2) & multi->mask2) != multi->match2)
continue;
if (!multi->port3)
break;
if ((inb(multi->port3) & multi->mask3) != multi->match3)
continue;
if (!multi->port4)
break;
if ((inb(multi->port4) & multi->mask4) != multi->match4)
continue;
break;
}
#ifdef SERIAL_DEBUG_INTR
printk("end.\n");
#endif
}
#endif
/*
* -------------------------------------------------------------------
* Here ends the serial interrupt routines.
* -------------------------------------------------------------------
*/
/*
* This routine is used to handle the "bottom half" processing for the
* serial driver, known also the "software interrupt" processing.
* This processing is done at the kernel interrupt level, after the
* rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This
* is where time-consuming activities which can not be done in the
* interrupt driver proper are done; the interrupt driver schedules
* them using rs_sched_event(), and they get done here.
*/
static void do_serial_bh(void)
{
run_task_queue(&tq_serial);
}
static void do_softint(void *private_)
{
struct async_struct *info = (struct async_struct *) private_;
struct tty_struct *tty;
tty = info->tty;
if (!tty)
return;
if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) {
tty_wakeup(tty);
#ifdef SERIAL_HAVE_POLL_WAIT
wake_up_interruptible(&tty->poll_wait);
#endif
}
}
/*
* This subroutine is called when the RS_TIMER goes off. It is used
* by the serial driver to handle ports that do not have an interrupt
* (irq=0). This doesn't work very well for 16450's, but gives barely
* passable results for a 16550A. (Although at the expense of much
* CPU overhead).
*/
static void rs_timer(unsigned long dummy)
{
static unsigned long last_strobe;
struct async_struct *info;
unsigned int i;
unsigned long flags;
if ((jiffies - last_strobe) >= RS_STROBE_TIME) {
for (i=0; i < NR_IRQS; i++) {
info = IRQ_ports[i];
if (!info)
continue;
save_flags(flags); cli();
#ifdef CONFIG_SERIAL_SHARE_IRQ
if (info->next_port) {
do {
serial_out(info, UART_IER, 0);
info->IER |= UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
info = info->next_port;
} while (info);
#ifdef CONFIG_SERIAL_MULTIPORT
if (rs_multiport[i].port1)
rs_interrupt_multi(i, NULL, NULL);
else
#endif
rs_interrupt(i, NULL, NULL);
} else
#endif /* CONFIG_SERIAL_SHARE_IRQ */
rs_interrupt_single(i, NULL, NULL);
restore_flags(flags);
}
}
last_strobe = jiffies;
mod_timer(&serial_timer, jiffies + RS_STROBE_TIME);
if (IRQ_ports[0]) {
save_flags(flags); cli();
#ifdef CONFIG_SERIAL_SHARE_IRQ
rs_interrupt(0, NULL, NULL);
#else
rs_interrupt_single(0, NULL, NULL);
#endif
restore_flags(flags);
mod_timer(&serial_timer, jiffies + IRQ_timeout[0]);
}
}
/*
* ---------------------------------------------------------------
* Low level utility subroutines for the serial driver: routines to
* figure out the appropriate timeout for an interrupt chain, routines
* to initialize and startup a serial port, and routines to shutdown a
* serial port. Useful stuff like that.
* ---------------------------------------------------------------
*/
/*
* This routine figures out the correct timeout for a particular IRQ.
* It uses the smallest timeout of all of the serial ports in a
* particular interrupt chain. Now only used for IRQ 0....
*/
static void figure_IRQ_timeout(int irq)
{
struct async_struct *info;
int timeout = 60*HZ; /* 60 seconds === a long time :-) */
info = IRQ_ports[irq];
if (!info) {
IRQ_timeout[irq] = 60*HZ;
return;
}
while (info) {
if (info->timeout < timeout)
timeout = info->timeout;
info = info->next_port;
}
if (!irq)
timeout = timeout / 2;
IRQ_timeout[irq] = (timeout > 3) ? timeout-2 : 1;
}
#ifdef CONFIG_SERIAL_RSA
/* Attempts to turn on the RSA FIFO. Returns zero on failure */
static int enable_rsa(struct async_struct *info)
{
unsigned char mode;
int result;
unsigned long flags;
save_flags(flags); cli();
mode = serial_inp(info, UART_RSA_MSR);
result = mode & UART_RSA_MSR_FIFO;
if (!result) {
serial_outp(info, UART_RSA_MSR, mode | UART_RSA_MSR_FIFO);
mode = serial_inp(info, UART_RSA_MSR);
result = mode & UART_RSA_MSR_FIFO;
}
restore_flags(flags);
return result;
}
/* Attempts to turn off the RSA FIFO. Returns zero on failure */
static int disable_rsa(struct async_struct *info)
{
unsigned char mode;
int result;
unsigned long flags;
save_flags(flags); cli();
mode = serial_inp(info, UART_RSA_MSR);
result = !(mode & UART_RSA_MSR_FIFO);
if (!result) {
serial_outp(info, UART_RSA_MSR, mode & ~UART_RSA_MSR_FIFO);
mode = serial_inp(info, UART_RSA_MSR);
result = !(mode & UART_RSA_MSR_FIFO);
}
restore_flags(flags);
return result;
}
#endif /* CONFIG_SERIAL_RSA */
static int startup(struct async_struct * info)
{
unsigned long flags;
int retval=0;
void (*handler)(int, void *, struct pt_regs *);
struct serial_state *state= info->state;
unsigned long page;
#ifdef CONFIG_SERIAL_MANY_PORTS
unsigned short ICP;
#endif
page = get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
save_flags(flags); cli();
if (info->flags & ASYNC_INITIALIZED) {
free_page(page);
goto errout;
}
if (!CONFIGURED_SERIAL_PORT(state) || !state->type) {
if (info->tty)
set_bit(TTY_IO_ERROR, &info->tty->flags);
free_page(page);
goto errout;
}
if (info->xmit.buf)
free_page(page);
else
info->xmit.buf = (unsigned char *) page;
#ifdef SERIAL_DEBUG_OPEN
printk("starting up ttys%d (irq %d)...", info->line, state->irq);
#endif
if (uart_config[state->type].flags & UART_STARTECH) {
/* Wake up UART */
serial_outp(info, UART_LCR, 0xBF);
serial_outp(info, UART_EFR, UART_EFR_ECB);
/*
* Turn off LCR == 0xBF so we actually set the IER
* register on the XR16C850
*/
serial_outp(info, UART_LCR, 0);
serial_outp(info, UART_IER, 0);
/*
* Now reset LCR so we can turn off the ECB bit
*/
serial_outp(info, UART_LCR, 0xBF);
serial_outp(info, UART_EFR, 0);
/*
* For a XR16C850, we need to set the trigger levels
*/
if (state->type == PORT_16850) {
serial_outp(info, UART_FCTR, UART_FCTR_TRGD |
UART_FCTR_RX);
serial_outp(info, UART_TRG, UART_TRG_96);
serial_outp(info, UART_FCTR, UART_FCTR_TRGD |
UART_FCTR_TX);
serial_outp(info, UART_TRG, UART_TRG_96);
}
serial_outp(info, UART_LCR, 0);
}
if (state->type == PORT_16750) {
/* Wake up UART */
serial_outp(info, UART_IER, 0);
}
if (state->type == PORT_16C950) {
/* Wake up and initialize UART */
info->ACR = 0;
serial_outp(info, UART_LCR, 0xBF);
serial_outp(info, UART_EFR, UART_EFR_ECB);
serial_outp(info, UART_IER, 0);
serial_outp(info, UART_LCR, 0);
serial_icr_write(info, UART_CSR, 0); /* Reset the UART */
serial_outp(info, UART_LCR, 0xBF);
serial_outp(info, UART_EFR, UART_EFR_ECB);
serial_outp(info, UART_LCR, 0);
}
#ifdef CONFIG_SERIAL_RSA
/*
* If this is an RSA port, see if we can kick it up to the
* higher speed clock.
*/
if (state->type == PORT_RSA) {
if (state->baud_base != SERIAL_RSA_BAUD_BASE &&
enable_rsa(info))
state->baud_base = SERIAL_RSA_BAUD_BASE;
if (state->baud_base == SERIAL_RSA_BAUD_BASE)
serial_outp(info, UART_RSA_FRR, 0);
}
#endif
/*
* Clear the FIFO buffers and disable them
* (they will be reenabled in change_speed())
*/
if (uart_config[state->type].flags & UART_CLEAR_FIFO) {
serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO);
serial_outp(info, UART_FCR, (UART_FCR_ENABLE_FIFO |
UART_FCR_CLEAR_RCVR |
UART_FCR_CLEAR_XMIT));
serial_outp(info, UART_FCR, 0);
}
/*
* Clear the interrupt registers.
*/
(void) serial_inp(info, UART_LSR);
(void) serial_inp(info, UART_RX);
(void) serial_inp(info, UART_IIR);
(void) serial_inp(info, UART_MSR);
/*
* At this point there's no way the LSR could still be 0xFF;
* if it is, then bail out, because there's likely no UART
* here.
*/
if (!(info->flags & ASYNC_BUGGY_UART) &&
(serial_inp(info, UART_LSR) == 0xff)) {
printk("ttyS%d: LSR safety check engaged!\n", state->line);
if (capable(CAP_SYS_ADMIN)) {
if (info->tty)
set_bit(TTY_IO_ERROR, &info->tty->flags);
} else
retval = -ENODEV;
goto errout;
}
/*
* Allocate the IRQ if necessary
*/
if (state->irq && (!IRQ_ports[state->irq] ||
!IRQ_ports[state->irq]->next_port)) {
if (IRQ_ports[state->irq]) {
#ifdef CONFIG_SERIAL_SHARE_IRQ
free_irq(state->irq, &IRQ_ports[state->irq]);
#ifdef CONFIG_SERIAL_MULTIPORT
if (rs_multiport[state->irq].port1)
handler = rs_interrupt_multi;
else
#endif
handler = rs_interrupt;
#else
retval = -EBUSY;
goto errout;
#endif /* CONFIG_SERIAL_SHARE_IRQ */
} else
handler = rs_interrupt_single;
retval = request_irq(state->irq, handler, SA_SHIRQ,
"serial", &IRQ_ports[state->irq]);
if (retval) {
if (capable(CAP_SYS_ADMIN)) {
if (info->tty)
set_bit(TTY_IO_ERROR,
&info->tty->flags);
retval = 0;
}
goto errout;
}
}
/*
* Insert serial port into IRQ chain.
*/
info->prev_port = 0;
info->next_port = IRQ_ports[state->irq];
if (info->next_port)
info->next_port->prev_port = info;
IRQ_ports[state->irq] = info;
figure_IRQ_timeout(state->irq);
/*
* Now, initialize the UART
*/
serial_outp(info, UART_LCR, UART_LCR_WLEN8); /* reset DLAB */
info->MCR = 0;
if (info->tty->termios->c_cflag & CBAUD)
info->MCR = UART_MCR_DTR | UART_MCR_RTS;
#ifdef CONFIG_SERIAL_MANY_PORTS
if (info->flags & ASYNC_FOURPORT) {
if (state->irq == 0)
info->MCR |= UART_MCR_OUT1;
} else
#endif
{
if (state->irq != 0)
info->MCR |= UART_MCR_OUT2;
}
info->MCR |= ALPHA_KLUDGE_MCR; /* Don't ask */
serial_outp(info, UART_MCR, info->MCR);
/*
* Finally, enable interrupts
*/
info->IER = UART_IER_MSI | UART_IER_RLSI | UART_IER_RDI;
serial_outp(info, UART_IER, info->IER); /* enable interrupts */
#ifdef CONFIG_SERIAL_MANY_PORTS
if (info->flags & ASYNC_FOURPORT) {
/* Enable interrupts on the AST Fourport board */
ICP = (info->port & 0xFE0) | 0x01F;
outb_p(0x80, ICP);
(void) inb_p(ICP);
}
#endif
/*
* And clear the interrupt registers again for luck.
*/
(void)serial_inp(info, UART_LSR);
(void)serial_inp(info, UART_RX);
(void)serial_inp(info, UART_IIR);
(void)serial_inp(info, UART_MSR);
if (info->tty)
clear_bit(TTY_IO_ERROR, &info->tty->flags);
info->xmit.head = info->xmit.tail = 0;
/*
* Set up serial timers...
*/
mod_timer(&serial_timer, jiffies + 2*HZ/100);
/*
* Set up the tty->alt_speed kludge
*/
#if (LINUX_VERSION_CODE >= 131394) /* Linux 2.1.66 */
if (info->tty) {
if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
info->tty->alt_speed = 57600;
if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
info->tty->alt_speed = 115200;
if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
info->tty->alt_speed = 230400;
if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
info->tty->alt_speed = 460800;
}
#endif
/*
* and set the speed of the serial port
*/
change_speed(info, 0);
info->flags |= ASYNC_INITIALIZED;
restore_flags(flags);
return 0;
errout:
restore_flags(flags);
return retval;
}
/*
* This routine will shutdown a serial port; interrupts are disabled, and
* DTR is dropped if the hangup on close termio flag is on.
*/
static void shutdown(struct async_struct * info)
{
unsigned long flags;
struct serial_state *state;
int retval;
if (!(info->flags & ASYNC_INITIALIZED))
return;
state = info->state;
#ifdef SERIAL_DEBUG_OPEN
printk("Shutting down serial port %d (irq %d)....", info->line,
state->irq);
#endif
save_flags(flags); cli(); /* Disable interrupts */
/*
* clear delta_msr_wait queue to avoid mem leaks: we may free the irq
* here so the queue might never be waken up
*/
wake_up_interruptible(&info->delta_msr_wait);
/*
* First unlink the serial port from the IRQ chain...
*/
if (info->next_port)
info->next_port->prev_port = info->prev_port;
if (info->prev_port)
info->prev_port->next_port = info->next_port;
else
IRQ_ports[state->irq] = info->next_port;
figure_IRQ_timeout(state->irq);
/*
* Free the IRQ, if necessary
*/
if (state->irq && (!IRQ_ports[state->irq] ||
!IRQ_ports[state->irq]->next_port)) {
if (IRQ_ports[state->irq]) {
free_irq(state->irq, &IRQ_ports[state->irq]);
retval = request_irq(state->irq, rs_interrupt_single,
SA_SHIRQ, "serial",
&IRQ_ports[state->irq]);
if (retval)
printk("serial shutdown: request_irq: error %d"
" Couldn't reacquire IRQ.\n", retval);
} else
free_irq(state->irq, &IRQ_ports[state->irq]);
}
if (info->xmit.buf) {
unsigned long pg = (unsigned long) info->xmit.buf;
info->xmit.buf = 0;
free_page(pg);
}
info->IER = 0;
serial_outp(info, UART_IER, 0x00); /* disable all intrs */
#ifdef CONFIG_SERIAL_MANY_PORTS
if (info->flags & ASYNC_FOURPORT) {
/* reset interrupts on the AST Fourport board */
(void) inb((info->port & 0xFE0) | 0x01F);
info->MCR |= UART_MCR_OUT1;
} else
#endif
info->MCR &= ~UART_MCR_OUT2;
info->MCR |= ALPHA_KLUDGE_MCR; /* Don't ask */
/* disable break condition */
serial_out(info, UART_LCR, serial_inp(info, UART_LCR) & ~UART_LCR_SBC);
if (!info->tty || (info->tty->termios->c_cflag & HUPCL))
info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS);
serial_outp(info, UART_MCR, info->MCR);
/* disable FIFO's */
serial_outp(info, UART_FCR, (UART_FCR_ENABLE_FIFO |
UART_FCR_CLEAR_RCVR |
UART_FCR_CLEAR_XMIT));
serial_outp(info, UART_FCR, 0);
#ifdef CONFIG_SERIAL_RSA
/*
* Reset the RSA board back to 115kbps compat mode.
*/
if ((state->type == PORT_RSA) &&
(state->baud_base == SERIAL_RSA_BAUD_BASE &&
disable_rsa(info)))
state->baud_base = SERIAL_RSA_BAUD_BASE_LO;
#endif
(void)serial_in(info, UART_RX); /* read data port to reset things */
if (info->tty)
set_bit(TTY_IO_ERROR, &info->tty->flags);
if (uart_config[info->state->type].flags & UART_STARTECH) {
/* Arrange to enter sleep mode */
serial_outp(info, UART_LCR, 0xBF);
serial_outp(info, UART_EFR, UART_EFR_ECB);
serial_outp(info, UART_LCR, 0);
serial_outp(info, UART_IER, UART_IERX_SLEEP);
serial_outp(info, UART_LCR, 0xBF);
serial_outp(info, UART_EFR, 0);
serial_outp(info, UART_LCR, 0);
}
if (info->state->type == PORT_16750) {
/* Arrange to enter sleep mode */
serial_outp(info, UART_IER, UART_IERX_SLEEP);
}
info->flags &= ~ASYNC_INITIALIZED;
restore_flags(flags);
}
#if (LINUX_VERSION_CODE < 131394) /* Linux 2.1.66 */
static int baud_table[] = {
0, 50, 75, 110, 134, 150, 200, 300,
600, 1200, 1800, 2400, 4800, 9600, 19200,
38400, 57600, 115200, 230400, 460800, 0 };
static int tty_get_baud_rate(struct tty_struct *tty)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
unsigned int cflag, i;
cflag = tty->termios->c_cflag;
i = cflag & CBAUD;
if (i & CBAUDEX) {
i &= ~CBAUDEX;
if (i < 1 || i > 2)
tty->termios->c_cflag &= ~CBAUDEX;
else
i += 15;
}
if (i == 15) {
if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
i += 1;
if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
i += 2;
}
return baud_table[i];
}
#endif
/*
* This routine is called to set the UART divisor registers to match
* the specified baud rate for a serial port.
*/
static void change_speed(struct async_struct *info,
struct termios *old_termios)
{
int quot = 0, baud_base, baud;
unsigned cflag, cval, fcr = 0;
int bits;
unsigned long flags;
if (!info->tty || !info->tty->termios)
return;
cflag = info->tty->termios->c_cflag;
if (!CONFIGURED_SERIAL_PORT(info))
return;
/* byte size and parity */
switch (cflag & CSIZE) {
case CS5: cval = 0x00; bits = 7; break;
case CS6: cval = 0x01; bits = 8; break;
case CS7: cval = 0x02; bits = 9; break;
case CS8: cval = 0x03; bits = 10; break;
/* Never happens, but GCC is too dumb to figure it out */
default: cval = 0x00; bits = 7; break;
}
if (cflag & CSTOPB) {
cval |= 0x04;
bits++;
}
if (cflag & PARENB) {
cval |= UART_LCR_PARITY;
bits++;
}
if (!(cflag & PARODD))
cval |= UART_LCR_EPAR;
#ifdef CMSPAR
if (cflag & CMSPAR)
cval |= UART_LCR_SPAR;
#endif
/* Determine divisor based on baud rate */
baud = tty_get_baud_rate(info->tty);
if (!baud)
baud = 9600; /* B0 transition handled in rs_set_termios */
#ifdef CONFIG_SERIAL_RSA
if ((info->state->type == PORT_RSA) &&
(info->state->baud_base != SERIAL_RSA_BAUD_BASE) &&
enable_rsa(info))
info->state->baud_base = SERIAL_RSA_BAUD_BASE;
#endif
baud_base = info->state->baud_base;
if (info->state->type == PORT_16C950) {
if (baud <= baud_base)
serial_icr_write(info, UART_TCR, 0);
else if (baud <= 2*baud_base) {
serial_icr_write(info, UART_TCR, 0x8);
baud_base = baud_base * 2;
} else if (baud <= 4*baud_base) {
serial_icr_write(info, UART_TCR, 0x4);
baud_base = baud_base * 4;
} else
serial_icr_write(info, UART_TCR, 0);
}
if (baud == 38400 &&
((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST))
quot = info->state->custom_divisor;
else {
if (baud == 134)
/* Special case since 134 is really 134.5 */
quot = (2*baud_base / 269);
else if (baud)
quot = baud_base / baud;
}
/* If the quotient is zero refuse the change */
if (!quot && old_termios) {
info->tty->termios->c_cflag &= ~CBAUD;
info->tty->termios->c_cflag |= (old_termios->c_cflag & CBAUD);
baud = tty_get_baud_rate(info->tty);
if (!baud)
baud = 9600;
if (baud == 38400 &&
((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST))
quot = info->state->custom_divisor;
else {
if (baud == 134)
/* Special case since 134 is really 134.5 */
quot = (2*baud_base / 269);
else if (baud)
quot = baud_base / baud;
}
}
/* As a last resort, if the quotient is zero, default to 9600 bps */
if (!quot)
quot = baud_base / 9600;
/*
* Work around a bug in the Oxford Semiconductor 952 rev B
* chip which causes it to seriously miscalculate baud rates
* when DLL is 0.
*/
if (((quot & 0xFF) == 0) && (info->state->type == PORT_16C950) &&
(info->state->revision == 0x5201))
quot++;
info->quot = quot;
info->timeout = ((info->xmit_fifo_size*HZ*bits*quot) / baud_base);
info->timeout += HZ/50; /* Add .02 seconds of slop */
/* Set up FIFO's */
if (uart_config[info->state->type].flags & UART_USE_FIFO) {
if ((info->state->baud_base / quot) < 2400)
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_1;
#ifdef CONFIG_SERIAL_RSA
else if (info->state->type == PORT_RSA)
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_14;
#endif
else
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_8;
}
if (info->state->type == PORT_16750)
fcr |= UART_FCR7_64BYTE;
/* CTS flow control flag and modem status interrupts */
info->IER &= ~UART_IER_MSI;
if (info->flags & ASYNC_HARDPPS_CD)
info->IER |= UART_IER_MSI;
if (cflag & CRTSCTS) {
info->flags |= ASYNC_CTS_FLOW;
info->IER |= UART_IER_MSI;
} else
info->flags &= ~ASYNC_CTS_FLOW;
if (cflag & CLOCAL)
info->flags &= ~ASYNC_CHECK_CD;
else {
info->flags |= ASYNC_CHECK_CD;
info->IER |= UART_IER_MSI;
}
serial_out(info, UART_IER, info->IER);
/*
* Set up parity check flag
*/
#define RELEVANT_IFLAG(iflag) (iflag & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK))
info->read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR;
if (I_INPCK(info->tty))
info->read_status_mask |= UART_LSR_FE | UART_LSR_PE;
if (I_BRKINT(info->tty) || I_PARMRK(info->tty))
info->read_status_mask |= UART_LSR_BI;
/*
* Characters to ignore
*/
info->ignore_status_mask = 0;
if (I_IGNPAR(info->tty))
info->ignore_status_mask |= UART_LSR_PE | UART_LSR_FE;
if (I_IGNBRK(info->tty)) {
info->ignore_status_mask |= UART_LSR_BI;
/*
* If we're ignore parity and break indicators, ignore
* overruns too. (For real raw support).
*/
if (I_IGNPAR(info->tty))
info->ignore_status_mask |= UART_LSR_OE;
}
/*
* !!! ignore all characters if CREAD is not set
*/
if ((cflag & CREAD) == 0)
info->ignore_status_mask |= UART_LSR_DR;
save_flags(flags); cli();
if (uart_config[info->state->type].flags & UART_STARTECH) {
serial_outp(info, UART_LCR, 0xBF);
serial_outp(info, UART_EFR,
(cflag & CRTSCTS) ? UART_EFR_CTS : 0);
}
serial_outp(info, UART_LCR, cval | UART_LCR_DLAB); /* set DLAB */
serial_outp(info, UART_DLL, quot & 0xff); /* LS of divisor */
serial_outp(info, UART_DLM, quot >> 8); /* MS of divisor */
if (info->state->type == PORT_16750)
serial_outp(info, UART_FCR, fcr); /* set fcr */
serial_outp(info, UART_LCR, cval); /* reset DLAB */
info->LCR = cval; /* Save LCR */
if (info->state->type != PORT_16750) {
if (fcr & UART_FCR_ENABLE_FIFO) {
/* emulated UARTs (Lucent Venus 167x) need two steps */
serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO);
}
serial_outp(info, UART_FCR, fcr); /* set fcr */
}
restore_flags(flags);
}
static void rs_put_char(struct tty_struct *tty, unsigned char ch)
{
struct async_struct *info;
unsigned long flags;
if (!tty)
return;
info = (struct async_struct *)tty->driver_data;
if (serial_paranoia_check(info, tty->device, "rs_put_char"))
return;
if (!info->xmit.buf)
return;
save_flags(flags); cli();
if (CIRC_SPACE(info->xmit.head,
info->xmit.tail,
SERIAL_XMIT_SIZE) == 0) {
restore_flags(flags);
return;
}
info->xmit.buf[info->xmit.head] = ch;
info->xmit.head = (info->xmit.head + 1) & (SERIAL_XMIT_SIZE-1);
restore_flags(flags);
}
static void rs_flush_chars(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "rs_flush_chars"))
return;
if (info->xmit.head == info->xmit.tail
|| tty->stopped
|| tty->hw_stopped
|| !info->xmit.buf)
return;
save_flags(flags); cli();
info->IER |= UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
restore_flags(flags);
}
static int rs_write(struct tty_struct * tty, int from_user,
const unsigned char *buf, int count)
{
int c, ret = 0;
struct async_struct *info;
unsigned long flags;
if (!tty)
return 0;
info = (struct async_struct *)tty->driver_data;
if (serial_paranoia_check(info, tty->device, "rs_write"))
return 0;
if (!info->xmit.buf || !tmp_buf)
return 0;
save_flags(flags);
if (from_user) {
down(&tmp_buf_sem);
while (1) {
int c1;
c = CIRC_SPACE_TO_END(info->xmit.head,
info->xmit.tail,
SERIAL_XMIT_SIZE);
if (count < c)
c = count;
if (c <= 0)
break;
c -= copy_from_user(tmp_buf, buf, c);
if (!c) {
if (!ret)
ret = -EFAULT;
break;
}
cli();
c1 = CIRC_SPACE_TO_END(info->xmit.head,
info->xmit.tail,
SERIAL_XMIT_SIZE);
if (c1 < c)
c = c1;
memcpy(info->xmit.buf + info->xmit.head, tmp_buf, c);
info->xmit.head = ((info->xmit.head + c) &
(SERIAL_XMIT_SIZE-1));
restore_flags(flags);
buf += c;
count -= c;
ret += c;
}
up(&tmp_buf_sem);
} else {
cli();
while (1) {
c = CIRC_SPACE_TO_END(info->xmit.head,
info->xmit.tail,
SERIAL_XMIT_SIZE);
if (count < c)
c = count;
if (c <= 0) {
break;
}
memcpy(info->xmit.buf + info->xmit.head, buf, c);
info->xmit.head = ((info->xmit.head + c) &
(SERIAL_XMIT_SIZE-1));
buf += c;
count -= c;
ret += c;
}
restore_flags(flags);
}
if (info->xmit.head != info->xmit.tail
&& !tty->stopped
&& !tty->hw_stopped
&& !(info->IER & UART_IER_THRI)) {
info->IER |= UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
}
return ret;
}
static int rs_write_room(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
if (serial_paranoia_check(info, tty->device, "rs_write_room"))
return 0;
return CIRC_SPACE(info->xmit.head, info->xmit.tail, SERIAL_XMIT_SIZE);
}
static int rs_chars_in_buffer(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
if (serial_paranoia_check(info, tty->device, "rs_chars_in_buffer"))
return 0;
return CIRC_CNT(info->xmit.head, info->xmit.tail, SERIAL_XMIT_SIZE);
}
static void rs_flush_buffer(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "rs_flush_buffer"))
return;
save_flags(flags); cli();
info->xmit.head = info->xmit.tail = 0;
restore_flags(flags);
#ifdef SERIAL_HAVE_POLL_WAIT
wake_up_interruptible(&tty->poll_wait);
#endif
tty_wakeup(tty);
}
/*
* This function is used to send a high-priority XON/XOFF character to
* the device
*/
static void rs_send_xchar(struct tty_struct *tty, char ch)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
if (serial_paranoia_check(info, tty->device, "rs_send_char"))
return;
info->x_char = ch;
if (ch) {
/* Make sure transmit interrupts are on */
info->IER |= UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
}
}
/*
* ------------------------------------------------------------
* rs_throttle()
*
* This routine is called by the upper-layer tty layer to signal that
* incoming characters should be throttled.
* ------------------------------------------------------------
*/
static void rs_throttle(struct tty_struct * tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
#ifdef SERIAL_DEBUG_THROTTLE
char buf[64];
printk("throttle %s: %d....\n", tty_name(tty, buf),
tty->ldisc.chars_in_buffer(tty));
#endif
if (serial_paranoia_check(info, tty->device, "rs_throttle"))
return;
if (I_IXOFF(tty))
rs_send_xchar(tty, STOP_CHAR(tty));
if (tty->termios->c_cflag & CRTSCTS)
info->MCR &= ~UART_MCR_RTS;
save_flags(flags); cli();
serial_out(info, UART_MCR, info->MCR);
restore_flags(flags);
}
static void rs_unthrottle(struct tty_struct * tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
#ifdef SERIAL_DEBUG_THROTTLE
char buf[64];
printk("unthrottle %s: %d....\n", tty_name(tty, buf),
tty->ldisc.chars_in_buffer(tty));
#endif
if (serial_paranoia_check(info, tty->device, "rs_unthrottle"))
return;
if (I_IXOFF(tty)) {
if (info->x_char)
info->x_char = 0;
else
rs_send_xchar(tty, START_CHAR(tty));
}
if (tty->termios->c_cflag & CRTSCTS)
info->MCR |= UART_MCR_RTS;
save_flags(flags); cli();
serial_out(info, UART_MCR, info->MCR);
restore_flags(flags);
}
/*
* ------------------------------------------------------------
* rs_ioctl() and friends
* ------------------------------------------------------------
*/
static int get_serial_info(struct async_struct * info,
struct serial_struct * retinfo)
{
struct serial_struct tmp;
struct serial_state *state = info->state;
if (!retinfo)
return -EFAULT;
memset(&tmp, 0, sizeof(tmp));
tmp.type = state->type;
tmp.line = state->line;
tmp.port = state->port;
if (HIGH_BITS_OFFSET)
tmp.port_high = state->port >> HIGH_BITS_OFFSET;
else
tmp.port_high = 0;
tmp.irq = state->irq;
tmp.flags = state->flags;
tmp.xmit_fifo_size = state->xmit_fifo_size;
tmp.baud_base = state->baud_base;
tmp.close_delay = state->close_delay;
tmp.closing_wait = state->closing_wait;
tmp.custom_divisor = state->custom_divisor;
tmp.hub6 = state->hub6;
tmp.io_type = state->io_type;
if (copy_to_user(retinfo,&tmp,sizeof(*retinfo)))
return -EFAULT;
return 0;
}
static int set_serial_info(struct async_struct * info,
struct serial_struct * new_info)
{
struct serial_struct new_serial;
struct serial_state old_state, *state;
unsigned int i,change_irq,change_port;
int retval = 0;
unsigned long new_port;
if (copy_from_user(&new_serial,new_info,sizeof(new_serial)))
return -EFAULT;
state = info->state;
old_state = *state;
new_port = new_serial.port;
if (HIGH_BITS_OFFSET)
new_port += (unsigned long) new_serial.port_high << HIGH_BITS_OFFSET;
change_irq = new_serial.irq != state->irq;
change_port = (new_port != ((int) state->port)) ||
(new_serial.hub6 != state->hub6);
if (!capable(CAP_SYS_ADMIN)) {
if (change_irq || change_port ||
(new_serial.baud_base != state->baud_base) ||
(new_serial.type != state->type) ||
(new_serial.close_delay != state->close_delay) ||
(new_serial.xmit_fifo_size != state->xmit_fifo_size) ||
((new_serial.flags & ~ASYNC_USR_MASK) !=
(state->flags & ~ASYNC_USR_MASK)))
return -EPERM;
state->flags = ((state->flags & ~ASYNC_USR_MASK) |
(new_serial.flags & ASYNC_USR_MASK));
info->flags = ((info->flags & ~ASYNC_USR_MASK) |
(new_serial.flags & ASYNC_USR_MASK));
state->custom_divisor = new_serial.custom_divisor;
goto check_and_exit;
}
new_serial.irq = irq_cannonicalize(new_serial.irq);
if ((new_serial.irq >= NR_IRQS) || (new_serial.irq < 0) ||
(new_serial.baud_base < 9600)|| (new_serial.type < PORT_UNKNOWN) ||
(new_serial.type > PORT_MAX) || (new_serial.type == PORT_CIRRUS) ||
(new_serial.type == PORT_STARTECH)) {
return -EINVAL;
}
if ((new_serial.type != state->type) ||
(new_serial.xmit_fifo_size <= 0))
new_serial.xmit_fifo_size =
uart_config[new_serial.type].dfl_xmit_fifo_size;
/* Make sure address is not already in use */
if (new_serial.type) {
for (i = 0 ; i < NR_PORTS; i++)
if ((state != &rs_table[i]) &&
(rs_table[i].io_type == SERIAL_IO_PORT) &&
(rs_table[i].port == new_port) &&
rs_table[i].type)
return -EADDRINUSE;
}
if ((change_port || change_irq) && (state->count > 1))
return -EBUSY;
/*
* OK, past this point, all the error checking has been done.
* At this point, we start making changes.....
*/
state->baud_base = new_serial.baud_base;
state->flags = ((state->flags & ~ASYNC_FLAGS) |
(new_serial.flags & ASYNC_FLAGS));
info->flags = ((state->flags & ~ASYNC_INTERNAL_FLAGS) |
(info->flags & ASYNC_INTERNAL_FLAGS));
state->custom_divisor = new_serial.custom_divisor;
state->close_delay = new_serial.close_delay * HZ/100;
state->closing_wait = new_serial.closing_wait * HZ/100;
#if (LINUX_VERSION_CODE > 0x20100)
info->tty->low_latency = (info->flags & ASYNC_LOW_LATENCY) ? 1 : 0;
#endif
info->xmit_fifo_size = state->xmit_fifo_size =
new_serial.xmit_fifo_size;
if ((state->type != PORT_UNKNOWN) && state->port) {
#ifdef CONFIG_SERIAL_RSA
if (old_state.type == PORT_RSA)
release_region(state->port + UART_RSA_BASE, 16);
else
#endif
release_region(state->port,8);
}
state->type = new_serial.type;
if (change_port || change_irq) {
/*
* We need to shutdown the serial port at the old
* port/irq combination.
*/
shutdown(info);
state->irq = new_serial.irq;
info->port = state->port = new_port;
info->hub6 = state->hub6 = new_serial.hub6;
if (info->hub6)
info->io_type = state->io_type = SERIAL_IO_HUB6;
else if (info->io_type == SERIAL_IO_HUB6)
info->io_type = state->io_type = SERIAL_IO_PORT;
}
if ((state->type != PORT_UNKNOWN) && state->port) {
#ifdef CONFIG_SERIAL_RSA
if (state->type == PORT_RSA)
request_region(state->port + UART_RSA_BASE,
16, "serial_rsa(set)");
else
#endif
request_region(state->port,8,"serial(set)");
}
check_and_exit:
if ((!state->port && !state->iomem_base) || !state->type)
return 0;
if (info->flags & ASYNC_INITIALIZED) {
if (((old_state.flags & ASYNC_SPD_MASK) !=
(state->flags & ASYNC_SPD_MASK)) ||
(old_state.custom_divisor != state->custom_divisor)) {
#if (LINUX_VERSION_CODE >= 131394) /* Linux 2.1.66 */
if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
info->tty->alt_speed = 57600;
if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
info->tty->alt_speed = 115200;
if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
info->tty->alt_speed = 230400;
if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
info->tty->alt_speed = 460800;
#endif
change_speed(info, 0);
}
} else
retval = startup(info);
return retval;
}
/*
* get_lsr_info - get line status register info
*
* Purpose: Let user call ioctl() to get info when the UART physically
* is emptied. On bus types like RS485, the transmitter must
* release the bus after transmitting. This must be done when
* the transmit shift register is empty, not be done when the
* transmit holding register is empty. This functionality
* allows an RS485 driver to be written in user space.
*/
static int get_lsr_info(struct async_struct * info, unsigned int *value)
{
unsigned char status;
unsigned int result;
unsigned long flags;
save_flags(flags); cli();
status = serial_in(info, UART_LSR);
restore_flags(flags);
result = ((status & UART_LSR_TEMT) ? TIOCSER_TEMT : 0);
/*
* If we're about to load something into the transmit
* register, we'll pretend the transmitter isn't empty to
* avoid a race condition (depending on when the transmit
* interrupt happens).
*/
if (info->x_char ||
((CIRC_CNT(info->xmit.head, info->xmit.tail,
SERIAL_XMIT_SIZE) > 0) &&
!info->tty->stopped && !info->tty->hw_stopped))
result &= ~TIOCSER_TEMT;
if (copy_to_user(value, &result, sizeof(int)))
return -EFAULT;
return 0;
}
static int get_modem_info(struct async_struct * info, unsigned int *value)
{
unsigned char control, status;
unsigned int result;
unsigned long flags;
control = info->MCR;
save_flags(flags); cli();
status = serial_in(info, UART_MSR);
restore_flags(flags);
result = ((control & UART_MCR_RTS) ? TIOCM_RTS : 0)
| ((control & UART_MCR_DTR) ? TIOCM_DTR : 0)
#ifdef TIOCM_OUT1
| ((control & UART_MCR_OUT1) ? TIOCM_OUT1 : 0)
| ((control & UART_MCR_OUT2) ? TIOCM_OUT2 : 0)
#endif
| ((status & UART_MSR_DCD) ? TIOCM_CAR : 0)
| ((status & UART_MSR_RI) ? TIOCM_RNG : 0)
| ((status & UART_MSR_DSR) ? TIOCM_DSR : 0)
| ((status & UART_MSR_CTS) ? TIOCM_CTS : 0);
if (copy_to_user(value, &result, sizeof(int)))
return -EFAULT;
return 0;
}
static int set_modem_info(struct async_struct * info, unsigned int cmd,
unsigned int *value)
{
unsigned int arg;
unsigned long flags;
if (copy_from_user(&arg, value, sizeof(int)))
return -EFAULT;
switch (cmd) {
case TIOCMBIS:
if (arg & TIOCM_RTS)
info->MCR |= UART_MCR_RTS;
if (arg & TIOCM_DTR)
info->MCR |= UART_MCR_DTR;
#ifdef TIOCM_OUT1
if (arg & TIOCM_OUT1)
info->MCR |= UART_MCR_OUT1;
if (arg & TIOCM_OUT2)
info->MCR |= UART_MCR_OUT2;
#endif
if (arg & TIOCM_LOOP)
info->MCR |= UART_MCR_LOOP;
break;
case TIOCMBIC:
if (arg & TIOCM_RTS)
info->MCR &= ~UART_MCR_RTS;
if (arg & TIOCM_DTR)
info->MCR &= ~UART_MCR_DTR;
#ifdef TIOCM_OUT1
if (arg & TIOCM_OUT1)
info->MCR &= ~UART_MCR_OUT1;
if (arg & TIOCM_OUT2)
info->MCR &= ~UART_MCR_OUT2;
#endif
if (arg & TIOCM_LOOP)
info->MCR &= ~UART_MCR_LOOP;
break;
case TIOCMSET:
info->MCR = ((info->MCR & ~(UART_MCR_RTS |
#ifdef TIOCM_OUT1
UART_MCR_OUT1 |
UART_MCR_OUT2 |
#endif
UART_MCR_LOOP |
UART_MCR_DTR))
| ((arg & TIOCM_RTS) ? UART_MCR_RTS : 0)
#ifdef TIOCM_OUT1
| ((arg & TIOCM_OUT1) ? UART_MCR_OUT1 : 0)
| ((arg & TIOCM_OUT2) ? UART_MCR_OUT2 : 0)
#endif
| ((arg & TIOCM_LOOP) ? UART_MCR_LOOP : 0)
| ((arg & TIOCM_DTR) ? UART_MCR_DTR : 0));
break;
default:
return -EINVAL;
}
save_flags(flags); cli();
info->MCR |= ALPHA_KLUDGE_MCR; /* Don't ask */
serial_out(info, UART_MCR, info->MCR);
restore_flags(flags);
return 0;
}
static int do_autoconfig(struct async_struct * info)
{
int irq, retval;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (info->state->count > 1)
return -EBUSY;
shutdown(info);
autoconfig(info->state);
if ((info->state->flags & ASYNC_AUTO_IRQ) &&
(info->state->port != 0 || info->state->iomem_base != 0) &&
(info->state->type != PORT_UNKNOWN)) {
irq = detect_uart_irq(info->state);
if (irq > 0)
info->state->irq = irq;
}
retval = startup(info);
if (retval)
return retval;
return 0;
}
/*
* rs_break() --- routine which turns the break handling on or off
*/
#if (LINUX_VERSION_CODE < 131394) /* Linux 2.1.66 */
static void send_break( struct async_struct * info, int duration)
{
if (!CONFIGURED_SERIAL_PORT(info))
return;
current->state = TASK_INTERRUPTIBLE;
current->timeout = jiffies + duration;
cli();
info->LCR |= UART_LCR_SBC;
serial_out(info, UART_LCR, info->LCR);
schedule();
info->LCR &= ~UART_LCR_SBC;
serial_out(info, UART_LCR, info->LCR);
sti();
}
#else
static void rs_break(struct tty_struct *tty, int break_state)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "rs_break"))
return;
if (!CONFIGURED_SERIAL_PORT(info))
return;
save_flags(flags); cli();
if (break_state == -1)
info->LCR |= UART_LCR_SBC;
else
info->LCR &= ~UART_LCR_SBC;
serial_out(info, UART_LCR, info->LCR);
restore_flags(flags);
}
#endif
#ifdef CONFIG_SERIAL_MULTIPORT
static int get_multiport_struct(struct async_struct * info,
struct serial_multiport_struct *retinfo)
{
struct serial_multiport_struct ret;
struct rs_multiport_struct *multi;
multi = &rs_multiport[info->state->irq];
ret.port_monitor = multi->port_monitor;
ret.port1 = multi->port1;
ret.mask1 = multi->mask1;
ret.match1 = multi->match1;
ret.port2 = multi->port2;
ret.mask2 = multi->mask2;
ret.match2 = multi->match2;
ret.port3 = multi->port3;
ret.mask3 = multi->mask3;
ret.match3 = multi->match3;
ret.port4 = multi->port4;
ret.mask4 = multi->mask4;
ret.match4 = multi->match4;
ret.irq = info->state->irq;
if (copy_to_user(retinfo,&ret,sizeof(*retinfo)))
return -EFAULT;
return 0;
}
static int set_multiport_struct(struct async_struct * info,
struct serial_multiport_struct *in_multi)
{
struct serial_multiport_struct new_multi;
struct rs_multiport_struct *multi;
struct serial_state *state;
int was_multi, now_multi;
int retval;
void (*handler)(int, void *, struct pt_regs *);
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
state = info->state;
if (copy_from_user(&new_multi, in_multi,
sizeof(struct serial_multiport_struct)))
return -EFAULT;
if (new_multi.irq != state->irq || state->irq == 0 ||
!IRQ_ports[state->irq])
return -EINVAL;
multi = &rs_multiport[state->irq];
was_multi = (multi->port1 != 0);
multi->port_monitor = new_multi.port_monitor;
if (multi->port1)
release_region(multi->port1,1);
multi->port1 = new_multi.port1;
multi->mask1 = new_multi.mask1;
multi->match1 = new_multi.match1;
if (multi->port1)
request_region(multi->port1,1,"serial(multiport1)");
if (multi->port2)
release_region(multi->port2,1);
multi->port2 = new_multi.port2;
multi->mask2 = new_multi.mask2;
multi->match2 = new_multi.match2;
if (multi->port2)
request_region(multi->port2,1,"serial(multiport2)");
if (multi->port3)
release_region(multi->port3,1);
multi->port3 = new_multi.port3;
multi->mask3 = new_multi.mask3;
multi->match3 = new_multi.match3;
if (multi->port3)
request_region(multi->port3,1,"serial(multiport3)");
if (multi->port4)
release_region(multi->port4,1);
multi->port4 = new_multi.port4;
multi->mask4 = new_multi.mask4;
multi->match4 = new_multi.match4;
if (multi->port4)
request_region(multi->port4,1,"serial(multiport4)");
now_multi = (multi->port1 != 0);
if (IRQ_ports[state->irq]->next_port &&
(was_multi != now_multi)) {
free_irq(state->irq, &IRQ_ports[state->irq]);
if (now_multi)
handler = rs_interrupt_multi;
else
handler = rs_interrupt;
retval = request_irq(state->irq, handler, SA_SHIRQ,
"serial", &IRQ_ports[state->irq]);
if (retval) {
printk("Couldn't reallocate serial interrupt "
"driver!!\n");
}
}
return 0;
}
#endif
static int rs_ioctl(struct tty_struct *tty, struct file * file,
unsigned int cmd, unsigned long arg)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
struct async_icount cprev, cnow; /* kernel counter temps */
struct serial_icounter_struct icount;
unsigned long flags;
#if (LINUX_VERSION_CODE < 131394) /* Linux 2.1.66 */
int retval, tmp;
#endif
if (serial_paranoia_check(info, tty->device, "rs_ioctl"))
return -ENODEV;
if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
(cmd != TIOCSERCONFIG) && (cmd != TIOCSERGSTRUCT) &&
(cmd != TIOCMIWAIT) && (cmd != TIOCGICOUNT)) {
if (tty->flags & (1 << TTY_IO_ERROR))
return -EIO;
}
switch (cmd) {
#if (LINUX_VERSION_CODE < 131394) /* Linux 2.1.66 */
case TCSBRK: /* SVID version: non-zero arg --> no break */
retval = tty_check_change(tty);
if (retval)
return retval;
tty_wait_until_sent(tty, 0);
if (signal_pending(current))
return -EINTR;
if (!arg) {
send_break(info, HZ/4); /* 1/4 second */
if (signal_pending(current))
return -EINTR;
}
return 0;
case TCSBRKP: /* support for POSIX tcsendbreak() */
retval = tty_check_change(tty);
if (retval)
return retval;
tty_wait_until_sent(tty, 0);
if (signal_pending(current))
return -EINTR;
send_break(info, arg ? arg*(HZ/10) : HZ/4);
if (signal_pending(current))
return -EINTR;
return 0;
case TIOCGSOFTCAR:
tmp = C_CLOCAL(tty) ? 1 : 0;
if (copy_to_user((void *)arg, &tmp, sizeof(int)))
return -EFAULT;
return 0;
case TIOCSSOFTCAR:
if (copy_from_user(&tmp, (void *)arg, sizeof(int)))
return -EFAULT;
tty->termios->c_cflag =
((tty->termios->c_cflag & ~CLOCAL) |
(tmp ? CLOCAL : 0));
return 0;
#endif
case TIOCMGET:
return get_modem_info(info, (unsigned int *) arg);
case TIOCMBIS:
case TIOCMBIC:
case TIOCMSET:
return set_modem_info(info, cmd, (unsigned int *) arg);
case TIOCGSERIAL:
return get_serial_info(info,
(struct serial_struct *) arg);
case TIOCSSERIAL:
return set_serial_info(info,
(struct serial_struct *) arg);
case TIOCSERCONFIG:
return do_autoconfig(info);
case TIOCSERGETLSR: /* Get line status register */
return get_lsr_info(info, (unsigned int *) arg);
case TIOCSERGSTRUCT:
if (copy_to_user((struct async_struct *) arg,
info, sizeof(struct async_struct)))
return -EFAULT;
return 0;
#ifdef CONFIG_SERIAL_MULTIPORT
case TIOCSERGETMULTI:
return get_multiport_struct(info,
(struct serial_multiport_struct *) arg);
case TIOCSERSETMULTI:
return set_multiport_struct(info,
(struct serial_multiport_struct *) arg);
#endif
/*
* Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change
* - mask passed in arg for lines of interest
* (use |'ed TIOCM_RNG/DSR/CD/CTS for masking)
* Caller should use TIOCGICOUNT to see which one it was
*/
case TIOCMIWAIT:
save_flags(flags); cli();
/* note the counters on entry */
cprev = info->state->icount;
restore_flags(flags);
/* Force modem status interrupts on */
info->IER |= UART_IER_MSI;
serial_out(info, UART_IER, info->IER);
while (1) {
interruptible_sleep_on(&info->delta_msr_wait);
/* see if a signal did it */
if (signal_pending(current))
return -ERESTARTSYS;
save_flags(flags); cli();
cnow = info->state->icount; /* atomic copy */
restore_flags(flags);
if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr &&
cnow.dcd == cprev.dcd && cnow.cts == cprev.cts)
return -EIO; /* no change => error */
if ( ((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) ||
((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) ||
((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) ||
((arg & TIOCM_CTS) && (cnow.cts != cprev.cts)) ) {
return 0;
}
cprev = cnow;
}
/* NOTREACHED */
/*
* Get counter of input serial line interrupts (DCD,RI,DSR,CTS)
* Return: write counters to the user passed counter struct
* NB: both 1->0 and 0->1 transitions are counted except for
* RI where only 0->1 is counted.
*/
case TIOCGICOUNT:
save_flags(flags); cli();
cnow = info->state->icount;
restore_flags(flags);
icount.cts = cnow.cts;
icount.dsr = cnow.dsr;
icount.rng = cnow.rng;
icount.dcd = cnow.dcd;
icount.rx = cnow.rx;
icount.tx = cnow.tx;
icount.frame = cnow.frame;
icount.overrun = cnow.overrun;
icount.parity = cnow.parity;
icount.brk = cnow.brk;
icount.buf_overrun = cnow.buf_overrun;
if (copy_to_user((void *)arg, &icount, sizeof(icount)))
return -EFAULT;
return 0;
case TIOCSERGWILD:
case TIOCSERSWILD:
/* "setserial -W" is called in Debian boot */
printk ("TIOCSER?WILD ioctl obsolete, ignored.\n");
return 0;
default:
return -ENOIOCTLCMD;
}
return 0;
}
static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
unsigned int cflag = tty->termios->c_cflag;
if ( (cflag == old_termios->c_cflag)
&& ( RELEVANT_IFLAG(tty->termios->c_iflag)
== RELEVANT_IFLAG(old_termios->c_iflag)))
return;
change_speed(info, old_termios);
/* Handle transition to B0 status */
if ((old_termios->c_cflag & CBAUD) &&
!(cflag & CBAUD)) {
info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS);
save_flags(flags); cli();
serial_out(info, UART_MCR, info->MCR);
restore_flags(flags);
}
/* Handle transition away from B0 status */
if (!(old_termios->c_cflag & CBAUD) &&
(cflag & CBAUD)) {
info->MCR |= UART_MCR_DTR;
if (!(tty->termios->c_cflag & CRTSCTS) ||
!test_bit(TTY_THROTTLED, &tty->flags)) {
info->MCR |= UART_MCR_RTS;
}
save_flags(flags); cli();
serial_out(info, UART_MCR, info->MCR);
restore_flags(flags);
}
/* Handle turning off CRTSCTS */
if ((old_termios->c_cflag & CRTSCTS) &&
!(tty->termios->c_cflag & CRTSCTS)) {
tty->hw_stopped = 0;
rs_start(tty);
}
#if 0
/*
* No need to wake up processes in open wait, since they
* sample the CLOCAL flag once, and don't recheck it.
* XXX It's not clear whether the current behavior is correct
* or not. Hence, this may change.....
*/
if (!(old_termios->c_cflag & CLOCAL) &&
(tty->termios->c_cflag & CLOCAL))
wake_up_interruptible(&info->open_wait);
#endif
}
/*
* ------------------------------------------------------------
* rs_close()
*
* This routine is called when the serial port gets closed. First, we
* wait for the last remaining data to be sent. Then, we unlink its
* async structure from the interrupt chain if necessary, and we free
* that IRQ if nothing is left in the chain.
* ------------------------------------------------------------
*/
static void rs_close(struct tty_struct *tty, struct file * filp)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
struct serial_state *state;
unsigned long flags;
if (!info || serial_paranoia_check(info, tty->device, "rs_close"))
return;
state = info->state;
save_flags(flags); cli();
if (tty_hung_up_p(filp)) {
DBG_CNT("before DEC-hung");
MOD_DEC_USE_COUNT;
restore_flags(flags);
return;
}
#ifdef SERIAL_DEBUG_OPEN
printk("rs_close ttys%d, count = %d\n", info->line, state->count);
#endif
if ((tty->count == 1) && (state->count != 1)) {
/*
* Uh, oh. tty->count is 1, which means that the tty
* structure will be freed. state->count should always
* be one in these conditions. If it's greater than
* one, we've got real problems, since it means the
* serial port won't be shutdown.
*/
printk("rs_close: bad serial port count; tty->count is 1, "
"state->count is %d\n", state->count);
state->count = 1;
}
if (--state->count < 0) {
printk("rs_close: bad serial port count for ttys%d: %d\n",
info->line, state->count);
state->count = 0;
}
if (state->count) {
DBG_CNT("before DEC-2");
MOD_DEC_USE_COUNT;
restore_flags(flags);
return;
}
info->flags |= ASYNC_CLOSING;
restore_flags(flags);
/*
* Save the termios structure, since this port may have
* separate termios for callout and dialin.
*/
if (info->flags & ASYNC_NORMAL_ACTIVE)
info->state->normal_termios = *tty->termios;
if (info->flags & ASYNC_CALLOUT_ACTIVE)
info->state->callout_termios = *tty->termios;
/*
* Now we wait for the transmit buffer to clear; and we notify
* the line discipline to only process XON/XOFF characters.
*/
tty->closing = 1;
if (state->closing_wait != ASYNC_CLOSING_WAIT_NONE)
tty_wait_until_sent(tty, state->closing_wait);
/*
* At this point we stop accepting input. To do this, we
* disable the receive line status interrupts, and tell the
* interrupt driver to stop checking the data ready bit in the
* line status register.
*/
info->IER &= ~UART_IER_RLSI;
info->read_status_mask &= ~UART_LSR_DR;
if (info->flags & ASYNC_INITIALIZED) {
serial_out(info, UART_IER, info->IER);
/*
* Before we drop DTR, make sure the UART transmitter
* has completely drained; this is especially
* important if there is a transmit FIFO!
*/
rs_wait_until_sent(tty, info->timeout);
}
shutdown(info);
if (tty->driver.flush_buffer)
tty->driver.flush_buffer(tty);
tty_ldisc_flush(tty);
tty->closing = 0;
info->event = 0;
info->tty = 0;
if (info->blocked_open) {
if (state->close_delay) {
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(state->close_delay);
}
wake_up_interruptible(&info->open_wait);
}
info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE|
ASYNC_CLOSING);
wake_up_interruptible(&info->close_wait);
MOD_DEC_USE_COUNT;
}
/*
* rs_wait_until_sent() --- wait until the transmitter is empty
*/
static void rs_wait_until_sent(struct tty_struct *tty, int timeout)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
unsigned long orig_jiffies, char_time;
int lsr;
if (serial_paranoia_check(info, tty->device, "rs_wait_until_sent"))
return;
if (info->state->type == PORT_UNKNOWN)
return;
if (info->xmit_fifo_size == 0)
return; /* Just in case.... */
orig_jiffies = jiffies;
/*
* Set the check interval to be 1/5 of the estimated time to
* send a single character, and make it at least 1. The check
* interval should also be less than the timeout.
*
* Note: we have to use pretty tight timings here to satisfy
* the NIST-PCTS.
*/
char_time = (info->timeout - HZ/50) / info->xmit_fifo_size;
char_time = char_time / 5;
if (char_time == 0)
char_time = 1;
if (timeout && timeout < char_time)
char_time = timeout;
/*
* If the transmitter hasn't cleared in twice the approximate
* amount of time to send the entire FIFO, it probably won't
* ever clear. This assumes the UART isn't doing flow
* control, which is currently the case. Hence, if it ever
* takes longer than info->timeout, this is probably due to a
* UART bug of some kind. So, we clamp the timeout parameter at
* 2*info->timeout.
*/
if (!timeout || timeout > 2*info->timeout)
timeout = 2*info->timeout;
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
printk("In rs_wait_until_sent(%d) check=%lu...", timeout, char_time);
printk("jiff=%lu...", jiffies);
#endif
while (!((lsr = serial_inp(info, UART_LSR)) & UART_LSR_TEMT)) {
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
printk("lsr = %d (jiff=%lu)...", lsr, jiffies);
#endif
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(char_time);
if (signal_pending(current))
break;
if (timeout && time_after(jiffies, orig_jiffies + timeout))
break;
}
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
printk("lsr = %d (jiff=%lu)...done\n", lsr, jiffies);
#endif
}
/*
* rs_hangup() --- called by tty_hangup() when a hangup is signaled.
*/
static void rs_hangup(struct tty_struct *tty)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
struct serial_state *state = info->state;
if (serial_paranoia_check(info, tty->device, "rs_hangup"))
return;
state = info->state;
rs_flush_buffer(tty);
if (info->flags & ASYNC_CLOSING)
return;
shutdown(info);
info->event = 0;
state->count = 0;
info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE);
info->tty = 0;
wake_up_interruptible(&info->open_wait);
}
/*
* ------------------------------------------------------------
* rs_open() and friends
* ------------------------------------------------------------
*/
static int block_til_ready(struct tty_struct *tty, struct file * filp,
struct async_struct *info)
{
DECLARE_WAITQUEUE(wait, current);
struct serial_state *state = info->state;
int retval;
int do_clocal = 0, extra_count = 0;
unsigned long flags;
/*
* If the device is in the middle of being closed, then block
* until it's done, and then try again.
*/
if (tty_hung_up_p(filp) ||
(info->flags & ASYNC_CLOSING)) {
if (info->flags & ASYNC_CLOSING)
interruptible_sleep_on(&info->close_wait);
#ifdef SERIAL_DO_RESTART
return ((info->flags & ASYNC_HUP_NOTIFY) ?
-EAGAIN : -ERESTARTSYS);
#else
return -EAGAIN;
#endif
}
/*
* If this is a callout device, then just make sure the normal
* device isn't being used.
*/
if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) {
if (info->flags & ASYNC_NORMAL_ACTIVE)
return -EBUSY;
if ((info->flags & ASYNC_CALLOUT_ACTIVE) &&
(info->flags & ASYNC_SESSION_LOCKOUT) &&
(info->session != current->session))
return -EBUSY;
if ((info->flags & ASYNC_CALLOUT_ACTIVE) &&
(info->flags & ASYNC_PGRP_LOCKOUT) &&
(info->pgrp != current->pgrp))
return -EBUSY;
info->flags |= ASYNC_CALLOUT_ACTIVE;
return 0;
}
/*
* If non-blocking mode is set, or the port is not enabled,
* then make the check up front and then exit.
*/
if ((filp->f_flags & O_NONBLOCK) ||
(tty->flags & (1 << TTY_IO_ERROR))) {
if (info->flags & ASYNC_CALLOUT_ACTIVE)
return -EBUSY;
info->flags |= ASYNC_NORMAL_ACTIVE;
return 0;
}
if (info->flags & ASYNC_CALLOUT_ACTIVE) {
if (state->normal_termios.c_cflag & CLOCAL)
do_clocal = 1;
} else {
if (tty->termios->c_cflag & CLOCAL)
do_clocal = 1;
}
/*
* Block waiting for the carrier detect and the line to become
* free (i.e., not in use by the callout). While we are in
* this loop, state->count is dropped by one, so that
* rs_close() knows when to free things. We restore it upon
* exit, either normal or abnormal.
*/
retval = 0;
add_wait_queue(&info->open_wait, &wait);
#ifdef SERIAL_DEBUG_OPEN
printk("block_til_ready before block: ttys%d, count = %d\n",
state->line, state->count);
#endif
save_flags(flags); cli();
if (!tty_hung_up_p(filp)) {
extra_count = 1;
state->count--;
}
restore_flags(flags);
info->blocked_open++;
while (1) {
save_flags(flags); cli();
if (!(info->flags & ASYNC_CALLOUT_ACTIVE) &&
(tty->termios->c_cflag & CBAUD))
serial_out(info, UART_MCR,
serial_inp(info, UART_MCR) |
(UART_MCR_DTR | UART_MCR_RTS));
restore_flags(flags);
set_current_state(TASK_INTERRUPTIBLE);
if (tty_hung_up_p(filp) ||
!(info->flags & ASYNC_INITIALIZED)) {
#ifdef SERIAL_DO_RESTART
if (info->flags & ASYNC_HUP_NOTIFY)
retval = -EAGAIN;
else
retval = -ERESTARTSYS;
#else
retval = -EAGAIN;
#endif
break;
}
if (!(info->flags & ASYNC_CALLOUT_ACTIVE) &&
!(info->flags & ASYNC_CLOSING) &&
(do_clocal || (serial_in(info, UART_MSR) &
UART_MSR_DCD)))
break;
if (signal_pending(current)) {
retval = -ERESTARTSYS;
break;
}
#ifdef SERIAL_DEBUG_OPEN
printk("block_til_ready blocking: ttys%d, count = %d\n",
info->line, state->count);
#endif
schedule();
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&info->open_wait, &wait);
if (extra_count)
state->count++;
info->blocked_open--;
#ifdef SERIAL_DEBUG_OPEN
printk("block_til_ready after blocking: ttys%d, count = %d\n",
info->line, state->count);
#endif
if (retval)
return retval;
info->flags |= ASYNC_NORMAL_ACTIVE;
return 0;
}
static int get_async_struct(int line, struct async_struct **ret_info)
{
struct async_struct *info;
struct serial_state *sstate;
sstate = rs_table + line;
sstate->count++;
if (sstate->info) {
*ret_info = sstate->info;
return 0;
}
info = kmalloc(sizeof(struct async_struct), GFP_KERNEL);
if (!info) {
sstate->count--;
return -ENOMEM;
}
memset(info, 0, sizeof(struct async_struct));
init_waitqueue_head(&info->open_wait);
init_waitqueue_head(&info->close_wait);
init_waitqueue_head(&info->delta_msr_wait);
info->magic = SERIAL_MAGIC;
info->port = sstate->port;
info->flags = sstate->flags;
info->io_type = sstate->io_type;
info->iomem_base = sstate->iomem_base;
info->iomem_reg_shift = sstate->iomem_reg_shift;
info->xmit_fifo_size = sstate->xmit_fifo_size;
info->line = line;
info->tqueue.routine = do_softint;
info->tqueue.data = info;
info->state = sstate;
if (sstate->info) {
kfree(info);
*ret_info = sstate->info;
return 0;
}
*ret_info = sstate->info = info;
return 0;
}
/*
* This routine is called whenever a serial port is opened. It
* enables interrupts for a serial port, linking in its async structure into
* the IRQ chain. It also performs the serial-specific
* initialization for the tty structure.
*
* Note that on failure, we don't decrement the module use count - the tty
* later will call rs_close, which will decrement it for us as long as
* tty->driver_data is set non-NULL. --rmk
*/
static int rs_open(struct tty_struct *tty, struct file * filp)
{
struct async_struct *info;
int retval, line;
unsigned long page;
MOD_INC_USE_COUNT;
line = MINOR(tty->device) - tty->driver.minor_start;
if ((line < 0) || (line >= NR_PORTS)) {
MOD_DEC_USE_COUNT;
return -ENODEV;
}
retval = get_async_struct(line, &info);
if (retval) {
MOD_DEC_USE_COUNT;
return retval;
}
tty->driver_data = info;
info->tty = tty;
if (serial_paranoia_check(info, tty->device, "rs_open"))
return -ENODEV;
#ifdef SERIAL_DEBUG_OPEN
printk("rs_open %s%d, count = %d\n", tty->driver.name, info->line,
info->state->count);
#endif
#if (LINUX_VERSION_CODE > 0x20100)
info->tty->low_latency = (info->flags & ASYNC_LOW_LATENCY) ? 1 : 0;
#endif
/*
* This relies on lock_kernel() stuff so wants tidying for 2.5
*/
if (!tmp_buf) {
page = get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
if (tmp_buf)
free_page(page);
else
tmp_buf = (unsigned char *) page;
}
/*
* If the port is the middle of closing, bail out now
*/
if (tty_hung_up_p(filp) ||
(info->flags & ASYNC_CLOSING)) {
if (info->flags & ASYNC_CLOSING)
interruptible_sleep_on(&info->close_wait);
#ifdef SERIAL_DO_RESTART
return ((info->flags & ASYNC_HUP_NOTIFY) ?
-EAGAIN : -ERESTARTSYS);
#else
return -EAGAIN;
#endif
}
/*
* Start up serial port
*/
retval = startup(info);
if (retval)
return retval;
retval = block_til_ready(tty, filp, info);
if (retval) {
#ifdef SERIAL_DEBUG_OPEN
printk("rs_open returning after block_til_ready with %d\n",
retval);
#endif
return retval;
}
if ((info->state->count == 1) &&
(info->flags & ASYNC_SPLIT_TERMIOS)) {
if (tty->driver.subtype == SERIAL_TYPE_NORMAL)
*tty->termios = info->state->normal_termios;
else
*tty->termios = info->state->callout_termios;
change_speed(info, 0);
}
#ifdef CONFIG_SERIAL_CONSOLE
if (sercons.cflag && sercons.index == line) {
tty->termios->c_cflag = sercons.cflag;
sercons.cflag = 0;
change_speed(info, 0);
}
#endif
info->session = current->session;
info->pgrp = current->pgrp;
#ifdef SERIAL_DEBUG_OPEN
printk("rs_open ttys%d successful...", info->line);
#endif
return 0;
}
/*
* /proc fs routines....
*/
static inline int line_info(char *buf, struct serial_state *state)
{
struct async_struct *info = state->info, scr_info;
char stat_buf[30], control, status;
int ret;
unsigned long flags;
/*
* Return zero characters for ports not claimed by driver.
*/
if (state->type == PORT_UNKNOWN) {
return 0; /* ignore unused ports */
}
ret = sprintf(buf, "%d: uart:%s port:%lX irq:%d",
state->line, uart_config[state->type].name,
(state->port ? state->port : (long)state->iomem_base),
state->irq);
/*
* Figure out the current RS-232 lines
*/
if (!info) {
info = &scr_info; /* This is just for serial_{in,out} */
info->magic = SERIAL_MAGIC;
info->port = state->port;
info->flags = state->flags;
info->hub6 = state->hub6;
info->io_type = state->io_type;
info->iomem_base = state->iomem_base;
info->iomem_reg_shift = state->iomem_reg_shift;
info->quot = 0;
info->tty = 0;
}
save_flags(flags); cli();
status = serial_in(info, UART_MSR);
control = info != &scr_info ? info->MCR : serial_in(info, UART_MCR);
restore_flags(flags);
stat_buf[0] = 0;
stat_buf[1] = 0;
if (control & UART_MCR_RTS)
strcat(stat_buf, "|RTS");
if (status & UART_MSR_CTS)
strcat(stat_buf, "|CTS");
if (control & UART_MCR_DTR)
strcat(stat_buf, "|DTR");
if (status & UART_MSR_DSR)
strcat(stat_buf, "|DSR");
if (status & UART_MSR_DCD)
strcat(stat_buf, "|CD");
if (status & UART_MSR_RI)
strcat(stat_buf, "|RI");
if (info->quot) {
ret += sprintf(buf+ret, " baud:%d",
state->baud_base / info->quot);
}
ret += sprintf(buf+ret, " tx:%d rx:%d",
state->icount.tx, state->icount.rx);
if (state->icount.frame)
ret += sprintf(buf+ret, " fe:%d", state->icount.frame);
if (state->icount.parity)
ret += sprintf(buf+ret, " pe:%d", state->icount.parity);
if (state->icount.brk)
ret += sprintf(buf+ret, " brk:%d", state->icount.brk);
if (state->icount.overrun)
ret += sprintf(buf+ret, " oe:%d", state->icount.overrun);
/*
* Last thing is the RS-232 status lines
*/
ret += sprintf(buf+ret, " %s\n", stat_buf+1);
return ret;
}
static int rs_read_proc(char *page, char **start, off_t off, int count,
int *eof, void *data)
{
int i, len = 0, l;
off_t begin = 0;
len += sprintf(page, "serinfo:1.0 driver:%s%s revision:%s\n",
serial_version, LOCAL_VERSTRING, serial_revdate);
for (i = 0; i < NR_PORTS && len < 4000; i++) {
l = line_info(page + len, &rs_table[i]);
len += l;
if (len+begin > off+count)
goto done;
if (len+begin < off) {
begin += len;
len = 0;
}
}
*eof = 1;
done:
if (off >= len+begin)
return 0;
*start = page + (off-begin);
return ((count < begin+len-off) ? count : begin+len-off);
}
/*
* ---------------------------------------------------------------------
* rs_init() and friends
*
* rs_init() is called at boot-time to initialize the serial driver.
* ---------------------------------------------------------------------
*/
/*
* This routine prints out the appropriate serial driver version
* number, and identifies which options were configured into this
* driver.
*/
static char serial_options[] __initdata =
#ifdef CONFIG_HUB6
" HUB-6"
#define SERIAL_OPT
#endif
#ifdef CONFIG_SERIAL_MANY_PORTS
" MANY_PORTS"
#define SERIAL_OPT
#endif
#ifdef CONFIG_SERIAL_MULTIPORT
" MULTIPORT"
#define SERIAL_OPT
#endif
#ifdef CONFIG_SERIAL_SHARE_IRQ
" SHARE_IRQ"
#define SERIAL_OPT
#endif
#ifdef CONFIG_SERIAL_DETECT_IRQ
" DETECT_IRQ"
#define SERIAL_OPT
#endif
#ifdef ENABLE_SERIAL_PCI
" SERIAL_PCI"
#define SERIAL_OPT
#endif
#ifdef ENABLE_SERIAL_PNP
" ISAPNP"
#define SERIAL_OPT
#endif
#ifdef ENABLE_SERIAL_ACPI
" SERIAL_ACPI"
#define SERIAL_OPT
#endif
#ifdef SERIAL_OPT
" enabled\n";
#else
" no serial options enabled\n";
#endif
#undef SERIAL_OPT
static _INLINE_ void show_serial_version(void)
{
printk(KERN_INFO "%s version %s%s (%s) with%s", serial_name,
serial_version, LOCAL_VERSTRING, serial_revdate,
serial_options);
}
/*
* This routine detect the IRQ of a serial port by clearing OUT2 when
* no UART interrupt are requested (IER = 0) (*GPL*). This seems to work at
* each time, as long as no other device permanently request the IRQ.
* If no IRQ is detected, or multiple IRQ appear, this function returns 0.
* The variable "state" and the field "state->port" should not be null.
*/
static unsigned detect_uart_irq (struct serial_state * state)
{
int irq;
unsigned long irqs;
unsigned char save_mcr, save_ier;
struct async_struct scr_info; /* serial_{in,out} because HUB6 */
#ifdef CONFIG_SERIAL_MANY_PORTS
unsigned char save_ICP=0; /* no warning */
unsigned short ICP=0;
if (state->flags & ASYNC_FOURPORT) {
ICP = (state->port & 0xFE0) | 0x01F;
save_ICP = inb_p(ICP);
outb_p(0x80, ICP);
(void) inb_p(ICP);
}
#endif
scr_info.magic = SERIAL_MAGIC;
scr_info.state = state;
scr_info.port = state->port;
scr_info.flags = state->flags;
#ifdef CONFIG_HUB6
scr_info.hub6 = state->hub6;
#endif
scr_info.io_type = state->io_type;
scr_info.iomem_base = state->iomem_base;
scr_info.iomem_reg_shift = state->iomem_reg_shift;
/* forget possible initially masked and pending IRQ */
probe_irq_off(probe_irq_on());
save_mcr = serial_inp(&scr_info, UART_MCR);
save_ier = serial_inp(&scr_info, UART_IER);
serial_outp(&scr_info, UART_MCR, UART_MCR_OUT1 | UART_MCR_OUT2);
irqs = probe_irq_on();
serial_outp(&scr_info, UART_MCR, 0);
udelay (10);
if (state->flags & ASYNC_FOURPORT) {
serial_outp(&scr_info, UART_MCR,
UART_MCR_DTR | UART_MCR_RTS);
} else {
serial_outp(&scr_info, UART_MCR,
UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2);
}
serial_outp(&scr_info, UART_IER, 0x0f); /* enable all intrs */
(void)serial_inp(&scr_info, UART_LSR);
(void)serial_inp(&scr_info, UART_RX);
(void)serial_inp(&scr_info, UART_IIR);
(void)serial_inp(&scr_info, UART_MSR);
serial_outp(&scr_info, UART_TX, 0xFF);
udelay (20);
irq = probe_irq_off(irqs);
serial_outp(&scr_info, UART_MCR, save_mcr);
serial_outp(&scr_info, UART_IER, save_ier);
#ifdef CONFIG_SERIAL_MANY_PORTS
if (state->flags & ASYNC_FOURPORT)
outb_p(save_ICP, ICP);
#endif
return (irq > 0)? irq : 0;
}
/*
* This is a quickie test to see how big the FIFO is.
* It doesn't work at all the time, more's the pity.
*/
static int size_fifo(struct async_struct *info)
{
unsigned char old_fcr, old_mcr, old_dll, old_dlm;
int count;
old_fcr = serial_inp(info, UART_FCR);
old_mcr = serial_inp(info, UART_MCR);
serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO |
UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT);
serial_outp(info, UART_MCR, UART_MCR_LOOP);
serial_outp(info, UART_LCR, UART_LCR_DLAB);
old_dll = serial_inp(info, UART_DLL);
old_dlm = serial_inp(info, UART_DLM);
serial_outp(info, UART_DLL, 0x01);
serial_outp(info, UART_DLM, 0x00);
serial_outp(info, UART_LCR, 0x03);
for (count = 0; count < 256; count++)
serial_outp(info, UART_TX, count);
mdelay(20);
for (count = 0; (serial_inp(info, UART_LSR) & UART_LSR_DR) &&
(count < 256); count++)
serial_inp(info, UART_RX);
serial_outp(info, UART_FCR, old_fcr);
serial_outp(info, UART_MCR, old_mcr);
serial_outp(info, UART_LCR, UART_LCR_DLAB);
serial_outp(info, UART_DLL, old_dll);
serial_outp(info, UART_DLM, old_dlm);
return count;
}
/*
* This is a helper routine to autodetect StarTech/Exar/Oxsemi UART's.
* When this function is called we know it is at least a StarTech
* 16650 V2, but it might be one of several StarTech UARTs, or one of
* its clones. (We treat the broken original StarTech 16650 V1 as a
* 16550, and why not? Startech doesn't seem to even acknowledge its
* existence.)
*
* What evil have men's minds wrought...
*/
static void autoconfig_startech_uarts(struct async_struct *info,
struct serial_state *state,
unsigned long flags)
{
unsigned char scratch, scratch2, scratch3, scratch4;
/*
* First we check to see if it's an Oxford Semiconductor UART.
*
* If we have to do this here because some non-National
* Semiconductor clone chips lock up if you try writing to the
* LSR register (which serial_icr_read does)
*/
if (state->type == PORT_16550A) {
/*
* EFR [4] must be set else this test fails
*
* This shouldn't be necessary, but Mike Hudson
* (Exoray@isys.ca) claims that it's needed for 952
* dual UART's (which are not recommended for new designs).
*/
info->ACR = 0;
serial_out(info, UART_LCR, 0xBF);
serial_out(info, UART_EFR, 0x10);
serial_out(info, UART_LCR, 0x00);
/* Check for Oxford Semiconductor 16C950 */
scratch = serial_icr_read(info, UART_ID1);
scratch2 = serial_icr_read(info, UART_ID2);
scratch3 = serial_icr_read(info, UART_ID3);
if (scratch == 0x16 && scratch2 == 0xC9 &&
(scratch3 == 0x50 || scratch3 == 0x52 ||
scratch3 == 0x54)) {
state->type = PORT_16C950;
state->revision = serial_icr_read(info, UART_REV) |
(scratch3 << 8);
return;
}
}
/*
* We check for a XR16C850 by setting DLL and DLM to 0, and
* then reading back DLL and DLM. If DLM reads back 0x10,
* then the UART is a XR16C850 and the DLL contains the chip
* revision. If DLM reads back 0x14, then the UART is a
* XR16C854.
*
*/
/* Save the DLL and DLM */
serial_outp(info, UART_LCR, UART_LCR_DLAB);
scratch3 = serial_inp(info, UART_DLL);
scratch4 = serial_inp(info, UART_DLM);
serial_outp(info, UART_DLL, 0);
serial_outp(info, UART_DLM, 0);
scratch2 = serial_inp(info, UART_DLL);
scratch = serial_inp(info, UART_DLM);
serial_outp(info, UART_LCR, 0);
if (scratch == 0x10 || scratch == 0x14) {
if (scratch == 0x10)
state->revision = scratch2;
state->type = PORT_16850;
return;
}
/* Restore the DLL and DLM */
serial_outp(info, UART_LCR, UART_LCR_DLAB);
serial_outp(info, UART_DLL, scratch3);
serial_outp(info, UART_DLM, scratch4);
serial_outp(info, UART_LCR, 0);
/*
* We distinguish between the '654 and the '650 by counting
* how many bytes are in the FIFO. I'm using this for now,
* since that's the technique that was sent to me in the
* serial driver update, but I'm not convinced this works.
* I've had problems doing this in the past. -TYT
*/
if (size_fifo(info) == 64)
state->type = PORT_16654;
else
state->type = PORT_16650V2;
}
/*
* This routine is called by rs_init() to initialize a specific serial
* port. It determines what type of UART chip this serial port is
* using: 8250, 16450, 16550, 16550A. The important question is
* whether or not this UART is a 16550A or not, since this will
* determine whether or not we can use its FIFO features or not.
*/
static void autoconfig(struct serial_state * state)
{
unsigned char status1, status2, scratch, scratch2, scratch3;
unsigned char save_lcr, save_mcr;
struct async_struct *info, scr_info;
unsigned long flags;
state->type = PORT_UNKNOWN;
#ifdef SERIAL_DEBUG_AUTOCONF
printk("Testing ttyS%d (0x%04lx, 0x%04x)...\n", state->line,
state->port, (unsigned) state->iomem_base);
#endif
if (!CONFIGURED_SERIAL_PORT(state))
return;
info = &scr_info; /* This is just for serial_{in,out} */
info->magic = SERIAL_MAGIC;
info->state = state;
info->port = state->port;
info->flags = state->flags;
#ifdef CONFIG_HUB6
info->hub6 = state->hub6;
#endif
info->io_type = state->io_type;
info->iomem_base = state->iomem_base;
info->iomem_reg_shift = state->iomem_reg_shift;
save_flags(flags); cli();
if (!(state->flags & ASYNC_BUGGY_UART) &&
!state->iomem_base) {
/*
* Do a simple existence test first; if we fail this,
* there's no point trying anything else.
*
* 0x80 is used as a nonsense port to prevent against
* false positives due to ISA bus float. The
* assumption is that 0x80 is a non-existent port;
* which should be safe since include/asm/io.h also
* makes this assumption.
*/
scratch = serial_inp(info, UART_IER);
serial_outp(info, UART_IER, 0);
#ifdef __i386__
outb(0xff, 0x080);
#endif
scratch2 = serial_inp(info, UART_IER);
serial_outp(info, UART_IER, 0x0F);
#ifdef __i386__
outb(0, 0x080);
#endif
scratch3 = serial_inp(info, UART_IER);
serial_outp(info, UART_IER, scratch);
if (scratch2 || scratch3 != 0x0F) {
#ifdef SERIAL_DEBUG_AUTOCONF
printk("serial: ttyS%d: simple autoconfig failed "
"(%02x, %02x)\n", state->line,
scratch2, scratch3);
#endif
restore_flags(flags);
return; /* We failed; there's nothing here */
}
}
save_mcr = serial_in(info, UART_MCR);
save_lcr = serial_in(info, UART_LCR);
/*
* Check to see if a UART is really there. Certain broken
* internal modems based on the Rockwell chipset fail this
* test, because they apparently don't implement the loopback
* test mode. So this test is skipped on the COM 1 through
* COM 4 ports. This *should* be safe, since no board
* manufacturer would be stupid enough to design a board
* that conflicts with COM 1-4 --- we hope!
*/
if (!(state->flags & ASYNC_SKIP_TEST)) {
serial_outp(info, UART_MCR, UART_MCR_LOOP | 0x0A);
status1 = serial_inp(info, UART_MSR) & 0xF0;
serial_outp(info, UART_MCR, save_mcr);
if (status1 != 0x90) {
#ifdef SERIAL_DEBUG_AUTOCONF
printk("serial: ttyS%d: no UART loopback failed\n",
state->line);
#endif
restore_flags(flags);
return;
}
}
serial_outp(info, UART_LCR, 0xBF); /* set up for StarTech test */
serial_outp(info, UART_EFR, 0); /* EFR is the same as FCR */
serial_outp(info, UART_LCR, 0);
serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO);
scratch = serial_in(info, UART_IIR) >> 6;
switch (scratch) {
case 0:
state->type = PORT_16450;
break;
case 1:
state->type = PORT_UNKNOWN;
break;
case 2:
state->type = PORT_16550;
break;
case 3:
state->type = PORT_16550A;
break;
}
if (state->type == PORT_16550A) {
/* Check for Startech UART's */
serial_outp(info, UART_LCR, UART_LCR_DLAB);
if (serial_in(info, UART_EFR) == 0) {
serial_outp(info, UART_EFR, 0xA8);
if (serial_in(info, UART_EFR) == 0) {
/* We are a NS16552D/Motorola
* 8xxx DUART, stop. */
goto out;
}
state->type = PORT_16650;
serial_outp(info, UART_EFR, 0);
} else {
serial_outp(info, UART_LCR, 0xBF);
if (serial_in(info, UART_EFR) == 0)
autoconfig_startech_uarts(info, state, flags);
}
}
if (state->type == PORT_16550A) {
/* Check for TI 16750 */
serial_outp(info, UART_LCR, save_lcr | UART_LCR_DLAB);
serial_outp(info, UART_FCR,
UART_FCR_ENABLE_FIFO | UART_FCR7_64BYTE);
scratch = serial_in(info, UART_IIR) >> 5;
if (scratch == 7) {
/*
* If this is a 16750, and not a cheap UART
* clone, then it should only go into 64 byte
* mode if the UART_FCR7_64BYTE bit was set
* while UART_LCR_DLAB was latched.
*/
serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO);
serial_outp(info, UART_LCR, 0);
serial_outp(info, UART_FCR,
UART_FCR_ENABLE_FIFO | UART_FCR7_64BYTE);
scratch = serial_in(info, UART_IIR) >> 5;
if (scratch == 6)
state->type = PORT_16750;
}
serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO);
}
#if defined(CONFIG_SERIAL_RSA) && defined(MODULE)
if (state->type == PORT_16550A) {
int i;
for (i = 0 ; i < PORT_RSA_MAX ; ++i) {
if (!probe_rsa[i] && !force_rsa[i])
break;
if (((probe_rsa[i] != state->port) ||
check_region(state->port + UART_RSA_BASE, 16)) &&
(force_rsa[i] != state->port))
continue;
if (!enable_rsa(info))
continue;
state->type = PORT_RSA;
state->baud_base = SERIAL_RSA_BAUD_BASE;
break;
}
}
#endif
out:
serial_outp(info, UART_LCR, save_lcr);
if (state->type == PORT_16450) {
scratch = serial_in(info, UART_SCR);
serial_outp(info, UART_SCR, 0xa5);
status1 = serial_in(info, UART_SCR);
serial_outp(info, UART_SCR, 0x5a);
status2 = serial_in(info, UART_SCR);
serial_outp(info, UART_SCR, scratch);
if ((status1 != 0xa5) || (status2 != 0x5a))
state->type = PORT_8250;
}
state->xmit_fifo_size = uart_config[state->type].dfl_xmit_fifo_size;
if (state->type == PORT_UNKNOWN) {
restore_flags(flags);
return;
}
if (info->port) {
#ifdef CONFIG_SERIAL_RSA
if (state->type == PORT_RSA)
request_region(info->port + UART_RSA_BASE, 16,
"serial_rsa(auto)");
else
#endif
request_region(info->port,8,"serial(auto)");
}
/*
* Reset the UART.
*/
#ifdef CONFIG_SERIAL_RSA
if (state->type == PORT_RSA)
serial_outp(info, UART_RSA_FRR, 0);
#endif
serial_outp(info, UART_MCR, save_mcr);
serial_outp(info, UART_FCR, (UART_FCR_ENABLE_FIFO |
UART_FCR_CLEAR_RCVR |
UART_FCR_CLEAR_XMIT));
serial_outp(info, UART_FCR, 0);
(void)serial_in(info, UART_RX);
serial_outp(info, UART_IER, 0);
restore_flags(flags);
}
int register_serial(struct serial_struct *req);
void unregister_serial(int line);
#if (LINUX_VERSION_CODE > 0x20100)
EXPORT_SYMBOL(register_serial);
EXPORT_SYMBOL(unregister_serial);
#else
static struct symbol_table serial_syms = {
#include <linux/symtab_begin.h>
X(register_serial),
X(unregister_serial),
#include <linux/symtab_end.h>
};
#endif
#if defined(ENABLE_SERIAL_PCI) || defined(ENABLE_SERIAL_PNP)
static void __devinit printk_pnp_dev_id(unsigned short vendor,
unsigned short device)
{
printk("%c%c%c%x%x%x%x",
'A' + ((vendor >> 2) & 0x3f) - 1,
'A' + (((vendor & 3) << 3) | ((vendor >> 13) & 7)) - 1,
'A' + ((vendor >> 8) & 0x1f) - 1,
(device >> 4) & 0x0f,
device & 0x0f,
(device >> 12) & 0x0f,
(device >> 8) & 0x0f);
}
static _INLINE_ int get_pci_port(struct pci_dev *dev,
struct pci_board *board,
struct serial_struct *req,
int idx)
{
unsigned long port;
int base_idx;
int max_port;
int offset;
base_idx = SPCI_FL_GET_BASE(board->flags);
if (board->flags & SPCI_FL_BASE_TABLE)
base_idx += idx;
if (board->flags & SPCI_FL_REGION_SZ_CAP) {
max_port = pci_resource_len(dev, base_idx) / 8;
if (idx >= max_port)
return 1;
}
offset = board->first_uart_offset;
/* Timedia/SUNIX uses a mixture of BARs and offsets */
/* Ugh, this is ugly as all hell --- TYT */
if(dev->vendor == PCI_VENDOR_ID_TIMEDIA ) /* 0x1409 */
switch(idx) {
case 0: base_idx=0;
break;
case 1: base_idx=0; offset=8;
break;
case 2: base_idx=1;
break;
case 3: base_idx=1; offset=8;
break;
case 4: /* BAR 2*/
case 5: /* BAR 3 */
case 6: /* BAR 4*/
case 7: base_idx=idx-2; /* BAR 5*/
}
/* Some Titan cards are also a little weird */
if (dev->vendor == PCI_VENDOR_ID_TITAN &&
(dev->device == PCI_DEVICE_ID_TITAN_400L ||
dev->device == PCI_DEVICE_ID_TITAN_800L)) {
switch (idx) {
case 0: base_idx = 1;
break;
case 1: base_idx = 2;
break;
default:
base_idx = 4;
offset = 8 * (idx - 2);
}
}
/* HP's Diva chip puts the 4th/5th serial port further out, and
* some serial ports are supposed to be hidden on certain models.
*/
if (dev->vendor == PCI_VENDOR_ID_HP &&
dev->device == PCI_DEVICE_ID_HP_SAS) {
switch (dev->subsystem_device) {
case 0x104B: /* Maestro */
if (idx == 3) idx++;
break;
case 0x1282: /* Everest / Longs Peak */
if (idx > 0) idx++;
if (idx > 2) idx++;
break;
}
if (idx > 2) {
offset = 0x18;
}
}
port = pci_resource_start(dev, base_idx) + offset;
if ((board->flags & SPCI_FL_BASE_TABLE) == 0)
port += idx * (board->uart_offset ? board->uart_offset : 8);
if (IS_PCI_REGION_IOPORT(dev, base_idx)) {
req->port = port;
if (HIGH_BITS_OFFSET)
req->port_high = port >> HIGH_BITS_OFFSET;
else
req->port_high = 0;
return 0;
}
req->io_type = SERIAL_IO_MEM;
req->iomem_base = ioremap(port, board->uart_offset);
req->iomem_reg_shift = board->reg_shift;
req->port = 0;
return 0;
}
static _INLINE_ int get_pci_irq(struct pci_dev *dev,
struct pci_board *board,
int idx)
{
int base_idx;
if ((board->flags & SPCI_FL_IRQRESOURCE) == 0)
return dev->irq;
base_idx = SPCI_FL_GET_IRQBASE(board->flags);
if (board->flags & SPCI_FL_IRQ_TABLE)
base_idx += idx;
return PCI_IRQ_RESOURCE(dev, base_idx);
}
/*
* Common enabler code shared by both PCI and ISAPNP probes
*/
static void __devinit start_pci_pnp_board(struct pci_dev *dev,
struct pci_board *board)
{
int k, line;
struct serial_struct serial_req;
int base_baud;
if (PREPARE_FUNC(dev) && (PREPARE_FUNC(dev))(dev) < 0) {
printk("serial: PNP device '");
printk_pnp_dev_id(dev->vendor, dev->device);
printk("' prepare failed\n");
return;
}
if (ACTIVATE_FUNC(dev) && (ACTIVATE_FUNC(dev))(dev) < 0) {
printk("serial: PNP device '");
printk_pnp_dev_id(dev->vendor, dev->device);
printk("' activate failed\n");
return;
}
/*
* Run the initialization function, if any
*/
if (board->init_fn && ((board->init_fn)(dev, board, 1) != 0))
return;
/*
* Register the serial board in the array if we need to
* shutdown the board on a module unload or card removal
*/
if (DEACTIVATE_FUNC(dev) || board->init_fn) {
for (k=0; k < NR_PCI_BOARDS; k++)
if (serial_pci_board[k].dev == 0)
break;
if (k >= NR_PCI_BOARDS)
return;
serial_pci_board[k].board = *board;
serial_pci_board[k].dev = dev;
}
base_baud = board->base_baud;
if (!base_baud)
base_baud = BASE_BAUD;
memset(&serial_req, 0, sizeof(serial_req));
for (k=0; k < board->num_ports; k++) {
serial_req.irq = get_pci_irq(dev, board, k);
if (get_pci_port(dev, board, &serial_req, k))
break;
serial_req.flags = ASYNC_SKIP_TEST | ASYNC_AUTOPROBE;
#ifdef SERIAL_DEBUG_PCI
printk("Setup PCI/PNP port: port %x, irq %d, type %d\n",
serial_req.port, serial_req.irq, serial_req.io_type);
#endif
line = register_serial(&serial_req);
if (line < 0)
break;
rs_table[line].baud_base = base_baud;
rs_table[line].dev = dev;
}
}
#endif /* ENABLE_SERIAL_PCI || ENABLE_SERIAL_PNP */
#ifdef ENABLE_SERIAL_PCI
/*
* Some PCI serial cards using the PLX 9050 PCI interface chip require
* that the card interrupt be explicitly enabled or disabled. This
* seems to be mainly needed on card using the PLX which also use I/O
* mapped memory.
*/
static int __devinit
pci_plx9050_fn(struct pci_dev *dev, struct pci_board *board, int enable)
{
u8 data, *p, irq_config;
int pci_config;
irq_config = 0x41;
pci_config = PCI_COMMAND_MEMORY;
if (dev->vendor == PCI_VENDOR_ID_PANACOM)
irq_config = 0x43;
if ((dev->vendor == PCI_VENDOR_ID_PLX) &&
(dev->device == PCI_DEVICE_ID_PLX_ROMULUS)) {
/*
* As the megawolf cards have the int pins active
* high, and have 2 UART chips, both ints must be
* enabled on the 9050. Also, the UARTS are set in
* 16450 mode by default, so we have to enable the
* 16C950 'enhanced' mode so that we can use the deep
* FIFOs
*/
irq_config = 0x5b;
pci_config = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
}
pci_read_config_byte(dev, PCI_COMMAND, &data);
if (enable)
pci_write_config_byte(dev, PCI_COMMAND,
data | pci_config);
/* enable/disable interrupts */
p = ioremap(pci_resource_start(dev, 0), 0x80);
writel(enable ? irq_config : 0x00, (unsigned long)p + 0x4c);
iounmap(p);
if (!enable)
pci_write_config_byte(dev, PCI_COMMAND,
data & ~pci_config);
return 0;
}
/*
* SIIG serial cards have an PCI interface chip which also controls
* the UART clocking frequency. Each UART can be clocked independently
* (except cards equiped with 4 UARTs) and initial clocking settings
* are stored in the EEPROM chip. It can cause problems because this
* version of serial driver doesn't support differently clocked UART's
* on single PCI card. To prevent this, initialization functions set
* high frequency clocking for all UART's on given card. It is safe (I
* hope) because it doesn't touch EEPROM settings to prevent conflicts
* with other OSes (like M$ DOS).
*
* SIIG support added by Andrey Panin <pazke@mail.tp.ru>, 10/1999
*
* There is two family of SIIG serial cards with different PCI
* interface chip and different configuration methods:
* - 10x cards have control registers in IO and/or memory space;
* - 20x cards have control registers in standard PCI configuration space.
*
* SIIG initialization functions exported for use by parport_serial.c module.
*/
#define PCI_DEVICE_ID_SIIG_1S_10x (PCI_DEVICE_ID_SIIG_1S_10x_550 & 0xfffc)
#define PCI_DEVICE_ID_SIIG_2S_10x (PCI_DEVICE_ID_SIIG_2S_10x_550 & 0xfff8)
int __devinit
pci_siig10x_fn(struct pci_dev *dev, struct pci_board *board, int enable)
{
u16 data, *p;
if (!enable) return 0;
p = ioremap(pci_resource_start(dev, 0), 0x80);
switch (dev->device & 0xfff8) {
case PCI_DEVICE_ID_SIIG_1S_10x: /* 1S */
data = 0xffdf;
break;
case PCI_DEVICE_ID_SIIG_2S_10x: /* 2S, 2S1P */
data = 0xf7ff;
break;
default: /* 1S1P, 4S */
data = 0xfffb;
break;
}
writew(readw((unsigned long) p + 0x28) & data, (unsigned long) p + 0x28);
iounmap(p);
return 0;
}
EXPORT_SYMBOL(pci_siig10x_fn);
#define PCI_DEVICE_ID_SIIG_2S_20x (PCI_DEVICE_ID_SIIG_2S_20x_550 & 0xfffc)
#define PCI_DEVICE_ID_SIIG_2S1P_20x (PCI_DEVICE_ID_SIIG_2S1P_20x_550 & 0xfffc)
int __devinit
pci_siig20x_fn(struct pci_dev *dev, struct pci_board *board, int enable)
{
u8 data;
if (!enable) return 0;
/* Change clock frequency for the first UART. */
pci_read_config_byte(dev, 0x6f, &data);
pci_write_config_byte(dev, 0x6f, data & 0xef);
/* If this card has 2 UART, we have to do the same with second UART. */
if (((dev->device & 0xfffc) == PCI_DEVICE_ID_SIIG_2S_20x) ||
((dev->device & 0xfffc) == PCI_DEVICE_ID_SIIG_2S1P_20x)) {
pci_read_config_byte(dev, 0x73, &data);
pci_write_config_byte(dev, 0x73, data & 0xef);
}
return 0;
}
EXPORT_SYMBOL(pci_siig20x_fn);
/* Added for EKF Intel i960 serial boards */
static int __devinit
pci_inteli960ni_fn(struct pci_dev *dev,
struct pci_board *board,
int enable)
{
unsigned long oldval;
if (!(pci_get_subdevice(dev) & 0x1000))
return(-1);
if (!enable) /* is there something to deinit? */
return(0);
#ifdef SERIAL_DEBUG_PCI
printk(KERN_DEBUG " Subsystem ID %lx (intel 960)\n",
(unsigned long) dev->subsystem_device);
#endif
/* is firmware started? */
pci_read_config_dword(dev, 0x44, (void*) &oldval);
if (oldval == 0x00001000L) { /* RESET value */
printk(KERN_DEBUG "Local i960 firmware missing");
return(-1);
}
return(0);
}
/*
* Timedia has an explosion of boards, and to avoid the PCI table from
* growing *huge*, we use this function to collapse some 70 entries
* in the PCI table into one, for sanity's and compactness's sake.
*/
static unsigned short timedia_single_port[] = {
0x4025, 0x4027, 0x4028, 0x5025, 0x5027, 0 };
static unsigned short timedia_dual_port[] = {
0x0002, 0x4036, 0x4037, 0x4038, 0x4078, 0x4079, 0x4085,
0x4088, 0x4089, 0x5037, 0x5078, 0x5079, 0x5085, 0x6079,
0x7079, 0x8079, 0x8137, 0x8138, 0x8237, 0x8238, 0x9079,
0x9137, 0x9138, 0x9237, 0x9238, 0xA079, 0xB079, 0xC079,
0xD079, 0 };
static unsigned short timedia_quad_port[] = {
0x4055, 0x4056, 0x4095, 0x4096, 0x5056, 0x8156, 0x8157,
0x8256, 0x8257, 0x9056, 0x9156, 0x9157, 0x9158, 0x9159,
0x9256, 0x9257, 0xA056, 0xA157, 0xA158, 0xA159, 0xB056,
0xB157, 0 };
static unsigned short timedia_eight_port[] = {
0x4065, 0x4066, 0x5065, 0x5066, 0x8166, 0x9066, 0x9166,
0x9167, 0x9168, 0xA066, 0xA167, 0xA168, 0 };
static struct timedia_struct {
int num;
unsigned short *ids;
} timedia_data[] = {
{ 1, timedia_single_port },
{ 2, timedia_dual_port },
{ 4, timedia_quad_port },
{ 8, timedia_eight_port },
{ 0, 0 }
};
static int __devinit
pci_timedia_fn(struct pci_dev *dev, struct pci_board *board, int enable)
{
int i, j;
unsigned short *ids;
if (!enable)
return 0;
for (i=0; timedia_data[i].num; i++) {
ids = timedia_data[i].ids;
for (j=0; ids[j]; j++) {
if (pci_get_subdevice(dev) == ids[j]) {
board->num_ports = timedia_data[i].num;
return 0;
}
}
}
return 0;
}
/*
* HP's Remote Management Console. The Diva chip came in several
* different versions. N-class, L2000 and A500 have two Diva chips, each
* with 3 UARTs (the third UART on the second chip is unused). Superdome
* and Keystone have one Diva chip with 3 UARTs. Some later machines have
* one Diva chip, but it has been expanded to 5 UARTs.
*/
static int __devinit
pci_hp_diva(struct pci_dev *dev, struct pci_board *board, int enable)
{
if (!enable)
return 0;
switch (dev->subsystem_device) {
case 0x1049: /* Prelude Diva 1 */
case 0x1223: /* Superdome */
case 0x1226: /* Keystone */
case 0x1282: /* Everest / Longs Peak */
board->num_ports = 3;
break;
case 0x104A: /* Prelude Diva 2 */
board->num_ports = 2;
break;
case 0x104B: /* Maestro */
board->num_ports = 4;
break;
case 0x1227: /* Powerbar */
board->num_ports = 1;
break;
}
return 0;
}
static int __devinit
pci_xircom_fn(struct pci_dev *dev, struct pci_board *board, int enable)
{
__set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ/10);
return 0;
}
/*
* This is the configuration table for all of the PCI serial boards
* which we support. It is directly indexed by the pci_board_num_t enum
* value, which is encoded in the pci_device_id PCI probe table's
* driver_data member.
*/
enum pci_board_num_t {
pbn_b0_1_115200,
pbn_default = 0,
pbn_b0_2_115200,
pbn_b0_4_115200,
pbn_b0_1_921600,
pbn_b0_2_921600,
pbn_b0_4_921600,
pbn_b0_bt_1_115200,
pbn_b0_bt_2_115200,
pbn_b0_bt_1_460800,
pbn_b0_bt_2_460800,
pbn_b0_bt_2_921600,
pbn_b1_1_115200,
pbn_b1_2_115200,
pbn_b1_4_115200,
pbn_b1_8_115200,
pbn_b1_2_921600,
pbn_b1_4_921600,
pbn_b1_8_921600,
pbn_b1_2_1382400,
pbn_b1_4_1382400,
pbn_b1_8_1382400,
pbn_b2_1_115200,
pbn_b2_8_115200,
pbn_b2_4_460800,
pbn_b2_8_460800,
pbn_b2_16_460800,
pbn_b2_4_921600,
pbn_b2_8_921600,
pbn_b2_bt_1_115200,
pbn_b2_bt_2_115200,
pbn_b2_bt_4_115200,
pbn_b2_bt_2_921600,
pbn_panacom,
pbn_panacom2,
pbn_panacom4,
pbn_plx_romulus,
pbn_oxsemi,
pbn_timedia,
pbn_intel_i960,
pbn_sgi_ioc3,
pbn_hp_diva,
#ifdef CONFIG_DDB5074
pbn_nec_nile4,
#endif
pbn_dci_pccom4,
pbn_dci_pccom8,
pbn_xircom_combo,
pbn_siig10x_0,
pbn_siig10x_1,
pbn_siig10x_2,
pbn_siig10x_4,
pbn_siig20x_0,
pbn_siig20x_2,
pbn_siig20x_4,
pbn_computone_4,
pbn_computone_6,
pbn_computone_8,
};
static struct pci_board pci_boards[] __devinitdata = {
/*
* PCI Flags, Number of Ports, Base (Maximum) Baud Rate,
* Offset to get to next UART's registers,
* Register shift to use for memory-mapped I/O,
* Initialization function, first UART offset
*/
/* Generic serial board, pbn_b0_1_115200, pbn_default */
{ SPCI_FL_BASE0, 1, 115200 }, /* pbn_b0_1_115200,
pbn_default */
{ SPCI_FL_BASE0, 2, 115200 }, /* pbn_b0_2_115200 */
{ SPCI_FL_BASE0, 4, 115200 }, /* pbn_b0_4_115200 */
{ SPCI_FL_BASE0, 1, 921600 }, /* pbn_b0_1_921600 */
{ SPCI_FL_BASE0, 2, 921600 }, /* pbn_b0_2_921600 */
{ SPCI_FL_BASE0, 4, 921600 }, /* pbn_b0_4_921600 */
{ SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 1, 115200 }, /* pbn_b0_bt_1_115200 */
{ SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 115200 }, /* pbn_b0_bt_2_115200 */
{ SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 1, 460800 }, /* pbn_b0_bt_1_460800 */
{ SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 460800 }, /* pbn_b0_bt_2_460800 */
{ SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 921600 }, /* pbn_b0_bt_2_921600 */
{ SPCI_FL_BASE1, 1, 115200 }, /* pbn_b1_1_115200 */
{ SPCI_FL_BASE1, 2, 115200 }, /* pbn_b1_2_115200 */
{ SPCI_FL_BASE1, 4, 115200 }, /* pbn_b1_4_115200 */
{ SPCI_FL_BASE1, 8, 115200 }, /* pbn_b1_8_115200 */
{ SPCI_FL_BASE1, 2, 921600 }, /* pbn_b1_2_921600 */
{ SPCI_FL_BASE1, 4, 921600 }, /* pbn_b1_4_921600 */
{ SPCI_FL_BASE1, 8, 921600 }, /* pbn_b1_8_921600 */
{ SPCI_FL_BASE1, 2, 1382400 }, /* pbn_b1_2_1382400 */
{ SPCI_FL_BASE1, 4, 1382400 }, /* pbn_b1_4_1382400 */
{ SPCI_FL_BASE1, 8, 1382400 }, /* pbn_b1_8_1382400 */
{ SPCI_FL_BASE2, 1, 115200 }, /* pbn_b2_1_115200 */
{ SPCI_FL_BASE2, 8, 115200 }, /* pbn_b2_8_115200 */
{ SPCI_FL_BASE2, 4, 460800 }, /* pbn_b2_4_460800 */
{ SPCI_FL_BASE2, 8, 460800 }, /* pbn_b2_8_460800 */
{ SPCI_FL_BASE2, 16, 460800 }, /* pbn_b2_16_460800 */
{ SPCI_FL_BASE2, 4, 921600 }, /* pbn_b2_4_921600 */
{ SPCI_FL_BASE2, 8, 921600 }, /* pbn_b2_8_921600 */
{ SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 1, 115200 }, /* pbn_b2_bt_1_115200 */
{ SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 115200 }, /* pbn_b2_bt_2_115200 */
{ SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 4, 115200 }, /* pbn_b2_bt_4_115200 */
{ SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 921600 }, /* pbn_b2_bt_2_921600 */
{ SPCI_FL_BASE2, 2, 921600, /* IOMEM */ /* pbn_panacom */
0x400, 7, pci_plx9050_fn },
{ SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 921600, /* pbn_panacom2 */
0x400, 7, pci_plx9050_fn },
{ SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 4, 921600, /* pbn_panacom4 */
0x400, 7, pci_plx9050_fn },
{ SPCI_FL_BASE2, 4, 921600, /* pbn_plx_romulus */
0x20, 2, pci_plx9050_fn, 0x03 },
/* This board uses the size of PCI Base region 0 to
* signal now many ports are available */
{ SPCI_FL_BASE0 | SPCI_FL_REGION_SZ_CAP, 32, 115200 }, /* pbn_oxsemi */
{ SPCI_FL_BASE_TABLE, 1, 921600, /* pbn_timedia */
0, 0, pci_timedia_fn },
/* EKF addition for i960 Boards form EKF with serial port */
{ SPCI_FL_BASE0, 32, 921600, /* max 256 ports */ /* pbn_intel_i960 */
8<<2, 2, pci_inteli960ni_fn, 0x10000},
{ SPCI_FL_BASE0 | SPCI_FL_IRQRESOURCE, /* pbn_sgi_ioc3 */
1, 458333, 0, 0, 0, 0x20178 },
{ SPCI_FL_BASE0, 5, 115200, 8, 0, pci_hp_diva, 0}, /* pbn_hp_diva */
#ifdef CONFIG_DDB5074
/*
* NEC Vrc-5074 (Nile 4) builtin UART.
* Conditionally compiled in since this is a motherboard device.
*/
{ SPCI_FL_BASE0, 1, 520833, /* pbn_nec_nile4 */
64, 3, NULL, 0x300 },
#endif
{SPCI_FL_BASE3, 4, 115200, 8}, /* pbn_dci_pccom4 */
{SPCI_FL_BASE3, 8, 115200, 8}, /* pbn_dci_pccom8 */
{ SPCI_FL_BASE0, 1, 115200, /* pbn_xircom_combo */
0, 0, pci_xircom_fn },
{ SPCI_FL_BASE2, 1, 460800, /* pbn_siig10x_0 */
0, 0, pci_siig10x_fn },
{ SPCI_FL_BASE2, 1, 921600, /* pbn_siig10x_1 */
0, 0, pci_siig10x_fn },
{ SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 921600, /* pbn_siig10x_2 */
0, 0, pci_siig10x_fn },
{ SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 4, 921600, /* pbn_siig10x_4 */
0, 0, pci_siig10x_fn },
{ SPCI_FL_BASE0, 1, 921600, /* pbn_siix20x_0 */
0, 0, pci_siig20x_fn },
{ SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 921600, /* pbn_siix20x_2 */
0, 0, pci_siig20x_fn },
{ SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 4, 921600, /* pbn_siix20x_4 */
0, 0, pci_siig20x_fn },
{ SPCI_FL_BASE0, 4, 921600, /* IOMEM */ /* pbn_computone_4 */
0x40, 2, NULL, 0x200 },
{ SPCI_FL_BASE0, 6, 921600, /* IOMEM */ /* pbn_computone_6 */
0x40, 2, NULL, 0x200 },
{ SPCI_FL_BASE0, 8, 921600, /* IOMEM */ /* pbn_computone_8 */
0x40, 2, NULL, 0x200 },
};
/*
* Given a complete unknown PCI device, try to use some heuristics to
* guess what the configuration might be, based on the pitiful PCI
* serial specs. Returns 0 on success, 1 on failure.
*/
static int __devinit serial_pci_guess_board(struct pci_dev *dev,
struct pci_board *board)
{
int num_iomem = 0, num_port = 0, first_port = -1;
int i;
/*
* If it is not a communications device or the programming
* interface is greater than 6, give up.
*
* (Should we try to make guesses for multiport serial devices
* later?)
*/
if ((((dev->class >> 8) != PCI_CLASS_COMMUNICATION_SERIAL) &&
((dev->class >> 8) != PCI_CLASS_COMMUNICATION_MODEM)) ||
(dev->class & 0xff) > 6)
return 1;
for (i=0; i < 6; i++) {
if (IS_PCI_REGION_IOPORT(dev, i)) {
num_port++;
if (first_port == -1)
first_port = i;
}
if (IS_PCI_REGION_IOMEM(dev, i))
num_iomem++;
}
/*
* If there is 1 or 0 iomem regions, and exactly one port, use
* it.
*/
if (num_iomem <= 1 && num_port == 1) {
board->flags = first_port;
return 0;
}
return 1;
}
static int __devinit serial_init_one(struct pci_dev *dev,
const struct pci_device_id *ent)
{
struct pci_board *board, tmp;
int rc;
board = &pci_boards[ent->driver_data];
rc = pci_enable_device(dev);
if (rc) return rc;
if (ent->driver_data == pbn_default &&
serial_pci_guess_board(dev, board))
return -ENODEV;
else if (serial_pci_guess_board(dev, &tmp) == 0) {
printk(KERN_INFO "Redundant entry in serial pci_table. "
"Please send the output of\n"
"lspci -vv, this message (%04x,%04x,%04x,%04x)\n"
"and the manufacturer and name of "
"serial board or modem board\n"
"to serial-pci-info@lists.sourceforge.net.\n",
dev->vendor, dev->device,
pci_get_subvendor(dev), pci_get_subdevice(dev));
}
start_pci_pnp_board(dev, board);
return 0;
}
static void __devexit serial_remove_one(struct pci_dev *dev)
{
int i;
/*
* Iterate through all of the ports finding those that belong
* to this PCI device.
*/
for(i = 0; i < NR_PORTS; i++) {
if (rs_table[i].dev != dev)
continue;
unregister_serial(i);
rs_table[i].dev = 0;
}
/*
* Now execute any board-specific shutdown procedure
*/
for (i=0; i < NR_PCI_BOARDS; i++) {
struct pci_board_inst *brd = &serial_pci_board[i];
if (serial_pci_board[i].dev != dev)
continue;
if (brd->board.init_fn)
(brd->board.init_fn)(brd->dev, &brd->board, 0);
if (DEACTIVATE_FUNC(brd->dev))
(DEACTIVATE_FUNC(brd->dev))(brd->dev);
serial_pci_board[i].dev = 0;
}
}
static struct pci_device_id serial_pci_tbl[] __devinitdata = {
{ PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960,
PCI_SUBVENDOR_ID_CONNECT_TECH,
PCI_SUBDEVICE_ID_CONNECT_TECH_BH8_232, 0, 0,
pbn_b1_8_1382400 },
{ PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960,
PCI_SUBVENDOR_ID_CONNECT_TECH,
PCI_SUBDEVICE_ID_CONNECT_TECH_BH4_232, 0, 0,
pbn_b1_4_1382400 },
{ PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960,
PCI_SUBVENDOR_ID_CONNECT_TECH,
PCI_SUBDEVICE_ID_CONNECT_TECH_BH2_232, 0, 0,
pbn_b1_2_1382400 },
{ PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V351,
PCI_SUBVENDOR_ID_CONNECT_TECH,
PCI_SUBDEVICE_ID_CONNECT_TECH_BH8_232, 0, 0,
pbn_b1_8_1382400 },
{ PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V351,
PCI_SUBVENDOR_ID_CONNECT_TECH,
PCI_SUBDEVICE_ID_CONNECT_TECH_BH4_232, 0, 0,
pbn_b1_4_1382400 },
{ PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V351,
PCI_SUBVENDOR_ID_CONNECT_TECH,
PCI_SUBDEVICE_ID_CONNECT_TECH_BH2_232, 0, 0,
pbn_b1_2_1382400 },
{ PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V351,
PCI_SUBVENDOR_ID_CONNECT_TECH,
PCI_SUBDEVICE_ID_CONNECT_TECH_BH8_485, 0, 0,
pbn_b1_8_921600 },
{ PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V351,
PCI_SUBVENDOR_ID_CONNECT_TECH,
PCI_SUBDEVICE_ID_CONNECT_TECH_BH8_485_4_4, 0, 0,
pbn_b1_8_921600 },
{ PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V351,
PCI_SUBVENDOR_ID_CONNECT_TECH,
PCI_SUBDEVICE_ID_CONNECT_TECH_BH4_485, 0, 0,
pbn_b1_4_921600 },
{ PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V351,
PCI_SUBVENDOR_ID_CONNECT_TECH,
PCI_SUBDEVICE_ID_CONNECT_TECH_BH4_485_2_2, 0, 0,
pbn_b1_4_921600 },
{ PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V351,
PCI_SUBVENDOR_ID_CONNECT_TECH,
PCI_SUBDEVICE_ID_CONNECT_TECH_BH2_485, 0, 0,
pbn_b1_2_921600 },
{ PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V351,
PCI_SUBVENDOR_ID_CONNECT_TECH,
PCI_SUBDEVICE_ID_CONNECT_TECH_BH8_485_2_6, 0, 0,
pbn_b1_8_921600 },
{ PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V351,
PCI_SUBVENDOR_ID_CONNECT_TECH,
PCI_SUBDEVICE_ID_CONNECT_TECH_BH081101V1, 0, 0,
pbn_b1_8_921600 },
{ PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V351,
PCI_SUBVENDOR_ID_CONNECT_TECH,
PCI_SUBDEVICE_ID_CONNECT_TECH_BH041101V1, 0, 0,
pbn_b1_4_921600 },
{ PCI_VENDOR_ID_SEALEVEL, PCI_DEVICE_ID_SEALEVEL_U530,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b2_bt_1_115200 },
{ PCI_VENDOR_ID_SEALEVEL, PCI_DEVICE_ID_SEALEVEL_UCOMM2,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b2_bt_2_115200 },
{ PCI_VENDOR_ID_SEALEVEL, PCI_DEVICE_ID_SEALEVEL_UCOMM422,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b2_bt_4_115200 },
{ PCI_VENDOR_ID_SEALEVEL, PCI_DEVICE_ID_SEALEVEL_UCOMM232,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b2_bt_2_115200 },
{ PCI_VENDOR_ID_SEALEVEL, PCI_DEVICE_ID_SEALEVEL_COMM4,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b2_bt_4_115200 },
{ PCI_VENDOR_ID_SEALEVEL, PCI_DEVICE_ID_SEALEVEL_COMM8,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b2_8_115200 },
{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_GTEK_SERIAL2,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b2_bt_2_115200 },
{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_SPCOM200,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b2_bt_2_921600 },
/* VScom SPCOM800, from sl@s.pl */
{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_SPCOM800,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b2_8_921600 },
{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_1077,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b2_4_921600 },
{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050,
PCI_SUBVENDOR_ID_KEYSPAN,
PCI_SUBDEVICE_ID_KEYSPAN_SX2, 0, 0,
pbn_panacom },
{ PCI_VENDOR_ID_PANACOM, PCI_DEVICE_ID_PANACOM_QUADMODEM,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_panacom4 },
{ PCI_VENDOR_ID_PANACOM, PCI_DEVICE_ID_PANACOM_DUALMODEM,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_panacom2 },
{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050,
PCI_SUBVENDOR_ID_CHASE_PCIFAST,
PCI_SUBDEVICE_ID_CHASE_PCIFAST4, 0, 0,
pbn_b2_4_460800 },
{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050,
PCI_SUBVENDOR_ID_CHASE_PCIFAST,
PCI_SUBDEVICE_ID_CHASE_PCIFAST8, 0, 0,
pbn_b2_8_460800 },
{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050,
PCI_SUBVENDOR_ID_CHASE_PCIFAST,
PCI_SUBDEVICE_ID_CHASE_PCIFAST16, 0, 0,
pbn_b2_16_460800 },
{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050,
PCI_SUBVENDOR_ID_CHASE_PCIFAST,
PCI_SUBDEVICE_ID_CHASE_PCIFAST16FMC, 0, 0,
pbn_b2_16_460800 },
{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050,
PCI_SUBVENDOR_ID_CHASE_PCIRAS,
PCI_SUBDEVICE_ID_CHASE_PCIRAS4, 0, 0,
pbn_b2_4_460800 },
{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050,
PCI_SUBVENDOR_ID_CHASE_PCIRAS,
PCI_SUBDEVICE_ID_CHASE_PCIRAS8, 0, 0,
pbn_b2_8_460800 },
/* Megawolf Romulus PCI Serial Card, from Mike Hudson */
/* (Exoray@isys.ca) */
{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_ROMULUS,
0x10b5, 0x106a, 0, 0,
pbn_plx_romulus },
{ PCI_VENDOR_ID_QUATECH, PCI_DEVICE_ID_QUATECH_QSC100,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b1_4_115200 },
{ PCI_VENDOR_ID_QUATECH, PCI_DEVICE_ID_QUATECH_DSC100,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b1_2_115200 },
{ PCI_VENDOR_ID_QUATECH, PCI_DEVICE_ID_QUATECH_ESC100D,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b1_8_115200 },
{ PCI_VENDOR_ID_QUATECH, PCI_DEVICE_ID_QUATECH_ESC100M,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b1_8_115200 },
{ PCI_VENDOR_ID_SPECIALIX, PCI_DEVICE_ID_OXSEMI_16PCI954,
PCI_VENDOR_ID_SPECIALIX, PCI_SUBDEVICE_ID_SPECIALIX_SPEED4, 0, 0,
pbn_b0_4_921600 },
{ PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_16PCI954,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b0_4_115200 },
{ PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_16PCI952,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b0_bt_2_921600 },
/* Digitan DS560-558, from jimd@esoft.com */
{ PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_ATT_VENUS_MODEM,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b1_1_115200 },
/* 3Com US Robotics 56k Voice Internal PCI model 5610 */
{ PCI_VENDOR_ID_USR, 0x1008,
PCI_ANY_ID, PCI_ANY_ID, },
/* Titan Electronic cards */
{ PCI_VENDOR_ID_TITAN, PCI_DEVICE_ID_TITAN_100,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b0_1_921600 },
{ PCI_VENDOR_ID_TITAN, PCI_DEVICE_ID_TITAN_200,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b0_2_921600 },
{ PCI_VENDOR_ID_TITAN, PCI_DEVICE_ID_TITAN_400,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b0_4_921600 },
{ PCI_VENDOR_ID_TITAN, PCI_DEVICE_ID_TITAN_800B,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b0_4_921600 },
{ PCI_VENDOR_ID_TITAN, PCI_DEVICE_ID_TITAN_100L,
PCI_ANY_ID, PCI_ANY_ID,
SPCI_FL_BASE1, 1, 921600 },
{ PCI_VENDOR_ID_TITAN, PCI_DEVICE_ID_TITAN_200L,
PCI_ANY_ID, PCI_ANY_ID,
SPCI_FL_BASE1 | SPCI_FL_BASE_TABLE, 2, 921600 },
/* The 400L and 800L have a custom hack in get_pci_port */
{ PCI_VENDOR_ID_TITAN, PCI_DEVICE_ID_TITAN_400L,
PCI_ANY_ID, PCI_ANY_ID,
SPCI_FL_BASE_TABLE, 4, 921600 },
{ PCI_VENDOR_ID_TITAN, PCI_DEVICE_ID_TITAN_800L,
PCI_ANY_ID, PCI_ANY_ID,
SPCI_FL_BASE_TABLE, 8, 921600 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S_10x_550,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig10x_0 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S_10x_650,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig10x_0 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S_10x_850,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig10x_0 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S_10x_550,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig10x_2 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S_10x_650,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig10x_2 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S_10x_850,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig10x_2 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_4S_10x_550,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig10x_4 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_4S_10x_650,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig10x_4 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_4S_10x_850,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig10x_4 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S_20x_550,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig20x_0 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S_20x_650,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig20x_0 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S_20x_850,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig20x_0 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S_20x_550,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig20x_2 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S_20x_650,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig20x_2 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S_20x_850,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig20x_2 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_4S_20x_550,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig20x_4 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_4S_20x_650,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig20x_4 },
{ PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_4S_20x_850,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_siig20x_4 },
/* Computone devices submitted by Doug McNash dmcnash@computone.com */
{ PCI_VENDOR_ID_COMPUTONE, PCI_DEVICE_ID_COMPUTONE_PG,
PCI_SUBVENDOR_ID_COMPUTONE, PCI_SUBDEVICE_ID_COMPUTONE_PG4,
0, 0, pbn_computone_4 },
{ PCI_VENDOR_ID_COMPUTONE, PCI_DEVICE_ID_COMPUTONE_PG,
PCI_SUBVENDOR_ID_COMPUTONE, PCI_SUBDEVICE_ID_COMPUTONE_PG8,
0, 0, pbn_computone_8 },
{ PCI_VENDOR_ID_COMPUTONE, PCI_DEVICE_ID_COMPUTONE_PG,
PCI_SUBVENDOR_ID_COMPUTONE, PCI_SUBDEVICE_ID_COMPUTONE_PG6,
0, 0, pbn_computone_6 },
{ PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_16PCI95N,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, pbn_oxsemi },
{ PCI_VENDOR_ID_TIMEDIA, PCI_DEVICE_ID_TIMEDIA_1889,
PCI_VENDOR_ID_TIMEDIA, PCI_ANY_ID, 0, 0, pbn_timedia },
{ PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_DSERIAL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b0_bt_2_115200 },
{ PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_QUATRO_A,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b0_bt_2_115200 },
{ PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_QUATRO_B,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b0_bt_2_115200 },
{ PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_PORT_PLUS,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b0_bt_2_460800 },
{ PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_QUAD_A,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b0_bt_2_460800 },
{ PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_QUAD_B,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b0_bt_2_460800 },
{ PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_SSERIAL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b0_bt_1_115200 },
{ PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_PORT_650,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b0_bt_1_460800 },
/* RAStel 2 port modem, gerg@moreton.com.au */
{ PCI_VENDOR_ID_MORETON, PCI_DEVICE_ID_RASTEL_2PORT,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b2_bt_2_115200 },
/* EKF addition for i960 Boards form EKF with serial port */
{ PCI_VENDOR_ID_INTEL, 0x1960,
0xE4BF, PCI_ANY_ID, 0, 0,
pbn_intel_i960 },
/* Xircom Cardbus/Ethernet combos */
{ PCI_VENDOR_ID_XIRCOM, PCI_DEVICE_ID_XIRCOM_X3201_MDM,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_xircom_combo },
/*
* Untested PCI modems, sent in from various folks...
*/
/* Elsa Model 56K PCI Modem, from Andreas Rath <arh@01019freenet.de> */
{ PCI_VENDOR_ID_ROCKWELL, 0x1004,
0x1048, 0x1500, 0, 0,
pbn_b1_1_115200 },
{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3,
0xFF00, 0, 0, 0,
pbn_sgi_ioc3 },
/* HP Diva card */
{ PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_SAS,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_hp_diva },
{ PCI_VENDOR_ID_HP, 0x1290,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_b2_1_115200 },
#ifdef CONFIG_DDB5074
/*
* NEC Vrc-5074 (Nile 4) builtin UART.
* Conditionally compiled in since this is a motherboard device.
*/
{ PCI_VENDOR_ID_NEC, PCI_DEVICE_ID_NEC_NILE4,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_nec_nile4 },
#endif
{ PCI_VENDOR_ID_DCI, PCI_DEVICE_ID_DCI_PCCOM4,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_dci_pccom4 },
{ PCI_VENDOR_ID_DCI, PCI_DEVICE_ID_DCI_PCCOM8,
PCI_ANY_ID, PCI_ANY_ID, 0, 0,
pbn_dci_pccom8 },
{ PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
PCI_CLASS_COMMUNICATION_SERIAL << 8, 0xffff00, },
{ PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
PCI_CLASS_COMMUNICATION_MODEM << 8, 0xffff00, },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, serial_pci_tbl);
static struct pci_driver serial_pci_driver = {
name: "serial",
probe: serial_init_one,
remove: __devexit_p(serial_remove_one),
id_table: serial_pci_tbl,
};
/*
* Query PCI space for known serial boards
* If found, add them to the PCI device space in rs_table[]
*
* Accept a maximum of eight boards
*
*/
static void __devinit probe_serial_pci(void)
{
#ifdef SERIAL_DEBUG_PCI
printk(KERN_DEBUG "Entered probe_serial_pci()\n");
#endif
/* Register call PCI serial devices. Null out
* the driver name upon failure, as a signal
* not to attempt to unregister the driver later
*/
if (pci_module_init (&serial_pci_driver) != 0)
serial_pci_driver.name = "";
#ifdef SERIAL_DEBUG_PCI
printk(KERN_DEBUG "Leaving probe_serial_pci() (probe finished)\n");
#endif
return;
}
#endif /* ENABLE_SERIAL_PCI */
#ifdef ENABLE_SERIAL_PNP
struct pnp_board {
unsigned short vendor;
unsigned short device;
};
static struct pnp_board pnp_devices[] __devinitdata = {
/* Archtek America Corp. */
/* Archtek SmartLink Modem 3334BT Plug & Play */
{ ISAPNP_VENDOR('A', 'A', 'C'), ISAPNP_DEVICE(0x000F) },
/* Anchor Datacomm BV */
/* SXPro 144 External Data Fax Modem Plug & Play */
{ ISAPNP_VENDOR('A', 'D', 'C'), ISAPNP_DEVICE(0x0001) },
/* SXPro 288 External Data Fax Modem Plug & Play */
{ ISAPNP_VENDOR('A', 'D', 'C'), ISAPNP_DEVICE(0x0002) },
/* Rockwell 56K ACF II Fax+Data+Voice Modem */
{ ISAPNP_VENDOR('A', 'K', 'Y'), ISAPNP_DEVICE(0x1021) },
/* AZT3005 PnP SOUND DEVICE */
{ ISAPNP_VENDOR('A', 'Z', 'T'), ISAPNP_DEVICE(0x4001) },
/* Best Data Products Inc. Smart One 336F PnP Modem */
{ ISAPNP_VENDOR('B', 'D', 'P'), ISAPNP_DEVICE(0x3336) },
/* Boca Research */
/* Boca Complete Ofc Communicator 14.4 Data-FAX */
{ ISAPNP_VENDOR('B', 'R', 'I'), ISAPNP_DEVICE(0x0A49) },
/* Boca Research 33,600 ACF Modem */
{ ISAPNP_VENDOR('B', 'R', 'I'), ISAPNP_DEVICE(0x1400) },
/* Boca 33.6 Kbps Internal FD34FSVD */
{ ISAPNP_VENDOR('B', 'R', 'I'), ISAPNP_DEVICE(0x3400) },
/* Boca 33.6 Kbps Internal FD34FSVD */
{ ISAPNP_VENDOR('B', 'R', 'I'), ISAPNP_DEVICE(0x0A49) },
/* Best Data Products Inc. Smart One 336F PnP Modem */
{ ISAPNP_VENDOR('B', 'D', 'P'), ISAPNP_DEVICE(0x3336) },
/* Computer Peripherals Inc */
/* EuroViVa CommCenter-33.6 SP PnP */
{ ISAPNP_VENDOR('C', 'P', 'I'), ISAPNP_DEVICE(0x4050) },
/* Creative Labs */
/* Creative Labs Phone Blaster 28.8 DSVD PnP Voice */
{ ISAPNP_VENDOR('C', 'T', 'L'), ISAPNP_DEVICE(0x3001) },
/* Creative Labs Modem Blaster 28.8 DSVD PnP Voice */
{ ISAPNP_VENDOR('C', 'T', 'L'), ISAPNP_DEVICE(0x3011) },
/* Creative */
/* Creative Modem Blaster Flash56 DI5601-1 */
{ ISAPNP_VENDOR('D', 'M', 'B'), ISAPNP_DEVICE(0x1032) },
/* Creative Modem Blaster V.90 DI5660 */
{ ISAPNP_VENDOR('D', 'M', 'B'), ISAPNP_DEVICE(0x2001) },
/* FUJITSU */
/* Fujitsu 33600 PnP-I2 R Plug & Play */
{ ISAPNP_VENDOR('F', 'U', 'J'), ISAPNP_DEVICE(0x0202) },
/* Fujitsu FMV-FX431 Plug & Play */
{ ISAPNP_VENDOR('F', 'U', 'J'), ISAPNP_DEVICE(0x0205) },
/* Fujitsu 33600 PnP-I4 R Plug & Play */
{ ISAPNP_VENDOR('F', 'U', 'J'), ISAPNP_DEVICE(0x0206) },
/* Fujitsu Fax Voice 33600 PNP-I5 R Plug & Play */
{ ISAPNP_VENDOR('F', 'U', 'J'), ISAPNP_DEVICE(0x0209) },
/* Archtek America Corp. */
/* Archtek SmartLink Modem 3334BT Plug & Play */
{ ISAPNP_VENDOR('G', 'V', 'C'), ISAPNP_DEVICE(0x000F) },
/* Hayes */
/* Hayes Optima 288 V.34-V.FC + FAX + Voice Plug & Play */
{ ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0x0001) },
/* Hayes Optima 336 V.34 + FAX + Voice PnP */
{ ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0x000C) },
/* Hayes Optima 336B V.34 + FAX + Voice PnP */
{ ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0x000D) },
/* Hayes Accura 56K Ext Fax Modem PnP */
{ ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0x5670) },
/* Hayes Accura 56K Ext Fax Modem PnP */
{ ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0x5674) },
/* Hayes Accura 56K Fax Modem PnP */
{ ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0x5675) },
/* Hayes 288, V.34 + FAX */
{ ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0xF000) },
/* Hayes Optima 288 V.34 + FAX + Voice, Plug & Play */
{ ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0xF001) },
/* IBM */
/* IBM Thinkpad 701 Internal Modem Voice */
{ ISAPNP_VENDOR('I', 'B', 'M'), ISAPNP_DEVICE(0x0033) },
/* Intertex */
/* Intertex 28k8 33k6 Voice EXT PnP */
{ ISAPNP_VENDOR('I', 'X', 'D'), ISAPNP_DEVICE(0xC801) },
/* Intertex 33k6 56k Voice EXT PnP */
{ ISAPNP_VENDOR('I', 'X', 'D'), ISAPNP_DEVICE(0xC901) },
/* Intertex 28k8 33k6 Voice SP EXT PnP */
{ ISAPNP_VENDOR('I', 'X', 'D'), ISAPNP_DEVICE(0xD801) },
/* Intertex 33k6 56k Voice SP EXT PnP */
{ ISAPNP_VENDOR('I', 'X', 'D'), ISAPNP_DEVICE(0xD901) },
/* Intertex 28k8 33k6 Voice SP INT PnP */
{ ISAPNP_VENDOR('I', 'X', 'D'), ISAPNP_DEVICE(0xF401) },
/* Intertex 28k8 33k6 Voice SP EXT PnP */
{ ISAPNP_VENDOR('I', 'X', 'D'), ISAPNP_DEVICE(0xF801) },
/* Intertex 33k6 56k Voice SP EXT PnP */
{ ISAPNP_VENDOR('I', 'X', 'D'), ISAPNP_DEVICE(0xF901) },
/* Kortex International */
/* KORTEX 28800 Externe PnP */
{ ISAPNP_VENDOR('K', 'O', 'R'), ISAPNP_DEVICE(0x4522) },
/* KXPro 33.6 Vocal ASVD PnP */
{ ISAPNP_VENDOR('K', 'O', 'R'), ISAPNP_DEVICE(0xF661) },
/* Lasat */
/* LASAT Internet 33600 PnP */
{ ISAPNP_VENDOR('L', 'A', 'S'), ISAPNP_DEVICE(0x4040) },
/* Lasat Safire 560 PnP */
{ ISAPNP_VENDOR('L', 'A', 'S'), ISAPNP_DEVICE(0x4540) },
/* Lasat Safire 336 PnP */
{ ISAPNP_VENDOR('L', 'A', 'S'), ISAPNP_DEVICE(0x5440) },
/* Microcom, Inc. */
/* Microcom TravelPorte FAST V.34 Plug & Play */
{ ISAPNP_VENDOR('M', 'N', 'P'), ISAPNP_DEVICE(0x281) },
/* Microcom DeskPorte V.34 FAST or FAST+ Plug & Play */
{ ISAPNP_VENDOR('M', 'N', 'P'), ISAPNP_DEVICE(0x0336) },
/* Microcom DeskPorte FAST EP 28.8 Plug & Play */
{ ISAPNP_VENDOR('M', 'N', 'P'), ISAPNP_DEVICE(0x0339) },
/* Microcom DeskPorte 28.8P Plug & Play */
{ ISAPNP_VENDOR('M', 'N', 'P'), ISAPNP_DEVICE(0x0342) },
/* Microcom DeskPorte FAST ES 28.8 Plug & Play */
{ ISAPNP_VENDOR('M', 'N', 'P'), ISAPNP_DEVICE(0x0500) },
/* Microcom DeskPorte FAST ES 28.8 Plug & Play */
{ ISAPNP_VENDOR('M', 'N', 'P'), ISAPNP_DEVICE(0x0501) },
/* Microcom DeskPorte 28.8S Internal Plug & Play */
{ ISAPNP_VENDOR('M', 'N', 'P'), ISAPNP_DEVICE(0x0502) },
/* Motorola */
/* Motorola BitSURFR Plug & Play */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1105) },
/* Motorola TA210 Plug & Play */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1111) },
/* Motorola HMTA 200 (ISDN) Plug & Play */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1114) },
/* Motorola BitSURFR Plug & Play */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1115) },
/* Motorola Lifestyle 28.8 Internal */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1190) },
/* Motorola V.3400 Plug & Play */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1501) },
/* Motorola Lifestyle 28.8 V.34 Plug & Play */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1502) },
/* Motorola Power 28.8 V.34 Plug & Play */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1505) },
/* Motorola ModemSURFR External 28.8 Plug & Play */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1509) },
/* Motorola Premier 33.6 Desktop Plug & Play */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x150A) },
/* Motorola VoiceSURFR 56K External PnP */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x150F) },
/* Motorola ModemSURFR 56K External PnP */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1510) },
/* Motorola ModemSURFR 56K Internal PnP */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1550) },
/* Motorola ModemSURFR Internal 28.8 Plug & Play */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1560) },
/* Motorola Premier 33.6 Internal Plug & Play */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1580) },
/* Motorola OnlineSURFR 28.8 Internal Plug & Play */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x15B0) },
/* Motorola VoiceSURFR 56K Internal PnP */
{ ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x15F0) },
/* Com 1 */
/* Deskline K56 Phone System PnP */
{ ISAPNP_VENDOR('M', 'V', 'X'), ISAPNP_DEVICE(0x00A1) },
/* PC Rider K56 Phone System PnP */
{ ISAPNP_VENDOR('M', 'V', 'X'), ISAPNP_DEVICE(0x00F2) },
/* Pace 56 Voice Internal Plug & Play Modem */
{ ISAPNP_VENDOR('P', 'M', 'C'), ISAPNP_DEVICE(0x2430) },
/* Generic */
/* Generic standard PC COM port */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0x0500) },
/* Generic 16550A-compatible COM port */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0x0501) },
/* Compaq 14400 Modem */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC000) },
/* Compaq 2400/9600 Modem */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC001) },
/* Dial-Up Networking Serial Cable between 2 PCs */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC031) },
/* Dial-Up Networking Parallel Cable between 2 PCs */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC032) },
/* Standard 9600 bps Modem */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC100) },
/* Standard 14400 bps Modem */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC101) },
/* Standard 28800 bps Modem*/
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC102) },
/* Standard Modem*/
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC103) },
/* Standard 9600 bps Modem*/
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC104) },
/* Standard 14400 bps Modem*/
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC105) },
/* Standard 28800 bps Modem*/
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC106) },
/* Standard Modem */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC107) },
/* Standard 9600 bps Modem */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC108) },
/* Standard 14400 bps Modem */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC109) },
/* Standard 28800 bps Modem */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC10A) },
/* Standard Modem */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC10B) },
/* Standard 9600 bps Modem */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC10C) },
/* Standard 14400 bps Modem */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC10D) },
/* Standard 28800 bps Modem */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC10E) },
/* Standard Modem */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC10F) },
/* Standard PCMCIA Card Modem */
{ ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0x2000) },
/* Rockwell */
/* Modular Technology */
/* Rockwell 33.6 DPF Internal PnP */
/* Modular Technology 33.6 Internal PnP */
{ ISAPNP_VENDOR('R', 'O', 'K'), ISAPNP_DEVICE(0x0030) },
/* Kortex International */
/* KORTEX 14400 Externe PnP */
{ ISAPNP_VENDOR('R', 'O', 'K'), ISAPNP_DEVICE(0x0100) },
/* Viking Components, Inc */
/* Viking 28.8 INTERNAL Fax+Data+Voice PnP */
{ ISAPNP_VENDOR('R', 'O', 'K'), ISAPNP_DEVICE(0x4920) },
/* Rockwell */
/* British Telecom */
/* Modular Technology */
/* Rockwell 33.6 DPF External PnP */
/* BT Prologue 33.6 External PnP */
/* Modular Technology 33.6 External PnP */
{ ISAPNP_VENDOR('R', 'S', 'S'), ISAPNP_DEVICE(0x00A0) },
/* Viking 56K FAX INT */
{ ISAPNP_VENDOR('R', 'S', 'S'), ISAPNP_DEVICE(0x0262) },
/* SupraExpress 28.8 Data/Fax PnP modem */
{ ISAPNP_VENDOR('S', 'U', 'P'), ISAPNP_DEVICE(0x1310) },
/* SupraExpress 33.6 Data/Fax PnP modem */
{ ISAPNP_VENDOR('S', 'U', 'P'), ISAPNP_DEVICE(0x1421) },
/* SupraExpress 33.6 Data/Fax PnP modem */
{ ISAPNP_VENDOR('S', 'U', 'P'), ISAPNP_DEVICE(0x1590) },
/* SupraExpress 33.6 Data/Fax PnP modem */
{ ISAPNP_VENDOR('S', 'U', 'P'), ISAPNP_DEVICE(0x1760) },
/* Phoebe Micro */
/* Phoebe Micro 33.6 Data Fax 1433VQH Plug & Play */
{ ISAPNP_VENDOR('T', 'E', 'X'), ISAPNP_DEVICE(0x0011) },
/* Archtek America Corp. */
/* Archtek SmartLink Modem 3334BT Plug & Play */
{ ISAPNP_VENDOR('U', 'A', 'C'), ISAPNP_DEVICE(0x000F) },
/* 3Com Corp. */
/* Gateway Telepath IIvi 33.6 */
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x0000) },
/* Sportster Vi 14.4 PnP FAX Voicemail */
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x0004) },
/* U.S. Robotics 33.6K Voice INT PnP */
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x0006) },
/* U.S. Robotics 33.6K Voice EXT PnP */
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x0007) },
/* U.S. Robotics 33.6K Voice INT PnP */
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x2002) },
/* U.S. Robotics 56K Voice INT PnP */
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x2070) },
/* U.S. Robotics 56K Voice EXT PnP */
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x2080) },
/* U.S. Robotics 56K FAX INT */
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x3031) },
/* U.S. Robotics 56K Voice INT PnP */
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x3070) },
/* U.S. Robotics 56K Voice EXT PnP */
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x3080) },
/* U.S. Robotics 56K Voice INT PnP */
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x3090) },
/* U.S. Robotics 56K Message */
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x9100) },
/* U.S. Robotics 56K FAX EXT PnP*/
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x9160) },
/* U.S. Robotics 56K FAX INT PnP*/
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x9170) },
/* U.S. Robotics 56K Voice EXT PnP*/
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x9180) },
/* U.S. Robotics 56K Voice INT PnP*/
{ ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x9190) },
{ 0, }
};
static inline void avoid_irq_share(struct pci_dev *dev)
{
int i, map = 0x1FF8;
struct serial_state *state = rs_table;
struct isapnp_irq *irq;
struct isapnp_resources *res = dev->sysdata;
for (i = 0; i < NR_PORTS; i++) {
if (state->type != PORT_UNKNOWN)
clear_bit(state->irq, &map);
state++;
}
for ( ; res; res = res->alt)
for(irq = res->irq; irq; irq = irq->next)
irq->map = map;
}
static char *modem_names[] __devinitdata = {
"MODEM", "Modem", "modem", "FAX", "Fax", "fax",
"56K", "56k", "K56", "33.6", "28.8", "14.4",
"33,600", "28,800", "14,400", "33.600", "28.800", "14.400",
"33600", "28800", "14400", "V.90", "V.34", "V.32", 0
};
static int __devinit check_name(char *name)
{
char **tmp = modem_names;
while (*tmp) {
if (strstr(name, *tmp))
return 1;
tmp++;
}
return 0;
}
static inline int check_compatible_id(struct pci_dev *dev)
{
int i;
for (i = 0; i < DEVICE_COUNT_COMPATIBLE; i++)
if ((dev->vendor_compatible[i] ==
ISAPNP_VENDOR('P', 'N', 'P')) &&
(swab16(dev->device_compatible[i]) >= 0xc000) &&
(swab16(dev->device_compatible[i]) <= 0xdfff))
return 0;
return 1;
}
/*
* Given a complete unknown ISA PnP device, try to use some heuristics to
* detect modems. Currently use such heuristic set:
* - dev->name or dev->bus->name must contain "modem" substring;
* - device must have only one IO region (8 byte long) with base adress
* 0x2e8, 0x3e8, 0x2f8 or 0x3f8.
*
* Such detection looks very ugly, but can detect at least some of numerous
* ISA PnP modems, alternatively we must hardcode all modems in pnp_devices[]
* table.
*/
static int _INLINE_ serial_pnp_guess_board(struct pci_dev *dev,
struct pci_board *board)
{
struct isapnp_resources *res = (struct isapnp_resources *)dev->sysdata;
struct isapnp_resources *resa;
if (!(check_name(dev->name) || check_name(dev->bus->name)) &&
!(check_compatible_id(dev)))
return 1;
if (!res || res->next)
return 1;
for (resa = res->alt; resa; resa = resa->alt) {
struct isapnp_port *port;
for (port = res->port; port; port = port->next)
if ((port->size == 8) &&
((port->min == 0x2f8) ||
(port->min == 0x3f8) ||
(port->min == 0x2e8) ||
(port->min == 0x3e8)))
return 0;
}
return 1;
}
static void __devinit probe_serial_pnp(void)
{
struct pci_dev *dev = NULL;
struct pnp_board *pnp_board;
struct pci_board board;
#ifdef SERIAL_DEBUG_PNP
printk("Entered probe_serial_pnp()\n");
#endif
if (!isapnp_present()) {
#ifdef SERIAL_DEBUG_PNP
printk("Leaving probe_serial_pnp() (no isapnp)\n");
#endif
return;
}
isapnp_for_each_dev(dev) {
if (dev->active)
continue;
memset(&board, 0, sizeof(board));
board.flags = SPCI_FL_BASE0 | SPCI_FL_PNPDEFAULT;
board.num_ports = 1;
board.base_baud = 115200;
for (pnp_board = pnp_devices; pnp_board->vendor; pnp_board++)
if ((dev->vendor == pnp_board->vendor) &&
(dev->device == pnp_board->device))
break;
if (pnp_board->vendor) {
/* Special case that's more efficient to hardcode */
if ((pnp_board->vendor == ISAPNP_VENDOR('A', 'K', 'Y') &&
pnp_board->device == ISAPNP_DEVICE(0x1021)))
board.flags |= SPCI_FL_NO_SHIRQ;
} else {
if (serial_pnp_guess_board(dev, &board))
continue;
}
if (board.flags & SPCI_FL_NO_SHIRQ)
avoid_irq_share(dev);
start_pci_pnp_board(dev, &board);
}
#ifdef SERIAL_DEBUG_PNP
printk("Leaving probe_serial_pnp() (probe finished)\n");
#endif
return;
}
#endif /* ENABLE_SERIAL_PNP */
/*
* The serial driver boot-time initialization code!
*/
static int __init rs_init(void)
{
int i;
struct serial_state * state;
init_bh(SERIAL_BH, do_serial_bh);
init_timer(&serial_timer);
serial_timer.function = rs_timer;
mod_timer(&serial_timer, jiffies + RS_STROBE_TIME);
for (i = 0; i < NR_IRQS; i++) {
IRQ_ports[i] = 0;
IRQ_timeout[i] = 0;
#ifdef CONFIG_SERIAL_MULTIPORT
memset(&rs_multiport[i], 0,
sizeof(struct rs_multiport_struct));
#endif
}
#ifdef CONFIG_SERIAL_CONSOLE
/*
* The interrupt of the serial console port
* can't be shared.
*/
if (sercons.flags & CON_CONSDEV) {
for(i = 0; i < NR_PORTS; i++)
if (i != sercons.index &&
rs_table[i].irq == rs_table[sercons.index].irq)
rs_table[i].irq = 0;
}
#endif
show_serial_version();
/* Initialize the tty_driver structure */
memset(&serial_driver, 0, sizeof(struct tty_driver));
serial_driver.magic = TTY_DRIVER_MAGIC;
#if (LINUX_VERSION_CODE > 0x20100)
serial_driver.driver_name = "serial";
#endif
#if (LINUX_VERSION_CODE > 0x2032D && defined(CONFIG_DEVFS_FS))
serial_driver.name = "tts/%d";
#else
serial_driver.name = "ttyS";
#endif
serial_driver.major = TTY_MAJOR;
serial_driver.minor_start = 64 + SERIAL_DEV_OFFSET;
serial_driver.name_base = SERIAL_DEV_OFFSET;
serial_driver.num = NR_PORTS;
serial_driver.type = TTY_DRIVER_TYPE_SERIAL;
serial_driver.subtype = SERIAL_TYPE_NORMAL;
serial_driver.init_termios = tty_std_termios;
serial_driver.init_termios.c_cflag =
B9600 | CS8 | CREAD | HUPCL | CLOCAL;
serial_driver.flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_NO_DEVFS;
serial_driver.refcount = &serial_refcount;
serial_driver.table = serial_table;
serial_driver.termios = serial_termios;
serial_driver.termios_locked = serial_termios_locked;
serial_driver.open = rs_open;
serial_driver.close = rs_close;
serial_driver.write = rs_write;
serial_driver.put_char = rs_put_char;
serial_driver.flush_chars = rs_flush_chars;
serial_driver.write_room = rs_write_room;
serial_driver.chars_in_buffer = rs_chars_in_buffer;
serial_driver.flush_buffer = rs_flush_buffer;
serial_driver.ioctl = rs_ioctl;
serial_driver.throttle = rs_throttle;
serial_driver.unthrottle = rs_unthrottle;
serial_driver.set_termios = rs_set_termios;
serial_driver.stop = rs_stop;
serial_driver.start = rs_start;
serial_driver.hangup = rs_hangup;
#if (LINUX_VERSION_CODE >= 131394) /* Linux 2.1.66 */
serial_driver.break_ctl = rs_break;
#endif
#if (LINUX_VERSION_CODE >= 131343)
serial_driver.send_xchar = rs_send_xchar;
serial_driver.wait_until_sent = rs_wait_until_sent;
serial_driver.read_proc = rs_read_proc;
#endif
/*
* The callout device is just like normal device except for
* major number and the subtype code.
*/
callout_driver = serial_driver;
#if (LINUX_VERSION_CODE > 0x2032D && defined(CONFIG_DEVFS_FS))
callout_driver.name = "cua/%d";
#else
callout_driver.name = "cua";
#endif
callout_driver.major = TTYAUX_MAJOR;
callout_driver.subtype = SERIAL_TYPE_CALLOUT;
#if (LINUX_VERSION_CODE >= 131343)
callout_driver.read_proc = 0;
callout_driver.proc_entry = 0;
#endif
if (tty_register_driver(&serial_driver))
panic("Couldn't register serial driver\n");
if (tty_register_driver(&callout_driver))
panic("Couldn't register callout driver\n");
for (i = 0, state = rs_table; i < NR_PORTS; i++,state++) {
state->magic = SSTATE_MAGIC;
state->line = i;
state->type = PORT_UNKNOWN;
state->custom_divisor = 0;
state->close_delay = 5*HZ/10;
state->closing_wait = 30*HZ;
state->callout_termios = callout_driver.init_termios;
state->normal_termios = serial_driver.init_termios;
state->icount.cts = state->icount.dsr =
state->icount.rng = state->icount.dcd = 0;
state->icount.rx = state->icount.tx = 0;
state->icount.frame = state->icount.parity = 0;
state->icount.overrun = state->icount.brk = 0;
state->irq = irq_cannonicalize(state->irq);
if (state->hub6)
state->io_type = SERIAL_IO_HUB6;
if (state->port && check_region(state->port,8))
continue;
#ifdef CONFIG_MCA
if ((state->flags & ASYNC_BOOT_ONLYMCA) && !MCA_bus)
continue;
#endif
if (state->flags & ASYNC_BOOT_AUTOCONF)
autoconfig(state);
}
for (i = 0, state = rs_table; i < NR_PORTS; i++,state++) {
if (state->type == PORT_UNKNOWN)
continue;
if ( (state->flags & ASYNC_BOOT_AUTOCONF)
&& (state->flags & ASYNC_AUTO_IRQ)
&& (state->port != 0 || state->iomem_base != 0))
state->irq = detect_uart_irq(state);
if (state->io_type == SERIAL_IO_MEM) {
printk(KERN_INFO"ttyS%02d%s at 0x%p (irq = %d) is a %s\n",
state->line + SERIAL_DEV_OFFSET,
(state->flags & ASYNC_FOURPORT) ? " FourPort" : "",
state->iomem_base, state->irq,
uart_config[state->type].name);
}
else {
printk(KERN_INFO "ttyS%02d%s at 0x%04lx (irq = %d) is a %s\n",
state->line + SERIAL_DEV_OFFSET,
(state->flags & ASYNC_FOURPORT) ? " FourPort" : "",
state->port, state->irq,
uart_config[state->type].name);
}
tty_register_devfs(&serial_driver, 0,
serial_driver.minor_start + state->line);
tty_register_devfs(&callout_driver, 0,
callout_driver.minor_start + state->line);
}
#ifdef ENABLE_SERIAL_PCI
probe_serial_pci();
#endif
#ifdef ENABLE_SERIAL_PNP
probe_serial_pnp();
#endif
return 0;
}
/*
* This is for use by architectures that know their serial console
* attributes only at run time. Not to be invoked after rs_init().
*/
int __init early_serial_setup(struct serial_struct *req)
{
int i = req->line;
if (i >= NR_IRQS)
return(-ENOENT);
rs_table[i].magic = 0;
rs_table[i].baud_base = req->baud_base;
rs_table[i].port = req->port;
if (HIGH_BITS_OFFSET)
rs_table[i].port += (unsigned long) req->port_high <<
HIGH_BITS_OFFSET;
rs_table[i].irq = req->irq;
rs_table[i].flags = req->flags;
rs_table[i].close_delay = req->close_delay;
rs_table[i].io_type = req->io_type;
rs_table[i].hub6 = req->hub6;
rs_table[i].iomem_base = req->iomem_base;
rs_table[i].iomem_reg_shift = req->iomem_reg_shift;
rs_table[i].type = req->type;
rs_table[i].xmit_fifo_size = req->xmit_fifo_size;
rs_table[i].custom_divisor = req->custom_divisor;
rs_table[i].closing_wait = req->closing_wait;
return(0);
}
/*
* register_serial and unregister_serial allows for 16x50 serial ports to be
* configured at run-time, to support PCMCIA modems.
*/
/**
* register_serial - configure a 16x50 serial port at runtime
* @req: request structure
*
* Configure the serial port specified by the request. If the
* port exists and is in use an error is returned. If the port
* is not currently in the table it is added.
*
* The port is then probed and if neccessary the IRQ is autodetected
* If this fails an error is returned.
*
* On success the port is ready to use and the line number is returned.
*/
int register_serial(struct serial_struct *req)
{
int i;
unsigned long flags;
struct serial_state *state;
struct async_struct *info;
unsigned long port;
port = req->port;
if (HIGH_BITS_OFFSET)
port += (unsigned long) req->port_high << HIGH_BITS_OFFSET;
save_flags(flags); cli();
for (i = 0; i < NR_PORTS; i++) {
if ((rs_table[i].port == port) &&
(rs_table[i].iomem_base == req->iomem_base))
break;
}
#ifdef __i386__
if (i == NR_PORTS) {
for (i = 4; i < NR_PORTS; i++)
if ((rs_table[i].type == PORT_UNKNOWN) &&
(rs_table[i].count == 0))
break;
}
#endif
if (i == NR_PORTS) {
for (i = 0; i < NR_PORTS; i++)
if ((rs_table[i].type == PORT_UNKNOWN) &&
(rs_table[i].count == 0))
break;
}
if (i == NR_PORTS) {
restore_flags(flags);
return -1;
}
state = &rs_table[i];
if (rs_table[i].count) {
restore_flags(flags);
printk("Couldn't configure serial #%d (port=%ld,irq=%d): "
"device already open\n", i, port, req->irq);
return -1;
}
state->irq = req->irq;
state->port = port;
state->flags = req->flags;
state->io_type = req->io_type;
state->iomem_base = req->iomem_base;
state->iomem_reg_shift = req->iomem_reg_shift;
if (req->baud_base)
state->baud_base = req->baud_base;
if ((info = state->info) != NULL) {
info->port = port;
info->flags = req->flags;
info->io_type = req->io_type;
info->iomem_base = req->iomem_base;
info->iomem_reg_shift = req->iomem_reg_shift;
}
autoconfig(state);
if (state->type == PORT_UNKNOWN) {
restore_flags(flags);
printk("register_serial(): autoconfig failed\n");
return -1;
}
restore_flags(flags);
if ((state->flags & ASYNC_AUTO_IRQ) && CONFIGURED_SERIAL_PORT(state))
state->irq = detect_uart_irq(state);
printk(KERN_INFO "ttyS%02d at %s 0x%04lx (irq = %d) is a %s\n",
state->line + SERIAL_DEV_OFFSET,
state->iomem_base ? "iomem" : "port",
state->iomem_base ? (unsigned long)state->iomem_base :
state->port, state->irq, uart_config[state->type].name);
tty_register_devfs(&serial_driver, 0,
serial_driver.minor_start + state->line);
tty_register_devfs(&callout_driver, 0,
callout_driver.minor_start + state->line);
return state->line + SERIAL_DEV_OFFSET;
}
/**
* unregister_serial - deconfigure a 16x50 serial port
* @line: line to deconfigure
*
* The port specified is deconfigured and its resources are freed. Any
* user of the port is disconnected as if carrier was dropped. Line is
* the port number returned by register_serial().
*/
void unregister_serial(int line)
{
unsigned long flags;
struct serial_state *state = &rs_table[line];
save_flags(flags); cli();
if (state->info && state->info->tty)
tty_hangup(state->info->tty);
state->type = PORT_UNKNOWN;
printk(KERN_INFO "ttyS%02d unloaded\n", state->line);
/* These will be hidden, because they are devices that will no longer
* be available to the system. (ie, PCMCIA modems, once ejected)
*/
tty_unregister_devfs(&serial_driver,
serial_driver.minor_start + state->line);
tty_unregister_devfs(&callout_driver,
callout_driver.minor_start + state->line);
restore_flags(flags);
}
static void __exit rs_fini(void)
{
unsigned long flags;
int e1, e2;
int i;
struct async_struct *info;
/* printk("Unloading %s: version %s\n", serial_name, serial_version); */
del_timer_sync(&serial_timer);
save_flags(flags); cli();
remove_bh(SERIAL_BH);
if ((e1 = tty_unregister_driver(&serial_driver)))
printk("serial: failed to unregister serial driver (%d)\n",
e1);
if ((e2 = tty_unregister_driver(&callout_driver)))
printk("serial: failed to unregister callout driver (%d)\n",
e2);
restore_flags(flags);
for (i = 0; i < NR_PORTS; i++) {
if ((info = rs_table[i].info)) {
rs_table[i].info = NULL;
kfree(info);
}
if ((rs_table[i].type != PORT_UNKNOWN) && rs_table[i].port) {
#ifdef CONFIG_SERIAL_RSA
if (rs_table[i].type == PORT_RSA)
release_region(rs_table[i].port +
UART_RSA_BASE, 16);
else
#endif
release_region(rs_table[i].port, 8);
}
#if defined(ENABLE_SERIAL_PCI) || defined(ENABLE_SERIAL_PNP)
if (rs_table[i].iomem_base)
iounmap(rs_table[i].iomem_base);
#endif
}
#if defined(ENABLE_SERIAL_PCI) || defined(ENABLE_SERIAL_PNP)
for (i=0; i < NR_PCI_BOARDS; i++) {
struct pci_board_inst *brd = &serial_pci_board[i];
if (serial_pci_board[i].dev == 0)
continue;
if (brd->board.init_fn)
(brd->board.init_fn)(brd->dev, &brd->board, 0);
if (DEACTIVATE_FUNC(brd->dev))
(DEACTIVATE_FUNC(brd->dev))(brd->dev);
}
#endif
if (tmp_buf) {
unsigned long pg = (unsigned long) tmp_buf;
tmp_buf = NULL;
free_page(pg);
}
#ifdef ENABLE_SERIAL_PCI
if (serial_pci_driver.name[0])
pci_unregister_driver (&serial_pci_driver);
#endif
}
module_init(rs_init);
module_exit(rs_fini);
MODULE_DESCRIPTION("Standard/generic (dumb) serial driver");
MODULE_AUTHOR("Theodore Ts'o <tytso@mit.edu>");
MODULE_LICENSE("GPL");
/*
* ------------------------------------------------------------
* Serial console driver
* ------------------------------------------------------------
*/
#ifdef CONFIG_SERIAL_CONSOLE
#define BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE)
static struct async_struct async_sercons;
/*
* Wait for transmitter & holding register to empty
*/
static inline void wait_for_xmitr(struct async_struct *info)
{
unsigned int status, tmout = 1000000;
do {
status = serial_in(info, UART_LSR);
if (status & UART_LSR_BI)
lsr_break_flag = UART_LSR_BI;
if (--tmout == 0)
break;
} while((status & BOTH_EMPTY) != BOTH_EMPTY);
/* Wait for flow control if necessary */
if (info->flags & ASYNC_CONS_FLOW) {
tmout = 1000000;
while (--tmout &&
((serial_in(info, UART_MSR) & UART_MSR_CTS) == 0));
}
}
/*
* Print a string to the serial port trying not to disturb
* any possible real use of the port...
*
* The console must be locked when we get here.
*/
static void serial_console_write(struct console *co, const char *s,
unsigned count)
{
static struct async_struct *info = &async_sercons;
int ier;
unsigned i;
/*
* First save the IER then disable the interrupts
*/
ier = serial_in(info, UART_IER);
serial_out(info, UART_IER, 0x00);
/*
* Now, do each character
*/
for (i = 0; i < count; i++, s++) {
wait_for_xmitr(info);
/*
* Send the character out.
* If a LF, also do CR...
*/
serial_out(info, UART_TX, *s);
if (*s == 10) {
wait_for_xmitr(info);
serial_out(info, UART_TX, 13);
}
}
/*
* Finally, Wait for transmitter & holding register to empty
* and restore the IER
*/
wait_for_xmitr(info);
serial_out(info, UART_IER, ier);
}
static kdev_t serial_console_device(struct console *c)
{
return MKDEV(TTY_MAJOR, 64 + c->index);
}
/*
* Setup initial baud/bits/parity/flow control. We do two things here:
* - construct a cflag setting for the first rs_open()
* - initialize the serial port
* Return non-zero if we didn't find a serial port.
*/
static int __init serial_console_setup(struct console *co, char *options)
{
static struct async_struct *info;
struct serial_state *state;
unsigned cval;
int baud = 9600;
int bits = 8;
int parity = 'n';
int doflow = 0;
int cflag = CREAD | HUPCL | CLOCAL;
int quot = 0;
char *s;
if (options) {
baud = simple_strtoul(options, NULL, 10);
s = options;
while(*s >= '0' && *s <= '9')
s++;
if (*s) parity = *s++;
if (*s) bits = *s++ - '0';
if (*s) doflow = (*s++ == 'r');
}
/*
* Now construct a cflag setting.
*/
switch(baud) {
case 1200:
cflag |= B1200;
break;
case 2400:
cflag |= B2400;
break;
case 4800:
cflag |= B4800;
break;
case 19200:
cflag |= B19200;
break;
case 38400:
cflag |= B38400;
break;
case 57600:
cflag |= B57600;
break;
case 115200:
cflag |= B115200;
break;
case 9600:
default:
cflag |= B9600;
/*
* Set this to a sane value to prevent a divide error
*/
baud = 9600;
break;
}
switch(bits) {
case 7:
cflag |= CS7;
break;
default:
case 8:
cflag |= CS8;
break;
}
switch(parity) {
case 'o': case 'O':
cflag |= PARODD;
break;
case 'e': case 'E':
cflag |= PARENB;
break;
}
co->cflag = cflag;
/*
* Divisor, bytesize and parity
*/
state = rs_table + co->index;
if (doflow)
state->flags |= ASYNC_CONS_FLOW;
info = &async_sercons;
info->magic = SERIAL_MAGIC;
info->state = state;
info->port = state->port;
info->flags = state->flags;
#ifdef CONFIG_HUB6
info->hub6 = state->hub6;
#endif
info->io_type = state->io_type;
info->iomem_base = state->iomem_base;
info->iomem_reg_shift = state->iomem_reg_shift;
quot = state->baud_base / baud;
cval = cflag & (CSIZE | CSTOPB);
#if defined(__powerpc__) || defined(__alpha__)
cval >>= 8;
#else /* !__powerpc__ && !__alpha__ */
cval >>= 4;
#endif /* !__powerpc__ && !__alpha__ */
if (cflag & PARENB)
cval |= UART_LCR_PARITY;
if (!(cflag & PARODD))
cval |= UART_LCR_EPAR;
/*
* Disable UART interrupts, set DTR and RTS high
* and set speed.
*/
serial_out(info, UART_LCR, cval | UART_LCR_DLAB); /* set DLAB */
serial_out(info, UART_DLL, quot & 0xff); /* LS of divisor */
serial_out(info, UART_DLM, quot >> 8); /* MS of divisor */
serial_out(info, UART_LCR, cval); /* reset DLAB */
serial_out(info, UART_IER, 0);
serial_out(info, UART_MCR, UART_MCR_DTR | UART_MCR_RTS);
/*
* If we read 0xff from the LSR, there is no UART here.
*/
if (serial_in(info, UART_LSR) == 0xff)
return -1;
return 0;
}
static struct console sercons = {
name: "ttyS",
write: serial_console_write,
device: serial_console_device,
setup: serial_console_setup,
flags: CON_PRINTBUFFER,
index: -1,
};
/*
* Register console.
*/
void __init serial_console_init(void)
{
register_console(&sercons);
}
#endif
/*
Local variables:
compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -fno-strict-aliasing -pipe -fno-strength-reduce -march=i586 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -DEXPORT_SYMTAB -c serial.c"
End:
*/