blob: a81a68990fdee62914d09df4d101dc807d0c3dfd [file] [log] [blame]
/*
* C-Brick Serial Port (and console) driver for SGI Altix machines.
*
* This driver is NOT suitable for talking to the l1-controller for
* anything other than 'console activities' --- please use the l1
* driver for that.
*
*
* Copyright (c) 2003 Silicon Graphics, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* Further, this software is distributed without any warranty that it is
* free of the rightful claim of any third person regarding infringement
* or the like. Any license provided herein, whether implied or
* otherwise, applies only to this software file. Patent licenses, if
* any, provided herein do not apply to combinations of this program with
* other software, or any other product whatsoever.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
* Mountain View, CA 94043, or:
*
* http://www.sgi.com
*
* For further information regarding this notice, see:
*
* http://oss.sgi.com/projects/GenInfo/NoticeExplan
*/
#include <linux/config.h>
#include <linux/interrupt.h>
#include <linux/tty.h>
#include <linux/serial.h>
#include <linux/console.h>
#include <linux/module.h>
#include <linux/sysrq.h>
#include <linux/circ_buf.h>
#include <linux/serial_reg.h>
#include <asm/uaccess.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/pci/pciio.h> /* this is needed for get_console_nasid */
#include <asm/sn/simulator.h>
#include <asm/sn/sn2/sn_private.h>
#if defined(CONFIG_SGI_L1_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
static char sysrq_serial_str[] = "\eSYS";
static char *sysrq_serial_ptr = sysrq_serial_str;
static unsigned long sysrq_requested;
#endif /* CONFIG_SGI_L1_SERIAL_CONSOLE && CONFIG_MAGIC_SYSRQ */
/* minor device number */
#define SN_SAL_MINOR 64
#define SN_SAL_SUBTYPE 1
/* number of characters left in xmit buffer before we ask for more */
#define WAKEUP_CHARS 128
/* number of characters we can transmit to the SAL console at a time */
#define SN_SAL_MAX_CHARS 120
#define SN_SAL_EVENT_WRITE_WAKEUP 0
#define CONSOLE_RESTART 1
/* 64K, when we're asynch, it must be at least printk's LOG_BUF_LEN to
* avoid losing chars, (always has to be a power of 2) */
#define SN_SAL_BUFFER_SIZE (64 * (1 << 10))
#define SN_SAL_UART_FIFO_DEPTH 16
#define SN_SAL_UART_FIFO_SPEED_CPS 9600/10
/* we don't kmalloc/get_free_page these as we want them available
* before either of those are initialized */
static char sn_xmit_buff_mem[SN_SAL_BUFFER_SIZE];
struct volatile_circ_buf {
char *cb_buf;
int cb_head;
int cb_tail;
};
static struct volatile_circ_buf xmit = { .cb_buf = sn_xmit_buff_mem };
static char sn_tmp_buffer[SN_SAL_BUFFER_SIZE];
static struct tty_struct *sn_sal_tty;
static struct timer_list sn_sal_timer;
static int sn_sal_event; /* event type for task queue */
static int sn_sal_refcount;
static int sn_sal_is_asynch;
static int sn_sal_irq;
static spinlock_t sn_sal_lock = SPIN_LOCK_UNLOCKED;
static int sn_total_tx_count;
static int sn_total_rx_count;
static struct tty_struct *sn_sal_table;
static struct termios *sn_sal_termios;
static struct termios *sn_sal_termios_locked;
static void sn_sal_tasklet_action(unsigned long data);
static DECLARE_TASKLET(sn_sal_tasklet, sn_sal_tasklet_action, 0);
static unsigned long sn_interrupt_timeout;
extern u64 master_node_bedrock_address;
static int sn_debug_printf(const char *fmt, ...);
#undef DEBUG
#ifdef DEBUG
#define DPRINTF(x...) sn_debug_printf(x)
#else
#define DPRINTF(x...) do { } while (0)
#endif
struct sn_sal_ops {
int (*sal_puts)(const char *s, int len);
int (*sal_getc)(void);
int (*sal_input_pending)(void);
void (*sal_wakeup_transmit)(void);
};
/* This is the pointer used. It is assigned to point to one of
* the tables below.
*/
static struct sn_sal_ops *sn_func;
/* Prototypes */
static int snt_hw_puts(const char *, int);
static int snt_poll_getc(void);
static int snt_poll_input_pending(void);
static int snt_sim_puts(const char *, int);
static int snt_sim_getc(void);
static int snt_sim_input_pending(void);
static int snt_intr_getc(void);
static int snt_intr_input_pending(void);
static void sn_intr_transmit_chars(void);
/* A table for polling */
static struct sn_sal_ops poll_ops = {
.sal_puts = snt_hw_puts,
.sal_getc = snt_poll_getc,
.sal_input_pending = snt_poll_input_pending
};
/* A table for the simulator */
static struct sn_sal_ops sim_ops = {
.sal_puts = snt_sim_puts,
.sal_getc = snt_sim_getc,
.sal_input_pending = snt_sim_input_pending
};
/* A table for interrupts enabled */
static struct sn_sal_ops intr_ops = {
.sal_puts = snt_hw_puts,
.sal_getc = snt_intr_getc,
.sal_input_pending = snt_intr_input_pending,
.sal_wakeup_transmit = sn_intr_transmit_chars
};
/* the console does output in two distinctly different ways:
* synchronous and asynchronous (buffered). initally, early_printk
* does synchronous output. any data written goes directly to the SAL
* to be output (incidentally, it is internally buffered by the SAL)
* after interrupts and timers are initialized and available for use,
* the console init code switches to asynchronous output. this is
* also the earliest opportunity to begin polling for console input.
* after console initialization, console output and tty (serial port)
* output is buffered and sent to the SAL asynchronously (either by
* timer callback or by UART interrupt) */
/* routines for running the console in polling mode */
static int
snt_hw_puts(const char *s, int len)
{
/* looking at the PROM source code, putb calls the flush
* routine, so if we send characters in FIFO sized chunks, it
* should go out by the next time the timer gets called */
return ia64_sn_console_putb(s, len);
}
static int
snt_poll_getc(void)
{
int ch;
ia64_sn_console_getc(&ch);
return ch;
}
static int
snt_poll_input_pending(void)
{
int status, input;
status = ia64_sn_console_check(&input);
return !status && input;
}
/* routines for running the console on the simulator */
static int
snt_sim_puts(const char *str, int count)
{
int counter = count;
#ifdef FLAG_DIRECT_CONSOLE_WRITES
/* This is an easy way to pre-pend the output to know whether the output
* was done via sal or directly */
writeb('[', master_node_bedrock_address + (UART_TX << 3));
writeb('+', master_node_bedrock_address + (UART_TX << 3));
writeb(']', master_node_bedrock_address + (UART_TX << 3));
writeb(' ', master_node_bedrock_address + (UART_TX << 3));
#endif /* FLAG_DIRECT_CONSOLE_WRITES */
while (counter > 0) {
writeb(*str, master_node_bedrock_address + (UART_TX << 3));
counter--;
str++;
}
return count;
}
static int
snt_sim_getc(void)
{
return readb(master_node_bedrock_address + (UART_RX << 3));
}
static int
snt_sim_input_pending(void)
{
return readb(master_node_bedrock_address + (UART_LSR << 3)) & UART_LSR_DR;
}
/* routines for an interrupt driven console (normal) */
static int
snt_intr_getc(void)
{
return ia64_sn_console_readc();
}
static int
snt_intr_input_pending(void)
{
return ia64_sn_console_intr_status() & SAL_CONSOLE_INTR_RECV;
}
/* The early printk (possible setup) and function call */
void
early_printk_sn_sal(const char *s, unsigned count)
{
#if defined(CONFIG_IA64_EARLY_PRINTK_SGI_SN) || defined(CONFIG_IA64_SGI_SN_SIM)
extern void early_sn_setup(void);
#endif
if (!sn_func) {
if (IS_RUNNING_ON_SIMULATOR())
sn_func = &sim_ops;
else
sn_func = &poll_ops;
#if defined(CONFIG_IA64_EARLY_PRINTK_SGI_SN) || defined(CONFIG_IA64_SGI_SN_SIM)
early_sn_setup();
#endif
}
sn_func->sal_puts(s, count);
}
/* this is as "close to the metal" as we can get, used when the driver
* itself may be broken */
static int
sn_debug_printf(const char *fmt, ...)
{
static char printk_buf[1024];
int printed_len;
va_list args;
va_start(args, fmt);
printed_len = vsnprintf(printk_buf, sizeof(printk_buf), fmt, args);
early_printk_sn_sal(printk_buf, printed_len);
va_end(args);
return printed_len;
}
/*
* Interrupt handling routines.
*/
static void
sn_sal_sched_event(int event)
{
sn_sal_event |= (1 << event);
tasklet_schedule(&sn_sal_tasklet);
}
/* sn_receive_chars can be called before sn_sal_tty is initialized. in
* that case, its only use is to trigger sysrq and kdb */
static void
sn_receive_chars(struct pt_regs *regs, unsigned long *flags)
{
int ch;
while (sn_func->sal_input_pending()) {
ch = sn_func->sal_getc();
if (ch < 0) {
printk(KERN_ERR "sn_serial: An error occured while "
"obtaining data from the console (0x%0x)\n", ch);
break;
}
#if defined(CONFIG_SGI_L1_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
if (sysrq_requested) {
unsigned long sysrq_timeout = sysrq_requested + HZ*5;
sysrq_requested = 0;
if (ch && time_before(jiffies, sysrq_timeout)) {
spin_unlock_irqrestore(&sn_sal_lock, *flags);
handle_sysrq(ch, regs, NULL, NULL);
spin_lock_irqsave(&sn_sal_lock, *flags);
/* don't record this char */
continue;
}
}
if (ch == *sysrq_serial_ptr) {
if (!(*++sysrq_serial_ptr)) {
sysrq_requested = jiffies;
sysrq_serial_ptr = sysrq_serial_str;
}
} else
sysrq_serial_ptr = sysrq_serial_str;
#endif /* CONFIG_SGI_L1_SERIAL_CONSOLE && CONFIG_MAGIC_SYSRQ */
/* record the character to pass up to the tty layer */
if (sn_sal_tty) {
*sn_sal_tty->flip.char_buf_ptr = ch;
sn_sal_tty->flip.char_buf_ptr++;
sn_sal_tty->flip.count++;
if (sn_sal_tty->flip.count == TTY_FLIPBUF_SIZE)
break;
}
sn_total_rx_count++;
}
if (sn_sal_tty)
tty_flip_buffer_push((struct tty_struct *)sn_sal_tty);
}
/* synch_flush_xmit must be called with sn_sal_lock */
static void
synch_flush_xmit(void)
{
int xmit_count, tail, head, loops, ii;
int result;
char *start;
if (xmit.cb_head == xmit.cb_tail)
return; /* Nothing to do. */
head = xmit.cb_head;
tail = xmit.cb_tail;
start = &xmit.cb_buf[tail];
/* twice around gets the tail to the end of the buffer and
* then to the head, if needed */
loops = (head < tail) ? 2 : 1;
for (ii = 0; ii < loops; ii++) {
xmit_count = (head < tail) ? (SN_SAL_BUFFER_SIZE - tail) : (head - tail);
if (xmit_count > 0) {
result = sn_func->sal_puts((char *)start, xmit_count);
if (!result)
sn_debug_printf("\n*** synch_flush_xmit failed to flush\n");
if (result > 0) {
xmit_count -= result;
sn_total_tx_count += result;
tail += result;
tail &= SN_SAL_BUFFER_SIZE - 1;
xmit.cb_tail = tail;
start = (char *)&xmit.cb_buf[tail];
}
}
}
}
/* must be called with a lock protecting the circular buffer and
* sn_sal_tty */
static void
sn_poll_transmit_chars(void)
{
int xmit_count, tail, head;
int result;
char *start;
BUG_ON(!sn_sal_is_asynch);
if (xmit.cb_head == xmit.cb_tail ||
(sn_sal_tty && (sn_sal_tty->stopped || sn_sal_tty->hw_stopped))) {
/* Nothing to do. */
return;
}
head = xmit.cb_head;
tail = xmit.cb_tail;
start = &xmit.cb_buf[tail];
xmit_count = (head < tail) ? (SN_SAL_BUFFER_SIZE - tail) : (head - tail);
if (xmit_count == 0)
sn_debug_printf("\n*** empty xmit_count\n");
/* use the ops, as we could be on the simulator */
result = sn_func->sal_puts((char *)start, xmit_count);
if (!result)
sn_debug_printf("\n*** error in synchronous sal_puts\n");
/* XXX chadt clean this up */
if (result > 0) {
xmit_count -= result;
sn_total_tx_count += result;
tail += result;
tail &= SN_SAL_BUFFER_SIZE - 1;
xmit.cb_tail = tail;
start = &xmit.cb_buf[tail];
}
/* if there's few enough characters left in the xmit buffer
* that we could stand for the upper layer to send us some
* more, ask for it. */
if (sn_sal_tty)
if (CIRC_CNT(xmit.cb_head, xmit.cb_tail, SN_SAL_BUFFER_SIZE) < WAKEUP_CHARS)
sn_sal_sched_event(SN_SAL_EVENT_WRITE_WAKEUP);
}
/* must be called with a lock protecting the circular buffer and
* sn_sal_tty */
static void
sn_intr_transmit_chars(void)
{
int xmit_count, tail, head, loops, ii;
int result;
char *start;
BUG_ON(!sn_sal_is_asynch);
if (xmit.cb_head == xmit.cb_tail ||
(sn_sal_tty && (sn_sal_tty->stopped || sn_sal_tty->hw_stopped))) {
/* Nothing to do. */
return;
}
head = xmit.cb_head;
tail = xmit.cb_tail;
start = &xmit.cb_buf[tail];
/* twice around gets the tail to the end of the buffer and
* then to the head, if needed */
loops = (head < tail) ? 2 : 1;
for (ii = 0; ii < loops; ii++) {
xmit_count = (head < tail) ?
(SN_SAL_BUFFER_SIZE - tail) : (head - tail);
if (xmit_count > 0) {
result = ia64_sn_console_xmit_chars((char *)start, xmit_count);
#ifdef DEBUG
if (!result)
sn_debug_printf("`");
#endif
if (result > 0) {
xmit_count -= result;
sn_total_tx_count += result;
tail += result;
tail &= SN_SAL_BUFFER_SIZE - 1;
xmit.cb_tail = tail;
start = &xmit.cb_buf[tail];
}
}
}
/* if there's few enough characters left in the xmit buffer
* that we could stand for the upper layer to send us some
* more, ask for it. */
if (sn_sal_tty)
if (CIRC_CNT(xmit.cb_head, xmit.cb_tail, SN_SAL_BUFFER_SIZE) < WAKEUP_CHARS)
sn_sal_sched_event(SN_SAL_EVENT_WRITE_WAKEUP);
}
static void
sn_sal_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
/* this call is necessary to pass the interrupt back to the
* SAL, since it doesn't intercept the UART interrupts
* itself */
int status = ia64_sn_console_intr_status();
unsigned long flags;
spin_lock_irqsave(&sn_sal_lock, flags);
if (status & SAL_CONSOLE_INTR_RECV)
sn_receive_chars(regs, &flags);
if (status & SAL_CONSOLE_INTR_XMIT)
sn_intr_transmit_chars();
spin_unlock_irqrestore(&sn_sal_lock, flags);
}
/* returns the console irq if interrupt is successfully registered,
* else 0 */
static int
sn_sal_connect_interrupt(void)
{
cpuid_t intr_cpuid;
unsigned int intr_cpuloc;
nasid_t console_nasid;
unsigned int console_irq;
int result;
/* if it is an old prom, run in poll mode */
if ((sn_sal_rev_major() <= 1) && (sn_sal_rev_minor() <= 3)) {
/* before version 1.06 doesn't work */
printk(KERN_INFO "sn_serial: old prom version %x.%02x"
" - running in polled mode\n",
sn_sal_rev_major(), sn_sal_rev_minor());
return 0;
}
console_nasid = ia64_sn_get_console_nasid();
intr_cpuid = NODEPDA(NASID_TO_COMPACT_NODEID(console_nasid))->node_first_cpu;
intr_cpuloc = cpu_physical_id(intr_cpuid);
console_irq = CPU_VECTOR_TO_IRQ(intr_cpuloc, SGI_UART_VECTOR);
result = intr_connect_level(intr_cpuid, SGI_UART_VECTOR, 0 /*not used*/, 0 /*not used*/);
BUG_ON(result != SGI_UART_VECTOR);
result = request_irq(console_irq, sn_sal_interrupt, SA_INTERRUPT,
"SAL console driver", &sn_sal_tty);
if (result >= 0)
return console_irq;
printk(KERN_INFO "sn_serial: console proceeding in polled mode\n");
return 0;
}
static void
sn_sal_tasklet_action(unsigned long data)
{
unsigned long flags;
if (sn_sal_tty) {
spin_lock_irqsave(&sn_sal_lock, flags);
if (sn_sal_tty) {
if (test_and_clear_bit(SN_SAL_EVENT_WRITE_WAKEUP, &sn_sal_event)) {
if ((sn_sal_tty->flags & (1 << TTY_DO_WRITE_WAKEUP))
&& sn_sal_tty->ldisc.write_wakeup)
(sn_sal_tty->ldisc.write_wakeup)((struct tty_struct *)sn_sal_tty);
wake_up_interruptible((wait_queue_head_t *)&sn_sal_tty->write_wait);
}
}
spin_unlock_irqrestore(&sn_sal_lock, flags);
}
}
/*
* This function handles polled mode.
*/
static void
sn_sal_timer_poll(unsigned long dummy)
{
unsigned long flags;
if (!sn_sal_irq) {
spin_lock_irqsave(&sn_sal_lock, flags);
sn_receive_chars(NULL, &flags);
sn_poll_transmit_chars();
spin_unlock_irqrestore(&sn_sal_lock, flags);
mod_timer(&sn_sal_timer, jiffies + sn_interrupt_timeout);
}
}
static void
sn_sal_timer_restart(unsigned long dummy)
{
unsigned long flags;
local_irq_save(flags);
sn_sal_interrupt(0, NULL, NULL);
local_irq_restore(flags);
mod_timer(&sn_sal_timer, jiffies + sn_interrupt_timeout);
}
/*
* User-level console routines
*/
static int
sn_sal_open(struct tty_struct *tty, struct file *filp)
{
unsigned long flags;
DPRINTF("sn_sal_open: sn_sal_tty = %p, tty = %p, filp = %p\n",
sn_sal_tty, tty, filp);
spin_lock_irqsave(&sn_sal_lock, flags);
if (!sn_sal_tty)
sn_sal_tty = tty;
spin_unlock_irqrestore(&sn_sal_lock, flags);
return 0;
}
/* We're keeping all our resources. We're keeping interrupts turned
* on. Maybe just let the tty layer finish its stuff...? GMSH
*/
static void
sn_sal_close(struct tty_struct *tty, struct file * filp)
{
if (tty->count == 1) {
unsigned long flags;
tty->closing = 1;
if (tty->driver.flush_buffer)
tty->driver.flush_buffer(tty);
if (tty->ldisc.flush_buffer)
tty->ldisc.flush_buffer(tty);
tty->closing = 0;
spin_lock_irqsave(&sn_sal_lock, flags);
sn_sal_tty = NULL;
spin_unlock_irqrestore(&sn_sal_lock, flags);
}
}
static int
sn_sal_write(struct tty_struct *tty, int from_user,
const unsigned char *buf, int count)
{
int c, ret = 0;
unsigned long flags;
if (from_user) {
while (1) {
int c1;
c = CIRC_SPACE_TO_END(xmit.cb_head, xmit.cb_tail,
SN_SAL_BUFFER_SIZE);
if (count < c)
c = count;
if (c <= 0)
break;
c -= copy_from_user(sn_tmp_buffer, buf, c);
if (!c) {
if (!ret)
ret = -EFAULT;
break;
}
/* Turn off interrupts and see if the xmit buffer has
* moved since the last time we looked.
*/
spin_lock_irqsave(&sn_sal_lock, flags);
c1 = CIRC_SPACE_TO_END(xmit.cb_head, xmit.cb_tail, SN_SAL_BUFFER_SIZE);
if (c1 < c)
c = c1;
memcpy(xmit.cb_buf + xmit.cb_head, sn_tmp_buffer, c);
xmit.cb_head = ((xmit.cb_head + c) & (SN_SAL_BUFFER_SIZE - 1));
spin_unlock_irqrestore(&sn_sal_lock, flags);
buf += c;
count -= c;
ret += c;
}
} else {
/* The buffer passed in isn't coming from userland,
* so cut out the middleman (sn_tmp_buffer).
*/
spin_lock_irqsave(&sn_sal_lock, flags);
while (1) {
c = CIRC_SPACE_TO_END(xmit.cb_head, xmit.cb_tail, SN_SAL_BUFFER_SIZE);
if (count < c)
c = count;
if (c <= 0) {
break;
}
memcpy(xmit.cb_buf + xmit.cb_head, buf, c);
xmit.cb_head = ((xmit.cb_head + c) & (SN_SAL_BUFFER_SIZE - 1));
buf += c;
count -= c;
ret += c;
}
spin_unlock_irqrestore(&sn_sal_lock, flags);
}
spin_lock_irqsave(&sn_sal_lock, flags);
if (xmit.cb_head != xmit.cb_tail && !(tty && (tty->stopped || tty->hw_stopped)))
if (sn_func->sal_wakeup_transmit)
sn_func->sal_wakeup_transmit();
spin_unlock_irqrestore(&sn_sal_lock, flags);
return ret;
}
static void
sn_sal_put_char(struct tty_struct *tty, unsigned char ch)
{
unsigned long flags;
spin_lock_irqsave(&sn_sal_lock, flags);
if (CIRC_SPACE(xmit.cb_head, xmit.cb_tail, SN_SAL_BUFFER_SIZE) != 0) {
xmit.cb_buf[xmit.cb_head] = ch;
xmit.cb_head = (xmit.cb_head + 1) & (SN_SAL_BUFFER_SIZE-1);
if ( sn_func->sal_wakeup_transmit )
sn_func->sal_wakeup_transmit();
}
spin_unlock_irqrestore(&sn_sal_lock, flags);
}
static void
sn_sal_flush_chars(struct tty_struct *tty)
{
unsigned long flags;
spin_lock_irqsave(&sn_sal_lock, flags);
if (CIRC_CNT(xmit.cb_head, xmit.cb_tail, SN_SAL_BUFFER_SIZE))
if (sn_func->sal_wakeup_transmit)
sn_func->sal_wakeup_transmit();
spin_unlock_irqrestore(&sn_sal_lock, flags);
}
static int
sn_sal_write_room(struct tty_struct *tty)
{
unsigned long flags;
int space;
spin_lock_irqsave(&sn_sal_lock, flags);
space = CIRC_SPACE(xmit.cb_head, xmit.cb_tail, SN_SAL_BUFFER_SIZE);
spin_unlock_irqrestore(&sn_sal_lock, flags);
return space;
}
static int
sn_sal_chars_in_buffer(struct tty_struct *tty)
{
unsigned long flags;
int space;
spin_lock_irqsave(&sn_sal_lock, flags);
space = CIRC_CNT(xmit.cb_head, xmit.cb_tail, SN_SAL_BUFFER_SIZE);
DPRINTF("<%d>", space);
spin_unlock_irqrestore(&sn_sal_lock, flags);
return space;
}
static void
sn_sal_flush_buffer(struct tty_struct *tty)
{
unsigned long flags;
/* drop everything */
spin_lock_irqsave(&sn_sal_lock, flags);
xmit.cb_head = xmit.cb_tail = 0;
spin_unlock_irqrestore(&sn_sal_lock, flags);
/* wake up tty level */
wake_up_interruptible(&tty->write_wait);
if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup)
(tty->ldisc.write_wakeup)(tty);
}
static void
sn_sal_hangup(struct tty_struct *tty)
{
sn_sal_flush_buffer(tty);
}
static void
sn_sal_wait_until_sent(struct tty_struct *tty, int timeout)
{
/* this is SAL's problem */
DPRINTF("<sn_serial: should wait until sent>");
}
/*
* sn_sal_read_proc
*
* Console /proc interface
*/
static int
sn_sal_read_proc(char *page, char **start, off_t off, int count,
int *eof, void *data)
{
int len = 0;
off_t begin = 0;
len += sprintf(page, "sn_serial: nasid:%d irq:%d tx:%d rx:%d\n",
snia_get_console_nasid(), sn_sal_irq,
sn_total_tx_count, sn_total_rx_count);
*eof = 1;
if (off >= len+begin)
return 0;
*start = page + (off-begin);
return count < begin+len-off ? count : begin+len-off;
}
static struct tty_driver sn_sal_driver = {
.magic = TTY_DRIVER_MAGIC,
.driver_name = "sn_serial",
#if defined(CONFIG_DEVFS_FS)
.name = "tts/%d",
#else
.name = "ttyS",
#endif
.major = TTY_MAJOR,
.minor_start = SN_SAL_MINOR,
.num = 1,
.type = TTY_DRIVER_TYPE_SERIAL,
.subtype = SN_SAL_SUBTYPE,
.flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_NO_DEVFS,
.refcount = &sn_sal_refcount,
.table = &sn_sal_table,
.termios = &sn_sal_termios,
.termios_locked = &sn_sal_termios_locked,
.open = sn_sal_open,
.close = sn_sal_close,
.write = sn_sal_write,
.put_char = sn_sal_put_char,
.flush_chars = sn_sal_flush_chars,
.write_room = sn_sal_write_room,
.chars_in_buffer = sn_sal_chars_in_buffer,
.hangup = sn_sal_hangup,
.wait_until_sent = sn_sal_wait_until_sent,
.read_proc = sn_sal_read_proc,
};
/* sn_sal_init wishlist:
* - allocate sn_tmp_buffer
* - fix up the tty_driver struct
* - turn on receive interrupts
* - do any termios twiddling once and for all
*/
/*
* Boot-time initialization code
*/
static void __init
sn_sal_switch_to_asynch(void)
{
unsigned long flags;
sn_debug_printf("sn_serial: about to switch to asynchronous console\n");
/* without early_printk, we may be invoked late enough to race
* with other cpus doing console IO at this point, however
* console interrupts will never be enabled */
spin_lock_irqsave(&sn_sal_lock, flags);
/* early_printk invocation may have done this for us */
if (!sn_func) {
if (IS_RUNNING_ON_SIMULATOR())
sn_func = &sim_ops;
else
sn_func = &poll_ops;
}
/* we can't turn on the console interrupt (as request_irq
* calls kmalloc, which isn't set up yet), so we rely on a
* timer to poll for input and push data from the console
* buffer.
*/
init_timer(&sn_sal_timer);
sn_sal_timer.function = sn_sal_timer_poll;
if (IS_RUNNING_ON_SIMULATOR())
sn_interrupt_timeout = 6;
else {
/* 960cps / 16 char FIFO = 60HZ
* HZ / (SN_SAL_FIFO_SPEED_CPS / SN_SAL_FIFO_DEPTH) */
sn_interrupt_timeout = HZ * SN_SAL_UART_FIFO_DEPTH
/ SN_SAL_UART_FIFO_SPEED_CPS;
}
mod_timer(&sn_sal_timer, jiffies + sn_interrupt_timeout);
sn_sal_is_asynch = 1;
spin_unlock_irqrestore(&sn_sal_lock, flags);
}
static void __init
sn_sal_switch_to_interrupts(void)
{
int irq;
sn_debug_printf("sn_serial: switching to interrupt driven console\n");
irq = sn_sal_connect_interrupt();
if (irq) {
unsigned long flags;
spin_lock_irqsave(&sn_sal_lock, flags);
/* sn_sal_irq is a global variable. When it's set to
* a non-zero value, we stop polling for input (since
* interrupts should now be enabled). */
sn_sal_irq = irq;
sn_func = &intr_ops;
/* turn on receive interrupts */
ia64_sn_console_intr_enable(SAL_CONSOLE_INTR_RECV);
/* the polling timer is already set up, we just change the
* frequency. if we've successfully enabled interrupts (and
* CONSOLE_RESTART isn't defined) the next timer expiration
* will be the last, otherwise we continue polling */
if (CONSOLE_RESTART) {
/* kick the console every once in a while in
* case we miss an interrupt */
sn_interrupt_timeout = 20*HZ;
sn_sal_timer.function = sn_sal_timer_restart;
mod_timer(&sn_sal_timer, jiffies + sn_interrupt_timeout);
}
spin_unlock_irqrestore(&sn_sal_lock, flags);
}
}
static int __init
sn_sal_module_init(void)
{
int retval;
printk("sn_serial: sn_sal_module_init\n");
if (!ia64_platform_is("sn2"))
return -ENODEV;
/* when this driver is compiled in, the console initialization
* will have already switched us into asynchronous operation
* before we get here through the module initcalls */
if (!sn_sal_is_asynch)
sn_sal_switch_to_asynch();
/* at this point (module_init) we can try to turn on interrupts */
if (!IS_RUNNING_ON_SIMULATOR())
sn_sal_switch_to_interrupts();
sn_sal_driver.init_termios = tty_std_termios;
sn_sal_driver.init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;
if ((retval = tty_register_driver(&sn_sal_driver))) {
printk(KERN_ERR "sn_serial: Unable to register tty driver\n");
return retval;
}
tty_register_devfs(&sn_sal_driver, 0, sn_sal_driver.minor_start);
return 0;
}
static void __exit
sn_sal_module_exit(void)
{
del_timer_sync(&sn_sal_timer);
tty_unregister_driver(&sn_sal_driver);
}
module_init(sn_sal_module_init);
module_exit(sn_sal_module_exit);
/*
* Kernel console definitions
*/
#ifdef CONFIG_SGI_L1_SERIAL_CONSOLE
/*
* Print a string to the SAL console. The console_lock must be held
* when we get here.
*/
static void
sn_sal_console_write(struct console *co, const char *s, unsigned count)
{
unsigned long flags;
if (count > CIRC_SPACE_TO_END(xmit.cb_head, xmit.cb_tail,
SN_SAL_BUFFER_SIZE))
sn_debug_printf("\n*** SN_SAL_BUFFER_SIZE too small, lost chars\n");
/* somebody really wants this output, might be an
* oops, kdb, panic, etc. make sure they get it. */
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
if (spin_is_locked(&sn_sal_lock)) {
synch_flush_xmit();
sn_func->sal_puts(s, count);
} else
#endif
if (in_interrupt()) {
spin_lock_irqsave(&sn_sal_lock, flags);
synch_flush_xmit();
spin_unlock_irqrestore(&sn_sal_lock, flags);
sn_func->sal_puts(s, count);
} else {
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
sn_sal_write(NULL, 0, s, count);
#else
synch_flush_xmit();
sn_func->sal_puts(s, count);
#endif
}
}
static kdev_t
sn_sal_console_device(struct console *c)
{
return MKDEV(TTY_MAJOR, 64 + c->index);
}
static int __init
sn_sal_console_setup(struct console *co, char *options)
{
return 0;
}
static struct console sal_console = {
.name = "ttyS",
.write = sn_sal_console_write,
.device = sn_sal_console_device,
.setup = sn_sal_console_setup,
.index = -1
};
void __init
sn_sal_serial_console_init(void)
{
if (ia64_platform_is("sn2")) {
sn_sal_switch_to_asynch();
register_console(&sal_console);
}
}
#endif /* CONFIG_SGI_L1_SERIAL_CONSOLE */