|  | /* | 
|  | * linux/fs/befs/btree.c | 
|  | * | 
|  | * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com> | 
|  | * | 
|  | * Licensed under the GNU GPL. See the file COPYING for details. | 
|  | * | 
|  | * 2002-02-05: Sergey S. Kostyliov added binary search within | 
|  | * 		btree nodes. | 
|  | * | 
|  | * Many thanks to: | 
|  | * | 
|  | * Dominic Giampaolo, author of "Practical File System | 
|  | * Design with the Be File System", for such a helpful book. | 
|  | * | 
|  | * Marcus J. Ranum, author of the b+tree package in | 
|  | * comp.sources.misc volume 10. This code is not copied from that | 
|  | * work, but it is partially based on it. | 
|  | * | 
|  | * Makoto Kato, author of the original BeFS for linux filesystem | 
|  | * driver. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/buffer_head.h> | 
|  |  | 
|  | #include "befs.h" | 
|  | #include "btree.h" | 
|  | #include "datastream.h" | 
|  |  | 
|  | /* | 
|  | * The btree functions in this file are built on top of the | 
|  | * datastream.c interface, which is in turn built on top of the | 
|  | * io.c interface. | 
|  | */ | 
|  |  | 
|  | /* Befs B+tree structure: | 
|  | * | 
|  | * The first thing in the tree is the tree superblock. It tells you | 
|  | * all kinds of useful things about the tree, like where the rootnode | 
|  | * is located, and the size of the nodes (always 1024 with current version | 
|  | * of BeOS). | 
|  | * | 
|  | * The rest of the tree consists of a series of nodes. Nodes contain a header | 
|  | * (struct befs_btree_nodehead), the packed key data, an array of shorts | 
|  | * containing the ending offsets for each of the keys, and an array of | 
|  | * befs_off_t values. In interior nodes, the keys are the ending keys for | 
|  | * the childnode they point to, and the values are offsets into the | 
|  | * datastream containing the tree. | 
|  | */ | 
|  |  | 
|  | /* Note: | 
|  | * | 
|  | * The book states 2 confusing things about befs b+trees. First, | 
|  | * it states that the overflow field of node headers is used by internal nodes | 
|  | * to point to another node that "effectively continues this one". Here is what | 
|  | * I believe that means. Each key in internal nodes points to another node that | 
|  | * contains key values less than itself. Inspection reveals that the last key | 
|  | * in the internal node is not the last key in the index. Keys that are | 
|  | * greater than the last key in the internal node go into the overflow node. | 
|  | * I imagine there is a performance reason for this. | 
|  | * | 
|  | * Second, it states that the header of a btree node is sufficient to | 
|  | * distinguish internal nodes from leaf nodes. Without saying exactly how. | 
|  | * After figuring out the first, it becomes obvious that internal nodes have | 
|  | * overflow nodes and leafnodes do not. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Currently, this code is only good for directory B+trees. | 
|  | * In order to be used for other BFS indexes, it needs to be extended to handle | 
|  | * duplicate keys and non-string keytypes (int32, int64, float, double). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * In memory structure of each btree node | 
|  | */ | 
|  | typedef struct { | 
|  | befs_host_btree_nodehead head;	/* head of node converted to cpu byteorder */ | 
|  | struct buffer_head *bh; | 
|  | befs_btree_nodehead *od_node;	/* on disk node */ | 
|  | } befs_btree_node; | 
|  |  | 
|  | /* local constants */ | 
|  | static const befs_off_t befs_bt_inval = 0xffffffffffffffffULL; | 
|  |  | 
|  | /* local functions */ | 
|  | static int befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds, | 
|  | befs_btree_super * bt_super, | 
|  | befs_btree_node * this_node, | 
|  | befs_off_t * node_off); | 
|  |  | 
|  | static int befs_bt_read_super(struct super_block *sb, befs_data_stream * ds, | 
|  | befs_btree_super * sup); | 
|  |  | 
|  | static int befs_bt_read_node(struct super_block *sb, befs_data_stream * ds, | 
|  | befs_btree_node * node, befs_off_t node_off); | 
|  |  | 
|  | static int befs_leafnode(befs_btree_node * node); | 
|  |  | 
|  | static fs16 *befs_bt_keylen_index(befs_btree_node * node); | 
|  |  | 
|  | static fs64 *befs_bt_valarray(befs_btree_node * node); | 
|  |  | 
|  | static char *befs_bt_keydata(befs_btree_node * node); | 
|  |  | 
|  | static int befs_find_key(struct super_block *sb, befs_btree_node * node, | 
|  | const char *findkey, befs_off_t * value); | 
|  |  | 
|  | static char *befs_bt_get_key(struct super_block *sb, befs_btree_node * node, | 
|  | int index, u16 * keylen); | 
|  |  | 
|  | static int befs_compare_strings(const void *key1, int keylen1, | 
|  | const void *key2, int keylen2); | 
|  |  | 
|  | /** | 
|  | * befs_bt_read_super - read in btree superblock convert to cpu byteorder | 
|  | * @sb: Filesystem superblock | 
|  | * @ds: Datastream to read from | 
|  | * @sup: Buffer in which to place the btree superblock | 
|  | * | 
|  | * Calls befs_read_datastream to read in the btree superblock and | 
|  | * makes sure it is in cpu byteorder, byteswapping if necessary. | 
|  | * | 
|  | * On success, returns BEFS_OK and *@sup contains the btree superblock, | 
|  | * in cpu byte order. | 
|  | * | 
|  | * On failure, BEFS_ERR is returned. | 
|  | */ | 
|  | static int | 
|  | befs_bt_read_super(struct super_block *sb, befs_data_stream * ds, | 
|  | befs_btree_super * sup) | 
|  | { | 
|  | struct buffer_head *bh = NULL; | 
|  | befs_disk_btree_super *od_sup = NULL; | 
|  |  | 
|  | befs_debug(sb, "---> befs_btree_read_super()"); | 
|  |  | 
|  | bh = befs_read_datastream(sb, ds, 0, NULL); | 
|  |  | 
|  | if (!bh) { | 
|  | befs_error(sb, "Couldn't read index header."); | 
|  | goto error; | 
|  | } | 
|  | od_sup = (befs_disk_btree_super *) bh->b_data; | 
|  | befs_dump_index_entry(sb, od_sup); | 
|  |  | 
|  | sup->magic = fs32_to_cpu(sb, od_sup->magic); | 
|  | sup->node_size = fs32_to_cpu(sb, od_sup->node_size); | 
|  | sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth); | 
|  | sup->data_type = fs32_to_cpu(sb, od_sup->data_type); | 
|  | sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr); | 
|  | sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr); | 
|  | sup->max_size = fs64_to_cpu(sb, od_sup->max_size); | 
|  |  | 
|  | brelse(bh); | 
|  | if (sup->magic != BEFS_BTREE_MAGIC) { | 
|  | befs_error(sb, "Index header has bad magic."); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | befs_debug(sb, "<--- befs_btree_read_super()"); | 
|  | return BEFS_OK; | 
|  |  | 
|  | error: | 
|  | befs_debug(sb, "<--- befs_btree_read_super() ERROR"); | 
|  | return BEFS_ERR; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * befs_bt_read_node - read in btree node and convert to cpu byteorder | 
|  | * @sb: Filesystem superblock | 
|  | * @ds: Datastream to read from | 
|  | * @node: Buffer in which to place the btree node | 
|  | * @node_off: Starting offset (in bytes) of the node in @ds | 
|  | * | 
|  | * Calls befs_read_datastream to read in the indicated btree node and | 
|  | * makes sure its header fields are in cpu byteorder, byteswapping if | 
|  | * necessary. | 
|  | * Note: node->bh must be NULL when this function called first | 
|  | * time. Don't forget brelse(node->bh) after last call. | 
|  | * | 
|  | * On success, returns BEFS_OK and *@node contains the btree node that | 
|  | * starts at @node_off, with the node->head fields in cpu byte order. | 
|  | * | 
|  | * On failure, BEFS_ERR is returned. | 
|  | */ | 
|  |  | 
|  | static int | 
|  | befs_bt_read_node(struct super_block *sb, befs_data_stream * ds, | 
|  | befs_btree_node * node, befs_off_t node_off) | 
|  | { | 
|  | uint off = 0; | 
|  |  | 
|  | befs_debug(sb, "---> befs_bt_read_node()"); | 
|  |  | 
|  | if (node->bh) | 
|  | brelse(node->bh); | 
|  |  | 
|  | node->bh = befs_read_datastream(sb, ds, node_off, &off); | 
|  | if (!node->bh) { | 
|  | befs_error(sb, "befs_bt_read_node() failed to read " | 
|  | "node at %Lu", node_off); | 
|  | befs_debug(sb, "<--- befs_bt_read_node() ERROR"); | 
|  |  | 
|  | return BEFS_ERR; | 
|  | } | 
|  | node->od_node = | 
|  | (befs_btree_nodehead *) ((void *) node->bh->b_data + off); | 
|  |  | 
|  | befs_dump_index_node(sb, node->od_node); | 
|  |  | 
|  | node->head.left = fs64_to_cpu(sb, node->od_node->left); | 
|  | node->head.right = fs64_to_cpu(sb, node->od_node->right); | 
|  | node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow); | 
|  | node->head.all_key_count = | 
|  | fs16_to_cpu(sb, node->od_node->all_key_count); | 
|  | node->head.all_key_length = | 
|  | fs16_to_cpu(sb, node->od_node->all_key_length); | 
|  |  | 
|  | befs_debug(sb, "<--- befs_btree_read_node()"); | 
|  | return BEFS_OK; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * befs_btree_find - Find a key in a befs B+tree | 
|  | * @sb: Filesystem superblock | 
|  | * @ds: Datastream containing btree | 
|  | * @key: Key string to lookup in btree | 
|  | * @value: Value stored with @key | 
|  | * | 
|  | * On success, returns BEFS_OK and sets *@value to the value stored | 
|  | * with @key (usually the disk block number of an inode). | 
|  | * | 
|  | * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND. | 
|  | * | 
|  | * Algorithm: | 
|  | *   Read the superblock and rootnode of the b+tree. | 
|  | *   Drill down through the interior nodes using befs_find_key(). | 
|  | *   Once at the correct leaf node, use befs_find_key() again to get the | 
|  | *   actuall value stored with the key. | 
|  | */ | 
|  | int | 
|  | befs_btree_find(struct super_block *sb, befs_data_stream * ds, | 
|  | const char *key, befs_off_t * value) | 
|  | { | 
|  | befs_btree_node *this_node = NULL; | 
|  | befs_btree_super bt_super; | 
|  | befs_off_t node_off; | 
|  | int res; | 
|  |  | 
|  | befs_debug(sb, "---> befs_btree_find() Key: %s", key); | 
|  |  | 
|  | if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) { | 
|  | befs_error(sb, | 
|  | "befs_btree_find() failed to read index superblock"); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | this_node = kmalloc(sizeof (befs_btree_node), | 
|  | GFP_NOFS); | 
|  | if (!this_node) { | 
|  | befs_error(sb, "befs_btree_find() failed to allocate %u " | 
|  | "bytes of memory", sizeof (befs_btree_node)); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | this_node->bh = NULL; | 
|  |  | 
|  | /* read in root node */ | 
|  | node_off = bt_super.root_node_ptr; | 
|  | if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { | 
|  | befs_error(sb, "befs_btree_find() failed to read " | 
|  | "node at %Lu", node_off); | 
|  | goto error_alloc; | 
|  | } | 
|  |  | 
|  | while (!befs_leafnode(this_node)) { | 
|  | res = befs_find_key(sb, this_node, key, &node_off); | 
|  | if (res == BEFS_BT_NOT_FOUND) | 
|  | node_off = this_node->head.overflow; | 
|  | /* if no match, go to overflow node */ | 
|  | if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { | 
|  | befs_error(sb, "befs_btree_find() failed to read " | 
|  | "node at %Lu", node_off); | 
|  | goto error_alloc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* at the correct leaf node now */ | 
|  |  | 
|  | res = befs_find_key(sb, this_node, key, value); | 
|  |  | 
|  | brelse(this_node->bh); | 
|  | kfree(this_node); | 
|  |  | 
|  | if (res != BEFS_BT_MATCH) { | 
|  | befs_debug(sb, "<--- befs_btree_find() Key %s not found", key); | 
|  | *value = 0; | 
|  | return BEFS_BT_NOT_FOUND; | 
|  | } | 
|  | befs_debug(sb, "<--- befs_btree_find() Found key %s, value %Lu", | 
|  | key, *value); | 
|  | return BEFS_OK; | 
|  |  | 
|  | error_alloc: | 
|  | kfree(this_node); | 
|  | error: | 
|  | *value = 0; | 
|  | befs_debug(sb, "<--- befs_btree_find() ERROR"); | 
|  | return BEFS_ERR; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * befs_find_key - Search for a key within a node | 
|  | * @sb: Filesystem superblock | 
|  | * @node: Node to find the key within | 
|  | * @key: Keystring to search for | 
|  | * @value: If key is found, the value stored with the key is put here | 
|  | * | 
|  | * finds exact match if one exists, and returns BEFS_BT_MATCH | 
|  | * If no exact match, finds first key in node that is greater | 
|  | * (alphabetically) than the search key and returns BEFS_BT_PARMATCH | 
|  | * (for partial match, I guess). Can you think of something better to | 
|  | * call it? | 
|  | * | 
|  | * If no key was a match or greater than the search key, return | 
|  | * BEFS_BT_NOT_FOUND. | 
|  | * | 
|  | * Use binary search instead of a linear. | 
|  | */ | 
|  | static int | 
|  | befs_find_key(struct super_block *sb, befs_btree_node * node, | 
|  | const char *findkey, befs_off_t * value) | 
|  | { | 
|  | int first, last, mid; | 
|  | int eq; | 
|  | u16 keylen; | 
|  | int findkey_len; | 
|  | char *thiskey; | 
|  | fs64 *valarray; | 
|  |  | 
|  | befs_debug(sb, "---> befs_find_key() %s", findkey); | 
|  |  | 
|  | *value = 0; | 
|  |  | 
|  | findkey_len = strlen(findkey); | 
|  |  | 
|  | /* if node can not contain key, just skeep this node */ | 
|  | last = node->head.all_key_count - 1; | 
|  | thiskey = befs_bt_get_key(sb, node, last, &keylen); | 
|  |  | 
|  | eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len); | 
|  | if (eq < 0) { | 
|  | befs_debug(sb, "<--- befs_find_key() %s not found", findkey); | 
|  | return BEFS_BT_NOT_FOUND; | 
|  | } | 
|  |  | 
|  | valarray = befs_bt_valarray(node); | 
|  |  | 
|  | /* simple binary search */ | 
|  | first = 0; | 
|  | mid = 0; | 
|  | while (last >= first) { | 
|  | mid = (last + first) / 2; | 
|  | befs_debug(sb, "first: %d, last: %d, mid: %d", first, last, | 
|  | mid); | 
|  | thiskey = befs_bt_get_key(sb, node, mid, &keylen); | 
|  | eq = befs_compare_strings(thiskey, keylen, findkey, | 
|  | findkey_len); | 
|  |  | 
|  | if (eq == 0) { | 
|  | befs_debug(sb, "<--- befs_find_key() found %s at %d", | 
|  | thiskey, mid); | 
|  |  | 
|  | *value = fs64_to_cpu(sb, valarray[mid]); | 
|  | return BEFS_BT_MATCH; | 
|  | } | 
|  | if (eq > 0) | 
|  | last = mid - 1; | 
|  | else | 
|  | first = mid + 1; | 
|  | } | 
|  | if (eq < 0) | 
|  | *value = fs64_to_cpu(sb, valarray[mid + 1]); | 
|  | else | 
|  | *value = fs64_to_cpu(sb, valarray[mid]); | 
|  | befs_debug(sb, "<--- befs_find_key() found %s at %d", thiskey, mid); | 
|  | return BEFS_BT_PARMATCH; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * befs_btree_read - Traverse leafnodes of a btree | 
|  | * @sb: Filesystem superblock | 
|  | * @ds: Datastream containing btree | 
|  | * @key_no: Key number (alphabetical order) of key to read | 
|  | * @bufsize: Size of the buffer to return key in | 
|  | * @keybuf: Pointer to a buffer to put the key in | 
|  | * @keysize: Length of the returned key | 
|  | * @value: Value stored with the returned key | 
|  | * | 
|  | * Heres how it works: Key_no is the index of the key/value pair to | 
|  | * return in keybuf/value. | 
|  | * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is | 
|  | * the number of charecters in the key (just a convenience). | 
|  | * | 
|  | * Algorithm: | 
|  | *   Get the first leafnode of the tree. See if the requested key is in that | 
|  | *   node. If not, follow the node->right link to the next leafnode. Repeat | 
|  | *   until the (key_no)th key is found or the tree is out of keys. | 
|  | */ | 
|  | int | 
|  | befs_btree_read(struct super_block *sb, befs_data_stream * ds, | 
|  | loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize, | 
|  | befs_off_t * value) | 
|  | { | 
|  | befs_btree_node *this_node; | 
|  | befs_btree_super bt_super; | 
|  | befs_off_t node_off = 0; | 
|  | int cur_key; | 
|  | fs64 *valarray; | 
|  | char *keystart; | 
|  | u16 keylen; | 
|  | int res; | 
|  |  | 
|  | uint key_sum = 0; | 
|  |  | 
|  | befs_debug(sb, "---> befs_btree_read()"); | 
|  |  | 
|  | if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) { | 
|  | befs_error(sb, | 
|  | "befs_btree_read() failed to read index superblock"); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if ((this_node = kmalloc(sizeof (befs_btree_node), GFP_NOFS)) == NULL) { | 
|  | befs_error(sb, "befs_btree_read() failed to allocate %u " | 
|  | "bytes of memory", sizeof (befs_btree_node)); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | node_off = bt_super.root_node_ptr; | 
|  | this_node->bh = NULL; | 
|  |  | 
|  | /* seeks down to first leafnode, reads it into this_node */ | 
|  | res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off); | 
|  | if (res == BEFS_BT_EMPTY) { | 
|  | brelse(this_node->bh); | 
|  | kfree(this_node); | 
|  | *value = 0; | 
|  | *keysize = 0; | 
|  | befs_debug(sb, "<--- befs_btree_read() Tree is EMPTY"); | 
|  | return BEFS_BT_EMPTY; | 
|  | } else if (res == BEFS_ERR) { | 
|  | goto error_alloc; | 
|  | } | 
|  |  | 
|  | /* find the leaf node containing the key_no key */ | 
|  |  | 
|  | while (key_sum + this_node->head.all_key_count <= key_no) { | 
|  |  | 
|  | /* no more nodes to look in: key_no is too large */ | 
|  | if (this_node->head.right == befs_bt_inval) { | 
|  | *keysize = 0; | 
|  | *value = 0; | 
|  | befs_debug(sb, | 
|  | "<--- befs_btree_read() END of keys at %Lu", | 
|  | key_sum + this_node->head.all_key_count); | 
|  | brelse(this_node->bh); | 
|  | kfree(this_node); | 
|  | return BEFS_BT_END; | 
|  | } | 
|  |  | 
|  | key_sum += this_node->head.all_key_count; | 
|  | node_off = this_node->head.right; | 
|  |  | 
|  | if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { | 
|  | befs_error(sb, "befs_btree_read() failed to read " | 
|  | "node at %Lu", node_off); | 
|  | goto error_alloc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* how many keys into this_node is key_no */ | 
|  | cur_key = key_no - key_sum; | 
|  |  | 
|  | /* get pointers to datastructures within the node body */ | 
|  | valarray = befs_bt_valarray(this_node); | 
|  |  | 
|  | keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen); | 
|  |  | 
|  | befs_debug(sb, "Read [%Lu,%d]: keysize %d", node_off, cur_key, keylen); | 
|  |  | 
|  | if (bufsize < keylen + 1) { | 
|  | befs_error(sb, "befs_btree_read() keybuf too small (%u) " | 
|  | "for key of size %d", bufsize, keylen); | 
|  | brelse(this_node->bh); | 
|  | goto error_alloc; | 
|  | }; | 
|  |  | 
|  | strncpy(keybuf, keystart, keylen); | 
|  | *value = fs64_to_cpu(sb, valarray[cur_key]); | 
|  | *keysize = keylen; | 
|  | keybuf[keylen] = '\0'; | 
|  |  | 
|  | befs_debug(sb, "Read [%Lu,%d]: Key \"%.*s\", Value %Lu", node_off, | 
|  | cur_key, keylen, keybuf, *value); | 
|  |  | 
|  | brelse(this_node->bh); | 
|  | kfree(this_node); | 
|  |  | 
|  | befs_debug(sb, "<--- befs_btree_read()"); | 
|  |  | 
|  | return BEFS_OK; | 
|  |  | 
|  | error_alloc: | 
|  | kfree(this_node); | 
|  |  | 
|  | error: | 
|  | *keysize = 0; | 
|  | *value = 0; | 
|  | befs_debug(sb, "<--- befs_btree_read() ERROR"); | 
|  | return BEFS_ERR; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * befs_btree_seekleaf - Find the first leafnode in the btree | 
|  | * @sb: Filesystem superblock | 
|  | * @ds: Datastream containing btree | 
|  | * @bt_super: Pointer to the superblock of the btree | 
|  | * @this_node: Buffer to return the leafnode in | 
|  | * @node_off: Pointer to offset of current node within datastream. Modified | 
|  | * 		by the function. | 
|  | * | 
|  | * | 
|  | * Helper function for btree traverse. Moves the current position to the | 
|  | * start of the first leaf node. | 
|  | * | 
|  | * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY. | 
|  | */ | 
|  | static int | 
|  | befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds, | 
|  | befs_btree_super * bt_super, befs_btree_node * this_node, | 
|  | befs_off_t * node_off) | 
|  | { | 
|  |  | 
|  | befs_debug(sb, "---> befs_btree_seekleaf()"); | 
|  |  | 
|  | if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) { | 
|  | befs_error(sb, "befs_btree_seekleaf() failed to read " | 
|  | "node at %Lu", *node_off); | 
|  | goto error; | 
|  | } | 
|  | befs_debug(sb, "Seekleaf to root node %Lu", *node_off); | 
|  |  | 
|  | if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) { | 
|  | befs_debug(sb, "<--- befs_btree_seekleaf() Tree is EMPTY"); | 
|  | return BEFS_BT_EMPTY; | 
|  | } | 
|  |  | 
|  | while (!befs_leafnode(this_node)) { | 
|  |  | 
|  | if (this_node->head.all_key_count == 0) { | 
|  | befs_debug(sb, "befs_btree_seekleaf() encountered " | 
|  | "an empty interior node: %Lu. Using Overflow " | 
|  | "node: %Lu", *node_off, | 
|  | this_node->head.overflow); | 
|  | *node_off = this_node->head.overflow; | 
|  | } else { | 
|  | fs64 *valarray = befs_bt_valarray(this_node); | 
|  | *node_off = fs64_to_cpu(sb, valarray[0]); | 
|  | } | 
|  | if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) { | 
|  | befs_error(sb, "befs_btree_seekleaf() failed to read " | 
|  | "node at %Lu", *node_off); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | befs_debug(sb, "Seekleaf to child node %Lu", *node_off); | 
|  | } | 
|  | befs_debug(sb, "Node %Lu is a leaf node", *node_off); | 
|  |  | 
|  | return BEFS_OK; | 
|  |  | 
|  | error: | 
|  | befs_debug(sb, "<--- befs_btree_seekleaf() ERROR"); | 
|  | return BEFS_ERR; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * befs_leafnode - Determine if the btree node is a leaf node or an | 
|  | * interior node | 
|  | * @node: Pointer to node structure to test | 
|  | * | 
|  | * Return 1 if leaf, 0 if interior | 
|  | */ | 
|  | static int | 
|  | befs_leafnode(befs_btree_node * node) | 
|  | { | 
|  | /* all interior nodes (and only interior nodes) have an overflow node */ | 
|  | if (node->head.overflow == befs_bt_inval) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * befs_bt_keylen_index - Finds start of keylen index in a node | 
|  | * @node: Pointer to the node structure to find the keylen index within | 
|  | * | 
|  | * Returns a pointer to the start of the key length index array | 
|  | * of the B+tree node *@node | 
|  | * | 
|  | * "The length of all the keys in the node is added to the size of the | 
|  | * header and then rounded up to a multiple of four to get the beginning | 
|  | * of the key length index" (p.88, practical filesystem design). | 
|  | * | 
|  | * Except that rounding up to 8 works, and rounding up to 4 doesn't. | 
|  | */ | 
|  | static fs16 * | 
|  | befs_bt_keylen_index(befs_btree_node * node) | 
|  | { | 
|  | const int keylen_align = 8; | 
|  | unsigned long int off = | 
|  | (sizeof (befs_btree_nodehead) + node->head.all_key_length); | 
|  | ulong tmp = off % keylen_align; | 
|  |  | 
|  | if (tmp) | 
|  | off += keylen_align - tmp; | 
|  |  | 
|  | return (fs16 *) ((void *) node->od_node + off); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * befs_bt_valarray - Finds the start of value array in a node | 
|  | * @node: Pointer to the node structure to find the value array within | 
|  | * | 
|  | * Returns a pointer to the start of the value array | 
|  | * of the node pointed to by the node header | 
|  | */ | 
|  | static fs64 * | 
|  | befs_bt_valarray(befs_btree_node * node) | 
|  | { | 
|  | void *keylen_index_start = (void *) befs_bt_keylen_index(node); | 
|  | size_t keylen_index_size = node->head.all_key_count * sizeof (fs16); | 
|  |  | 
|  | return (fs64 *) (keylen_index_start + keylen_index_size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * befs_bt_keydata - Finds start of keydata array in a node | 
|  | * @node: Pointer to the node structure to find the keydata array within | 
|  | * | 
|  | * Returns a pointer to the start of the keydata array | 
|  | * of the node pointed to by the node header | 
|  | */ | 
|  | static char * | 
|  | befs_bt_keydata(befs_btree_node * node) | 
|  | { | 
|  | return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * befs_bt_get_key - returns a pointer to the start of a key | 
|  | * @sb: filesystem superblock | 
|  | * @node: node in which to look for the key | 
|  | * @index: the index of the key to get | 
|  | * @keylen: modified to be the length of the key at @index | 
|  | * | 
|  | * Returns a valid pointer into @node on success. | 
|  | * Returns NULL on failure (bad input) and sets *@keylen = 0 | 
|  | */ | 
|  | static char * | 
|  | befs_bt_get_key(struct super_block *sb, befs_btree_node * node, | 
|  | int index, u16 * keylen) | 
|  | { | 
|  | int prev_key_end; | 
|  | char *keystart; | 
|  | fs16 *keylen_index; | 
|  |  | 
|  | if (index < 0 || index > node->head.all_key_count) { | 
|  | *keylen = 0; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | keystart = befs_bt_keydata(node); | 
|  | keylen_index = befs_bt_keylen_index(node); | 
|  |  | 
|  | if (index == 0) | 
|  | prev_key_end = 0; | 
|  | else | 
|  | prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]); | 
|  |  | 
|  | *keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end; | 
|  |  | 
|  | return keystart + prev_key_end; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * befs_compare_strings - compare two strings | 
|  | * @key1: pointer to the first key to be compared | 
|  | * @keylen1: length in bytes of key1 | 
|  | * @key2: pointer to the second key to be compared | 
|  | * @kelen2: length in bytes of key2 | 
|  | * | 
|  | * Returns 0 if @key1 and @key2 are equal. | 
|  | * Returns >0 if @key1 is greater. | 
|  | * Returns <0 if @key2 is greater.. | 
|  | */ | 
|  | static int | 
|  | befs_compare_strings(const void *key1, int keylen1, | 
|  | const void *key2, int keylen2) | 
|  | { | 
|  | int len = min_t(int, keylen1, keylen2); | 
|  | int result = strncmp(key1, key2, len); | 
|  | if (result == 0) | 
|  | result = keylen1 - keylen2; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* These will be used for non-string keyed btrees */ | 
|  | #if 0 | 
|  | static int | 
|  | btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2) | 
|  | { | 
|  | return *(int32_t *) key1 - *(int32_t *) key2; | 
|  | } | 
|  |  | 
|  | static int | 
|  | btree_compare_uint32(cont void *key1, int keylen1, | 
|  | const void *key2, int keylen2) | 
|  | { | 
|  | if (*(u_int32_t *) key1 == *(u_int32_t *) key2) | 
|  | return 0; | 
|  | else if (*(u_int32_t *) key1 > *(u_int32_t *) key2) | 
|  | return 1; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | static int | 
|  | btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2) | 
|  | { | 
|  | if (*(int64_t *) key1 == *(int64_t *) key2) | 
|  | return 0; | 
|  | else if (*(int64_t *) key1 > *(int64_t *) key2) | 
|  | return 1; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | btree_compare_uint64(cont void *key1, int keylen1, | 
|  | const void *key2, int keylen2) | 
|  | { | 
|  | if (*(u_int64_t *) key1 == *(u_int64_t *) key2) | 
|  | return 0; | 
|  | else if (*(u_int64_t *) key1 > *(u_int64_t *) key2) | 
|  | return 1; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2) | 
|  | { | 
|  | float result = *(float *) key1 - *(float *) key2; | 
|  | if (result == 0.0f) | 
|  | return 0; | 
|  |  | 
|  | return (result < 0.0f) ? -1 : 1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | btree_compare_double(cont void *key1, int keylen1, | 
|  | const void *key2, int keylen2) | 
|  | { | 
|  | double result = *(double *) key1 - *(double *) key2; | 
|  | if (result == 0.0) | 
|  | return 0; | 
|  |  | 
|  | return (result < 0.0) ? -1 : 1; | 
|  | } | 
|  | #endif				//0 |