blob: be60bbd4848635e0de0392b03f57a586db50f52b [file] [log] [blame]
#include <limits.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include "elf.h"
#include <boot/elf_boot.h>
#include "kexec.h"
#include "kexec-elf.h"
#include "crashdump.h"
static const int probe_debug = 0;
uint16_t elf16_to_cpu(const struct mem_ehdr *ehdr, uint16_t value)
{
if (ehdr->ei_data == ELFDATA2LSB) {
value = le16_to_cpu(value);
}
else if (ehdr->ei_data == ELFDATA2MSB) {
value = be16_to_cpu(value);
}
return value;
}
uint32_t elf32_to_cpu(const struct mem_ehdr *ehdr, uint32_t value)
{
if (ehdr->ei_data == ELFDATA2LSB) {
value = le32_to_cpu(value);
}
else if (ehdr->ei_data == ELFDATA2MSB) {
value = be32_to_cpu(value);
}
return value;
}
uint64_t elf64_to_cpu(const struct mem_ehdr *ehdr, uint64_t value)
{
if (ehdr->ei_data == ELFDATA2LSB) {
value = le64_to_cpu(value);
}
else if (ehdr->ei_data == ELFDATA2MSB) {
value = be64_to_cpu(value);
}
return value;
}
uint16_t cpu_to_elf16(const struct mem_ehdr *ehdr, uint16_t value)
{
if (ehdr->ei_data == ELFDATA2LSB) {
value = cpu_to_le16(value);
}
else if (ehdr->ei_data == ELFDATA2MSB) {
value = cpu_to_be16(value);
}
return value;
}
uint32_t cpu_to_elf32(const struct mem_ehdr *ehdr, uint32_t value)
{
if (ehdr->ei_data == ELFDATA2LSB) {
value = cpu_to_le32(value);
}
else if (ehdr->ei_data == ELFDATA2MSB) {
value = cpu_to_be32(value);
}
return value;
}
uint64_t cpu_to_elf64(const struct mem_ehdr *ehdr, uint64_t value)
{
if (ehdr->ei_data == ELFDATA2LSB) {
value = cpu_to_le64(value);
}
else if (ehdr->ei_data == ELFDATA2MSB) {
value = cpu_to_be64(value);
}
return value;
}
#define ELF32_MAX 0xffffffff
#define ELF64_MAX 0xffffffffffffffff
#if ELF64_MAX > ULONG_MAX
#undef ELF64_MAX
#define ELF64_MAX ULONG_MAX
#endif
unsigned long elf_max_addr(const struct mem_ehdr *ehdr)
{
unsigned long max_addr = 0;
if (ehdr->ei_class == ELFCLASS32) {
max_addr = ELF32_MAX;
}
else if (ehdr->ei_class == ELFCLASS64) {
max_addr = ELF64_MAX;
}
return max_addr;
}
static int build_mem_elf32_ehdr(const char *buf, off_t len, struct mem_ehdr *ehdr)
{
Elf32_Ehdr lehdr;
if ((uintmax_t)len < (uintmax_t)sizeof(lehdr)) {
/* Buffer is to small to be an elf executable */
if (probe_debug) {
fprintf(stderr, "Buffer is to small to hold ELF header\n");
}
return -1;
}
memcpy(&lehdr, buf, sizeof(lehdr));
if (elf16_to_cpu(ehdr, lehdr.e_ehsize) != sizeof(Elf32_Ehdr)) {
/* Invalid Elf header size */
if (probe_debug) {
fprintf(stderr, "Bad ELF header size\n");
}
return -1;
}
if (elf32_to_cpu(ehdr, lehdr.e_entry) > UINT32_MAX) {
/* entry is to large */
if (probe_debug) {
fprintf(stderr, "ELF e_entry to large\n");
}
return -1;
}
if (elf32_to_cpu(ehdr, lehdr.e_phoff) > UINT32_MAX) {
/* phoff is to large */
if (probe_debug) {
fprintf(stderr, "ELF e_phoff to large\n");
}
return -1;
}
if (elf32_to_cpu(ehdr, lehdr.e_shoff) > UINT32_MAX) {
/* shoff is to large */
if (probe_debug) {
fprintf(stderr, "ELF e_shoff to large\n");
}
return -1;
}
ehdr->e_type = elf16_to_cpu(ehdr, lehdr.e_type);
ehdr->e_machine = elf16_to_cpu(ehdr, lehdr.e_machine);
ehdr->e_version = elf32_to_cpu(ehdr, lehdr.e_version);
ehdr->e_entry = elf32_to_cpu(ehdr, lehdr.e_entry);
ehdr->e_phoff = elf32_to_cpu(ehdr, lehdr.e_phoff);
ehdr->e_shoff = elf32_to_cpu(ehdr, lehdr.e_shoff);
ehdr->e_flags = elf32_to_cpu(ehdr, lehdr.e_flags);
ehdr->e_phnum = elf16_to_cpu(ehdr, lehdr.e_phnum);
ehdr->e_shnum = elf16_to_cpu(ehdr, lehdr.e_shnum);
ehdr->e_shstrndx = elf16_to_cpu(ehdr, lehdr.e_shstrndx);
if ((ehdr->e_phnum > 0) &&
(elf16_to_cpu(ehdr, lehdr.e_phentsize) != sizeof(Elf32_Phdr)))
{
/* Invalid program header size */
if (probe_debug) {
fprintf(stderr, "ELF bad program header size\n");
}
return -1;
}
if ((ehdr->e_shnum > 0) &&
(elf16_to_cpu(ehdr, lehdr.e_shentsize) != sizeof(Elf32_Shdr)))
{
/* Invalid section header size */
if (probe_debug) {
fprintf(stderr, "ELF bad section header size\n");
}
return -1;
}
return 0;
}
static int build_mem_elf64_ehdr(const char *buf, off_t len, struct mem_ehdr *ehdr)
{
Elf64_Ehdr lehdr;
if ((uintmax_t)len < (uintmax_t)sizeof(lehdr)) {
/* Buffer is to small to be an elf executable */
if (probe_debug) {
fprintf(stderr, "Buffer is to small to hold ELF header\n");
}
return -1;
}
memcpy(&lehdr, buf, sizeof(lehdr));
if (elf16_to_cpu(ehdr, lehdr.e_ehsize) != sizeof(Elf64_Ehdr)) {
/* Invalid Elf header size */
if (probe_debug) {
fprintf(stderr, "Bad ELF header size\n");
}
return -1;
}
if (elf32_to_cpu(ehdr, lehdr.e_entry) > UINT32_MAX) {
/* entry is to large */
if (probe_debug) {
fprintf(stderr, "ELF e_entry to large\n");
}
return -1;
}
if (elf32_to_cpu(ehdr, lehdr.e_phoff) > UINT32_MAX) {
/* phoff is to large */
if (probe_debug) {
fprintf(stderr, "ELF e_phoff to large\n");
}
return -1;
}
if (elf32_to_cpu(ehdr, lehdr.e_shoff) > UINT32_MAX) {
/* shoff is to large */
if (probe_debug) {
fprintf(stderr, "ELF e_shoff to large\n");
}
return -1;
}
ehdr->e_type = elf16_to_cpu(ehdr, lehdr.e_type);
ehdr->e_machine = elf16_to_cpu(ehdr, lehdr.e_machine);
ehdr->e_version = elf32_to_cpu(ehdr, lehdr.e_version);
ehdr->e_entry = elf64_to_cpu(ehdr, lehdr.e_entry);
ehdr->e_phoff = elf64_to_cpu(ehdr, lehdr.e_phoff);
ehdr->e_shoff = elf64_to_cpu(ehdr, lehdr.e_shoff);
ehdr->e_flags = elf32_to_cpu(ehdr, lehdr.e_flags);
ehdr->e_phnum = elf16_to_cpu(ehdr, lehdr.e_phnum);
ehdr->e_shnum = elf16_to_cpu(ehdr, lehdr.e_shnum);
ehdr->e_shstrndx = elf16_to_cpu(ehdr, lehdr.e_shstrndx);
if ((ehdr->e_phnum > 0) &&
(elf16_to_cpu(ehdr, lehdr.e_phentsize) != sizeof(Elf64_Phdr)))
{
/* Invalid program header size */
if (probe_debug) {
fprintf(stderr, "ELF bad program header size\n");
}
return -1;
}
if ((ehdr->e_shnum > 0) &&
(elf16_to_cpu(ehdr, lehdr.e_shentsize) != sizeof(Elf64_Shdr)))
{
/* Invalid section header size */
if (probe_debug) {
fprintf(stderr, "ELF bad section header size\n");
}
return -1;
}
return 0;
}
static int build_mem_ehdr(const char *buf, off_t len, struct mem_ehdr *ehdr)
{
unsigned char e_ident[EI_NIDENT];
int result;
memset(ehdr, 0, sizeof(*ehdr));
if ((uintmax_t)len < (uintmax_t)sizeof(e_ident)) {
/* Buffer is to small to be an elf executable */
if (probe_debug) {
fprintf(stderr, "Buffer is to small to hold ELF e_ident\n");
}
return -1;
}
memcpy(e_ident, buf, sizeof(e_ident));
if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) {
/* No ELF header magic */
if (probe_debug) {
fprintf(stderr, "NO ELF header magic\n");
}
return -1;
}
ehdr->ei_class = e_ident[EI_CLASS];
ehdr->ei_data = e_ident[EI_DATA];
if ( (ehdr->ei_class != ELFCLASS32) &&
(ehdr->ei_class != ELFCLASS64))
{
/* Not a supported elf class */
if (probe_debug) {
fprintf(stderr, "Not a supported ELF class\n");
}
return -1;
}
if ( (ehdr->ei_data != ELFDATA2LSB) &&
(ehdr->ei_data != ELFDATA2MSB))
{
/* Not a supported elf data type */
if (probe_debug) {
fprintf(stderr, "Not a supported ELF data format\n");
}
return -1;
}
result = -1;
if (ehdr->ei_class == ELFCLASS32) {
result = build_mem_elf32_ehdr(buf, len, ehdr);
}
else if (ehdr->ei_class == ELFCLASS64) {
result = build_mem_elf64_ehdr(buf, len, ehdr);
}
if (result < 0) {
return result;
}
if ((e_ident[EI_VERSION] != EV_CURRENT) ||
(ehdr->e_version != EV_CURRENT))
{
if (probe_debug) {
fprintf(stderr, "Unknown ELF version\n");
}
/* Unknwon elf version */
return -1;
}
return 0;
}
static int build_mem_elf32_phdr(const char *buf, struct mem_ehdr *ehdr, int idx)
{
struct mem_phdr *phdr;
const char *pbuf;
Elf32_Phdr lphdr;
pbuf = buf + ehdr->e_phoff + (idx * sizeof(lphdr));
phdr = &ehdr->e_phdr[idx];
memcpy(&lphdr, pbuf, sizeof(lphdr));
if ( (elf32_to_cpu(ehdr, lphdr.p_filesz) > UINT32_MAX) ||
(elf32_to_cpu(ehdr, lphdr.p_memsz) > UINT32_MAX) ||
(elf32_to_cpu(ehdr, lphdr.p_offset) > UINT32_MAX) ||
(elf32_to_cpu(ehdr, lphdr.p_paddr) > UINT32_MAX) ||
(elf32_to_cpu(ehdr, lphdr.p_vaddr) > UINT32_MAX) ||
(elf32_to_cpu(ehdr, lphdr.p_align) > UINT32_MAX))
{
fprintf(stderr, "Program segment size out of range\n");
return -1;
}
phdr->p_type = elf32_to_cpu(ehdr, lphdr.p_type);
phdr->p_paddr = elf32_to_cpu(ehdr, lphdr.p_paddr);
phdr->p_vaddr = elf32_to_cpu(ehdr, lphdr.p_vaddr);
phdr->p_filesz = elf32_to_cpu(ehdr, lphdr.p_filesz);
phdr->p_memsz = elf32_to_cpu(ehdr, lphdr.p_memsz);
phdr->p_offset = elf32_to_cpu(ehdr, lphdr.p_offset);
phdr->p_flags = elf32_to_cpu(ehdr, lphdr.p_flags);
phdr->p_align = elf32_to_cpu(ehdr, lphdr.p_align);
return 0;
}
static int build_mem_elf64_phdr(const char *buf, struct mem_ehdr *ehdr, int idx)
{
struct mem_phdr *phdr;
const char *pbuf;
Elf64_Phdr lphdr;
pbuf = buf + ehdr->e_phoff + (idx * sizeof(lphdr));
phdr = &ehdr->e_phdr[idx];
memcpy(&lphdr, pbuf, sizeof(lphdr));
if ( (elf64_to_cpu(ehdr, lphdr.p_filesz) > UINT64_MAX) ||
(elf64_to_cpu(ehdr, lphdr.p_memsz) > UINT64_MAX) ||
(elf64_to_cpu(ehdr, lphdr.p_offset) > UINT64_MAX) ||
(elf64_to_cpu(ehdr, lphdr.p_paddr) > UINT64_MAX) ||
(elf64_to_cpu(ehdr, lphdr.p_vaddr) > UINT64_MAX) ||
(elf64_to_cpu(ehdr, lphdr.p_align) > UINT64_MAX))
{
fprintf(stderr, "Program segment size out of range\n");
return -1;
}
phdr->p_type = elf32_to_cpu(ehdr, lphdr.p_type);
phdr->p_paddr = elf64_to_cpu(ehdr, lphdr.p_paddr);
phdr->p_vaddr = elf64_to_cpu(ehdr, lphdr.p_vaddr);
phdr->p_filesz = elf64_to_cpu(ehdr, lphdr.p_filesz);
phdr->p_memsz = elf64_to_cpu(ehdr, lphdr.p_memsz);
phdr->p_offset = elf64_to_cpu(ehdr, lphdr.p_offset);
phdr->p_flags = elf32_to_cpu(ehdr, lphdr.p_flags);
phdr->p_align = elf64_to_cpu(ehdr, lphdr.p_align);
return 0;
}
static int build_mem_phdrs(const char *buf, off_t len, struct mem_ehdr *ehdr,
uint32_t flags)
{
size_t phdr_size, mem_phdr_size, i;
/* e_phnum is at most 65535 so calculating
* the size of the program header cannot overflow.
*/
/* Is the program header in the file buffer? */
phdr_size = 0;
if (ehdr->ei_class == ELFCLASS32) {
phdr_size = sizeof(Elf32_Phdr);
}
else if (ehdr->ei_class == ELFCLASS64) {
phdr_size = sizeof(Elf64_Phdr);
}
else {
fprintf(stderr, "Invalid ei_class?\n");
return -1;
}
phdr_size *= ehdr->e_phnum;
if ((uintmax_t)(ehdr->e_phoff + phdr_size) > (uintmax_t)len) {
/* The program header did not fit in the file buffer */
if (probe_debug || (flags & ELF_SKIP_FILESZ_CHECK)) {
fprintf(stderr, "ELF program headers truncated"
" have %ju bytes need %ju bytes\n",
(uintmax_t)len,
(uintmax_t)(ehdr->e_phoff + phdr_size));
}
return -1;
}
/* Allocate the e_phdr array */
mem_phdr_size = sizeof(ehdr->e_phdr[0]) * ehdr->e_phnum;
ehdr->e_phdr = xmalloc(mem_phdr_size);
for(i = 0; i < ehdr->e_phnum; i++) {
struct mem_phdr *phdr;
int result;
result = -1;
if (ehdr->ei_class == ELFCLASS32) {
result = build_mem_elf32_phdr(buf, ehdr, i);
}
else if (ehdr->ei_class == ELFCLASS64) {
result = build_mem_elf64_phdr(buf, ehdr, i);
}
if (result < 0) {
return result;
}
/* Check the program headers to be certain
* they are safe to use.
* Skip the check if ELF_SKIP_FILESZ_CHECK is set.
*/
phdr = &ehdr->e_phdr[i];
if (!(flags & ELF_SKIP_FILESZ_CHECK)
&& (uintmax_t)(phdr->p_offset + phdr->p_filesz) >
(uintmax_t)len) {
/* The segment does not fit in the buffer */
if (probe_debug) {
fprintf(stderr, "ELF segment not in file\n");
}
return -1;
}
if (phdr->p_paddr != (unsigned long long)-1 &&
(phdr->p_paddr + phdr->p_memsz) < phdr->p_paddr) {
/* The memory address wraps */
if (probe_debug) {
fprintf(stderr, "ELF address wrap around\n");
}
return -1;
}
/* Remember where the segment lives in the buffer */
phdr->p_data = buf + phdr->p_offset;
}
return 0;
}
static int build_mem_elf32_shdr(const char *buf, struct mem_ehdr *ehdr, int idx)
{
struct mem_shdr *shdr;
const char *sbuf;
int size_ok;
Elf32_Shdr lshdr;
sbuf = buf + ehdr->e_shoff + (idx * sizeof(lshdr));
shdr = &ehdr->e_shdr[idx];
memcpy(&lshdr, sbuf, sizeof(lshdr));
if ( (elf32_to_cpu(ehdr, lshdr.sh_flags) > UINT32_MAX) ||
(elf32_to_cpu(ehdr, lshdr.sh_addr) > UINT32_MAX) ||
(elf32_to_cpu(ehdr, lshdr.sh_offset) > UINT32_MAX) ||
(elf32_to_cpu(ehdr, lshdr.sh_size) > UINT32_MAX) ||
(elf32_to_cpu(ehdr, lshdr.sh_addralign) > UINT32_MAX) ||
(elf32_to_cpu(ehdr, lshdr.sh_entsize) > UINT32_MAX))
{
fprintf(stderr, "Program section size out of range\n");
return -1;
}
shdr->sh_name = elf32_to_cpu(ehdr, lshdr.sh_name);
shdr->sh_type = elf32_to_cpu(ehdr, lshdr.sh_type);
shdr->sh_flags = elf32_to_cpu(ehdr, lshdr.sh_flags);
shdr->sh_addr = elf32_to_cpu(ehdr, lshdr.sh_addr);
shdr->sh_offset = elf32_to_cpu(ehdr, lshdr.sh_offset);
shdr->sh_size = elf32_to_cpu(ehdr, lshdr.sh_size);
shdr->sh_link = elf32_to_cpu(ehdr, lshdr.sh_link);
shdr->sh_info = elf32_to_cpu(ehdr, lshdr.sh_info);
shdr->sh_addralign = elf32_to_cpu(ehdr, lshdr.sh_addralign);
shdr->sh_entsize = elf32_to_cpu(ehdr, lshdr.sh_entsize);
/* Now verify sh_entsize */
size_ok = 0;
switch(shdr->sh_type) {
case SHT_SYMTAB:
size_ok = shdr->sh_entsize == sizeof(Elf32_Sym);
break;
case SHT_RELA:
size_ok = shdr->sh_entsize == sizeof(Elf32_Rela);
break;
case SHT_DYNAMIC:
size_ok = shdr->sh_entsize == sizeof(Elf32_Dyn);
break;
case SHT_REL:
size_ok = shdr->sh_entsize == sizeof(Elf32_Rel);
break;
case SHT_NOTE:
case SHT_NULL:
case SHT_PROGBITS:
case SHT_HASH:
case SHT_NOBITS:
default:
/* This is a section whose entsize requirements
* I don't care about. If I don't know about
* the section I can't care about it's entsize
* requirements.
*/
size_ok = 1;
break;
}
if (!size_ok) {
fprintf(stderr, "Bad section header(%x) entsize: %lld\n",
shdr->sh_type, shdr->sh_entsize);
return -1;
}
return 0;
}
static int build_mem_elf64_shdr(const char *buf, struct mem_ehdr *ehdr, int idx)
{
struct mem_shdr *shdr;
const char *sbuf;
int size_ok;
Elf64_Shdr lshdr;
sbuf = buf + ehdr->e_shoff + (idx * sizeof(lshdr));
shdr = &ehdr->e_shdr[idx];
memcpy(&lshdr, sbuf, sizeof(lshdr));
if ( (elf64_to_cpu(ehdr, lshdr.sh_flags) > UINT64_MAX) ||
(elf64_to_cpu(ehdr, lshdr.sh_addr) > UINT64_MAX) ||
(elf64_to_cpu(ehdr, lshdr.sh_offset) > UINT64_MAX) ||
(elf64_to_cpu(ehdr, lshdr.sh_size) > UINT64_MAX) ||
(elf64_to_cpu(ehdr, lshdr.sh_addralign) > UINT64_MAX) ||
(elf64_to_cpu(ehdr, lshdr.sh_entsize) > UINT64_MAX))
{
fprintf(stderr, "Program section size out of range\n");
return -1;
}
shdr->sh_name = elf32_to_cpu(ehdr, lshdr.sh_name);
shdr->sh_type = elf32_to_cpu(ehdr, lshdr.sh_type);
shdr->sh_flags = elf64_to_cpu(ehdr, lshdr.sh_flags);
shdr->sh_addr = elf64_to_cpu(ehdr, lshdr.sh_addr);
shdr->sh_offset = elf64_to_cpu(ehdr, lshdr.sh_offset);
shdr->sh_size = elf64_to_cpu(ehdr, lshdr.sh_size);
shdr->sh_link = elf32_to_cpu(ehdr, lshdr.sh_link);
shdr->sh_info = elf32_to_cpu(ehdr, lshdr.sh_info);
shdr->sh_addralign = elf64_to_cpu(ehdr, lshdr.sh_addralign);
shdr->sh_entsize = elf64_to_cpu(ehdr, lshdr.sh_entsize);
/* Now verify sh_entsize */
size_ok = 0;
switch(shdr->sh_type) {
case SHT_SYMTAB:
size_ok = shdr->sh_entsize == sizeof(Elf64_Sym);
break;
case SHT_RELA:
size_ok = shdr->sh_entsize == sizeof(Elf64_Rela);
break;
case SHT_DYNAMIC:
size_ok = shdr->sh_entsize == sizeof(Elf64_Dyn);
break;
case SHT_REL:
size_ok = shdr->sh_entsize == sizeof(Elf64_Rel);
break;
case SHT_NOTE:
case SHT_NULL:
case SHT_PROGBITS:
case SHT_HASH:
case SHT_NOBITS:
default:
/* This is a section whose entsize requirements
* I don't care about. If I don't know about
* the section I can't care about it's entsize
* requirements.
*/
size_ok = 1;
break;
}
if (!size_ok) {
fprintf(stderr, "Bad section header(%x) entsize: %lld\n",
shdr->sh_type, shdr->sh_entsize);
return -1;
}
return 0;
}
static int build_mem_shdrs(const char *buf, off_t len, struct mem_ehdr *ehdr,
uint32_t flags)
{
size_t shdr_size, mem_shdr_size, i;
/* e_shnum is at most 65536 so calculating
* the size of the section header cannot overflow.
*/
/* Is the program header in the file buffer? */
shdr_size = 0;
if (ehdr->ei_class == ELFCLASS32) {
shdr_size = sizeof(Elf32_Shdr);
}
else if (ehdr->ei_class == ELFCLASS64) {
shdr_size = sizeof(Elf64_Shdr);
}
else {
fprintf(stderr, "Invalid ei_class?\n");
return -1;
}
shdr_size *= ehdr->e_shnum;
if ((uintmax_t)(ehdr->e_shoff + shdr_size) > (uintmax_t)len) {
/* The section header did not fit in the file buffer */
if (probe_debug) {
fprintf(stderr, "ELF section header does not fit in file\n");
}
return -1;
}
/* Allocate the e_shdr array */
mem_shdr_size = sizeof(ehdr->e_shdr[0]) * ehdr->e_shnum;
ehdr->e_shdr = xmalloc(mem_shdr_size);
for(i = 0; i < ehdr->e_shnum; i++) {
struct mem_shdr *shdr;
int result;
result = -1;
if (ehdr->ei_class == ELFCLASS32) {
result = build_mem_elf32_shdr(buf, ehdr, i);
}
else if (ehdr->ei_class == ELFCLASS64) {
result = build_mem_elf64_shdr(buf, ehdr, i);
}
if (result < 0) {
return result;
}
/* Check the section headers to be certain
* they are safe to use.
* Skip the check if ELF_SKIP_FILESZ_CHECK is set.
*/
shdr = &ehdr->e_shdr[i];
if (!(flags & ELF_SKIP_FILESZ_CHECK)
&& (shdr->sh_type != SHT_NOBITS)
&& (uintmax_t)(shdr->sh_offset + shdr->sh_size) >
(uintmax_t)len) {
/* The section does not fit in the buffer */
if (probe_debug) {
fprintf(stderr, "ELF section %zd not in file\n",
i);
}
return -1;
}
if ((shdr->sh_addr + shdr->sh_size) < shdr->sh_addr) {
/* The memory address wraps */
if (probe_debug) {
fprintf(stderr, "ELF address wrap around\n");
}
return -1;
}
/* Remember where the section lives in the buffer */
shdr->sh_data = (unsigned char *)(buf + shdr->sh_offset);
}
return 0;
}
static void read_nhdr(const struct mem_ehdr *ehdr,
ElfNN_Nhdr *hdr, const unsigned char *note)
{
memcpy(hdr, note, sizeof(*hdr));
hdr->n_namesz = elf32_to_cpu(ehdr, hdr->n_namesz);
hdr->n_descsz = elf32_to_cpu(ehdr, hdr->n_descsz);
hdr->n_type = elf32_to_cpu(ehdr, hdr->n_type);
}
static int build_mem_notes(struct mem_ehdr *ehdr)
{
const unsigned char *note_start, *note_end, *note;
size_t note_size, i;
/* First find the note segment or section */
note_start = note_end = NULL;
for(i = 0; !note_start && (i < ehdr->e_phnum); i++) {
struct mem_phdr *phdr = &ehdr->e_phdr[i];
/*
* binutils <= 2.17 has a bug where it can create the
* PT_NOTE segment with an offset of 0. Therefore
* check p_offset > 0.
*
* See: http://sourceware.org/bugzilla/show_bug.cgi?id=594
*/
if (phdr->p_type == PT_NOTE && phdr->p_offset) {
note_start = (unsigned char *)phdr->p_data;
note_end = note_start + phdr->p_filesz;
}
}
for(i = 0; !note_start && (i < ehdr->e_shnum); i++) {
struct mem_shdr *shdr = &ehdr->e_shdr[i];
if (shdr->sh_type == SHT_NOTE) {
note_start = shdr->sh_data;
note_end = note_start + shdr->sh_size;
}
}
if (!note_start) {
return 0;
}
/* Walk through and count the notes */
ehdr->e_notenum = 0;
for(note = note_start; note < note_end; note+= note_size) {
ElfNN_Nhdr hdr;
read_nhdr(ehdr, &hdr, note);
note_size = sizeof(hdr);
note_size += _ALIGN(hdr.n_namesz, 4);
note_size += _ALIGN(hdr.n_descsz, 4);
ehdr->e_notenum += 1;
}
/* Now walk and normalize the notes */
ehdr->e_note = xmalloc(sizeof(*ehdr->e_note) * ehdr->e_notenum);
for(i = 0, note = note_start; note < note_end; note+= note_size, i++) {
const unsigned char *name, *desc;
ElfNN_Nhdr hdr;
read_nhdr(ehdr, &hdr, note);
note_size = sizeof(hdr);
name = note + note_size;
note_size += _ALIGN(hdr.n_namesz, 4);
desc = note + note_size;
note_size += _ALIGN(hdr.n_descsz, 4);
if (((note+note_size) > note_end) ||
((note+note_size) < note_start)) {
/* Something is very wrong here ! Most likely the note
* header is invalid */
fprintf(stderr, "ELF Note corrupted !\n");
return -1;
}
if ((hdr.n_namesz != 0) && (name[hdr.n_namesz -1] != '\0')) {
/* If note name string is not null terminated, just
* warn user about it and continue processing. This
* allows us to parse /proc/kcore on older kernels
* where /proc/kcore elf notes were not null
* terminated. It has been fixed in 2.6.19.
*/
fprintf(stderr, "Warning: Elf Note name is not null "
"terminated\n");
}
ehdr->e_note[i].n_type = hdr.n_type;
ehdr->e_note[i].n_name = (char *)name;
ehdr->e_note[i].n_desc = desc;
ehdr->e_note[i].n_descsz = hdr.n_descsz;
}
return 0;
}
void free_elf_info(struct mem_ehdr *ehdr)
{
free(ehdr->e_phdr);
free(ehdr->e_shdr);
memset(ehdr, 0, sizeof(*ehdr));
}
int build_elf_info(const char *buf, off_t len, struct mem_ehdr *ehdr,
uint32_t flags)
{
int result;
result = build_mem_ehdr(buf, len, ehdr);
if (result < 0) {
return result;
}
if ((ehdr->e_phoff > 0) && (ehdr->e_phnum > 0)) {
result = build_mem_phdrs(buf, len, ehdr, flags);
if (result < 0) {
free_elf_info(ehdr);
return result;
}
}
if ((ehdr->e_shoff > 0) && (ehdr->e_shnum > 0)) {
result = build_mem_shdrs(buf, len, ehdr, flags);
if (result < 0) {
free_elf_info(ehdr);
return result;
}
}
result = build_mem_notes(ehdr);
if (result < 0) {
free_elf_info(ehdr);
return result;
}
return 0;
}