blob: 34ba119d7d1ce67bad8b4db3b53a97bf6b23b896 [file] [log] [blame]
// Low level ATA disk access
//
// Copyright (C) 2008,2009 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "ata.h" // ATA_CB_STAT
#include "biosvar.h" // GET_GLOBAL
#include "block.h" // struct drive_s
#include "blockcmd.h" // CDB_CMD_READ_10
#include "byteorder.h" // be16_to_cpu
#include "cmos.h" // inb_cmos
#include "ioport.h" // inb
#include "malloc.h" // malloc_fseg
#include "output.h" // dprintf
#include "pci.h" // foreachpci
#include "pci_ids.h" // PCI_CLASS_STORAGE_OTHER
#include "pci_regs.h" // PCI_INTERRUPT_LINE
#include "pic.h" // enable_hwirq
#include "stacks.h" // yield
#include "std/disk.h" // DISK_RET_SUCCESS
#include "string.h" // memset
#include "util.h" // timer_calc
#define IDE_TIMEOUT 32000 //32 seconds max for IDE ops
/****************************************************************
* Helper functions
****************************************************************/
// Wait for the specified ide state
static inline int
await_ide(u8 mask, u8 flags, u16 base, u16 timeout)
{
u32 end = timer_calc(timeout);
for (;;) {
u8 status = inb(base+ATA_CB_STAT);
if ((status & mask) == flags)
return status;
if (timer_check(end)) {
warn_timeout();
return -1;
}
yield();
}
}
// Wait for the device to be not-busy.
static int
await_not_bsy(u16 base)
{
return await_ide(ATA_CB_STAT_BSY, 0, base, IDE_TIMEOUT);
}
// Wait for the device to be ready.
static int
await_rdy(u16 base)
{
return await_ide(ATA_CB_STAT_RDY, ATA_CB_STAT_RDY, base, IDE_TIMEOUT);
}
// Wait for ide state - pauses for one ata cycle first.
static inline int
pause_await_not_bsy(u16 iobase1, u16 iobase2)
{
// Wait one PIO transfer cycle.
inb(iobase2 + ATA_CB_ASTAT);
return await_not_bsy(iobase1);
}
// Wait for ide state - pause for 400ns first.
static inline int
ndelay_await_not_bsy(u16 iobase1)
{
ndelay(400);
return await_not_bsy(iobase1);
}
// Reset a drive
static void
ata_reset(struct atadrive_s *adrive_g)
{
struct ata_channel_s *chan_gf = GET_GLOBAL(adrive_g->chan_gf);
u8 slave = GET_GLOBAL(adrive_g->slave);
u16 iobase1 = GET_GLOBALFLAT(chan_gf->iobase1);
u16 iobase2 = GET_GLOBALFLAT(chan_gf->iobase2);
dprintf(6, "ata_reset drive=%p\n", &adrive_g->drive);
// Pulse SRST
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN | ATA_CB_DC_SRST, iobase2+ATA_CB_DC);
udelay(5);
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2+ATA_CB_DC);
msleep(2);
// wait for device to become not busy.
int status = await_not_bsy(iobase1);
if (status < 0)
goto done;
if (slave) {
// Change device.
u32 end = timer_calc(IDE_TIMEOUT);
for (;;) {
outb(ATA_CB_DH_DEV1, iobase1 + ATA_CB_DH);
status = ndelay_await_not_bsy(iobase1);
if (status < 0)
goto done;
if (inb(iobase1 + ATA_CB_DH) == ATA_CB_DH_DEV1)
break;
// Change drive request failed to take effect - retry.
if (timer_check(end)) {
warn_timeout();
goto done;
}
}
} else {
// QEMU doesn't reset dh on reset, so set it explicitly.
outb(ATA_CB_DH_DEV0, iobase1 + ATA_CB_DH);
}
// On a user-reset request, wait for RDY if it is an ATA device.
u8 type=GET_GLOBAL(adrive_g->drive.type);
if (type == DTYPE_ATA)
status = await_rdy(iobase1);
done:
// Enable interrupts
outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC);
dprintf(6, "ata_reset exit status=%x\n", status);
}
// Check for drive RDY for 16bit interface command.
static int
isready(struct atadrive_s *adrive_g)
{
// Read the status from controller
struct ata_channel_s *chan_gf = GET_GLOBAL(adrive_g->chan_gf);
u16 iobase1 = GET_GLOBALFLAT(chan_gf->iobase1);
u8 status = inb(iobase1 + ATA_CB_STAT);
if ((status & (ATA_CB_STAT_BSY|ATA_CB_STAT_RDY)) == ATA_CB_STAT_RDY)
return DISK_RET_SUCCESS;
return DISK_RET_ENOTREADY;
}
/****************************************************************
* ATA send command
****************************************************************/
struct ata_pio_command {
u8 feature;
u8 sector_count;
u8 lba_low;
u8 lba_mid;
u8 lba_high;
u8 device;
u8 command;
u8 feature2;
u8 sector_count2;
u8 lba_low2;
u8 lba_mid2;
u8 lba_high2;
};
// Send an ata command to the drive.
static int
send_cmd(struct atadrive_s *adrive_g, struct ata_pio_command *cmd)
{
struct ata_channel_s *chan_gf = GET_GLOBAL(adrive_g->chan_gf);
u8 slave = GET_GLOBAL(adrive_g->slave);
u16 iobase1 = GET_GLOBALFLAT(chan_gf->iobase1);
// Select device
int status = await_not_bsy(iobase1);
if (status < 0)
return status;
u8 newdh = ((cmd->device & ~ATA_CB_DH_DEV1)
| (slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0));
u8 olddh = inb(iobase1 + ATA_CB_DH);
outb(newdh, iobase1 + ATA_CB_DH);
if ((olddh ^ newdh) & (1<<4)) {
// Was a device change - wait for device to become not busy.
status = ndelay_await_not_bsy(iobase1);
if (status < 0)
return status;
}
// Check for ATA_CMD_(READ|WRITE)_(SECTORS|DMA)_EXT commands.
if ((cmd->command & ~0x11) == ATA_CMD_READ_SECTORS_EXT) {
outb(cmd->feature2, iobase1 + ATA_CB_FR);
outb(cmd->sector_count2, iobase1 + ATA_CB_SC);
outb(cmd->lba_low2, iobase1 + ATA_CB_SN);
outb(cmd->lba_mid2, iobase1 + ATA_CB_CL);
outb(cmd->lba_high2, iobase1 + ATA_CB_CH);
}
outb(cmd->feature, iobase1 + ATA_CB_FR);
outb(cmd->sector_count, iobase1 + ATA_CB_SC);
outb(cmd->lba_low, iobase1 + ATA_CB_SN);
outb(cmd->lba_mid, iobase1 + ATA_CB_CL);
outb(cmd->lba_high, iobase1 + ATA_CB_CH);
outb(cmd->command, iobase1 + ATA_CB_CMD);
return 0;
}
// Wait for data after calling 'send_cmd'.
static int
ata_wait_data(u16 iobase1)
{
int status = ndelay_await_not_bsy(iobase1);
if (status < 0)
return status;
if (status & ATA_CB_STAT_ERR) {
dprintf(6, "send_cmd : read error (status=%02x err=%02x)\n"
, status, inb(iobase1 + ATA_CB_ERR));
return -4;
}
if (!(status & ATA_CB_STAT_DRQ)) {
dprintf(6, "send_cmd : DRQ not set (status %02x)\n", status);
return -5;
}
return 0;
}
// Send an ata command that does not transfer any further data.
int
ata_cmd_nondata(struct atadrive_s *adrive_g, struct ata_pio_command *cmd)
{
struct ata_channel_s *chan_gf = GET_GLOBAL(adrive_g->chan_gf);
u16 iobase1 = GET_GLOBALFLAT(chan_gf->iobase1);
u16 iobase2 = GET_GLOBALFLAT(chan_gf->iobase2);
// Disable interrupts
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2 + ATA_CB_DC);
int ret = send_cmd(adrive_g, cmd);
if (ret)
goto fail;
ret = ndelay_await_not_bsy(iobase1);
if (ret < 0)
goto fail;
if (ret & ATA_CB_STAT_ERR) {
dprintf(6, "nondata cmd : read error (status=%02x err=%02x)\n"
, ret, inb(iobase1 + ATA_CB_ERR));
ret = -4;
goto fail;
}
if (ret & ATA_CB_STAT_DRQ) {
dprintf(6, "nondata cmd : DRQ set (status %02x)\n", ret);
ret = -5;
goto fail;
}
fail:
// Enable interrupts
outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC);
return ret;
}
/****************************************************************
* ATA PIO transfers
****************************************************************/
// Transfer 'op->count' blocks (of 'blocksize' bytes) to/from drive
// 'op->drive_g'.
static int
ata_pio_transfer(struct disk_op_s *op, int iswrite, int blocksize)
{
dprintf(16, "ata_pio_transfer id=%p write=%d count=%d bs=%d buf=%p\n"
, op->drive_g, iswrite, op->count, blocksize, op->buf_fl);
struct atadrive_s *adrive_g = container_of(
op->drive_g, struct atadrive_s, drive);
struct ata_channel_s *chan_gf = GET_GLOBAL(adrive_g->chan_gf);
u16 iobase1 = GET_GLOBALFLAT(chan_gf->iobase1);
u16 iobase2 = GET_GLOBALFLAT(chan_gf->iobase2);
int count = op->count;
void *buf_fl = op->buf_fl;
int status;
for (;;) {
if (iswrite) {
// Write data to controller
dprintf(16, "Write sector id=%p dest=%p\n", op->drive_g, buf_fl);
if (CONFIG_ATA_PIO32)
outsl_fl(iobase1, buf_fl, blocksize / 4);
else
outsw_fl(iobase1, buf_fl, blocksize / 2);
} else {
// Read data from controller
dprintf(16, "Read sector id=%p dest=%p\n", op->drive_g, buf_fl);
if (CONFIG_ATA_PIO32)
insl_fl(iobase1, buf_fl, blocksize / 4);
else
insw_fl(iobase1, buf_fl, blocksize / 2);
}
buf_fl += blocksize;
status = pause_await_not_bsy(iobase1, iobase2);
if (status < 0) {
// Error
op->count -= count;
return status;
}
count--;
if (!count)
break;
status &= (ATA_CB_STAT_BSY | ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR);
if (status != ATA_CB_STAT_DRQ) {
dprintf(6, "ata_pio_transfer : more sectors left (status %02x)\n"
, status);
op->count -= count;
return -6;
}
}
status &= (ATA_CB_STAT_BSY | ATA_CB_STAT_DF | ATA_CB_STAT_DRQ
| ATA_CB_STAT_ERR);
if (!iswrite)
status &= ~ATA_CB_STAT_DF;
if (status != 0) {
dprintf(6, "ata_pio_transfer : no sectors left (status %02x)\n", status);
return -7;
}
return 0;
}
/****************************************************************
* ATA DMA transfers
****************************************************************/
#define BM_CMD 0
#define BM_CMD_MEMWRITE 0x08
#define BM_CMD_START 0x01
#define BM_STATUS 2
#define BM_STATUS_IRQ 0x04
#define BM_STATUS_ERROR 0x02
#define BM_STATUS_ACTIVE 0x01
#define BM_TABLE 4
struct sff_dma_prd {
u32 buf_fl;
u32 count;
};
// Check if DMA available and setup transfer if so.
static int
ata_try_dma(struct disk_op_s *op, int iswrite, int blocksize)
{
ASSERT16();
if (! CONFIG_ATA_DMA)
return -1;
u32 dest = (u32)op->buf_fl;
if (dest & 1)
// Need minimum alignment of 1.
return -1;
struct atadrive_s *adrive_g = container_of(
op->drive_g, struct atadrive_s, drive);
struct ata_channel_s *chan_gf = GET_GLOBAL(adrive_g->chan_gf);
u16 iomaster = GET_GLOBALFLAT(chan_gf->iomaster);
if (! iomaster)
return -1;
u32 bytes = op->count * blocksize;
if (! bytes)
return -1;
// Build PRD dma structure.
struct sff_dma_prd *dma = MAKE_FLATPTR(SEG_LOW, ExtraStack);
struct sff_dma_prd *origdma = dma;
while (bytes) {
if (dma >= &origdma[16])
// Too many descriptors..
return -1;
u32 count = bytes;
u32 max = 0x10000 - (dest & 0xffff);
if (count > max)
count = max;
SET_LOWFLAT(dma->buf_fl, dest);
bytes -= count;
if (!bytes)
// Last descriptor.
count |= 1<<31;
dprintf(16, "dma@%p: %08x %08x\n", dma, dest, count);
dest += count;
SET_LOWFLAT(dma->count, count);
dma++;
}
// Program bus-master controller.
outl((u32)origdma, iomaster + BM_TABLE);
u8 oldcmd = inb(iomaster + BM_CMD) & ~(BM_CMD_MEMWRITE|BM_CMD_START);
outb(oldcmd | (iswrite ? 0x00 : BM_CMD_MEMWRITE), iomaster + BM_CMD);
outb(BM_STATUS_ERROR|BM_STATUS_IRQ, iomaster + BM_STATUS);
return 0;
}
// Transfer data using DMA.
static int
ata_dma_transfer(struct disk_op_s *op)
{
if (! CONFIG_ATA_DMA)
return -1;
dprintf(16, "ata_dma_transfer id=%p buf=%p\n", op->drive_g, op->buf_fl);
struct atadrive_s *adrive_g = container_of(
op->drive_g, struct atadrive_s, drive);
struct ata_channel_s *chan_gf = GET_GLOBAL(adrive_g->chan_gf);
u16 iomaster = GET_GLOBALFLAT(chan_gf->iomaster);
// Start bus-master controller.
u8 oldcmd = inb(iomaster + BM_CMD);
outb(oldcmd | BM_CMD_START, iomaster + BM_CMD);
u32 end = timer_calc(IDE_TIMEOUT);
u8 status;
for (;;) {
status = inb(iomaster + BM_STATUS);
if (status & BM_STATUS_IRQ)
break;
// Transfer in progress
if (timer_check(end)) {
// Timeout.
warn_timeout();
break;
}
yield();
}
outb(oldcmd & ~BM_CMD_START, iomaster + BM_CMD);
u16 iobase1 = GET_GLOBALFLAT(chan_gf->iobase1);
u16 iobase2 = GET_GLOBALFLAT(chan_gf->iobase2);
int idestatus = pause_await_not_bsy(iobase1, iobase2);
if ((status & (BM_STATUS_IRQ|BM_STATUS_ACTIVE)) == BM_STATUS_IRQ
&& idestatus >= 0x00
&& (idestatus & (ATA_CB_STAT_BSY | ATA_CB_STAT_DF | ATA_CB_STAT_DRQ
| ATA_CB_STAT_ERR)) == 0x00)
// Success.
return 0;
dprintf(6, "IDE DMA error (dma=%x ide=%x/%x/%x)\n", status, idestatus
, inb(iobase2 + ATA_CB_ASTAT), inb(iobase1 + ATA_CB_ERR));
op->count = 0;
return -1;
}
/****************************************************************
* ATA hard drive functions
****************************************************************/
// Transfer data to harddrive using PIO protocol.
static int
ata_pio_cmd_data(struct disk_op_s *op, int iswrite, struct ata_pio_command *cmd)
{
struct atadrive_s *adrive_g = container_of(
op->drive_g, struct atadrive_s, drive);
struct ata_channel_s *chan_gf = GET_GLOBAL(adrive_g->chan_gf);
u16 iobase1 = GET_GLOBALFLAT(chan_gf->iobase1);
u16 iobase2 = GET_GLOBALFLAT(chan_gf->iobase2);
// Disable interrupts
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2 + ATA_CB_DC);
int ret = send_cmd(adrive_g, cmd);
if (ret)
goto fail;
ret = ata_wait_data(iobase1);
if (ret)
goto fail;
ret = ata_pio_transfer(op, iswrite, DISK_SECTOR_SIZE);
fail:
// Enable interrupts
outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC);
return ret;
}
// Transfer data to harddrive using DMA protocol.
static int
ata_dma_cmd_data(struct disk_op_s *op, struct ata_pio_command *cmd)
{
if (! CONFIG_ATA_DMA)
return -1;
struct atadrive_s *adrive_g = container_of(
op->drive_g, struct atadrive_s, drive);
int ret = send_cmd(adrive_g, cmd);
if (ret)
return ret;
return ata_dma_transfer(op);
}
// Read/write count blocks from a harddrive.
static int
ata_readwrite(struct disk_op_s *op, int iswrite)
{
u64 lba = op->lba;
int usepio = ata_try_dma(op, iswrite, DISK_SECTOR_SIZE);
struct ata_pio_command cmd;
memset(&cmd, 0, sizeof(cmd));
if (op->count >= (1<<8) || lba + op->count >= (1<<28)) {
cmd.sector_count2 = op->count >> 8;
cmd.lba_low2 = lba >> 24;
cmd.lba_mid2 = lba >> 32;
cmd.lba_high2 = lba >> 40;
lba &= 0xffffff;
if (usepio)
cmd.command = (iswrite ? ATA_CMD_WRITE_SECTORS_EXT
: ATA_CMD_READ_SECTORS_EXT);
else
cmd.command = (iswrite ? ATA_CMD_WRITE_DMA_EXT
: ATA_CMD_READ_DMA_EXT);
} else {
if (usepio)
cmd.command = (iswrite ? ATA_CMD_WRITE_SECTORS
: ATA_CMD_READ_SECTORS);
else
cmd.command = (iswrite ? ATA_CMD_WRITE_DMA
: ATA_CMD_READ_DMA);
}
cmd.sector_count = op->count;
cmd.lba_low = lba;
cmd.lba_mid = lba >> 8;
cmd.lba_high = lba >> 16;
cmd.device = ((lba >> 24) & 0xf) | ATA_CB_DH_LBA;
int ret;
if (usepio)
ret = ata_pio_cmd_data(op, iswrite, &cmd);
else
ret = ata_dma_cmd_data(op, &cmd);
if (ret)
return DISK_RET_EBADTRACK;
return DISK_RET_SUCCESS;
}
// 16bit command demuxer for ATA harddrives.
int
process_ata_op(struct disk_op_s *op)
{
if (!CONFIG_ATA)
return 0;
struct atadrive_s *adrive_g = container_of(
op->drive_g, struct atadrive_s, drive);
switch (op->command) {
case CMD_READ:
return ata_readwrite(op, 0);
case CMD_WRITE:
return ata_readwrite(op, 1);
case CMD_RESET:
ata_reset(adrive_g);
return DISK_RET_SUCCESS;
case CMD_ISREADY:
return isready(adrive_g);
case CMD_FORMAT:
case CMD_VERIFY:
case CMD_SEEK:
return DISK_RET_SUCCESS;
default:
op->count = 0;
return DISK_RET_EPARAM;
}
}
/****************************************************************
* ATAPI functions
****************************************************************/
#define CDROM_CDB_SIZE 12
// Low-level atapi command transmit function.
int
atapi_cmd_data(struct disk_op_s *op, void *cdbcmd, u16 blocksize)
{
if (! CONFIG_ATA)
return 0;
struct atadrive_s *adrive_g = container_of(
op->drive_g, struct atadrive_s, drive);
struct ata_channel_s *chan_gf = GET_GLOBAL(adrive_g->chan_gf);
u16 iobase1 = GET_GLOBALFLAT(chan_gf->iobase1);
u16 iobase2 = GET_GLOBALFLAT(chan_gf->iobase2);
struct ata_pio_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.lba_mid = blocksize;
cmd.lba_high = blocksize >> 8;
cmd.command = ATA_CMD_PACKET;
// Disable interrupts
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2 + ATA_CB_DC);
int ret = send_cmd(adrive_g, &cmd);
if (ret)
goto fail;
ret = ata_wait_data(iobase1);
if (ret)
goto fail;
// Send command to device
outsw_fl(iobase1, MAKE_FLATPTR(GET_SEG(SS), cdbcmd), CDROM_CDB_SIZE / 2);
int status = pause_await_not_bsy(iobase1, iobase2);
if (status < 0) {
ret = status;
goto fail;
}
if (status & ATA_CB_STAT_ERR) {
u8 err = inb(iobase1 + ATA_CB_ERR);
// skip "Not Ready"
if (err != 0x20)
dprintf(6, "send_atapi_cmd : read error (status=%02x err=%02x)\n"
, status, err);
ret = -2;
goto fail;
}
if (blocksize) {
if (!(status & ATA_CB_STAT_DRQ)) {
dprintf(6, "send_atapi_cmd : DRQ not set (status %02x)\n", status);
ret = -3;
goto fail;
}
ret = ata_pio_transfer(op, 0, blocksize);
}
fail:
// Enable interrupts
outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC);
if (ret)
return DISK_RET_EBADTRACK;
return DISK_RET_SUCCESS;
}
/****************************************************************
* ATA detect and init
****************************************************************/
// Send an identify device or identify device packet command.
static int
send_ata_identity(struct atadrive_s *adrive_g, u16 *buffer, int command)
{
memset(buffer, 0, DISK_SECTOR_SIZE);
struct disk_op_s dop;
memset(&dop, 0, sizeof(dop));
dop.drive_g = &adrive_g->drive;
dop.count = 1;
dop.lba = 1;
dop.buf_fl = MAKE_FLATPTR(GET_SEG(SS), buffer);
struct ata_pio_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.command = command;
return ata_pio_cmd_data(&dop, 0, &cmd);
}
// Extract the ATA/ATAPI version info.
int
ata_extract_version(u16 *buffer)
{
// Extract ATA/ATAPI version.
u16 ataversion = buffer[80];
u8 version;
for (version=15; version>0; version--)
if (ataversion & (1<<version))
break;
return version;
}
#define MAXMODEL 40
// Extract the ATA/ATAPI model info.
char *
ata_extract_model(char *model, u32 size, u16 *buffer)
{
// Read model name
int i;
for (i=0; i<size/2; i++)
*(u16*)&model[i*2] = be16_to_cpu(buffer[27+i]);
model[size] = 0x00;
nullTrailingSpace(model);
return model;
}
// Common init code between ata and atapi
static struct atadrive_s *
init_atadrive(struct atadrive_s *dummy, u16 *buffer)
{
struct atadrive_s *adrive_g = malloc_fseg(sizeof(*adrive_g));
if (!adrive_g) {
warn_noalloc();
return NULL;
}
memset(adrive_g, 0, sizeof(*adrive_g));
adrive_g->chan_gf = dummy->chan_gf;
adrive_g->slave = dummy->slave;
adrive_g->drive.cntl_id = adrive_g->chan_gf->chanid * 2 + dummy->slave;
adrive_g->drive.removable = (buffer[0] & 0x80) ? 1 : 0;
return adrive_g;
}
// Detect if the given drive is an atapi - initialize it if so.
static struct atadrive_s *
init_drive_atapi(struct atadrive_s *dummy, u16 *buffer)
{
// Send an IDENTIFY_DEVICE_PACKET command to device
int ret = send_ata_identity(dummy, buffer, ATA_CMD_IDENTIFY_PACKET_DEVICE);
if (ret)
return NULL;
// Success - setup as ATAPI.
struct atadrive_s *adrive_g = init_atadrive(dummy, buffer);
if (!adrive_g)
return NULL;
adrive_g->drive.type = DTYPE_ATA_ATAPI;
adrive_g->drive.blksize = CDROM_SECTOR_SIZE;
adrive_g->drive.sectors = (u64)-1;
u8 iscd = ((buffer[0] >> 8) & 0x1f) == 0x05;
char model[MAXMODEL+1];
char *desc = znprintf(MAXDESCSIZE
, "DVD/CD [ata%d-%d: %s ATAPI-%d %s]"
, adrive_g->chan_gf->chanid, adrive_g->slave
, ata_extract_model(model, MAXMODEL, buffer)
, ata_extract_version(buffer)
, (iscd ? "DVD/CD" : "Device"));
dprintf(1, "%s\n", desc);
// fill cdidmap
if (iscd) {
int prio = bootprio_find_ata_device(adrive_g->chan_gf->pci_tmp,
adrive_g->chan_gf->chanid,
adrive_g->slave);
boot_add_cd(&adrive_g->drive, desc, prio);
}
return adrive_g;
}
// Detect if the given drive is a regular ata drive - initialize it if so.
static struct atadrive_s *
init_drive_ata(struct atadrive_s *dummy, u16 *buffer)
{
// Send an IDENTIFY_DEVICE command to device
int ret = send_ata_identity(dummy, buffer, ATA_CMD_IDENTIFY_DEVICE);
if (ret)
return NULL;
// Success - setup as ATA.
struct atadrive_s *adrive_g = init_atadrive(dummy, buffer);
if (!adrive_g)
return NULL;
adrive_g->drive.type = DTYPE_ATA;
adrive_g->drive.blksize = DISK_SECTOR_SIZE;
adrive_g->drive.pchs.cylinders = buffer[1];
adrive_g->drive.pchs.heads = buffer[3];
adrive_g->drive.pchs.spt = buffer[6];
u64 sectors;
if (buffer[83] & (1 << 10)) // word 83 - lba48 support
sectors = *(u64*)&buffer[100]; // word 100-103
else
sectors = *(u32*)&buffer[60]; // word 60 and word 61
adrive_g->drive.sectors = sectors;
u64 adjsize = sectors >> 11;
char adjprefix = 'M';
if (adjsize >= (1 << 16)) {
adjsize >>= 10;
adjprefix = 'G';
}
char model[MAXMODEL+1];
char *desc = znprintf(MAXDESCSIZE
, "ata%d-%d: %s ATA-%d Hard-Disk (%u %ciBytes)"
, adrive_g->chan_gf->chanid, adrive_g->slave
, ata_extract_model(model, MAXMODEL, buffer)
, ata_extract_version(buffer)
, (u32)adjsize, adjprefix);
dprintf(1, "%s\n", desc);
int prio = bootprio_find_ata_device(adrive_g->chan_gf->pci_tmp,
adrive_g->chan_gf->chanid,
adrive_g->slave);
// Register with bcv system.
boot_add_hd(&adrive_g->drive, desc, prio);
return adrive_g;
}
static u32 SpinupEnd;
// Wait for non-busy status and check for "floating bus" condition.
static int
powerup_await_non_bsy(u16 base)
{
u8 orstatus = 0;
u8 status;
for (;;) {
status = inb(base+ATA_CB_STAT);
if (!(status & ATA_CB_STAT_BSY))
break;
orstatus |= status;
if (orstatus == 0xff) {
dprintf(4, "powerup IDE floating\n");
return orstatus;
}
if (timer_check(SpinupEnd)) {
warn_timeout();
return -1;
}
yield();
}
dprintf(6, "powerup iobase=%x st=%x\n", base, status);
return status;
}
// Detect any drives attached to a given controller.
static void
ata_detect(void *data)
{
struct ata_channel_s *chan_gf = data;
struct atadrive_s dummy;
memset(&dummy, 0, sizeof(dummy));
dummy.chan_gf = chan_gf;
// Device detection
int didreset = 0;
u8 slave;
for (slave=0; slave<=1; slave++) {
// Wait for not-bsy.
u16 iobase1 = chan_gf->iobase1;
int status = powerup_await_non_bsy(iobase1);
if (status < 0)
continue;
u8 newdh = slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0;
outb(newdh, iobase1+ATA_CB_DH);
ndelay(400);
status = powerup_await_non_bsy(iobase1);
if (status < 0)
continue;
// Check if ioport registers look valid.
outb(newdh, iobase1+ATA_CB_DH);
u8 dh = inb(iobase1+ATA_CB_DH);
outb(0x55, iobase1+ATA_CB_SC);
outb(0xaa, iobase1+ATA_CB_SN);
u8 sc = inb(iobase1+ATA_CB_SC);
u8 sn = inb(iobase1+ATA_CB_SN);
dprintf(6, "ata_detect ata%d-%d: sc=%x sn=%x dh=%x\n"
, chan_gf->chanid, slave, sc, sn, dh);
if (sc != 0x55 || sn != 0xaa || dh != newdh)
continue;
// Prepare new drive.
dummy.slave = slave;
// reset the channel
if (!didreset) {
ata_reset(&dummy);
didreset = 1;
}
// check for ATAPI
u16 buffer[256];
struct atadrive_s *adrive_g = init_drive_atapi(&dummy, buffer);
if (!adrive_g) {
// Didn't find an ATAPI drive - look for ATA drive.
u8 st = inb(iobase1+ATA_CB_STAT);
if (!st)
// Status not set - can't be a valid drive.
continue;
// Wait for RDY.
int ret = await_rdy(iobase1);
if (ret < 0)
continue;
// check for ATA.
adrive_g = init_drive_ata(&dummy, buffer);
if (!adrive_g)
// No ATA drive found
continue;
}
u16 resetresult = buffer[93];
dprintf(6, "ata_detect resetresult=%04x\n", resetresult);
if (!slave && (resetresult & 0xdf61) == 0x4041)
// resetresult looks valid and device 0 is responding to
// device 1 requests - device 1 must not be present - skip
// detection.
break;
}
}
// Initialize an ata controller and detect its drives.
static void
init_controller(struct pci_device *pci, int irq
, u32 port1, u32 port2, u32 master)
{
static int chanid = 0;
struct ata_channel_s *chan_gf = malloc_fseg(sizeof(*chan_gf));
if (!chan_gf) {
warn_noalloc();
return;
}
chan_gf->chanid = chanid++;
chan_gf->irq = irq;
chan_gf->pci_bdf = pci ? pci->bdf : -1;
chan_gf->pci_tmp = pci;
chan_gf->iobase1 = port1;
chan_gf->iobase2 = port2;
chan_gf->iomaster = master;
dprintf(1, "ATA controller %d at %x/%x/%x (irq %d dev %x)\n"
, chanid, port1, port2, master, irq, chan_gf->pci_bdf);
run_thread(ata_detect, chan_gf);
}
#define IRQ_ATA1 14
#define IRQ_ATA2 15
// Handle controllers on an ATA PCI device.
static void
init_pciata(struct pci_device *pci, u8 prog_if)
{
pci->have_driver = 1;
u16 bdf = pci->bdf;
u8 pciirq = pci_config_readb(bdf, PCI_INTERRUPT_LINE);
int master = 0;
if (CONFIG_ATA_DMA && prog_if & 0x80) {
// Check for bus-mastering.
u32 bar = pci_config_readl(bdf, PCI_BASE_ADDRESS_4);
if (bar & PCI_BASE_ADDRESS_SPACE_IO) {
master = bar & PCI_BASE_ADDRESS_IO_MASK;
pci_config_maskw(bdf, PCI_COMMAND, 0, PCI_COMMAND_MASTER);
}
}
u32 port1, port2, irq;
if (prog_if & 1) {
port1 = (pci_config_readl(bdf, PCI_BASE_ADDRESS_0)
& PCI_BASE_ADDRESS_IO_MASK);
port2 = (pci_config_readl(bdf, PCI_BASE_ADDRESS_1)
& PCI_BASE_ADDRESS_IO_MASK);
irq = pciirq;
} else {
port1 = PORT_ATA1_CMD_BASE;
port2 = PORT_ATA1_CTRL_BASE;
irq = IRQ_ATA1;
}
init_controller(pci, irq, port1, port2, master);
if (prog_if & 4) {
port1 = (pci_config_readl(bdf, PCI_BASE_ADDRESS_2)
& PCI_BASE_ADDRESS_IO_MASK);
port2 = (pci_config_readl(bdf, PCI_BASE_ADDRESS_3)
& PCI_BASE_ADDRESS_IO_MASK);
irq = pciirq;
} else {
port1 = PORT_ATA2_CMD_BASE;
port2 = PORT_ATA2_CTRL_BASE;
irq = IRQ_ATA2;
}
init_controller(pci, irq, port1, port2, master ? master + 8 : 0);
}
static void
found_genericata(struct pci_device *pci, void *arg)
{
init_pciata(pci, pci->prog_if);
}
static void
found_compatibleahci(struct pci_device *pci, void *arg)
{
if (CONFIG_AHCI)
// Already handled directly via native ahci interface.
return;
init_pciata(pci, 0x8f);
}
static const struct pci_device_id pci_ata_tbl[] = {
PCI_DEVICE_CLASS(PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_IDE
, found_genericata),
PCI_DEVICE(PCI_VENDOR_ID_ATI, 0x4391, found_compatibleahci),
PCI_DEVICE_END,
};
// Locate and init ata controllers.
static void
ata_scan(void)
{
if (CONFIG_QEMU && hlist_empty(&PCIDevices)) {
// No PCI devices found - probably a QEMU "-M isapc" machine.
// Try using ISA ports for ATA controllers.
init_controller(NULL, IRQ_ATA1
, PORT_ATA1_CMD_BASE, PORT_ATA1_CTRL_BASE, 0);
init_controller(NULL, IRQ_ATA2
, PORT_ATA2_CMD_BASE, PORT_ATA2_CTRL_BASE, 0);
return;
}
// Scan PCI bus for ATA adapters
struct pci_device *pci;
foreachpci(pci) {
pci_init_device(pci_ata_tbl, pci, NULL);
}
}
void
ata_setup(void)
{
ASSERT32FLAT();
if (!CONFIG_ATA)
return;
dprintf(3, "init hard drives\n");
SpinupEnd = timer_calc(IDE_TIMEOUT);
ata_scan();
SET_BDA(disk_control_byte, 0xc0);
enable_hwirq(14, FUNC16(entry_76));
}