| /* | 
 |  * QEMU KVM support | 
 |  * | 
 |  * Copyright (C) 2006-2008 Qumranet Technologies | 
 |  * Copyright IBM, Corp. 2008 | 
 |  * | 
 |  * Authors: | 
 |  *  Anthony Liguori   <aliguori@us.ibm.com> | 
 |  * | 
 |  * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
 |  * See the COPYING file in the top-level directory. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <sys/types.h> | 
 | #include <sys/ioctl.h> | 
 | #include <sys/mman.h> | 
 | #include <sys/utsname.h> | 
 |  | 
 | #include <linux/kvm.h> | 
 | #include <linux/kvm_para.h> | 
 |  | 
 | #include "qemu-common.h" | 
 | #include "sysemu.h" | 
 | #include "kvm.h" | 
 | #include "kvm_i386.h" | 
 | #include "cpu.h" | 
 | #include "gdbstub.h" | 
 | #include "host-utils.h" | 
 | #include "hw/pc.h" | 
 | #include "hw/apic.h" | 
 | #include "ioport.h" | 
 | #include "hyperv.h" | 
 | #include "hw/pci.h" | 
 |  | 
 | //#define DEBUG_KVM | 
 |  | 
 | #ifdef DEBUG_KVM | 
 | #define DPRINTF(fmt, ...) \ | 
 |     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | 
 | #else | 
 | #define DPRINTF(fmt, ...) \ | 
 |     do { } while (0) | 
 | #endif | 
 |  | 
 | #define MSR_KVM_WALL_CLOCK  0x11 | 
 | #define MSR_KVM_SYSTEM_TIME 0x12 | 
 |  | 
 | #ifndef BUS_MCEERR_AR | 
 | #define BUS_MCEERR_AR 4 | 
 | #endif | 
 | #ifndef BUS_MCEERR_AO | 
 | #define BUS_MCEERR_AO 5 | 
 | #endif | 
 |  | 
 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { | 
 |     KVM_CAP_INFO(SET_TSS_ADDR), | 
 |     KVM_CAP_INFO(EXT_CPUID), | 
 |     KVM_CAP_INFO(MP_STATE), | 
 |     KVM_CAP_LAST_INFO | 
 | }; | 
 |  | 
 | static bool has_msr_star; | 
 | static bool has_msr_hsave_pa; | 
 | static bool has_msr_tsc_deadline; | 
 | static bool has_msr_async_pf_en; | 
 | static bool has_msr_pv_eoi_en; | 
 | static bool has_msr_misc_enable; | 
 | static int lm_capable_kernel; | 
 |  | 
 | bool kvm_allows_irq0_override(void) | 
 | { | 
 |     return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | 
 | } | 
 |  | 
 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) | 
 | { | 
 |     struct kvm_cpuid2 *cpuid; | 
 |     int r, size; | 
 |  | 
 |     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | 
 |     cpuid = (struct kvm_cpuid2 *)g_malloc0(size); | 
 |     cpuid->nent = max; | 
 |     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | 
 |     if (r == 0 && cpuid->nent >= max) { | 
 |         r = -E2BIG; | 
 |     } | 
 |     if (r < 0) { | 
 |         if (r == -E2BIG) { | 
 |             g_free(cpuid); | 
 |             return NULL; | 
 |         } else { | 
 |             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | 
 |                     strerror(-r)); | 
 |             exit(1); | 
 |         } | 
 |     } | 
 |     return cpuid; | 
 | } | 
 |  | 
 | struct kvm_para_features { | 
 |     int cap; | 
 |     int feature; | 
 | } para_features[] = { | 
 |     { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | 
 |     { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | 
 |     { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | 
 |     { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, | 
 |     { -1, -1 } | 
 | }; | 
 |  | 
 | static int get_para_features(KVMState *s) | 
 | { | 
 |     int i, features = 0; | 
 |  | 
 |     for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) { | 
 |         if (kvm_check_extension(s, para_features[i].cap)) { | 
 |             features |= (1 << para_features[i].feature); | 
 |         } | 
 |     } | 
 |  | 
 |     return features; | 
 | } | 
 |  | 
 |  | 
 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, | 
 |                                       uint32_t index, int reg) | 
 | { | 
 |     struct kvm_cpuid2 *cpuid; | 
 |     int i, max; | 
 |     uint32_t ret = 0; | 
 |     uint32_t cpuid_1_edx; | 
 |     int has_kvm_features = 0; | 
 |  | 
 |     max = 1; | 
 |     while ((cpuid = try_get_cpuid(s, max)) == NULL) { | 
 |         max *= 2; | 
 |     } | 
 |  | 
 |     for (i = 0; i < cpuid->nent; ++i) { | 
 |         if (cpuid->entries[i].function == function && | 
 |             cpuid->entries[i].index == index) { | 
 |             if (cpuid->entries[i].function == KVM_CPUID_FEATURES) { | 
 |                 has_kvm_features = 1; | 
 |             } | 
 |             switch (reg) { | 
 |             case R_EAX: | 
 |                 ret = cpuid->entries[i].eax; | 
 |                 break; | 
 |             case R_EBX: | 
 |                 ret = cpuid->entries[i].ebx; | 
 |                 break; | 
 |             case R_ECX: | 
 |                 ret = cpuid->entries[i].ecx; | 
 |                 break; | 
 |             case R_EDX: | 
 |                 ret = cpuid->entries[i].edx; | 
 |                 switch (function) { | 
 |                 case 1: | 
 |                     /* KVM before 2.6.30 misreports the following features */ | 
 |                     ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | 
 |                     break; | 
 |                 case 0x80000001: | 
 |                     /* On Intel, kvm returns cpuid according to the Intel spec, | 
 |                      * so add missing bits according to the AMD spec: | 
 |                      */ | 
 |                     cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | 
 |                     ret |= cpuid_1_edx & 0x183f7ff; | 
 |                     break; | 
 |                 } | 
 |                 break; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     g_free(cpuid); | 
 |  | 
 |     /* fallback for older kernels */ | 
 |     if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) { | 
 |         ret = get_para_features(s); | 
 |     } | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | typedef struct HWPoisonPage { | 
 |     ram_addr_t ram_addr; | 
 |     QLIST_ENTRY(HWPoisonPage) list; | 
 | } HWPoisonPage; | 
 |  | 
 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | 
 |     QLIST_HEAD_INITIALIZER(hwpoison_page_list); | 
 |  | 
 | static void kvm_unpoison_all(void *param) | 
 | { | 
 |     HWPoisonPage *page, *next_page; | 
 |  | 
 |     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | 
 |         QLIST_REMOVE(page, list); | 
 |         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | 
 |         g_free(page); | 
 |     } | 
 | } | 
 |  | 
 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) | 
 | { | 
 |     HWPoisonPage *page; | 
 |  | 
 |     QLIST_FOREACH(page, &hwpoison_page_list, list) { | 
 |         if (page->ram_addr == ram_addr) { | 
 |             return; | 
 |         } | 
 |     } | 
 |     page = g_malloc(sizeof(HWPoisonPage)); | 
 |     page->ram_addr = ram_addr; | 
 |     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | 
 | } | 
 |  | 
 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, | 
 |                                      int *max_banks) | 
 | { | 
 |     int r; | 
 |  | 
 |     r = kvm_check_extension(s, KVM_CAP_MCE); | 
 |     if (r > 0) { | 
 |         *max_banks = r; | 
 |         return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | 
 |     } | 
 |     return -ENOSYS; | 
 | } | 
 |  | 
 | static void kvm_mce_inject(CPUX86State *env, target_phys_addr_t paddr, int code) | 
 | { | 
 |     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | | 
 |                       MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | 
 |     uint64_t mcg_status = MCG_STATUS_MCIP; | 
 |  | 
 |     if (code == BUS_MCEERR_AR) { | 
 |         status |= MCI_STATUS_AR | 0x134; | 
 |         mcg_status |= MCG_STATUS_EIPV; | 
 |     } else { | 
 |         status |= 0xc0; | 
 |         mcg_status |= MCG_STATUS_RIPV; | 
 |     } | 
 |     cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr, | 
 |                        (MCM_ADDR_PHYS << 6) | 0xc, | 
 |                        cpu_x86_support_mca_broadcast(env) ? | 
 |                        MCE_INJECT_BROADCAST : 0); | 
 | } | 
 |  | 
 | static void hardware_memory_error(void) | 
 | { | 
 |     fprintf(stderr, "Hardware memory error!\n"); | 
 |     exit(1); | 
 | } | 
 |  | 
 | int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr) | 
 | { | 
 |     ram_addr_t ram_addr; | 
 |     target_phys_addr_t paddr; | 
 |  | 
 |     if ((env->mcg_cap & MCG_SER_P) && addr | 
 |         && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { | 
 |         if (qemu_ram_addr_from_host(addr, &ram_addr) || | 
 |             !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) { | 
 |             fprintf(stderr, "Hardware memory error for memory used by " | 
 |                     "QEMU itself instead of guest system!\n"); | 
 |             /* Hope we are lucky for AO MCE */ | 
 |             if (code == BUS_MCEERR_AO) { | 
 |                 return 0; | 
 |             } else { | 
 |                 hardware_memory_error(); | 
 |             } | 
 |         } | 
 |         kvm_hwpoison_page_add(ram_addr); | 
 |         kvm_mce_inject(env, paddr, code); | 
 |     } else { | 
 |         if (code == BUS_MCEERR_AO) { | 
 |             return 0; | 
 |         } else if (code == BUS_MCEERR_AR) { | 
 |             hardware_memory_error(); | 
 |         } else { | 
 |             return 1; | 
 |         } | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | int kvm_arch_on_sigbus(int code, void *addr) | 
 | { | 
 |     if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { | 
 |         ram_addr_t ram_addr; | 
 |         target_phys_addr_t paddr; | 
 |  | 
 |         /* Hope we are lucky for AO MCE */ | 
 |         if (qemu_ram_addr_from_host(addr, &ram_addr) || | 
 |             !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr, | 
 |                                                 &paddr)) { | 
 |             fprintf(stderr, "Hardware memory error for memory used by " | 
 |                     "QEMU itself instead of guest system!: %p\n", addr); | 
 |             return 0; | 
 |         } | 
 |         kvm_hwpoison_page_add(ram_addr); | 
 |         kvm_mce_inject(first_cpu, paddr, code); | 
 |     } else { | 
 |         if (code == BUS_MCEERR_AO) { | 
 |             return 0; | 
 |         } else if (code == BUS_MCEERR_AR) { | 
 |             hardware_memory_error(); | 
 |         } else { | 
 |             return 1; | 
 |         } | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static int kvm_inject_mce_oldstyle(CPUX86State *env) | 
 | { | 
 |     if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { | 
 |         unsigned int bank, bank_num = env->mcg_cap & 0xff; | 
 |         struct kvm_x86_mce mce; | 
 |  | 
 |         env->exception_injected = -1; | 
 |  | 
 |         /* | 
 |          * There must be at least one bank in use if an MCE is pending. | 
 |          * Find it and use its values for the event injection. | 
 |          */ | 
 |         for (bank = 0; bank < bank_num; bank++) { | 
 |             if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | 
 |                 break; | 
 |             } | 
 |         } | 
 |         assert(bank < bank_num); | 
 |  | 
 |         mce.bank = bank; | 
 |         mce.status = env->mce_banks[bank * 4 + 1]; | 
 |         mce.mcg_status = env->mcg_status; | 
 |         mce.addr = env->mce_banks[bank * 4 + 2]; | 
 |         mce.misc = env->mce_banks[bank * 4 + 3]; | 
 |  | 
 |         return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce); | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static void cpu_update_state(void *opaque, int running, RunState state) | 
 | { | 
 |     CPUX86State *env = opaque; | 
 |  | 
 |     if (running) { | 
 |         env->tsc_valid = false; | 
 |     } | 
 | } | 
 |  | 
 | int kvm_arch_init_vcpu(CPUX86State *env) | 
 | { | 
 |     struct { | 
 |         struct kvm_cpuid2 cpuid; | 
 |         struct kvm_cpuid_entry2 entries[100]; | 
 |     } QEMU_PACKED cpuid_data; | 
 |     KVMState *s = env->kvm_state; | 
 |     uint32_t limit, i, j, cpuid_i; | 
 |     uint32_t unused; | 
 |     struct kvm_cpuid_entry2 *c; | 
 |     uint32_t signature[3]; | 
 |     int r; | 
 |  | 
 |     env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | 
 |  | 
 |     i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR; | 
 |     j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER; | 
 |     env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX); | 
 |     env->cpuid_ext_features |= i; | 
 |     if (j && kvm_irqchip_in_kernel() && | 
 |         kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | 
 |         env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER; | 
 |     } | 
 |  | 
 |     env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001, | 
 |                                                              0, R_EDX); | 
 |     env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001, | 
 |                                                              0, R_ECX); | 
 |     env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(s, 0x8000000A, | 
 |                                                              0, R_EDX); | 
 |  | 
 |     cpuid_i = 0; | 
 |  | 
 |     /* Paravirtualization CPUIDs */ | 
 |     c = &cpuid_data.entries[cpuid_i++]; | 
 |     memset(c, 0, sizeof(*c)); | 
 |     c->function = KVM_CPUID_SIGNATURE; | 
 |     if (!hyperv_enabled()) { | 
 |         memcpy(signature, "KVMKVMKVM\0\0\0", 12); | 
 |         c->eax = 0; | 
 |     } else { | 
 |         memcpy(signature, "Microsoft Hv", 12); | 
 |         c->eax = HYPERV_CPUID_MIN; | 
 |     } | 
 |     c->ebx = signature[0]; | 
 |     c->ecx = signature[1]; | 
 |     c->edx = signature[2]; | 
 |  | 
 |     c = &cpuid_data.entries[cpuid_i++]; | 
 |     memset(c, 0, sizeof(*c)); | 
 |     c->function = KVM_CPUID_FEATURES; | 
 |     c->eax = env->cpuid_kvm_features & | 
 |         kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX); | 
 |  | 
 |     if (hyperv_enabled()) { | 
 |         memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); | 
 |         c->eax = signature[0]; | 
 |  | 
 |         c = &cpuid_data.entries[cpuid_i++]; | 
 |         memset(c, 0, sizeof(*c)); | 
 |         c->function = HYPERV_CPUID_VERSION; | 
 |         c->eax = 0x00001bbc; | 
 |         c->ebx = 0x00060001; | 
 |  | 
 |         c = &cpuid_data.entries[cpuid_i++]; | 
 |         memset(c, 0, sizeof(*c)); | 
 |         c->function = HYPERV_CPUID_FEATURES; | 
 |         if (hyperv_relaxed_timing_enabled()) { | 
 |             c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; | 
 |         } | 
 |         if (hyperv_vapic_recommended()) { | 
 |             c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; | 
 |             c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; | 
 |         } | 
 |  | 
 |         c = &cpuid_data.entries[cpuid_i++]; | 
 |         memset(c, 0, sizeof(*c)); | 
 |         c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; | 
 |         if (hyperv_relaxed_timing_enabled()) { | 
 |             c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; | 
 |         } | 
 |         if (hyperv_vapic_recommended()) { | 
 |             c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; | 
 |         } | 
 |         c->ebx = hyperv_get_spinlock_retries(); | 
 |  | 
 |         c = &cpuid_data.entries[cpuid_i++]; | 
 |         memset(c, 0, sizeof(*c)); | 
 |         c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; | 
 |         c->eax = 0x40; | 
 |         c->ebx = 0x40; | 
 |  | 
 |         c = &cpuid_data.entries[cpuid_i++]; | 
 |         memset(c, 0, sizeof(*c)); | 
 |         c->function = KVM_CPUID_SIGNATURE_NEXT; | 
 |         memcpy(signature, "KVMKVMKVM\0\0\0", 12); | 
 |         c->eax = 0; | 
 |         c->ebx = signature[0]; | 
 |         c->ecx = signature[1]; | 
 |         c->edx = signature[2]; | 
 |     } | 
 |  | 
 |     has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF); | 
 |  | 
 |     has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI); | 
 |  | 
 |     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); | 
 |  | 
 |     for (i = 0; i <= limit; i++) { | 
 |         c = &cpuid_data.entries[cpuid_i++]; | 
 |  | 
 |         switch (i) { | 
 |         case 2: { | 
 |             /* Keep reading function 2 till all the input is received */ | 
 |             int times; | 
 |  | 
 |             c->function = i; | 
 |             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | | 
 |                        KVM_CPUID_FLAG_STATE_READ_NEXT; | 
 |             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | 
 |             times = c->eax & 0xff; | 
 |  | 
 |             for (j = 1; j < times; ++j) { | 
 |                 c = &cpuid_data.entries[cpuid_i++]; | 
 |                 c->function = i; | 
 |                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; | 
 |                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | 
 |             } | 
 |             break; | 
 |         } | 
 |         case 4: | 
 |         case 0xb: | 
 |         case 0xd: | 
 |             for (j = 0; ; j++) { | 
 |                 if (i == 0xd && j == 64) { | 
 |                     break; | 
 |                 } | 
 |                 c->function = i; | 
 |                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
 |                 c->index = j; | 
 |                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | 
 |  | 
 |                 if (i == 4 && c->eax == 0) { | 
 |                     break; | 
 |                 } | 
 |                 if (i == 0xb && !(c->ecx & 0xff00)) { | 
 |                     break; | 
 |                 } | 
 |                 if (i == 0xd && c->eax == 0) { | 
 |                     continue; | 
 |                 } | 
 |                 c = &cpuid_data.entries[cpuid_i++]; | 
 |             } | 
 |             break; | 
 |         default: | 
 |             c->function = i; | 
 |             c->flags = 0; | 
 |             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | 
 |             break; | 
 |         } | 
 |     } | 
 |     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); | 
 |  | 
 |     for (i = 0x80000000; i <= limit; i++) { | 
 |         c = &cpuid_data.entries[cpuid_i++]; | 
 |  | 
 |         c->function = i; | 
 |         c->flags = 0; | 
 |         cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | 
 |     } | 
 |  | 
 |     /* Call Centaur's CPUID instructions they are supported. */ | 
 |     if (env->cpuid_xlevel2 > 0) { | 
 |         env->cpuid_ext4_features &= | 
 |             kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX); | 
 |         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); | 
 |  | 
 |         for (i = 0xC0000000; i <= limit; i++) { | 
 |             c = &cpuid_data.entries[cpuid_i++]; | 
 |  | 
 |             c->function = i; | 
 |             c->flags = 0; | 
 |             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | 
 |         } | 
 |     } | 
 |  | 
 |     cpuid_data.cpuid.nent = cpuid_i; | 
 |  | 
 |     if (((env->cpuid_version >> 8)&0xF) >= 6 | 
 |         && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA) | 
 |         && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) { | 
 |         uint64_t mcg_cap; | 
 |         int banks; | 
 |         int ret; | 
 |  | 
 |         ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks); | 
 |         if (ret < 0) { | 
 |             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | 
 |             return ret; | 
 |         } | 
 |  | 
 |         if (banks > MCE_BANKS_DEF) { | 
 |             banks = MCE_BANKS_DEF; | 
 |         } | 
 |         mcg_cap &= MCE_CAP_DEF; | 
 |         mcg_cap |= banks; | 
 |         ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap); | 
 |         if (ret < 0) { | 
 |             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | 
 |             return ret; | 
 |         } | 
 |  | 
 |         env->mcg_cap = mcg_cap; | 
 |     } | 
 |  | 
 |     qemu_add_vm_change_state_handler(cpu_update_state, env); | 
 |  | 
 |     cpuid_data.cpuid.padding = 0; | 
 |     r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data); | 
 |     if (r) { | 
 |         return r; | 
 |     } | 
 |  | 
 |     r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL); | 
 |     if (r && env->tsc_khz) { | 
 |         r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz); | 
 |         if (r < 0) { | 
 |             fprintf(stderr, "KVM_SET_TSC_KHZ failed\n"); | 
 |             return r; | 
 |         } | 
 |     } | 
 |  | 
 |     if (kvm_has_xsave()) { | 
 |         env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); | 
 |     } | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | void kvm_arch_reset_vcpu(CPUX86State *env) | 
 | { | 
 |     X86CPU *cpu = x86_env_get_cpu(env); | 
 |  | 
 |     env->exception_injected = -1; | 
 |     env->interrupt_injected = -1; | 
 |     env->xcr0 = 1; | 
 |     if (kvm_irqchip_in_kernel()) { | 
 |         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : | 
 |                                           KVM_MP_STATE_UNINITIALIZED; | 
 |     } else { | 
 |         env->mp_state = KVM_MP_STATE_RUNNABLE; | 
 |     } | 
 | } | 
 |  | 
 | static int kvm_get_supported_msrs(KVMState *s) | 
 | { | 
 |     static int kvm_supported_msrs; | 
 |     int ret = 0; | 
 |  | 
 |     /* first time */ | 
 |     if (kvm_supported_msrs == 0) { | 
 |         struct kvm_msr_list msr_list, *kvm_msr_list; | 
 |  | 
 |         kvm_supported_msrs = -1; | 
 |  | 
 |         /* Obtain MSR list from KVM.  These are the MSRs that we must | 
 |          * save/restore */ | 
 |         msr_list.nmsrs = 0; | 
 |         ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); | 
 |         if (ret < 0 && ret != -E2BIG) { | 
 |             return ret; | 
 |         } | 
 |         /* Old kernel modules had a bug and could write beyond the provided | 
 |            memory. Allocate at least a safe amount of 1K. */ | 
 |         kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + | 
 |                                               msr_list.nmsrs * | 
 |                                               sizeof(msr_list.indices[0]))); | 
 |  | 
 |         kvm_msr_list->nmsrs = msr_list.nmsrs; | 
 |         ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); | 
 |         if (ret >= 0) { | 
 |             int i; | 
 |  | 
 |             for (i = 0; i < kvm_msr_list->nmsrs; i++) { | 
 |                 if (kvm_msr_list->indices[i] == MSR_STAR) { | 
 |                     has_msr_star = true; | 
 |                     continue; | 
 |                 } | 
 |                 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { | 
 |                     has_msr_hsave_pa = true; | 
 |                     continue; | 
 |                 } | 
 |                 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { | 
 |                     has_msr_tsc_deadline = true; | 
 |                     continue; | 
 |                 } | 
 |                 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { | 
 |                     has_msr_misc_enable = true; | 
 |                     continue; | 
 |                 } | 
 |             } | 
 |         } | 
 |  | 
 |         g_free(kvm_msr_list); | 
 |     } | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | int kvm_arch_init(KVMState *s) | 
 | { | 
 |     QemuOptsList *list = qemu_find_opts("machine"); | 
 |     uint64_t identity_base = 0xfffbc000; | 
 |     uint64_t shadow_mem; | 
 |     int ret; | 
 |     struct utsname utsname; | 
 |  | 
 |     ret = kvm_get_supported_msrs(s); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |  | 
 |     uname(&utsname); | 
 |     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | 
 |  | 
 |     /* | 
 |      * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. | 
 |      * In order to use vm86 mode, an EPT identity map and a TSS  are needed. | 
 |      * Since these must be part of guest physical memory, we need to allocate | 
 |      * them, both by setting their start addresses in the kernel and by | 
 |      * creating a corresponding e820 entry. We need 4 pages before the BIOS. | 
 |      * | 
 |      * Older KVM versions may not support setting the identity map base. In | 
 |      * that case we need to stick with the default, i.e. a 256K maximum BIOS | 
 |      * size. | 
 |      */ | 
 |     if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { | 
 |         /* Allows up to 16M BIOSes. */ | 
 |         identity_base = 0xfeffc000; | 
 |  | 
 |         ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | 
 |         if (ret < 0) { | 
 |             return ret; | 
 |         } | 
 |     } | 
 |  | 
 |     /* Set TSS base one page after EPT identity map. */ | 
 |     ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |  | 
 |     /* Tell fw_cfg to notify the BIOS to reserve the range. */ | 
 |     ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | 
 |     if (ret < 0) { | 
 |         fprintf(stderr, "e820_add_entry() table is full\n"); | 
 |         return ret; | 
 |     } | 
 |     qemu_register_reset(kvm_unpoison_all, NULL); | 
 |  | 
 |     if (!QTAILQ_EMPTY(&list->head)) { | 
 |         shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head), | 
 |                                        "kvm_shadow_mem", -1); | 
 |         if (shadow_mem != -1) { | 
 |             shadow_mem /= 4096; | 
 |             ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | 
 |             if (ret < 0) { | 
 |                 return ret; | 
 |             } | 
 |         } | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | 
 | { | 
 |     lhs->selector = rhs->selector; | 
 |     lhs->base = rhs->base; | 
 |     lhs->limit = rhs->limit; | 
 |     lhs->type = 3; | 
 |     lhs->present = 1; | 
 |     lhs->dpl = 3; | 
 |     lhs->db = 0; | 
 |     lhs->s = 1; | 
 |     lhs->l = 0; | 
 |     lhs->g = 0; | 
 |     lhs->avl = 0; | 
 |     lhs->unusable = 0; | 
 | } | 
 |  | 
 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | 
 | { | 
 |     unsigned flags = rhs->flags; | 
 |     lhs->selector = rhs->selector; | 
 |     lhs->base = rhs->base; | 
 |     lhs->limit = rhs->limit; | 
 |     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | 
 |     lhs->present = (flags & DESC_P_MASK) != 0; | 
 |     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; | 
 |     lhs->db = (flags >> DESC_B_SHIFT) & 1; | 
 |     lhs->s = (flags & DESC_S_MASK) != 0; | 
 |     lhs->l = (flags >> DESC_L_SHIFT) & 1; | 
 |     lhs->g = (flags & DESC_G_MASK) != 0; | 
 |     lhs->avl = (flags & DESC_AVL_MASK) != 0; | 
 |     lhs->unusable = 0; | 
 |     lhs->padding = 0; | 
 | } | 
 |  | 
 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | 
 | { | 
 |     lhs->selector = rhs->selector; | 
 |     lhs->base = rhs->base; | 
 |     lhs->limit = rhs->limit; | 
 |     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | | 
 |                  (rhs->present * DESC_P_MASK) | | 
 |                  (rhs->dpl << DESC_DPL_SHIFT) | | 
 |                  (rhs->db << DESC_B_SHIFT) | | 
 |                  (rhs->s * DESC_S_MASK) | | 
 |                  (rhs->l << DESC_L_SHIFT) | | 
 |                  (rhs->g * DESC_G_MASK) | | 
 |                  (rhs->avl * DESC_AVL_MASK); | 
 | } | 
 |  | 
 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | 
 | { | 
 |     if (set) { | 
 |         *kvm_reg = *qemu_reg; | 
 |     } else { | 
 |         *qemu_reg = *kvm_reg; | 
 |     } | 
 | } | 
 |  | 
 | static int kvm_getput_regs(CPUX86State *env, int set) | 
 | { | 
 |     struct kvm_regs regs; | 
 |     int ret = 0; | 
 |  | 
 |     if (!set) { | 
 |         ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); | 
 |         if (ret < 0) { | 
 |             return ret; | 
 |         } | 
 |     } | 
 |  | 
 |     kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | 
 |     kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | 
 |     kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | 
 |     kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | 
 |     kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | 
 |     kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | 
 |     kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | 
 |     kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | 
 | #ifdef TARGET_X86_64 | 
 |     kvm_getput_reg(®s.r8, &env->regs[8], set); | 
 |     kvm_getput_reg(®s.r9, &env->regs[9], set); | 
 |     kvm_getput_reg(®s.r10, &env->regs[10], set); | 
 |     kvm_getput_reg(®s.r11, &env->regs[11], set); | 
 |     kvm_getput_reg(®s.r12, &env->regs[12], set); | 
 |     kvm_getput_reg(®s.r13, &env->regs[13], set); | 
 |     kvm_getput_reg(®s.r14, &env->regs[14], set); | 
 |     kvm_getput_reg(®s.r15, &env->regs[15], set); | 
 | #endif | 
 |  | 
 |     kvm_getput_reg(®s.rflags, &env->eflags, set); | 
 |     kvm_getput_reg(®s.rip, &env->eip, set); | 
 |  | 
 |     if (set) { | 
 |         ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); | 
 |     } | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | static int kvm_put_fpu(CPUX86State *env) | 
 | { | 
 |     struct kvm_fpu fpu; | 
 |     int i; | 
 |  | 
 |     memset(&fpu, 0, sizeof fpu); | 
 |     fpu.fsw = env->fpus & ~(7 << 11); | 
 |     fpu.fsw |= (env->fpstt & 7) << 11; | 
 |     fpu.fcw = env->fpuc; | 
 |     fpu.last_opcode = env->fpop; | 
 |     fpu.last_ip = env->fpip; | 
 |     fpu.last_dp = env->fpdp; | 
 |     for (i = 0; i < 8; ++i) { | 
 |         fpu.ftwx |= (!env->fptags[i]) << i; | 
 |     } | 
 |     memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); | 
 |     memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | 
 |     fpu.mxcsr = env->mxcsr; | 
 |  | 
 |     return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu); | 
 | } | 
 |  | 
 | #define XSAVE_FCW_FSW     0 | 
 | #define XSAVE_FTW_FOP     1 | 
 | #define XSAVE_CWD_RIP     2 | 
 | #define XSAVE_CWD_RDP     4 | 
 | #define XSAVE_MXCSR       6 | 
 | #define XSAVE_ST_SPACE    8 | 
 | #define XSAVE_XMM_SPACE   40 | 
 | #define XSAVE_XSTATE_BV   128 | 
 | #define XSAVE_YMMH_SPACE  144 | 
 |  | 
 | static int kvm_put_xsave(CPUX86State *env) | 
 | { | 
 |     struct kvm_xsave* xsave = env->kvm_xsave_buf; | 
 |     uint16_t cwd, swd, twd; | 
 |     int i, r; | 
 |  | 
 |     if (!kvm_has_xsave()) { | 
 |         return kvm_put_fpu(env); | 
 |     } | 
 |  | 
 |     memset(xsave, 0, sizeof(struct kvm_xsave)); | 
 |     twd = 0; | 
 |     swd = env->fpus & ~(7 << 11); | 
 |     swd |= (env->fpstt & 7) << 11; | 
 |     cwd = env->fpuc; | 
 |     for (i = 0; i < 8; ++i) { | 
 |         twd |= (!env->fptags[i]) << i; | 
 |     } | 
 |     xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd; | 
 |     xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd; | 
 |     memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip)); | 
 |     memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp)); | 
 |     memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, | 
 |             sizeof env->fpregs); | 
 |     memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs, | 
 |             sizeof env->xmm_regs); | 
 |     xsave->region[XSAVE_MXCSR] = env->mxcsr; | 
 |     *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; | 
 |     memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs, | 
 |             sizeof env->ymmh_regs); | 
 |     r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave); | 
 |     return r; | 
 | } | 
 |  | 
 | static int kvm_put_xcrs(CPUX86State *env) | 
 | { | 
 |     struct kvm_xcrs xcrs; | 
 |  | 
 |     if (!kvm_has_xcrs()) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     xcrs.nr_xcrs = 1; | 
 |     xcrs.flags = 0; | 
 |     xcrs.xcrs[0].xcr = 0; | 
 |     xcrs.xcrs[0].value = env->xcr0; | 
 |     return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs); | 
 | } | 
 |  | 
 | static int kvm_put_sregs(CPUX86State *env) | 
 | { | 
 |     struct kvm_sregs sregs; | 
 |  | 
 |     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); | 
 |     if (env->interrupt_injected >= 0) { | 
 |         sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | 
 |                 (uint64_t)1 << (env->interrupt_injected % 64); | 
 |     } | 
 |  | 
 |     if ((env->eflags & VM_MASK)) { | 
 |         set_v8086_seg(&sregs.cs, &env->segs[R_CS]); | 
 |         set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | 
 |         set_v8086_seg(&sregs.es, &env->segs[R_ES]); | 
 |         set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | 
 |         set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | 
 |         set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | 
 |     } else { | 
 |         set_seg(&sregs.cs, &env->segs[R_CS]); | 
 |         set_seg(&sregs.ds, &env->segs[R_DS]); | 
 |         set_seg(&sregs.es, &env->segs[R_ES]); | 
 |         set_seg(&sregs.fs, &env->segs[R_FS]); | 
 |         set_seg(&sregs.gs, &env->segs[R_GS]); | 
 |         set_seg(&sregs.ss, &env->segs[R_SS]); | 
 |     } | 
 |  | 
 |     set_seg(&sregs.tr, &env->tr); | 
 |     set_seg(&sregs.ldt, &env->ldt); | 
 |  | 
 |     sregs.idt.limit = env->idt.limit; | 
 |     sregs.idt.base = env->idt.base; | 
 |     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); | 
 |     sregs.gdt.limit = env->gdt.limit; | 
 |     sregs.gdt.base = env->gdt.base; | 
 |     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); | 
 |  | 
 |     sregs.cr0 = env->cr[0]; | 
 |     sregs.cr2 = env->cr[2]; | 
 |     sregs.cr3 = env->cr[3]; | 
 |     sregs.cr4 = env->cr[4]; | 
 |  | 
 |     sregs.cr8 = cpu_get_apic_tpr(env->apic_state); | 
 |     sregs.apic_base = cpu_get_apic_base(env->apic_state); | 
 |  | 
 |     sregs.efer = env->efer; | 
 |  | 
 |     return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs); | 
 | } | 
 |  | 
 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | 
 |                               uint32_t index, uint64_t value) | 
 | { | 
 |     entry->index = index; | 
 |     entry->data = value; | 
 | } | 
 |  | 
 | static int kvm_put_msrs(CPUX86State *env, int level) | 
 | { | 
 |     struct { | 
 |         struct kvm_msrs info; | 
 |         struct kvm_msr_entry entries[100]; | 
 |     } msr_data; | 
 |     struct kvm_msr_entry *msrs = msr_data.entries; | 
 |     int n = 0; | 
 |  | 
 |     kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | 
 |     kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | 
 |     kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | 
 |     kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat); | 
 |     if (has_msr_star) { | 
 |         kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); | 
 |     } | 
 |     if (has_msr_hsave_pa) { | 
 |         kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); | 
 |     } | 
 |     if (has_msr_tsc_deadline) { | 
 |         kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline); | 
 |     } | 
 |     if (has_msr_misc_enable) { | 
 |         kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE, | 
 |                           env->msr_ia32_misc_enable); | 
 |     } | 
 | #ifdef TARGET_X86_64 | 
 |     if (lm_capable_kernel) { | 
 |         kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | 
 |         kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | 
 |         kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | 
 |         kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | 
 |     } | 
 | #endif | 
 |     if (level == KVM_PUT_FULL_STATE) { | 
 |         /* | 
 |          * KVM is yet unable to synchronize TSC values of multiple VCPUs on | 
 |          * writeback. Until this is fixed, we only write the offset to SMP | 
 |          * guests after migration, desynchronizing the VCPUs, but avoiding | 
 |          * huge jump-backs that would occur without any writeback at all. | 
 |          */ | 
 |         if (smp_cpus == 1 || env->tsc != 0) { | 
 |             kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); | 
 |         } | 
 |     } | 
 |     /* | 
 |      * The following paravirtual MSRs have side effects on the guest or are | 
 |      * too heavy for normal writeback. Limit them to reset or full state | 
 |      * updates. | 
 |      */ | 
 |     if (level >= KVM_PUT_RESET_STATE) { | 
 |         kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, | 
 |                           env->system_time_msr); | 
 |         kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | 
 |         if (has_msr_async_pf_en) { | 
 |             kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, | 
 |                               env->async_pf_en_msr); | 
 |         } | 
 |         if (has_msr_pv_eoi_en) { | 
 |             kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN, | 
 |                               env->pv_eoi_en_msr); | 
 |         } | 
 |         if (hyperv_hypercall_available()) { | 
 |             kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0); | 
 |             kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0); | 
 |         } | 
 |         if (hyperv_vapic_recommended()) { | 
 |             kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0); | 
 |         } | 
 |     } | 
 |     if (env->mcg_cap) { | 
 |         int i; | 
 |  | 
 |         kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); | 
 |         kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); | 
 |         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | 
 |             kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); | 
 |         } | 
 |     } | 
 |  | 
 |     msr_data.info.nmsrs = n; | 
 |  | 
 |     return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data); | 
 |  | 
 | } | 
 |  | 
 |  | 
 | static int kvm_get_fpu(CPUX86State *env) | 
 | { | 
 |     struct kvm_fpu fpu; | 
 |     int i, ret; | 
 |  | 
 |     ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |  | 
 |     env->fpstt = (fpu.fsw >> 11) & 7; | 
 |     env->fpus = fpu.fsw; | 
 |     env->fpuc = fpu.fcw; | 
 |     env->fpop = fpu.last_opcode; | 
 |     env->fpip = fpu.last_ip; | 
 |     env->fpdp = fpu.last_dp; | 
 |     for (i = 0; i < 8; ++i) { | 
 |         env->fptags[i] = !((fpu.ftwx >> i) & 1); | 
 |     } | 
 |     memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); | 
 |     memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | 
 |     env->mxcsr = fpu.mxcsr; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static int kvm_get_xsave(CPUX86State *env) | 
 | { | 
 |     struct kvm_xsave* xsave = env->kvm_xsave_buf; | 
 |     int ret, i; | 
 |     uint16_t cwd, swd, twd; | 
 |  | 
 |     if (!kvm_has_xsave()) { | 
 |         return kvm_get_fpu(env); | 
 |     } | 
 |  | 
 |     ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |  | 
 |     cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW]; | 
 |     swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16); | 
 |     twd = (uint16_t)xsave->region[XSAVE_FTW_FOP]; | 
 |     env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16); | 
 |     env->fpstt = (swd >> 11) & 7; | 
 |     env->fpus = swd; | 
 |     env->fpuc = cwd; | 
 |     for (i = 0; i < 8; ++i) { | 
 |         env->fptags[i] = !((twd >> i) & 1); | 
 |     } | 
 |     memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip)); | 
 |     memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp)); | 
 |     env->mxcsr = xsave->region[XSAVE_MXCSR]; | 
 |     memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], | 
 |             sizeof env->fpregs); | 
 |     memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE], | 
 |             sizeof env->xmm_regs); | 
 |     env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; | 
 |     memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE], | 
 |             sizeof env->ymmh_regs); | 
 |     return 0; | 
 | } | 
 |  | 
 | static int kvm_get_xcrs(CPUX86State *env) | 
 | { | 
 |     int i, ret; | 
 |     struct kvm_xcrs xcrs; | 
 |  | 
 |     if (!kvm_has_xcrs()) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |  | 
 |     for (i = 0; i < xcrs.nr_xcrs; i++) { | 
 |         /* Only support xcr0 now */ | 
 |         if (xcrs.xcrs[0].xcr == 0) { | 
 |             env->xcr0 = xcrs.xcrs[0].value; | 
 |             break; | 
 |         } | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static int kvm_get_sregs(CPUX86State *env) | 
 | { | 
 |     struct kvm_sregs sregs; | 
 |     uint32_t hflags; | 
 |     int bit, i, ret; | 
 |  | 
 |     ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |  | 
 |     /* There can only be one pending IRQ set in the bitmap at a time, so try | 
 |        to find it and save its number instead (-1 for none). */ | 
 |     env->interrupt_injected = -1; | 
 |     for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | 
 |         if (sregs.interrupt_bitmap[i]) { | 
 |             bit = ctz64(sregs.interrupt_bitmap[i]); | 
 |             env->interrupt_injected = i * 64 + bit; | 
 |             break; | 
 |         } | 
 |     } | 
 |  | 
 |     get_seg(&env->segs[R_CS], &sregs.cs); | 
 |     get_seg(&env->segs[R_DS], &sregs.ds); | 
 |     get_seg(&env->segs[R_ES], &sregs.es); | 
 |     get_seg(&env->segs[R_FS], &sregs.fs); | 
 |     get_seg(&env->segs[R_GS], &sregs.gs); | 
 |     get_seg(&env->segs[R_SS], &sregs.ss); | 
 |  | 
 |     get_seg(&env->tr, &sregs.tr); | 
 |     get_seg(&env->ldt, &sregs.ldt); | 
 |  | 
 |     env->idt.limit = sregs.idt.limit; | 
 |     env->idt.base = sregs.idt.base; | 
 |     env->gdt.limit = sregs.gdt.limit; | 
 |     env->gdt.base = sregs.gdt.base; | 
 |  | 
 |     env->cr[0] = sregs.cr0; | 
 |     env->cr[2] = sregs.cr2; | 
 |     env->cr[3] = sregs.cr3; | 
 |     env->cr[4] = sregs.cr4; | 
 |  | 
 |     env->efer = sregs.efer; | 
 |  | 
 |     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | 
 |  | 
 | #define HFLAG_COPY_MASK \ | 
 |     ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | 
 |        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | 
 |        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | 
 |        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | 
 |  | 
 |     hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | 
 |     hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); | 
 |     hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | 
 |                 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); | 
 |     hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); | 
 |     hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | 
 |                 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); | 
 |  | 
 |     if (env->efer & MSR_EFER_LMA) { | 
 |         hflags |= HF_LMA_MASK; | 
 |     } | 
 |  | 
 |     if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | 
 |         hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | 
 |     } else { | 
 |         hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | 
 |                     (DESC_B_SHIFT - HF_CS32_SHIFT); | 
 |         hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> | 
 |                     (DESC_B_SHIFT - HF_SS32_SHIFT); | 
 |         if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || | 
 |             !(hflags & HF_CS32_MASK)) { | 
 |             hflags |= HF_ADDSEG_MASK; | 
 |         } else { | 
 |             hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | | 
 |                         env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | 
 |         } | 
 |     } | 
 |     env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static int kvm_get_msrs(CPUX86State *env) | 
 | { | 
 |     struct { | 
 |         struct kvm_msrs info; | 
 |         struct kvm_msr_entry entries[100]; | 
 |     } msr_data; | 
 |     struct kvm_msr_entry *msrs = msr_data.entries; | 
 |     int ret, i, n; | 
 |  | 
 |     n = 0; | 
 |     msrs[n++].index = MSR_IA32_SYSENTER_CS; | 
 |     msrs[n++].index = MSR_IA32_SYSENTER_ESP; | 
 |     msrs[n++].index = MSR_IA32_SYSENTER_EIP; | 
 |     msrs[n++].index = MSR_PAT; | 
 |     if (has_msr_star) { | 
 |         msrs[n++].index = MSR_STAR; | 
 |     } | 
 |     if (has_msr_hsave_pa) { | 
 |         msrs[n++].index = MSR_VM_HSAVE_PA; | 
 |     } | 
 |     if (has_msr_tsc_deadline) { | 
 |         msrs[n++].index = MSR_IA32_TSCDEADLINE; | 
 |     } | 
 |     if (has_msr_misc_enable) { | 
 |         msrs[n++].index = MSR_IA32_MISC_ENABLE; | 
 |     } | 
 |  | 
 |     if (!env->tsc_valid) { | 
 |         msrs[n++].index = MSR_IA32_TSC; | 
 |         env->tsc_valid = !runstate_is_running(); | 
 |     } | 
 |  | 
 | #ifdef TARGET_X86_64 | 
 |     if (lm_capable_kernel) { | 
 |         msrs[n++].index = MSR_CSTAR; | 
 |         msrs[n++].index = MSR_KERNELGSBASE; | 
 |         msrs[n++].index = MSR_FMASK; | 
 |         msrs[n++].index = MSR_LSTAR; | 
 |     } | 
 | #endif | 
 |     msrs[n++].index = MSR_KVM_SYSTEM_TIME; | 
 |     msrs[n++].index = MSR_KVM_WALL_CLOCK; | 
 |     if (has_msr_async_pf_en) { | 
 |         msrs[n++].index = MSR_KVM_ASYNC_PF_EN; | 
 |     } | 
 |     if (has_msr_pv_eoi_en) { | 
 |         msrs[n++].index = MSR_KVM_PV_EOI_EN; | 
 |     } | 
 |  | 
 |     if (env->mcg_cap) { | 
 |         msrs[n++].index = MSR_MCG_STATUS; | 
 |         msrs[n++].index = MSR_MCG_CTL; | 
 |         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | 
 |             msrs[n++].index = MSR_MC0_CTL + i; | 
 |         } | 
 |     } | 
 |  | 
 |     msr_data.info.nmsrs = n; | 
 |     ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |  | 
 |     for (i = 0; i < ret; i++) { | 
 |         switch (msrs[i].index) { | 
 |         case MSR_IA32_SYSENTER_CS: | 
 |             env->sysenter_cs = msrs[i].data; | 
 |             break; | 
 |         case MSR_IA32_SYSENTER_ESP: | 
 |             env->sysenter_esp = msrs[i].data; | 
 |             break; | 
 |         case MSR_IA32_SYSENTER_EIP: | 
 |             env->sysenter_eip = msrs[i].data; | 
 |             break; | 
 |         case MSR_PAT: | 
 |             env->pat = msrs[i].data; | 
 |             break; | 
 |         case MSR_STAR: | 
 |             env->star = msrs[i].data; | 
 |             break; | 
 | #ifdef TARGET_X86_64 | 
 |         case MSR_CSTAR: | 
 |             env->cstar = msrs[i].data; | 
 |             break; | 
 |         case MSR_KERNELGSBASE: | 
 |             env->kernelgsbase = msrs[i].data; | 
 |             break; | 
 |         case MSR_FMASK: | 
 |             env->fmask = msrs[i].data; | 
 |             break; | 
 |         case MSR_LSTAR: | 
 |             env->lstar = msrs[i].data; | 
 |             break; | 
 | #endif | 
 |         case MSR_IA32_TSC: | 
 |             env->tsc = msrs[i].data; | 
 |             break; | 
 |         case MSR_IA32_TSCDEADLINE: | 
 |             env->tsc_deadline = msrs[i].data; | 
 |             break; | 
 |         case MSR_VM_HSAVE_PA: | 
 |             env->vm_hsave = msrs[i].data; | 
 |             break; | 
 |         case MSR_KVM_SYSTEM_TIME: | 
 |             env->system_time_msr = msrs[i].data; | 
 |             break; | 
 |         case MSR_KVM_WALL_CLOCK: | 
 |             env->wall_clock_msr = msrs[i].data; | 
 |             break; | 
 |         case MSR_MCG_STATUS: | 
 |             env->mcg_status = msrs[i].data; | 
 |             break; | 
 |         case MSR_MCG_CTL: | 
 |             env->mcg_ctl = msrs[i].data; | 
 |             break; | 
 |         case MSR_IA32_MISC_ENABLE: | 
 |             env->msr_ia32_misc_enable = msrs[i].data; | 
 |             break; | 
 |         default: | 
 |             if (msrs[i].index >= MSR_MC0_CTL && | 
 |                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | 
 |                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | 
 |             } | 
 |             break; | 
 |         case MSR_KVM_ASYNC_PF_EN: | 
 |             env->async_pf_en_msr = msrs[i].data; | 
 |             break; | 
 |         case MSR_KVM_PV_EOI_EN: | 
 |             env->pv_eoi_en_msr = msrs[i].data; | 
 |             break; | 
 |         } | 
 |     } | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static int kvm_put_mp_state(CPUX86State *env) | 
 | { | 
 |     struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; | 
 |  | 
 |     return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state); | 
 | } | 
 |  | 
 | static int kvm_get_mp_state(CPUX86State *env) | 
 | { | 
 |     struct kvm_mp_state mp_state; | 
 |     int ret; | 
 |  | 
 |     ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     env->mp_state = mp_state.mp_state; | 
 |     if (kvm_irqchip_in_kernel()) { | 
 |         env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static int kvm_get_apic(CPUX86State *env) | 
 | { | 
 |     DeviceState *apic = env->apic_state; | 
 |     struct kvm_lapic_state kapic; | 
 |     int ret; | 
 |  | 
 |     if (apic && kvm_irqchip_in_kernel()) { | 
 |         ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic); | 
 |         if (ret < 0) { | 
 |             return ret; | 
 |         } | 
 |  | 
 |         kvm_get_apic_state(apic, &kapic); | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static int kvm_put_apic(CPUX86State *env) | 
 | { | 
 |     DeviceState *apic = env->apic_state; | 
 |     struct kvm_lapic_state kapic; | 
 |  | 
 |     if (apic && kvm_irqchip_in_kernel()) { | 
 |         kvm_put_apic_state(apic, &kapic); | 
 |  | 
 |         return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic); | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static int kvm_put_vcpu_events(CPUX86State *env, int level) | 
 | { | 
 |     struct kvm_vcpu_events events; | 
 |  | 
 |     if (!kvm_has_vcpu_events()) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     events.exception.injected = (env->exception_injected >= 0); | 
 |     events.exception.nr = env->exception_injected; | 
 |     events.exception.has_error_code = env->has_error_code; | 
 |     events.exception.error_code = env->error_code; | 
 |     events.exception.pad = 0; | 
 |  | 
 |     events.interrupt.injected = (env->interrupt_injected >= 0); | 
 |     events.interrupt.nr = env->interrupt_injected; | 
 |     events.interrupt.soft = env->soft_interrupt; | 
 |  | 
 |     events.nmi.injected = env->nmi_injected; | 
 |     events.nmi.pending = env->nmi_pending; | 
 |     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | 
 |     events.nmi.pad = 0; | 
 |  | 
 |     events.sipi_vector = env->sipi_vector; | 
 |  | 
 |     events.flags = 0; | 
 |     if (level >= KVM_PUT_RESET_STATE) { | 
 |         events.flags |= | 
 |             KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | 
 |     } | 
 |  | 
 |     return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events); | 
 | } | 
 |  | 
 | static int kvm_get_vcpu_events(CPUX86State *env) | 
 | { | 
 |     struct kvm_vcpu_events events; | 
 |     int ret; | 
 |  | 
 |     if (!kvm_has_vcpu_events()) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events); | 
 |     if (ret < 0) { | 
 |        return ret; | 
 |     } | 
 |     env->exception_injected = | 
 |        events.exception.injected ? events.exception.nr : -1; | 
 |     env->has_error_code = events.exception.has_error_code; | 
 |     env->error_code = events.exception.error_code; | 
 |  | 
 |     env->interrupt_injected = | 
 |         events.interrupt.injected ? events.interrupt.nr : -1; | 
 |     env->soft_interrupt = events.interrupt.soft; | 
 |  | 
 |     env->nmi_injected = events.nmi.injected; | 
 |     env->nmi_pending = events.nmi.pending; | 
 |     if (events.nmi.masked) { | 
 |         env->hflags2 |= HF2_NMI_MASK; | 
 |     } else { | 
 |         env->hflags2 &= ~HF2_NMI_MASK; | 
 |     } | 
 |  | 
 |     env->sipi_vector = events.sipi_vector; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static int kvm_guest_debug_workarounds(CPUX86State *env) | 
 | { | 
 |     int ret = 0; | 
 |     unsigned long reinject_trap = 0; | 
 |  | 
 |     if (!kvm_has_vcpu_events()) { | 
 |         if (env->exception_injected == 1) { | 
 |             reinject_trap = KVM_GUESTDBG_INJECT_DB; | 
 |         } else if (env->exception_injected == 3) { | 
 |             reinject_trap = KVM_GUESTDBG_INJECT_BP; | 
 |         } | 
 |         env->exception_injected = -1; | 
 |     } | 
 |  | 
 |     /* | 
 |      * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | 
 |      * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | 
 |      * by updating the debug state once again if single-stepping is on. | 
 |      * Another reason to call kvm_update_guest_debug here is a pending debug | 
 |      * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | 
 |      * reinject them via SET_GUEST_DEBUG. | 
 |      */ | 
 |     if (reinject_trap || | 
 |         (!kvm_has_robust_singlestep() && env->singlestep_enabled)) { | 
 |         ret = kvm_update_guest_debug(env, reinject_trap); | 
 |     } | 
 |     return ret; | 
 | } | 
 |  | 
 | static int kvm_put_debugregs(CPUX86State *env) | 
 | { | 
 |     struct kvm_debugregs dbgregs; | 
 |     int i; | 
 |  | 
 |     if (!kvm_has_debugregs()) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     for (i = 0; i < 4; i++) { | 
 |         dbgregs.db[i] = env->dr[i]; | 
 |     } | 
 |     dbgregs.dr6 = env->dr[6]; | 
 |     dbgregs.dr7 = env->dr[7]; | 
 |     dbgregs.flags = 0; | 
 |  | 
 |     return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs); | 
 | } | 
 |  | 
 | static int kvm_get_debugregs(CPUX86State *env) | 
 | { | 
 |     struct kvm_debugregs dbgregs; | 
 |     int i, ret; | 
 |  | 
 |     if (!kvm_has_debugregs()) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     for (i = 0; i < 4; i++) { | 
 |         env->dr[i] = dbgregs.db[i]; | 
 |     } | 
 |     env->dr[4] = env->dr[6] = dbgregs.dr6; | 
 |     env->dr[5] = env->dr[7] = dbgregs.dr7; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | int kvm_arch_put_registers(CPUX86State *env, int level) | 
 | { | 
 |     int ret; | 
 |  | 
 |     assert(cpu_is_stopped(env) || qemu_cpu_is_self(env)); | 
 |  | 
 |     ret = kvm_getput_regs(env, 1); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = kvm_put_xsave(env); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = kvm_put_xcrs(env); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = kvm_put_sregs(env); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     /* must be before kvm_put_msrs */ | 
 |     ret = kvm_inject_mce_oldstyle(env); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = kvm_put_msrs(env, level); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     if (level >= KVM_PUT_RESET_STATE) { | 
 |         ret = kvm_put_mp_state(env); | 
 |         if (ret < 0) { | 
 |             return ret; | 
 |         } | 
 |         ret = kvm_put_apic(env); | 
 |         if (ret < 0) { | 
 |             return ret; | 
 |         } | 
 |     } | 
 |     ret = kvm_put_vcpu_events(env, level); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = kvm_put_debugregs(env); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     /* must be last */ | 
 |     ret = kvm_guest_debug_workarounds(env); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | int kvm_arch_get_registers(CPUX86State *env) | 
 | { | 
 |     int ret; | 
 |  | 
 |     assert(cpu_is_stopped(env) || qemu_cpu_is_self(env)); | 
 |  | 
 |     ret = kvm_getput_regs(env, 0); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = kvm_get_xsave(env); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = kvm_get_xcrs(env); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = kvm_get_sregs(env); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = kvm_get_msrs(env); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = kvm_get_mp_state(env); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = kvm_get_apic(env); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = kvm_get_vcpu_events(env); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = kvm_get_debugregs(env); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run) | 
 | { | 
 |     int ret; | 
 |  | 
 |     /* Inject NMI */ | 
 |     if (env->interrupt_request & CPU_INTERRUPT_NMI) { | 
 |         env->interrupt_request &= ~CPU_INTERRUPT_NMI; | 
 |         DPRINTF("injected NMI\n"); | 
 |         ret = kvm_vcpu_ioctl(env, KVM_NMI); | 
 |         if (ret < 0) { | 
 |             fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | 
 |                     strerror(-ret)); | 
 |         } | 
 |     } | 
 |  | 
 |     if (!kvm_irqchip_in_kernel()) { | 
 |         /* Force the VCPU out of its inner loop to process any INIT requests | 
 |          * or pending TPR access reports. */ | 
 |         if (env->interrupt_request & | 
 |             (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | 
 |             env->exit_request = 1; | 
 |         } | 
 |  | 
 |         /* Try to inject an interrupt if the guest can accept it */ | 
 |         if (run->ready_for_interrupt_injection && | 
 |             (env->interrupt_request & CPU_INTERRUPT_HARD) && | 
 |             (env->eflags & IF_MASK)) { | 
 |             int irq; | 
 |  | 
 |             env->interrupt_request &= ~CPU_INTERRUPT_HARD; | 
 |             irq = cpu_get_pic_interrupt(env); | 
 |             if (irq >= 0) { | 
 |                 struct kvm_interrupt intr; | 
 |  | 
 |                 intr.irq = irq; | 
 |                 DPRINTF("injected interrupt %d\n", irq); | 
 |                 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr); | 
 |                 if (ret < 0) { | 
 |                     fprintf(stderr, | 
 |                             "KVM: injection failed, interrupt lost (%s)\n", | 
 |                             strerror(-ret)); | 
 |                 } | 
 |             } | 
 |         } | 
 |  | 
 |         /* If we have an interrupt but the guest is not ready to receive an | 
 |          * interrupt, request an interrupt window exit.  This will | 
 |          * cause a return to userspace as soon as the guest is ready to | 
 |          * receive interrupts. */ | 
 |         if ((env->interrupt_request & CPU_INTERRUPT_HARD)) { | 
 |             run->request_interrupt_window = 1; | 
 |         } else { | 
 |             run->request_interrupt_window = 0; | 
 |         } | 
 |  | 
 |         DPRINTF("setting tpr\n"); | 
 |         run->cr8 = cpu_get_apic_tpr(env->apic_state); | 
 |     } | 
 | } | 
 |  | 
 | void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run) | 
 | { | 
 |     if (run->if_flag) { | 
 |         env->eflags |= IF_MASK; | 
 |     } else { | 
 |         env->eflags &= ~IF_MASK; | 
 |     } | 
 |     cpu_set_apic_tpr(env->apic_state, run->cr8); | 
 |     cpu_set_apic_base(env->apic_state, run->apic_base); | 
 | } | 
 |  | 
 | int kvm_arch_process_async_events(CPUX86State *env) | 
 | { | 
 |     X86CPU *cpu = x86_env_get_cpu(env); | 
 |  | 
 |     if (env->interrupt_request & CPU_INTERRUPT_MCE) { | 
 |         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ | 
 |         assert(env->mcg_cap); | 
 |  | 
 |         env->interrupt_request &= ~CPU_INTERRUPT_MCE; | 
 |  | 
 |         kvm_cpu_synchronize_state(env); | 
 |  | 
 |         if (env->exception_injected == EXCP08_DBLE) { | 
 |             /* this means triple fault */ | 
 |             qemu_system_reset_request(); | 
 |             env->exit_request = 1; | 
 |             return 0; | 
 |         } | 
 |         env->exception_injected = EXCP12_MCHK; | 
 |         env->has_error_code = 0; | 
 |  | 
 |         env->halted = 0; | 
 |         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { | 
 |             env->mp_state = KVM_MP_STATE_RUNNABLE; | 
 |         } | 
 |     } | 
 |  | 
 |     if (kvm_irqchip_in_kernel()) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     if (env->interrupt_request & CPU_INTERRUPT_POLL) { | 
 |         env->interrupt_request &= ~CPU_INTERRUPT_POLL; | 
 |         apic_poll_irq(env->apic_state); | 
 |     } | 
 |     if (((env->interrupt_request & CPU_INTERRUPT_HARD) && | 
 |          (env->eflags & IF_MASK)) || | 
 |         (env->interrupt_request & CPU_INTERRUPT_NMI)) { | 
 |         env->halted = 0; | 
 |     } | 
 |     if (env->interrupt_request & CPU_INTERRUPT_INIT) { | 
 |         kvm_cpu_synchronize_state(env); | 
 |         do_cpu_init(cpu); | 
 |     } | 
 |     if (env->interrupt_request & CPU_INTERRUPT_SIPI) { | 
 |         kvm_cpu_synchronize_state(env); | 
 |         do_cpu_sipi(cpu); | 
 |     } | 
 |     if (env->interrupt_request & CPU_INTERRUPT_TPR) { | 
 |         env->interrupt_request &= ~CPU_INTERRUPT_TPR; | 
 |         kvm_cpu_synchronize_state(env); | 
 |         apic_handle_tpr_access_report(env->apic_state, env->eip, | 
 |                                       env->tpr_access_type); | 
 |     } | 
 |  | 
 |     return env->halted; | 
 | } | 
 |  | 
 | static int kvm_handle_halt(CPUX86State *env) | 
 | { | 
 |     if (!((env->interrupt_request & CPU_INTERRUPT_HARD) && | 
 |           (env->eflags & IF_MASK)) && | 
 |         !(env->interrupt_request & CPU_INTERRUPT_NMI)) { | 
 |         env->halted = 1; | 
 |         return EXCP_HLT; | 
 |     } | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static int kvm_handle_tpr_access(CPUX86State *env) | 
 | { | 
 |     struct kvm_run *run = env->kvm_run; | 
 |  | 
 |     apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip, | 
 |                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE | 
 |                                                            : TPR_ACCESS_READ); | 
 |     return 1; | 
 | } | 
 |  | 
 | int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp) | 
 | { | 
 |     static const uint8_t int3 = 0xcc; | 
 |  | 
 |     if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || | 
 |         cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) { | 
 |         return -EINVAL; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp) | 
 | { | 
 |     uint8_t int3; | 
 |  | 
 |     if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || | 
 |         cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | 
 |         return -EINVAL; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static struct { | 
 |     target_ulong addr; | 
 |     int len; | 
 |     int type; | 
 | } hw_breakpoint[4]; | 
 |  | 
 | static int nb_hw_breakpoint; | 
 |  | 
 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | 
 | { | 
 |     int n; | 
 |  | 
 |     for (n = 0; n < nb_hw_breakpoint; n++) { | 
 |         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && | 
 |             (hw_breakpoint[n].len == len || len == -1)) { | 
 |             return n; | 
 |         } | 
 |     } | 
 |     return -1; | 
 | } | 
 |  | 
 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | 
 |                                   target_ulong len, int type) | 
 | { | 
 |     switch (type) { | 
 |     case GDB_BREAKPOINT_HW: | 
 |         len = 1; | 
 |         break; | 
 |     case GDB_WATCHPOINT_WRITE: | 
 |     case GDB_WATCHPOINT_ACCESS: | 
 |         switch (len) { | 
 |         case 1: | 
 |             break; | 
 |         case 2: | 
 |         case 4: | 
 |         case 8: | 
 |             if (addr & (len - 1)) { | 
 |                 return -EINVAL; | 
 |             } | 
 |             break; | 
 |         default: | 
 |             return -EINVAL; | 
 |         } | 
 |         break; | 
 |     default: | 
 |         return -ENOSYS; | 
 |     } | 
 |  | 
 |     if (nb_hw_breakpoint == 4) { | 
 |         return -ENOBUFS; | 
 |     } | 
 |     if (find_hw_breakpoint(addr, len, type) >= 0) { | 
 |         return -EEXIST; | 
 |     } | 
 |     hw_breakpoint[nb_hw_breakpoint].addr = addr; | 
 |     hw_breakpoint[nb_hw_breakpoint].len = len; | 
 |     hw_breakpoint[nb_hw_breakpoint].type = type; | 
 |     nb_hw_breakpoint++; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | 
 |                                   target_ulong len, int type) | 
 | { | 
 |     int n; | 
 |  | 
 |     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | 
 |     if (n < 0) { | 
 |         return -ENOENT; | 
 |     } | 
 |     nb_hw_breakpoint--; | 
 |     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | void kvm_arch_remove_all_hw_breakpoints(void) | 
 | { | 
 |     nb_hw_breakpoint = 0; | 
 | } | 
 |  | 
 | static CPUWatchpoint hw_watchpoint; | 
 |  | 
 | static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info) | 
 | { | 
 |     int ret = 0; | 
 |     int n; | 
 |  | 
 |     if (arch_info->exception == 1) { | 
 |         if (arch_info->dr6 & (1 << 14)) { | 
 |             if (cpu_single_env->singlestep_enabled) { | 
 |                 ret = EXCP_DEBUG; | 
 |             } | 
 |         } else { | 
 |             for (n = 0; n < 4; n++) { | 
 |                 if (arch_info->dr6 & (1 << n)) { | 
 |                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { | 
 |                     case 0x0: | 
 |                         ret = EXCP_DEBUG; | 
 |                         break; | 
 |                     case 0x1: | 
 |                         ret = EXCP_DEBUG; | 
 |                         cpu_single_env->watchpoint_hit = &hw_watchpoint; | 
 |                         hw_watchpoint.vaddr = hw_breakpoint[n].addr; | 
 |                         hw_watchpoint.flags = BP_MEM_WRITE; | 
 |                         break; | 
 |                     case 0x3: | 
 |                         ret = EXCP_DEBUG; | 
 |                         cpu_single_env->watchpoint_hit = &hw_watchpoint; | 
 |                         hw_watchpoint.vaddr = hw_breakpoint[n].addr; | 
 |                         hw_watchpoint.flags = BP_MEM_ACCESS; | 
 |                         break; | 
 |                     } | 
 |                 } | 
 |             } | 
 |         } | 
 |     } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) { | 
 |         ret = EXCP_DEBUG; | 
 |     } | 
 |     if (ret == 0) { | 
 |         cpu_synchronize_state(cpu_single_env); | 
 |         assert(cpu_single_env->exception_injected == -1); | 
 |  | 
 |         /* pass to guest */ | 
 |         cpu_single_env->exception_injected = arch_info->exception; | 
 |         cpu_single_env->has_error_code = 0; | 
 |     } | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg) | 
 | { | 
 |     const uint8_t type_code[] = { | 
 |         [GDB_BREAKPOINT_HW] = 0x0, | 
 |         [GDB_WATCHPOINT_WRITE] = 0x1, | 
 |         [GDB_WATCHPOINT_ACCESS] = 0x3 | 
 |     }; | 
 |     const uint8_t len_code[] = { | 
 |         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | 
 |     }; | 
 |     int n; | 
 |  | 
 |     if (kvm_sw_breakpoints_active(env)) { | 
 |         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; | 
 |     } | 
 |     if (nb_hw_breakpoint > 0) { | 
 |         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | 
 |         dbg->arch.debugreg[7] = 0x0600; | 
 |         for (n = 0; n < nb_hw_breakpoint; n++) { | 
 |             dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | 
 |             dbg->arch.debugreg[7] |= (2 << (n * 2)) | | 
 |                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | 
 |                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static bool host_supports_vmx(void) | 
 | { | 
 |     uint32_t ecx, unused; | 
 |  | 
 |     host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | 
 |     return ecx & CPUID_EXT_VMX; | 
 | } | 
 |  | 
 | #define VMX_INVALID_GUEST_STATE 0x80000021 | 
 |  | 
 | int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run) | 
 | { | 
 |     uint64_t code; | 
 |     int ret; | 
 |  | 
 |     switch (run->exit_reason) { | 
 |     case KVM_EXIT_HLT: | 
 |         DPRINTF("handle_hlt\n"); | 
 |         ret = kvm_handle_halt(env); | 
 |         break; | 
 |     case KVM_EXIT_SET_TPR: | 
 |         ret = 0; | 
 |         break; | 
 |     case KVM_EXIT_TPR_ACCESS: | 
 |         ret = kvm_handle_tpr_access(env); | 
 |         break; | 
 |     case KVM_EXIT_FAIL_ENTRY: | 
 |         code = run->fail_entry.hardware_entry_failure_reason; | 
 |         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | 
 |                 code); | 
 |         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | 
 |             fprintf(stderr, | 
 |                     "\nIf you're running a guest on an Intel machine without " | 
 |                         "unrestricted mode\n" | 
 |                     "support, the failure can be most likely due to the guest " | 
 |                         "entering an invalid\n" | 
 |                     "state for Intel VT. For example, the guest maybe running " | 
 |                         "in big real mode\n" | 
 |                     "which is not supported on less recent Intel processors." | 
 |                         "\n\n"); | 
 |         } | 
 |         ret = -1; | 
 |         break; | 
 |     case KVM_EXIT_EXCEPTION: | 
 |         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | 
 |                 run->ex.exception, run->ex.error_code); | 
 |         ret = -1; | 
 |         break; | 
 |     case KVM_EXIT_DEBUG: | 
 |         DPRINTF("kvm_exit_debug\n"); | 
 |         ret = kvm_handle_debug(&run->debug.arch); | 
 |         break; | 
 |     default: | 
 |         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | 
 |         ret = -1; | 
 |         break; | 
 |     } | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | bool kvm_arch_stop_on_emulation_error(CPUX86State *env) | 
 | { | 
 |     kvm_cpu_synchronize_state(env); | 
 |     return !(env->cr[0] & CR0_PE_MASK) || | 
 |            ((env->segs[R_CS].selector  & 3) != 3); | 
 | } | 
 |  | 
 | void kvm_arch_init_irq_routing(KVMState *s) | 
 | { | 
 |     if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | 
 |         /* If kernel can't do irq routing, interrupt source | 
 |          * override 0->2 cannot be set up as required by HPET. | 
 |          * So we have to disable it. | 
 |          */ | 
 |         no_hpet = 1; | 
 |     } | 
 |     /* We know at this point that we're using the in-kernel | 
 |      * irqchip, so we can use irqfds, and on x86 we know | 
 |      * we can use msi via irqfd and GSI routing. | 
 |      */ | 
 |     kvm_irqfds_allowed = true; | 
 |     kvm_msi_via_irqfd_allowed = true; | 
 |     kvm_gsi_routing_allowed = true; | 
 | } | 
 |  | 
 | /* Classic KVM device assignment interface. Will remain x86 only. */ | 
 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | 
 |                           uint32_t flags, uint32_t *dev_id) | 
 | { | 
 |     struct kvm_assigned_pci_dev dev_data = { | 
 |         .segnr = dev_addr->domain, | 
 |         .busnr = dev_addr->bus, | 
 |         .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | 
 |         .flags = flags, | 
 |     }; | 
 |     int ret; | 
 |  | 
 |     dev_data.assigned_dev_id = | 
 |         (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | 
 |  | 
 |     ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |  | 
 |     *dev_id = dev_data.assigned_dev_id; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | 
 | { | 
 |     struct kvm_assigned_pci_dev dev_data = { | 
 |         .assigned_dev_id = dev_id, | 
 |     }; | 
 |  | 
 |     return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | 
 | } | 
 |  | 
 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | 
 |                                    uint32_t irq_type, uint32_t guest_irq) | 
 | { | 
 |     struct kvm_assigned_irq assigned_irq = { | 
 |         .assigned_dev_id = dev_id, | 
 |         .guest_irq = guest_irq, | 
 |         .flags = irq_type, | 
 |     }; | 
 |  | 
 |     if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | 
 |         return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | 
 |     } else { | 
 |         return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | 
 |     } | 
 | } | 
 |  | 
 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | 
 |                            uint32_t guest_irq) | 
 | { | 
 |     uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | 
 |         (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | 
 |  | 
 |     return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | 
 | } | 
 |  | 
 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | 
 | { | 
 |     struct kvm_assigned_pci_dev dev_data = { | 
 |         .assigned_dev_id = dev_id, | 
 |         .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | 
 |     }; | 
 |  | 
 |     return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | 
 | } | 
 |  | 
 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | 
 |                                      uint32_t type) | 
 | { | 
 |     struct kvm_assigned_irq assigned_irq = { | 
 |         .assigned_dev_id = dev_id, | 
 |         .flags = type, | 
 |     }; | 
 |  | 
 |     return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | 
 | } | 
 |  | 
 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | 
 | { | 
 |     return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | 
 |         (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | 
 | } | 
 |  | 
 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | 
 | { | 
 |     return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | 
 |                                               KVM_DEV_IRQ_GUEST_MSI, virq); | 
 | } | 
 |  | 
 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | 
 | { | 
 |     return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | 
 |                                                 KVM_DEV_IRQ_HOST_MSI); | 
 | } | 
 |  | 
 | bool kvm_device_msix_supported(KVMState *s) | 
 | { | 
 |     /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | 
 |      * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | 
 |     return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | 
 | } | 
 |  | 
 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | 
 |                                  uint32_t nr_vectors) | 
 | { | 
 |     struct kvm_assigned_msix_nr msix_nr = { | 
 |         .assigned_dev_id = dev_id, | 
 |         .entry_nr = nr_vectors, | 
 |     }; | 
 |  | 
 |     return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | 
 | } | 
 |  | 
 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | 
 |                                int virq) | 
 | { | 
 |     struct kvm_assigned_msix_entry msix_entry = { | 
 |         .assigned_dev_id = dev_id, | 
 |         .gsi = virq, | 
 |         .entry = vector, | 
 |     }; | 
 |  | 
 |     return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | 
 | } | 
 |  | 
 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | 
 | { | 
 |     return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | 
 |                                               KVM_DEV_IRQ_GUEST_MSIX, 0); | 
 | } | 
 |  | 
 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | 
 | { | 
 |     return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | 
 |                                                 KVM_DEV_IRQ_HOST_MSIX); | 
 | } |