blob: 9a5a1b65039c8ee9804d4ec84c84dddb26c76466 [file] [log] [blame]
/*
* qemu/kvm integration
*
* Copyright (C) 2006-2008 Qumranet Technologies
*
* Licensed under the terms of the GNU GPL version 2 or higher.
*/
#include "config.h"
#include "config-host.h"
int kvm_allowed = 1;
int kvm_irqchip = 1;
int kvm_pit = 1;
#include <assert.h>
#include <string.h>
#include "hw/hw.h"
#include "sysemu.h"
#include "qemu-common.h"
#include "console.h"
#include "block.h"
#include "compatfd.h"
#include "qemu-kvm.h"
#include <libkvm.h>
#include <pthread.h>
#include <sys/utsname.h>
#include <sys/syscall.h>
#include <sys/mman.h>
#define bool _Bool
#define false 0
#define true 1
extern void perror(const char *s);
kvm_context_t kvm_context;
extern int smp_cpus;
pthread_mutex_t qemu_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t qemu_vcpu_cond = PTHREAD_COND_INITIALIZER;
pthread_cond_t qemu_system_cond = PTHREAD_COND_INITIALIZER;
pthread_cond_t qemu_pause_cond = PTHREAD_COND_INITIALIZER;
pthread_cond_t qemu_work_cond = PTHREAD_COND_INITIALIZER;
__thread struct vcpu_info *vcpu;
static int qemu_system_ready;
#define SIG_IPI (SIGRTMIN+4)
struct qemu_kvm_work_item {
struct qemu_kvm_work_item *next;
void (*func)(void *data);
void *data;
bool done;
};
struct vcpu_info {
CPUState *env;
int sipi_needed;
int init;
pthread_t thread;
int signalled;
int stop;
int stopped;
int created;
struct qemu_kvm_work_item *queued_work_first, *queued_work_last;
} vcpu_info[256];
pthread_t io_thread;
static int io_thread_fd = -1;
static int io_thread_sigfd = -1;
static int kvm_debug_stop_requested;
/* The list of ioperm_data */
static LIST_HEAD(, ioperm_data) ioperm_head;
static inline unsigned long kvm_get_thread_id(void)
{
return syscall(SYS_gettid);
}
static void qemu_cond_wait(pthread_cond_t *cond)
{
CPUState *env = cpu_single_env;
static const struct timespec ts = {
.tv_sec = 0,
.tv_nsec = 100000,
};
pthread_cond_timedwait(cond, &qemu_mutex, &ts);
cpu_single_env = env;
}
CPUState *qemu_kvm_cpu_env(int index)
{
return vcpu_info[index].env;
}
static void sig_ipi_handler(int n)
{
}
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
{
struct vcpu_info *vi = &vcpu_info[env->cpu_index];
struct qemu_kvm_work_item wi;
if (vi == vcpu) {
func(data);
return;
}
wi.func = func;
wi.data = data;
if (!vi->queued_work_first)
vi->queued_work_first = &wi;
else
vi->queued_work_last->next = &wi;
vi->queued_work_last = &wi;
wi.next = NULL;
wi.done = false;
pthread_kill(vi->thread, SIG_IPI);
while (!wi.done)
qemu_cond_wait(&qemu_work_cond);
}
static void inject_interrupt(void *data)
{
cpu_interrupt(vcpu->env, (int)data);
}
void kvm_inject_interrupt(CPUState *env, int mask)
{
on_vcpu(env, inject_interrupt, (void *)mask);
}
void kvm_update_interrupt_request(CPUState *env)
{
int signal = 0;
if (env) {
if (!vcpu)
signal = 1;
if (vcpu && env != vcpu->env && !vcpu_info[env->cpu_index].signalled)
signal = 1;
if (signal) {
vcpu_info[env->cpu_index].signalled = 1;
if (vcpu_info[env->cpu_index].thread)
pthread_kill(vcpu_info[env->cpu_index].thread, SIG_IPI);
}
}
}
void kvm_update_after_sipi(CPUState *env)
{
vcpu_info[env->cpu_index].sipi_needed = 1;
kvm_update_interrupt_request(env);
}
void kvm_apic_init(CPUState *env)
{
if (env->cpu_index != 0)
vcpu_info[env->cpu_index].init = 1;
kvm_update_interrupt_request(env);
}
#include <signal.h>
static int try_push_interrupts(void *opaque)
{
return kvm_arch_try_push_interrupts(opaque);
}
static int try_push_nmi(void *opaque)
{
return kvm_arch_try_push_nmi(opaque);
}
static void post_kvm_run(void *opaque, int vcpu)
{
pthread_mutex_lock(&qemu_mutex);
kvm_arch_post_kvm_run(opaque, vcpu);
}
static int pre_kvm_run(void *opaque, int vcpu)
{
CPUState *env = qemu_kvm_cpu_env(vcpu);
kvm_arch_pre_kvm_run(opaque, vcpu);
if (env->interrupt_request & CPU_INTERRUPT_EXIT)
return 1;
pthread_mutex_unlock(&qemu_mutex);
return 0;
}
static void kvm_do_load_registers(void *_env)
{
CPUState *env = _env;
kvm_arch_load_regs(env);
}
void kvm_load_registers(CPUState *env)
{
if (kvm_enabled() && qemu_system_ready)
on_vcpu(env, kvm_do_load_registers, env);
}
static void kvm_do_save_registers(void *_env)
{
CPUState *env = _env;
kvm_arch_save_regs(env);
}
void kvm_save_registers(CPUState *env)
{
if (kvm_enabled())
on_vcpu(env, kvm_do_save_registers, env);
}
int kvm_cpu_exec(CPUState *env)
{
int r;
r = kvm_run(kvm_context, env->cpu_index);
if (r < 0) {
printf("kvm_run returned %d\n", r);
exit(1);
}
return 0;
}
extern int vm_running;
static int has_work(CPUState *env)
{
if (!vm_running || (env && vcpu_info[env->cpu_index].stopped))
return 0;
if (!env->halted)
return 1;
return kvm_arch_has_work(env);
}
static void flush_queued_work(CPUState *env)
{
struct vcpu_info *vi = &vcpu_info[env->cpu_index];
struct qemu_kvm_work_item *wi;
if (!vi->queued_work_first)
return;
while ((wi = vi->queued_work_first)) {
vi->queued_work_first = wi->next;
wi->func(wi->data);
wi->done = true;
}
vi->queued_work_last = NULL;
pthread_cond_broadcast(&qemu_work_cond);
}
static void kvm_main_loop_wait(CPUState *env, int timeout)
{
struct timespec ts;
int r, e;
siginfo_t siginfo;
sigset_t waitset;
pthread_mutex_unlock(&qemu_mutex);
ts.tv_sec = timeout / 1000;
ts.tv_nsec = (timeout % 1000) * 1000000;
sigemptyset(&waitset);
sigaddset(&waitset, SIG_IPI);
r = sigtimedwait(&waitset, &siginfo, &ts);
e = errno;
pthread_mutex_lock(&qemu_mutex);
if (r == -1 && !(e == EAGAIN || e == EINTR)) {
printf("sigtimedwait: %s\n", strerror(e));
exit(1);
}
cpu_single_env = env;
flush_queued_work(env);
if (vcpu_info[env->cpu_index].stop) {
vcpu_info[env->cpu_index].stop = 0;
vcpu_info[env->cpu_index].stopped = 1;
pthread_cond_signal(&qemu_pause_cond);
}
vcpu_info[env->cpu_index].signalled = 0;
}
static int all_threads_paused(void)
{
int i;
for (i = 0; i < smp_cpus; ++i)
if (vcpu_info[i].stop)
return 0;
return 1;
}
static void pause_all_threads(void)
{
int i;
assert(!cpu_single_env);
for (i = 0; i < smp_cpus; ++i) {
vcpu_info[i].stop = 1;
pthread_kill(vcpu_info[i].thread, SIG_IPI);
}
while (!all_threads_paused())
qemu_cond_wait(&qemu_pause_cond);
}
static void resume_all_threads(void)
{
int i;
assert(!cpu_single_env);
for (i = 0; i < smp_cpus; ++i) {
vcpu_info[i].stop = 0;
vcpu_info[i].stopped = 0;
pthread_kill(vcpu_info[i].thread, SIG_IPI);
}
}
static void kvm_vm_state_change_handler(void *context, int running)
{
if (running)
resume_all_threads();
else
pause_all_threads();
}
static void update_regs_for_sipi(CPUState *env)
{
kvm_arch_update_regs_for_sipi(env);
vcpu_info[env->cpu_index].sipi_needed = 0;
}
static void update_regs_for_init(CPUState *env)
{
#ifdef TARGET_I386
SegmentCache cs = env->segs[R_CS];
#endif
cpu_reset(env);
#ifdef TARGET_I386
/* restore SIPI vector */
if(vcpu_info[env->cpu_index].sipi_needed)
env->segs[R_CS] = cs;
vcpu_info[env->cpu_index].init = 0;
#endif
kvm_arch_load_regs(env);
}
static void setup_kernel_sigmask(CPUState *env)
{
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGUSR2);
sigaddset(&set, SIGIO);
sigaddset(&set, SIGALRM);
sigprocmask(SIG_BLOCK, &set, NULL);
sigprocmask(SIG_BLOCK, NULL, &set);
sigdelset(&set, SIG_IPI);
kvm_set_signal_mask(kvm_context, env->cpu_index, &set);
}
void qemu_kvm_system_reset(void)
{
int i;
pause_all_threads();
qemu_system_reset();
for (i = 0; i < smp_cpus; ++i)
kvm_arch_cpu_reset(vcpu_info[i].env);
resume_all_threads();
}
static int kvm_main_loop_cpu(CPUState *env)
{
struct vcpu_info *info = &vcpu_info[env->cpu_index];
setup_kernel_sigmask(env);
pthread_mutex_lock(&qemu_mutex);
if (kvm_irqchip_in_kernel(kvm_context))
env->halted = 0;
kvm_qemu_init_env(env);
#ifdef TARGET_I386
kvm_tpr_vcpu_start(env);
#endif
cpu_single_env = env;
kvm_load_registers(env);
while (1) {
while (!has_work(env))
kvm_main_loop_wait(env, 1000);
if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI))
env->halted = 0;
if (!kvm_irqchip_in_kernel(kvm_context)) {
if (info->init)
update_regs_for_init(env);
if (info->sipi_needed)
update_regs_for_sipi(env);
}
if (!env->halted && !info->init)
kvm_cpu_exec(env);
env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
kvm_main_loop_wait(env, 0);
}
pthread_mutex_unlock(&qemu_mutex);
return 0;
}
static void *ap_main_loop(void *_env)
{
CPUState *env = _env;
sigset_t signals;
struct ioperm_data *data;
vcpu = &vcpu_info[env->cpu_index];
vcpu->env = env;
vcpu->env->thread_id = kvm_get_thread_id();
sigfillset(&signals);
sigprocmask(SIG_BLOCK, &signals, NULL);
kvm_create_vcpu(kvm_context, env->cpu_index);
kvm_qemu_init_env(env);
/* do ioperm for io ports of assigned devices */
LIST_FOREACH(data, &ioperm_head, entries)
on_vcpu(env, kvm_arch_do_ioperm, data);
/* signal VCPU creation */
pthread_mutex_lock(&qemu_mutex);
vcpu->created = 1;
pthread_cond_signal(&qemu_vcpu_cond);
/* and wait for machine initialization */
while (!qemu_system_ready)
qemu_cond_wait(&qemu_system_cond);
pthread_mutex_unlock(&qemu_mutex);
kvm_main_loop_cpu(env);
return NULL;
}
void kvm_init_vcpu(CPUState *env)
{
int cpu = env->cpu_index;
pthread_create(&vcpu_info[cpu].thread, NULL, ap_main_loop, env);
while (vcpu_info[cpu].created == 0)
qemu_cond_wait(&qemu_vcpu_cond);
}
int kvm_init_ap(void)
{
#ifdef TARGET_I386
kvm_tpr_opt_setup();
#endif
qemu_add_vm_change_state_handler(kvm_vm_state_change_handler, NULL);
signal(SIG_IPI, sig_ipi_handler);
return 0;
}
void qemu_kvm_notify_work(void)
{
uint64_t value = 1;
char buffer[8];
size_t offset = 0;
if (io_thread_fd == -1)
return;
memcpy(buffer, &value, sizeof(value));
while (offset < 8) {
ssize_t len;
len = write(io_thread_fd, buffer + offset, 8 - offset);
if (len == -1 && errno == EINTR)
continue;
if (len <= 0)
break;
offset += len;
}
if (offset != 8)
fprintf(stderr, "failed to notify io thread\n");
}
/* If we have signalfd, we mask out the signals we want to handle and then
* use signalfd to listen for them. We rely on whatever the current signal
* handler is to dispatch the signals when we receive them.
*/
static void sigfd_handler(void *opaque)
{
int fd = (unsigned long)opaque;
struct qemu_signalfd_siginfo info;
struct sigaction action;
ssize_t len;
while (1) {
do {
len = read(fd, &info, sizeof(info));
} while (len == -1 && errno == EINTR);
if (len == -1 && errno == EAGAIN)
break;
if (len != sizeof(info)) {
printf("read from sigfd returned %ld: %m\n", len);
return;
}
sigaction(info.ssi_signo, NULL, &action);
if (action.sa_handler)
action.sa_handler(info.ssi_signo);
}
}
/* Used to break IO thread out of select */
static void io_thread_wakeup(void *opaque)
{
int fd = (unsigned long)opaque;
char buffer[8];
size_t offset = 0;
while (offset < 8) {
ssize_t len;
len = read(fd, buffer + offset, 8 - offset);
if (len == -1 && errno == EINTR)
continue;
if (len <= 0)
break;
offset += len;
}
}
int kvm_main_loop(void)
{
int fds[2];
sigset_t mask;
int sigfd;
io_thread = pthread_self();
qemu_system_ready = 1;
if (qemu_eventfd(fds) == -1) {
fprintf(stderr, "failed to create eventfd\n");
return -errno;
}
qemu_set_fd_handler2(fds[0], NULL, io_thread_wakeup, NULL,
(void *)(unsigned long)fds[0]);
io_thread_fd = fds[1];
sigemptyset(&mask);
sigaddset(&mask, SIGIO);
sigaddset(&mask, SIGALRM);
sigprocmask(SIG_BLOCK, &mask, NULL);
sigfd = qemu_signalfd(&mask);
if (sigfd == -1) {
fprintf(stderr, "failed to create signalfd\n");
return -errno;
}
fcntl(sigfd, F_SETFL, O_NONBLOCK);
qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
(void *)(unsigned long)sigfd);
pthread_cond_broadcast(&qemu_system_cond);
io_thread_sigfd = sigfd;
cpu_single_env = NULL;
while (1) {
main_loop_wait(1000);
if (qemu_shutdown_requested())
break;
else if (qemu_powerdown_requested())
qemu_system_powerdown();
else if (qemu_reset_requested())
qemu_kvm_system_reset();
else if (kvm_debug_stop_requested) {
vm_stop(EXCP_DEBUG);
kvm_debug_stop_requested = 0;
}
}
pause_all_threads();
pthread_mutex_unlock(&qemu_mutex);
return 0;
}
static int kvm_debug(void *opaque, int vcpu)
{
kvm_debug_stop_requested = 1;
vcpu_info[vcpu].stopped = 1;
return 1;
}
static int kvm_inb(void *opaque, uint16_t addr, uint8_t *data)
{
*data = cpu_inb(0, addr);
return 0;
}
static int kvm_inw(void *opaque, uint16_t addr, uint16_t *data)
{
*data = cpu_inw(0, addr);
return 0;
}
static int kvm_inl(void *opaque, uint16_t addr, uint32_t *data)
{
*data = cpu_inl(0, addr);
return 0;
}
#define PM_IO_BASE 0xb000
static int kvm_outb(void *opaque, uint16_t addr, uint8_t data)
{
if (addr == 0xb2) {
switch (data) {
case 0: {
cpu_outb(0, 0xb3, 0);
break;
}
case 0xf0: {
unsigned x;
/* enable acpi */
x = cpu_inw(0, PM_IO_BASE + 4);
x &= ~1;
cpu_outw(0, PM_IO_BASE + 4, x);
break;
}
case 0xf1: {
unsigned x;
/* enable acpi */
x = cpu_inw(0, PM_IO_BASE + 4);
x |= 1;
cpu_outw(0, PM_IO_BASE + 4, x);
break;
}
default:
break;
}
return 0;
}
cpu_outb(0, addr, data);
return 0;
}
static int kvm_outw(void *opaque, uint16_t addr, uint16_t data)
{
cpu_outw(0, addr, data);
return 0;
}
static int kvm_outl(void *opaque, uint16_t addr, uint32_t data)
{
cpu_outl(0, addr, data);
return 0;
}
static int kvm_mmio_read(void *opaque, uint64_t addr, uint8_t *data, int len)
{
cpu_physical_memory_rw(addr, data, len, 0);
return 0;
}
static int kvm_mmio_write(void *opaque, uint64_t addr, uint8_t *data, int len)
{
cpu_physical_memory_rw(addr, data, len, 1);
return 0;
}
static int kvm_io_window(void *opaque)
{
return 1;
}
static int kvm_halt(void *opaque, int vcpu)
{
return kvm_arch_halt(opaque, vcpu);
}
static int kvm_shutdown(void *opaque, int vcpu)
{
/* stop the current vcpu from going back to guest mode */
vcpu_info[cpu_single_env->cpu_index].stopped = 1;
qemu_system_reset_request();
return 1;
}
static struct kvm_callbacks qemu_kvm_ops = {
.debug = kvm_debug,
.inb = kvm_inb,
.inw = kvm_inw,
.inl = kvm_inl,
.outb = kvm_outb,
.outw = kvm_outw,
.outl = kvm_outl,
.mmio_read = kvm_mmio_read,
.mmio_write = kvm_mmio_write,
.halt = kvm_halt,
.shutdown = kvm_shutdown,
.io_window = kvm_io_window,
.try_push_interrupts = try_push_interrupts,
.try_push_nmi = try_push_nmi,
.post_kvm_run = post_kvm_run,
.pre_kvm_run = pre_kvm_run,
#ifdef TARGET_I386
.tpr_access = handle_tpr_access,
#endif
#ifdef TARGET_PPC
.powerpc_dcr_read = handle_powerpc_dcr_read,
.powerpc_dcr_write = handle_powerpc_dcr_write,
#endif
};
int kvm_qemu_init()
{
/* Try to initialize kvm */
kvm_context = kvm_init(&qemu_kvm_ops, cpu_single_env);
if (!kvm_context) {
return -1;
}
pthread_mutex_lock(&qemu_mutex);
return 0;
}
int kvm_qemu_create_context(void)
{
int r;
if (!kvm_irqchip) {
kvm_disable_irqchip_creation(kvm_context);
}
if (!kvm_pit) {
kvm_disable_pit_creation(kvm_context);
}
if (kvm_create(kvm_context, phys_ram_size, (void**)&phys_ram_base) < 0) {
kvm_qemu_destroy();
return -1;
}
r = kvm_arch_qemu_create_context();
if(r <0)
kvm_qemu_destroy();
return 0;
}
void kvm_qemu_destroy(void)
{
kvm_finalize(kvm_context);
}
void kvm_cpu_register_physical_memory(target_phys_addr_t start_addr,
unsigned long size,
unsigned long phys_offset)
{
int r = 0;
unsigned long area_flags = phys_offset & ~TARGET_PAGE_MASK;
phys_offset &= ~IO_MEM_ROM;
if (area_flags == IO_MEM_UNASSIGNED) {
kvm_unregister_memory_area(kvm_context, start_addr, size);
return;
}
r = kvm_is_containing_region(kvm_context, start_addr, size);
if (r)
return;
if (area_flags >= TLB_MMIO)
return;
r = kvm_register_phys_mem(kvm_context, start_addr,
phys_ram_base + phys_offset,
size, 0);
if (r < 0) {
printf("kvm_cpu_register_physical_memory: failed\n");
exit(1);
}
return;
}
void kvm_cpu_unregister_physical_memory(target_phys_addr_t start_addr,
target_phys_addr_t size,
unsigned long phys_offset)
{
kvm_unregister_memory_area(kvm_context, start_addr, size);
}
int kvm_setup_guest_memory(void *area, unsigned long size)
{
int ret = 0;
#ifdef MADV_DONTFORK
if (kvm_enabled() && !kvm_has_sync_mmu(kvm_context))
ret = madvise(area, size, MADV_DONTFORK);
#endif
if (ret)
perror ("madvise");
return ret;
}
int kvm_qemu_check_extension(int ext)
{
return kvm_check_extension(kvm_context, ext);
}
int kvm_qemu_init_env(CPUState *cenv)
{
return kvm_arch_qemu_init_env(cenv);
}
struct kvm_guest_debug_data {
struct kvm_debug_guest dbg;
int err;
};
void kvm_invoke_guest_debug(void *data)
{
struct kvm_guest_debug_data *dbg_data = data;
dbg_data->err = kvm_guest_debug(kvm_context, cpu_single_env->cpu_index,
&dbg_data->dbg);
}
int kvm_update_debugger(CPUState *env)
{
struct kvm_guest_debug_data data;
int i;
memset(data.dbg.breakpoints, 0, sizeof(data.dbg.breakpoints));
data.dbg.enabled = 0;
if (env->nb_breakpoints || env->singlestep_enabled) {
data.dbg.enabled = 1;
for (i = 0; i < 4 && i < env->nb_breakpoints; ++i) {
data.dbg.breakpoints[i].enabled = 1;
data.dbg.breakpoints[i].address = env->breakpoints[i];
}
data.dbg.singlestep = env->singlestep_enabled;
}
on_vcpu(env, kvm_invoke_guest_debug, &data);
return data.err;
}
/*
* dirty pages logging
*/
/* FIXME: use unsigned long pointer instead of unsigned char */
unsigned char *kvm_dirty_bitmap = NULL;
int kvm_physical_memory_set_dirty_tracking(int enable)
{
int r = 0;
if (!kvm_enabled())
return 0;
if (enable) {
if (!kvm_dirty_bitmap) {
unsigned bitmap_size = BITMAP_SIZE(phys_ram_size);
kvm_dirty_bitmap = qemu_malloc(bitmap_size);
if (kvm_dirty_bitmap == NULL) {
perror("Failed to allocate dirty pages bitmap");
r=-1;
}
else {
r = kvm_dirty_pages_log_enable_all(kvm_context);
}
}
}
else {
if (kvm_dirty_bitmap) {
r = kvm_dirty_pages_log_reset(kvm_context);
qemu_free(kvm_dirty_bitmap);
kvm_dirty_bitmap = NULL;
}
}
return r;
}
/* get kvm's dirty pages bitmap and update qemu's */
int kvm_get_dirty_pages_log_range(unsigned long start_addr,
unsigned char *bitmap,
unsigned int offset,
unsigned long mem_size)
{
unsigned int i, j, n=0;
unsigned char c;
unsigned page_number, addr, addr1;
unsigned int len = ((mem_size/TARGET_PAGE_SIZE) + 7) / 8;
/*
* bitmap-traveling is faster than memory-traveling (for addr...)
* especially when most of the memory is not dirty.
*/
for (i=0; i<len; i++) {
c = bitmap[i];
while (c>0) {
j = ffsl(c) - 1;
c &= ~(1u<<j);
page_number = i * 8 + j;
addr1 = page_number * TARGET_PAGE_SIZE;
addr = offset + addr1;
cpu_physical_memory_set_dirty(addr);
n++;
}
}
return 0;
}
int kvm_get_dirty_bitmap_cb(unsigned long start, unsigned long len,
void *bitmap, void *opaque)
{
return kvm_get_dirty_pages_log_range(start, bitmap, start, len);
}
/*
* get kvm's dirty pages bitmap and update qemu's
* we only care about physical ram, which resides in slots 0 and 3
*/
int kvm_update_dirty_pages_log(void)
{
int r = 0;
r = kvm_get_dirty_pages_range(kvm_context, 0, phys_ram_size,
kvm_dirty_bitmap, NULL,
kvm_get_dirty_bitmap_cb);
return r;
}
void kvm_qemu_log_memory(target_phys_addr_t start, target_phys_addr_t size,
int log)
{
if (log)
kvm_dirty_pages_log_enable_slot(kvm_context, start, size);
else
kvm_dirty_pages_log_disable_slot(kvm_context, start, size);
}
int kvm_get_phys_ram_page_bitmap(unsigned char *bitmap)
{
unsigned int bsize = BITMAP_SIZE(phys_ram_size);
unsigned int brsize = BITMAP_SIZE(ram_size);
unsigned int extra_pages = (phys_ram_size - ram_size) / TARGET_PAGE_SIZE;
unsigned int extra_bytes = (extra_pages +7)/8;
unsigned int hole_start = BITMAP_SIZE(0xa0000);
unsigned int hole_end = BITMAP_SIZE(0xc0000);
memset(bitmap, 0xFF, brsize + extra_bytes);
memset(bitmap + hole_start, 0, hole_end - hole_start);
memset(bitmap + brsize + extra_bytes, 0, bsize - brsize - extra_bytes);
return 0;
}
#ifdef KVM_CAP_IRQCHIP
int kvm_set_irq(int irq, int level)
{
return kvm_set_irq_level(kvm_context, irq, level);
}
#endif
int qemu_kvm_get_dirty_pages(unsigned long phys_addr, void *buf)
{
return kvm_get_dirty_pages(kvm_context, phys_addr, buf);
}
void *kvm_cpu_create_phys_mem(target_phys_addr_t start_addr,
unsigned long size, int log, int writable)
{
return kvm_create_phys_mem(kvm_context, start_addr, size, log, writable);
}
void kvm_cpu_destroy_phys_mem(target_phys_addr_t start_addr,
unsigned long size)
{
kvm_destroy_phys_mem(kvm_context, start_addr, size);
}
void kvm_mutex_unlock(void)
{
assert(!cpu_single_env);
pthread_mutex_unlock(&qemu_mutex);
}
void kvm_mutex_lock(void)
{
pthread_mutex_lock(&qemu_mutex);
cpu_single_env = NULL;
}
int qemu_kvm_register_coalesced_mmio(target_phys_addr_t addr, unsigned int size)
{
return kvm_register_coalesced_mmio(kvm_context, addr, size);
}
int qemu_kvm_unregister_coalesced_mmio(target_phys_addr_t addr,
unsigned int size)
{
return kvm_unregister_coalesced_mmio(kvm_context, addr, size);
}
#ifdef USE_KVM_DEVICE_ASSIGNMENT
void kvm_add_ioperm_data(struct ioperm_data *data)
{
LIST_INSERT_HEAD(&ioperm_head, data, entries);
}
void kvm_ioperm(CPUState *env, void *data)
{
if (kvm_enabled() && qemu_system_ready)
on_vcpu(env, kvm_arch_do_ioperm, data);
}
#endif