blob: d5436b6a7fad304d17b6aac66d26b253ce59e140 [file] [log] [blame]
/*
* qemu/kvm integration, x86 specific code
*
* Copyright (C) 2006-2008 Qumranet Technologies
*
* Licensed under the terms of the GNU GPL version 2 or higher.
*/
#include "config.h"
#include "config-host.h"
#include <string.h>
#include "hw/hw.h"
#include "gdbstub.h"
#include <sys/io.h>
#include "qemu-kvm.h"
#include "libkvm.h"
#include <pthread.h>
#include <sys/utsname.h>
#include <linux/kvm_para.h>
#include <sys/ioctl.h>
#include "kvm.h"
#include "hw/pc.h"
#define MSR_IA32_TSC 0x10
static struct kvm_msr_list *kvm_msr_list;
extern unsigned int kvm_shadow_memory;
static int kvm_has_msr_star;
static int kvm_has_vm_hsave_pa;
static int lm_capable_kernel;
int kvm_set_tss_addr(kvm_context_t kvm, unsigned long addr)
{
#ifdef KVM_CAP_SET_TSS_ADDR
int r;
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
if (r > 0) {
r = kvm_vm_ioctl(kvm_state, KVM_SET_TSS_ADDR, addr);
if (r < 0) {
fprintf(stderr, "kvm_set_tss_addr: %m\n");
return r;
}
return 0;
}
#endif
return -ENOSYS;
}
static int kvm_init_tss(kvm_context_t kvm)
{
#ifdef KVM_CAP_SET_TSS_ADDR
int r;
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
if (r > 0) {
/*
* this address is 3 pages before the bios, and the bios should present
* as unavaible memory
*/
r = kvm_set_tss_addr(kvm, 0xfffbd000);
if (r < 0) {
fprintf(stderr, "kvm_init_tss: unable to set tss addr\n");
return r;
}
}
#endif
return 0;
}
static int kvm_set_identity_map_addr(kvm_context_t kvm, unsigned long addr)
{
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
int r;
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_IDENTITY_MAP_ADDR);
if (r > 0) {
r = kvm_vm_ioctl(kvm_state, KVM_SET_IDENTITY_MAP_ADDR, &addr);
if (r == -1) {
fprintf(stderr, "kvm_set_identity_map_addr: %m\n");
return -errno;
}
return 0;
}
#endif
return -ENOSYS;
}
static int kvm_init_identity_map_page(kvm_context_t kvm)
{
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
int r;
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_IDENTITY_MAP_ADDR);
if (r > 0) {
/*
* this address is 4 pages before the bios, and the bios should present
* as unavaible memory
*/
r = kvm_set_identity_map_addr(kvm, 0xfffbc000);
if (r < 0) {
fprintf(stderr, "kvm_init_identity_map_page: "
"unable to set identity mapping addr\n");
return r;
}
}
#endif
return 0;
}
static int kvm_create_pit(kvm_context_t kvm)
{
#ifdef KVM_CAP_PIT
int r;
kvm->pit_in_kernel = 0;
if (!kvm->no_pit_creation) {
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_PIT);
if (r > 0) {
r = kvm_vm_ioctl(kvm_state, KVM_CREATE_PIT);
if (r >= 0)
kvm->pit_in_kernel = 1;
else {
fprintf(stderr, "Create kernel PIC irqchip failed\n");
return r;
}
}
}
#endif
return 0;
}
int kvm_arch_create(kvm_context_t kvm, unsigned long phys_mem_bytes,
void **vm_mem)
{
int r = 0;
r = kvm_init_tss(kvm);
if (r < 0)
return r;
r = kvm_init_identity_map_page(kvm);
if (r < 0)
return r;
r = kvm_create_pit(kvm);
if (r < 0)
return r;
r = kvm_init_coalesced_mmio(kvm);
if (r < 0)
return r;
return 0;
}
#ifdef KVM_EXIT_TPR_ACCESS
static int kvm_handle_tpr_access(kvm_vcpu_context_t vcpu)
{
struct kvm_run *run = vcpu->run;
kvm_tpr_access_report(cpu_single_env,
run->tpr_access.rip,
run->tpr_access.is_write);
return 0;
}
int kvm_enable_vapic(kvm_vcpu_context_t vcpu, uint64_t vapic)
{
int r;
struct kvm_vapic_addr va = {
.vapic_addr = vapic,
};
r = ioctl(vcpu->fd, KVM_SET_VAPIC_ADDR, &va);
if (r == -1) {
r = -errno;
perror("kvm_enable_vapic");
return r;
}
return 0;
}
#endif
int kvm_arch_run(kvm_vcpu_context_t vcpu)
{
int r = 0;
struct kvm_run *run = vcpu->run;
switch (run->exit_reason) {
#ifdef KVM_EXIT_SET_TPR
case KVM_EXIT_SET_TPR:
break;
#endif
#ifdef KVM_EXIT_TPR_ACCESS
case KVM_EXIT_TPR_ACCESS:
r = kvm_handle_tpr_access(vcpu);
break;
#endif
default:
r = 1;
break;
}
return r;
}
#define MAX_ALIAS_SLOTS 4
static struct {
uint64_t start;
uint64_t len;
} kvm_aliases[MAX_ALIAS_SLOTS];
static int get_alias_slot(uint64_t start)
{
int i;
for (i=0; i<MAX_ALIAS_SLOTS; i++)
if (kvm_aliases[i].start == start)
return i;
return -1;
}
static int get_free_alias_slot(void)
{
int i;
for (i=0; i<MAX_ALIAS_SLOTS; i++)
if (kvm_aliases[i].len == 0)
return i;
return -1;
}
static void register_alias(int slot, uint64_t start, uint64_t len)
{
kvm_aliases[slot].start = start;
kvm_aliases[slot].len = len;
}
int kvm_create_memory_alias(kvm_context_t kvm,
uint64_t phys_start,
uint64_t len,
uint64_t target_phys)
{
struct kvm_memory_alias alias = {
.flags = 0,
.guest_phys_addr = phys_start,
.memory_size = len,
.target_phys_addr = target_phys,
};
int r;
int slot;
slot = get_alias_slot(phys_start);
if (slot < 0)
slot = get_free_alias_slot();
if (slot < 0)
return -EBUSY;
alias.slot = slot;
r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ALIAS, &alias);
if (r == -1)
return -errno;
register_alias(slot, phys_start, len);
return 0;
}
int kvm_destroy_memory_alias(kvm_context_t kvm, uint64_t phys_start)
{
return kvm_create_memory_alias(kvm, phys_start, 0, 0);
}
#ifdef KVM_CAP_IRQCHIP
int kvm_get_lapic(kvm_vcpu_context_t vcpu, struct kvm_lapic_state *s)
{
int r;
if (!kvm_irqchip_in_kernel(vcpu->kvm))
return 0;
r = ioctl(vcpu->fd, KVM_GET_LAPIC, s);
if (r == -1) {
r = -errno;
perror("kvm_get_lapic");
}
return r;
}
int kvm_set_lapic(kvm_vcpu_context_t vcpu, struct kvm_lapic_state *s)
{
int r;
if (!kvm_irqchip_in_kernel(vcpu->kvm))
return 0;
r = ioctl(vcpu->fd, KVM_SET_LAPIC, s);
if (r == -1) {
r = -errno;
perror("kvm_set_lapic");
}
return r;
}
#endif
#ifdef KVM_CAP_PIT
int kvm_get_pit(kvm_context_t kvm, struct kvm_pit_state *s)
{
if (!kvm->pit_in_kernel)
return 0;
return kvm_vm_ioctl(kvm_state, KVM_GET_PIT, s);
}
int kvm_set_pit(kvm_context_t kvm, struct kvm_pit_state *s)
{
if (!kvm->pit_in_kernel)
return 0;
return kvm_vm_ioctl(kvm_state, KVM_SET_PIT, s);
}
#ifdef KVM_CAP_PIT_STATE2
int kvm_get_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2)
{
if (!kvm->pit_in_kernel)
return 0;
return kvm_vm_ioctl(kvm_state, KVM_GET_PIT2, ps2);
}
int kvm_set_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2)
{
if (!kvm->pit_in_kernel)
return 0;
return kvm_vm_ioctl(kvm_state, KVM_SET_PIT2, ps2);
}
#endif
#endif
int kvm_has_pit_state2(kvm_context_t kvm)
{
int r = 0;
#ifdef KVM_CAP_PIT_STATE2
r = kvm_check_extension(kvm_state, KVM_CAP_PIT_STATE2);
#endif
return r;
}
void kvm_show_code(kvm_vcpu_context_t vcpu)
{
#define SHOW_CODE_LEN 50
int fd = vcpu->fd;
struct kvm_regs regs;
struct kvm_sregs sregs;
int r, n;
int back_offset;
unsigned char code;
char code_str[SHOW_CODE_LEN * 3 + 1];
unsigned long rip;
kvm_context_t kvm = vcpu->kvm;
r = ioctl(fd, KVM_GET_SREGS, &sregs);
if (r == -1) {
perror("KVM_GET_SREGS");
return;
}
r = ioctl(fd, KVM_GET_REGS, &regs);
if (r == -1) {
perror("KVM_GET_REGS");
return;
}
rip = sregs.cs.base + regs.rip;
back_offset = regs.rip;
if (back_offset > 20)
back_offset = 20;
*code_str = 0;
for (n = -back_offset; n < SHOW_CODE_LEN-back_offset; ++n) {
if (n == 0)
strcat(code_str, " -->");
r = kvm_mmio_read(kvm->opaque, rip + n, &code, 1);
if (r < 0) {
strcat(code_str, " xx");
continue;
}
sprintf(code_str + strlen(code_str), " %02x", code);
}
fprintf(stderr, "code:%s\n", code_str);
}
/*
* Returns available msr list. User must free.
*/
struct kvm_msr_list *kvm_get_msr_list(kvm_context_t kvm)
{
struct kvm_msr_list sizer, *msrs;
int r;
sizer.nmsrs = 0;
r = kvm_ioctl(kvm_state, KVM_GET_MSR_INDEX_LIST, &sizer);
if (r < 0 && r != -E2BIG)
return NULL;
/* Old kernel modules had a bug and could write beyond the provided
memory. Allocate at least a safe amount of 1K. */
msrs = qemu_malloc(MAX(1024, sizeof(*msrs) +
sizer.nmsrs * sizeof(*msrs->indices)));
msrs->nmsrs = sizer.nmsrs;
r = kvm_ioctl(kvm_state, KVM_GET_MSR_INDEX_LIST, msrs);
if (r < 0) {
free(msrs);
errno = r;
return NULL;
}
return msrs;
}
int kvm_get_msrs(kvm_vcpu_context_t vcpu, struct kvm_msr_entry *msrs, int n)
{
struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
int r, e;
kmsrs->nmsrs = n;
memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
r = ioctl(vcpu->fd, KVM_GET_MSRS, kmsrs);
e = errno;
memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
free(kmsrs);
errno = e;
return r;
}
int kvm_set_msrs(kvm_vcpu_context_t vcpu, struct kvm_msr_entry *msrs, int n)
{
struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
int r, e;
kmsrs->nmsrs = n;
memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
r = ioctl(vcpu->fd, KVM_SET_MSRS, kmsrs);
e = errno;
free(kmsrs);
errno = e;
return r;
}
int kvm_get_mce_cap_supported(kvm_context_t kvm, uint64_t *mce_cap,
int *max_banks)
{
#ifdef KVM_CAP_MCE
int r;
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
if (r > 0) {
*max_banks = r;
return kvm_ioctl(kvm_state, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
}
#endif
return -ENOSYS;
}
int kvm_setup_mce(kvm_vcpu_context_t vcpu, uint64_t *mcg_cap)
{
#ifdef KVM_CAP_MCE
return ioctl(vcpu->fd, KVM_X86_SETUP_MCE, mcg_cap);
#else
return -ENOSYS;
#endif
}
int kvm_set_mce(kvm_vcpu_context_t vcpu, struct kvm_x86_mce *m)
{
#ifdef KVM_CAP_MCE
return ioctl(vcpu->fd, KVM_X86_SET_MCE, m);
#else
return -ENOSYS;
#endif
}
static void print_seg(FILE *file, const char *name, struct kvm_segment *seg)
{
fprintf(stderr,
"%s %04x (%08llx/%08x p %d dpl %d db %d s %d type %x l %d"
" g %d avl %d)\n",
name, seg->selector, seg->base, seg->limit, seg->present,
seg->dpl, seg->db, seg->s, seg->type, seg->l, seg->g,
seg->avl);
}
static void print_dt(FILE *file, const char *name, struct kvm_dtable *dt)
{
fprintf(stderr, "%s %llx/%x\n", name, dt->base, dt->limit);
}
void kvm_show_regs(kvm_vcpu_context_t vcpu)
{
int fd = vcpu->fd;
struct kvm_regs regs;
struct kvm_sregs sregs;
int r;
r = ioctl(fd, KVM_GET_REGS, &regs);
if (r == -1) {
perror("KVM_GET_REGS");
return;
}
fprintf(stderr,
"rax %016llx rbx %016llx rcx %016llx rdx %016llx\n"
"rsi %016llx rdi %016llx rsp %016llx rbp %016llx\n"
"r8 %016llx r9 %016llx r10 %016llx r11 %016llx\n"
"r12 %016llx r13 %016llx r14 %016llx r15 %016llx\n"
"rip %016llx rflags %08llx\n",
regs.rax, regs.rbx, regs.rcx, regs.rdx,
regs.rsi, regs.rdi, regs.rsp, regs.rbp,
regs.r8, regs.r9, regs.r10, regs.r11,
regs.r12, regs.r13, regs.r14, regs.r15,
regs.rip, regs.rflags);
r = ioctl(fd, KVM_GET_SREGS, &sregs);
if (r == -1) {
perror("KVM_GET_SREGS");
return;
}
print_seg(stderr, "cs", &sregs.cs);
print_seg(stderr, "ds", &sregs.ds);
print_seg(stderr, "es", &sregs.es);
print_seg(stderr, "ss", &sregs.ss);
print_seg(stderr, "fs", &sregs.fs);
print_seg(stderr, "gs", &sregs.gs);
print_seg(stderr, "tr", &sregs.tr);
print_seg(stderr, "ldt", &sregs.ldt);
print_dt(stderr, "gdt", &sregs.gdt);
print_dt(stderr, "idt", &sregs.idt);
fprintf(stderr, "cr0 %llx cr2 %llx cr3 %llx cr4 %llx cr8 %llx"
" efer %llx\n",
sregs.cr0, sregs.cr2, sregs.cr3, sregs.cr4, sregs.cr8,
sregs.efer);
}
uint64_t kvm_get_apic_base(kvm_vcpu_context_t vcpu)
{
return vcpu->run->apic_base;
}
void kvm_set_cr8(kvm_vcpu_context_t vcpu, uint64_t cr8)
{
vcpu->run->cr8 = cr8;
}
__u64 kvm_get_cr8(kvm_vcpu_context_t vcpu)
{
return vcpu->run->cr8;
}
int kvm_setup_cpuid(kvm_vcpu_context_t vcpu, int nent,
struct kvm_cpuid_entry *entries)
{
struct kvm_cpuid *cpuid;
int r;
cpuid = qemu_malloc(sizeof(*cpuid) + nent * sizeof(*entries));
cpuid->nent = nent;
memcpy(cpuid->entries, entries, nent * sizeof(*entries));
r = ioctl(vcpu->fd, KVM_SET_CPUID, cpuid);
free(cpuid);
return r;
}
int kvm_setup_cpuid2(kvm_vcpu_context_t vcpu, int nent,
struct kvm_cpuid_entry2 *entries)
{
struct kvm_cpuid2 *cpuid;
int r;
cpuid = qemu_malloc(sizeof(*cpuid) + nent * sizeof(*entries));
cpuid->nent = nent;
memcpy(cpuid->entries, entries, nent * sizeof(*entries));
r = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
if (r == -1) {
fprintf(stderr, "kvm_setup_cpuid2: %m\n");
r = -errno;
}
free(cpuid);
return r;
}
int kvm_set_shadow_pages(kvm_context_t kvm, unsigned int nrshadow_pages)
{
#ifdef KVM_CAP_MMU_SHADOW_CACHE_CONTROL
int r;
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION,
KVM_CAP_MMU_SHADOW_CACHE_CONTROL);
if (r > 0) {
r = kvm_vm_ioctl(kvm_state, KVM_SET_NR_MMU_PAGES, nrshadow_pages);
if (r < 0) {
fprintf(stderr, "kvm_set_shadow_pages: %m\n");
return r;
}
return 0;
}
#endif
return -1;
}
int kvm_get_shadow_pages(kvm_context_t kvm, unsigned int *nrshadow_pages)
{
#ifdef KVM_CAP_MMU_SHADOW_CACHE_CONTROL
int r;
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION,
KVM_CAP_MMU_SHADOW_CACHE_CONTROL);
if (r > 0) {
*nrshadow_pages = kvm_vm_ioctl(kvm_state, KVM_GET_NR_MMU_PAGES);
return 0;
}
#endif
return -1;
}
#ifdef KVM_CAP_VAPIC
static int tpr_access_reporting(kvm_vcpu_context_t vcpu, int enabled)
{
int r;
struct kvm_tpr_access_ctl tac = {
.enabled = enabled,
};
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_VAPIC);
if (r <= 0)
return -ENOSYS;
r = ioctl(vcpu->fd, KVM_TPR_ACCESS_REPORTING, &tac);
if (r == -1) {
r = -errno;
perror("KVM_TPR_ACCESS_REPORTING");
return r;
}
return 0;
}
int kvm_enable_tpr_access_reporting(kvm_vcpu_context_t vcpu)
{
return tpr_access_reporting(vcpu, 1);
}
int kvm_disable_tpr_access_reporting(kvm_vcpu_context_t vcpu)
{
return tpr_access_reporting(vcpu, 0);
}
#endif
#ifdef KVM_CAP_EXT_CPUID
static struct kvm_cpuid2 *try_get_cpuid(kvm_context_t kvm, int max)
{
struct kvm_cpuid2 *cpuid;
int r, size;
size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
cpuid = qemu_malloc(size);
cpuid->nent = max;
r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_CPUID, cpuid);
if (r == 0 && cpuid->nent >= max)
r = -E2BIG;
if (r < 0) {
if (r == -E2BIG) {
free(cpuid);
return NULL;
} else {
fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
strerror(-r));
exit(1);
}
}
return cpuid;
}
#define R_EAX 0
#define R_ECX 1
#define R_EDX 2
#define R_EBX 3
#define R_ESP 4
#define R_EBP 5
#define R_ESI 6
#define R_EDI 7
uint32_t kvm_get_supported_cpuid(kvm_context_t kvm, uint32_t function, int reg)
{
struct kvm_cpuid2 *cpuid;
int i, max;
uint32_t ret = 0;
uint32_t cpuid_1_edx;
if (!kvm_check_extension(kvm_state, KVM_CAP_EXT_CPUID)) {
return -1U;
}
max = 1;
while ((cpuid = try_get_cpuid(kvm, max)) == NULL) {
max *= 2;
}
for (i = 0; i < cpuid->nent; ++i) {
if (cpuid->entries[i].function == function) {
switch (reg) {
case R_EAX:
ret = cpuid->entries[i].eax;
break;
case R_EBX:
ret = cpuid->entries[i].ebx;
break;
case R_ECX:
ret = cpuid->entries[i].ecx;
break;
case R_EDX:
ret = cpuid->entries[i].edx;
if (function == 1) {
/* kvm misreports the following features
*/
ret |= 1 << 12; /* MTRR */
ret |= 1 << 16; /* PAT */
ret |= 1 << 7; /* MCE */
ret |= 1 << 14; /* MCA */
}
/* On Intel, kvm returns cpuid according to
* the Intel spec, so add missing bits
* according to the AMD spec:
*/
if (function == 0x80000001) {
cpuid_1_edx = kvm_get_supported_cpuid(kvm, 1, R_EDX);
ret |= cpuid_1_edx & 0xdfeff7ff;
}
break;
}
}
}
free(cpuid);
return ret;
}
#else
uint32_t kvm_get_supported_cpuid(kvm_context_t kvm, uint32_t function, int reg)
{
return -1U;
}
#endif
int kvm_qemu_create_memory_alias(uint64_t phys_start,
uint64_t len,
uint64_t target_phys)
{
return kvm_create_memory_alias(kvm_context, phys_start, len, target_phys);
}
int kvm_qemu_destroy_memory_alias(uint64_t phys_start)
{
return kvm_destroy_memory_alias(kvm_context, phys_start);
}
int kvm_arch_qemu_create_context(void)
{
int i;
struct utsname utsname;
uname(&utsname);
lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
if (kvm_shadow_memory)
kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
kvm_msr_list = kvm_get_msr_list(kvm_context);
if (!kvm_msr_list)
return -1;
for (i = 0; i < kvm_msr_list->nmsrs; ++i) {
if (kvm_msr_list->indices[i] == MSR_STAR)
kvm_has_msr_star = 1;
if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA)
kvm_has_vm_hsave_pa = 1;
}
return 0;
}
static void set_msr_entry(struct kvm_msr_entry *entry, uint32_t index,
uint64_t data)
{
entry->index = index;
entry->data = data;
}
/* returns 0 on success, non-0 on failure */
static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
{
switch (entry->index) {
case MSR_IA32_SYSENTER_CS:
env->sysenter_cs = entry->data;
break;
case MSR_IA32_SYSENTER_ESP:
env->sysenter_esp = entry->data;
break;
case MSR_IA32_SYSENTER_EIP:
env->sysenter_eip = entry->data;
break;
case MSR_STAR:
env->star = entry->data;
break;
#ifdef TARGET_X86_64
case MSR_CSTAR:
env->cstar = entry->data;
break;
case MSR_KERNELGSBASE:
env->kernelgsbase = entry->data;
break;
case MSR_FMASK:
env->fmask = entry->data;
break;
case MSR_LSTAR:
env->lstar = entry->data;
break;
#endif
case MSR_IA32_TSC:
env->tsc = entry->data;
break;
case MSR_VM_HSAVE_PA:
env->vm_hsave = entry->data;
break;
default:
printf("Warning unknown msr index 0x%x\n", entry->index);
return 1;
}
return 0;
}
#ifdef TARGET_X86_64
#define MSR_COUNT 10
#else
#define MSR_COUNT 6
#endif
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->type = 3;
lhs->present = 1;
lhs->dpl = 3;
lhs->db = 0;
lhs->s = 1;
lhs->l = 0;
lhs->g = 0;
lhs->avl = 0;
lhs->unusable = 0;
}
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
unsigned flags = rhs->flags;
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
lhs->present = (flags & DESC_P_MASK) != 0;
lhs->dpl = rhs->selector & 3;
lhs->db = (flags >> DESC_B_SHIFT) & 1;
lhs->s = (flags & DESC_S_MASK) != 0;
lhs->l = (flags >> DESC_L_SHIFT) & 1;
lhs->g = (flags & DESC_G_MASK) != 0;
lhs->avl = (flags & DESC_AVL_MASK) != 0;
lhs->unusable = 0;
}
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
{
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->flags =
(rhs->type << DESC_TYPE_SHIFT)
| (rhs->present * DESC_P_MASK)
| (rhs->dpl << DESC_DPL_SHIFT)
| (rhs->db << DESC_B_SHIFT)
| (rhs->s * DESC_S_MASK)
| (rhs->l << DESC_L_SHIFT)
| (rhs->g * DESC_G_MASK)
| (rhs->avl * DESC_AVL_MASK);
}
void kvm_arch_load_regs(CPUState *env)
{
struct kvm_regs regs;
struct kvm_fpu fpu;
struct kvm_sregs sregs;
struct kvm_msr_entry msrs[MSR_COUNT];
int rc, n, i;
regs.rax = env->regs[R_EAX];
regs.rbx = env->regs[R_EBX];
regs.rcx = env->regs[R_ECX];
regs.rdx = env->regs[R_EDX];
regs.rsi = env->regs[R_ESI];
regs.rdi = env->regs[R_EDI];
regs.rsp = env->regs[R_ESP];
regs.rbp = env->regs[R_EBP];
#ifdef TARGET_X86_64
regs.r8 = env->regs[8];
regs.r9 = env->regs[9];
regs.r10 = env->regs[10];
regs.r11 = env->regs[11];
regs.r12 = env->regs[12];
regs.r13 = env->regs[13];
regs.r14 = env->regs[14];
regs.r15 = env->regs[15];
#endif
regs.rflags = env->eflags;
regs.rip = env->eip;
kvm_set_regs(env->kvm_cpu_state.vcpu_ctx, &regs);
memset(&fpu, 0, sizeof fpu);
fpu.fsw = env->fpus & ~(7 << 11);
fpu.fsw |= (env->fpstt & 7) << 11;
fpu.fcw = env->fpuc;
for (i = 0; i < 8; ++i)
fpu.ftwx |= (!env->fptags[i]) << i;
memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
fpu.mxcsr = env->mxcsr;
kvm_set_fpu(env->kvm_cpu_state.vcpu_ctx, &fpu);
memcpy(sregs.interrupt_bitmap, env->interrupt_bitmap, sizeof(sregs.interrupt_bitmap));
if ((env->eflags & VM_MASK)) {
set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
set_v8086_seg(&sregs.es, &env->segs[R_ES]);
set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
} else {
set_seg(&sregs.cs, &env->segs[R_CS]);
set_seg(&sregs.ds, &env->segs[R_DS]);
set_seg(&sregs.es, &env->segs[R_ES]);
set_seg(&sregs.fs, &env->segs[R_FS]);
set_seg(&sregs.gs, &env->segs[R_GS]);
set_seg(&sregs.ss, &env->segs[R_SS]);
if (env->cr[0] & CR0_PE_MASK) {
/* force ss cpl to cs cpl */
sregs.ss.selector = (sregs.ss.selector & ~3) |
(sregs.cs.selector & 3);
sregs.ss.dpl = sregs.ss.selector & 3;
}
}
set_seg(&sregs.tr, &env->tr);
set_seg(&sregs.ldt, &env->ldt);
sregs.idt.limit = env->idt.limit;
sregs.idt.base = env->idt.base;
sregs.gdt.limit = env->gdt.limit;
sregs.gdt.base = env->gdt.base;
sregs.cr0 = env->cr[0];
sregs.cr2 = env->cr[2];
sregs.cr3 = env->cr[3];
sregs.cr4 = env->cr[4];
sregs.cr8 = cpu_get_apic_tpr(env);
sregs.apic_base = cpu_get_apic_base(env);
sregs.efer = env->efer;
kvm_set_sregs(env->kvm_cpu_state.vcpu_ctx, &sregs);
/* msrs */
n = 0;
/* Remember to increase MSR_COUNT if you add new registers below */
set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
if (kvm_has_msr_star)
set_msr_entry(&msrs[n++], MSR_STAR, env->star);
if (kvm_has_vm_hsave_pa)
set_msr_entry(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
#ifdef TARGET_X86_64
if (lm_capable_kernel) {
set_msr_entry(&msrs[n++], MSR_CSTAR, env->cstar);
set_msr_entry(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
set_msr_entry(&msrs[n++], MSR_FMASK, env->fmask);
set_msr_entry(&msrs[n++], MSR_LSTAR , env->lstar);
}
#endif
rc = kvm_set_msrs(env->kvm_cpu_state.vcpu_ctx, msrs, n);
if (rc == -1)
perror("kvm_set_msrs FAILED");
}
void kvm_load_tsc(CPUState *env)
{
int rc;
struct kvm_msr_entry msr;
set_msr_entry(&msr, MSR_IA32_TSC, env->tsc);
rc = kvm_set_msrs(env->kvm_cpu_state.vcpu_ctx, &msr, 1);
if (rc == -1)
perror("kvm_set_tsc FAILED.\n");
}
void kvm_arch_save_mpstate(CPUState *env)
{
#ifdef KVM_CAP_MP_STATE
int r;
struct kvm_mp_state mp_state;
r = kvm_get_mpstate(env->kvm_cpu_state.vcpu_ctx, &mp_state);
if (r < 0)
env->mp_state = -1;
else
env->mp_state = mp_state.mp_state;
#endif
}
void kvm_arch_load_mpstate(CPUState *env)
{
#ifdef KVM_CAP_MP_STATE
struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
/*
* -1 indicates that the host did not support GET_MP_STATE ioctl,
* so don't touch it.
*/
if (env->mp_state != -1)
kvm_set_mpstate(env->kvm_cpu_state.vcpu_ctx, &mp_state);
#endif
}
void kvm_arch_save_regs(CPUState *env)
{
struct kvm_regs regs;
struct kvm_fpu fpu;
struct kvm_sregs sregs;
struct kvm_msr_entry msrs[MSR_COUNT];
uint32_t hflags;
uint32_t i, n, rc;
kvm_get_regs(env->kvm_cpu_state.vcpu_ctx, &regs);
env->regs[R_EAX] = regs.rax;
env->regs[R_EBX] = regs.rbx;
env->regs[R_ECX] = regs.rcx;
env->regs[R_EDX] = regs.rdx;
env->regs[R_ESI] = regs.rsi;
env->regs[R_EDI] = regs.rdi;
env->regs[R_ESP] = regs.rsp;
env->regs[R_EBP] = regs.rbp;
#ifdef TARGET_X86_64
env->regs[8] = regs.r8;
env->regs[9] = regs.r9;
env->regs[10] = regs.r10;
env->regs[11] = regs.r11;
env->regs[12] = regs.r12;
env->regs[13] = regs.r13;
env->regs[14] = regs.r14;
env->regs[15] = regs.r15;
#endif
env->eflags = regs.rflags;
env->eip = regs.rip;
kvm_get_fpu(env->kvm_cpu_state.vcpu_ctx, &fpu);
env->fpstt = (fpu.fsw >> 11) & 7;
env->fpus = fpu.fsw;
env->fpuc = fpu.fcw;
for (i = 0; i < 8; ++i)
env->fptags[i] = !((fpu.ftwx >> i) & 1);
memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
env->mxcsr = fpu.mxcsr;
kvm_get_sregs(env->kvm_cpu_state.vcpu_ctx, &sregs);
memcpy(env->interrupt_bitmap, sregs.interrupt_bitmap, sizeof(env->interrupt_bitmap));
get_seg(&env->segs[R_CS], &sregs.cs);
get_seg(&env->segs[R_DS], &sregs.ds);
get_seg(&env->segs[R_ES], &sregs.es);
get_seg(&env->segs[R_FS], &sregs.fs);
get_seg(&env->segs[R_GS], &sregs.gs);
get_seg(&env->segs[R_SS], &sregs.ss);
get_seg(&env->tr, &sregs.tr);
get_seg(&env->ldt, &sregs.ldt);
env->idt.limit = sregs.idt.limit;
env->idt.base = sregs.idt.base;
env->gdt.limit = sregs.gdt.limit;
env->gdt.base = sregs.gdt.base;
env->cr[0] = sregs.cr0;
env->cr[2] = sregs.cr2;
env->cr[3] = sregs.cr3;
env->cr[4] = sregs.cr4;
cpu_set_apic_base(env, sregs.apic_base);
env->efer = sregs.efer;
//cpu_set_apic_tpr(env, sregs.cr8);
#define HFLAG_COPY_MASK ~( \
HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
(HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
if (env->efer & MSR_EFER_LMA) {
hflags |= HF_LMA_MASK;
}
if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
} else {
hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_CS32_SHIFT);
hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_SS32_SHIFT);
if (!(env->cr[0] & CR0_PE_MASK) ||
(env->eflags & VM_MASK) ||
!(hflags & HF_CS32_MASK)) {
hflags |= HF_ADDSEG_MASK;
} else {
hflags |= ((env->segs[R_DS].base |
env->segs[R_ES].base |
env->segs[R_SS].base) != 0) <<
HF_ADDSEG_SHIFT;
}
}
env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
/* msrs */
n = 0;
/* Remember to increase MSR_COUNT if you add new registers below */
msrs[n++].index = MSR_IA32_SYSENTER_CS;
msrs[n++].index = MSR_IA32_SYSENTER_ESP;
msrs[n++].index = MSR_IA32_SYSENTER_EIP;
if (kvm_has_msr_star)
msrs[n++].index = MSR_STAR;
msrs[n++].index = MSR_IA32_TSC;
if (kvm_has_vm_hsave_pa)
msrs[n++].index = MSR_VM_HSAVE_PA;
#ifdef TARGET_X86_64
if (lm_capable_kernel) {
msrs[n++].index = MSR_CSTAR;
msrs[n++].index = MSR_KERNELGSBASE;
msrs[n++].index = MSR_FMASK;
msrs[n++].index = MSR_LSTAR;
}
#endif
rc = kvm_get_msrs(env->kvm_cpu_state.vcpu_ctx, msrs, n);
if (rc == -1) {
perror("kvm_get_msrs FAILED");
}
else {
n = rc; /* actual number of MSRs */
for (i=0 ; i<n; i++) {
if (get_msr_entry(&msrs[i], env))
return;
}
}
}
static void do_cpuid_ent(struct kvm_cpuid_entry2 *e, uint32_t function,
uint32_t count, CPUState *env)
{
env->regs[R_EAX] = function;
env->regs[R_ECX] = count;
qemu_kvm_cpuid_on_env(env);
e->function = function;
e->flags = 0;
e->index = 0;
e->eax = env->regs[R_EAX];
e->ebx = env->regs[R_EBX];
e->ecx = env->regs[R_ECX];
e->edx = env->regs[R_EDX];
}
struct kvm_para_features {
int cap;
int feature;
} para_features[] = {
#ifdef KVM_CAP_CLOCKSOURCE
{ KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
#endif
#ifdef KVM_CAP_NOP_IO_DELAY
{ KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
#endif
#ifdef KVM_CAP_PV_MMU
{ KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
#endif
#ifdef KVM_CAP_CR3_CACHE
{ KVM_CAP_CR3_CACHE, KVM_FEATURE_CR3_CACHE },
#endif
{ -1, -1 }
};
static int get_para_features(kvm_context_t kvm_context)
{
int i, features = 0;
for (i = 0; i < ARRAY_SIZE(para_features)-1; i++) {
if (kvm_check_extension(kvm_state, para_features[i].cap))
features |= (1 << para_features[i].feature);
}
return features;
}
static void kvm_trim_features(uint32_t *features, uint32_t supported)
{
int i;
uint32_t mask;
for (i = 0; i < 32; ++i) {
mask = 1U << i;
if ((*features & mask) && !(supported & mask)) {
*features &= ~mask;
}
}
}
int kvm_arch_qemu_init_env(CPUState *cenv)
{
struct kvm_cpuid_entry2 cpuid_ent[100];
#ifdef KVM_CPUID_SIGNATURE
struct kvm_cpuid_entry2 *pv_ent;
uint32_t signature[3];
#endif
int cpuid_nent = 0;
CPUState copy;
uint32_t i, j, limit;
qemu_kvm_load_lapic(cenv);
#ifdef KVM_CPUID_SIGNATURE
/* Paravirtualization CPUIDs */
memcpy(signature, "KVMKVMKVM\0\0\0", 12);
pv_ent = &cpuid_ent[cpuid_nent++];
memset(pv_ent, 0, sizeof(*pv_ent));
pv_ent->function = KVM_CPUID_SIGNATURE;
pv_ent->eax = 0;
pv_ent->ebx = signature[0];
pv_ent->ecx = signature[1];
pv_ent->edx = signature[2];
pv_ent = &cpuid_ent[cpuid_nent++];
memset(pv_ent, 0, sizeof(*pv_ent));
pv_ent->function = KVM_CPUID_FEATURES;
pv_ent->eax = get_para_features(kvm_context);
#endif
kvm_trim_features(&cenv->cpuid_features,
kvm_arch_get_supported_cpuid(cenv, 1, R_EDX));
/* prevent the hypervisor bit from being cleared by the kernel */
i = cenv->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
kvm_trim_features(&cenv->cpuid_ext_features,
kvm_arch_get_supported_cpuid(cenv, 1, R_ECX));
cenv->cpuid_ext_features |= i;
kvm_trim_features(&cenv->cpuid_ext2_features,
kvm_arch_get_supported_cpuid(cenv, 0x80000001, R_EDX));
kvm_trim_features(&cenv->cpuid_ext3_features,
kvm_arch_get_supported_cpuid(cenv, 0x80000001, R_ECX));
copy = *cenv;
copy.regs[R_EAX] = 0;
qemu_kvm_cpuid_on_env(&copy);
limit = copy.regs[R_EAX];
for (i = 0; i <= limit; ++i) {
if (i == 4 || i == 0xb || i == 0xd) {
for (j = 0; ; ++j) {
do_cpuid_ent(&cpuid_ent[cpuid_nent], i, j, &copy);
cpuid_ent[cpuid_nent].flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
cpuid_ent[cpuid_nent].index = j;
cpuid_nent++;
if (i == 4 && copy.regs[R_EAX] == 0)
break;
if (i == 0xb && !(copy.regs[R_ECX] & 0xff00))
break;
if (i == 0xd && copy.regs[R_EAX] == 0)
break;
}
} else
do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, 0, &copy);
}
copy.regs[R_EAX] = 0x80000000;
qemu_kvm_cpuid_on_env(&copy);
limit = copy.regs[R_EAX];
for (i = 0x80000000; i <= limit; ++i)
do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, 0, &copy);
kvm_setup_cpuid2(cenv->kvm_cpu_state.vcpu_ctx, cpuid_nent, cpuid_ent);
#ifdef KVM_CAP_MCE
if (((cenv->cpuid_version >> 8)&0xF) >= 6
&& (cenv->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
&& kvm_check_extension(kvm_state, KVM_CAP_MCE) > 0) {
uint64_t mcg_cap;
int banks;
if (kvm_get_mce_cap_supported(kvm_context, &mcg_cap, &banks))
perror("kvm_get_mce_cap_supported FAILED");
else {
if (banks > MCE_BANKS_DEF)
banks = MCE_BANKS_DEF;
mcg_cap &= MCE_CAP_DEF;
mcg_cap |= banks;
if (kvm_setup_mce(cenv->kvm_cpu_state.vcpu_ctx, &mcg_cap))
perror("kvm_setup_mce FAILED");
else
cenv->mcg_cap = mcg_cap;
}
}
#endif
return 0;
}
int kvm_arch_halt(void *opaque, kvm_vcpu_context_t vcpu)
{
CPUState *env = cpu_single_env;
if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) &&
!(env->interrupt_request & CPU_INTERRUPT_NMI)) {
env->halted = 1;
}
return 1;
}
void kvm_arch_pre_kvm_run(void *opaque, CPUState *env)
{
if (!kvm_irqchip_in_kernel(kvm_context))
kvm_set_cr8(env->kvm_cpu_state.vcpu_ctx, cpu_get_apic_tpr(env));
}
void kvm_arch_post_kvm_run(void *opaque, CPUState *env)
{
cpu_single_env = env;
env->eflags = kvm_get_interrupt_flag(env->kvm_cpu_state.vcpu_ctx)
? env->eflags | IF_MASK : env->eflags & ~IF_MASK;
cpu_set_apic_tpr(env, kvm_get_cr8(env->kvm_cpu_state.vcpu_ctx));
cpu_set_apic_base(env, kvm_get_apic_base(env->kvm_cpu_state.vcpu_ctx));
}
int kvm_arch_has_work(CPUState *env)
{
if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) ||
(env->interrupt_request & CPU_INTERRUPT_NMI))
return 1;
return 0;
}
int kvm_arch_try_push_interrupts(void *opaque)
{
CPUState *env = cpu_single_env;
int r, irq;
if (kvm_is_ready_for_interrupt_injection(env->kvm_cpu_state.vcpu_ctx) &&
(env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) {
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
irq = cpu_get_pic_interrupt(env);
if (irq >= 0) {
r = kvm_inject_irq(env->kvm_cpu_state.vcpu_ctx, irq);
if (r < 0)
printf("cpu %d fail inject %x\n", env->cpu_index, irq);
}
}
return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
}
#ifdef KVM_CAP_USER_NMI
void kvm_arch_push_nmi(void *opaque)
{
CPUState *env = cpu_single_env;
int r;
if (likely(!(env->interrupt_request & CPU_INTERRUPT_NMI)))
return;
env->interrupt_request &= ~CPU_INTERRUPT_NMI;
r = kvm_inject_nmi(env->kvm_cpu_state.vcpu_ctx);
if (r < 0)
printf("cpu %d fail inject NMI\n", env->cpu_index);
}
#endif /* KVM_CAP_USER_NMI */
void kvm_arch_update_regs_for_sipi(CPUState *env)
{
SegmentCache cs = env->segs[R_CS];
kvm_arch_save_regs(env);
env->segs[R_CS] = cs;
env->eip = 0;
kvm_arch_load_regs(env);
}
void kvm_arch_cpu_reset(CPUState *env)
{
kvm_arch_load_regs(env);
if (!cpu_is_bsp(env)) {
if (kvm_irqchip_in_kernel(kvm_context)) {
#ifdef KVM_CAP_MP_STATE
kvm_reset_mpstate(env->kvm_cpu_state.vcpu_ctx);
#endif
} else {
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
env->halted = 1;
}
}
}
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
{
uint8_t int3 = 0xcc;
if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
cpu_memory_rw_debug(env, bp->pc, &int3, 1, 1))
return -EINVAL;
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
{
uint8_t int3;
if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
return -EINVAL;
return 0;
}
#ifdef KVM_CAP_SET_GUEST_DEBUG
static struct {
target_ulong addr;
int len;
int type;
} hw_breakpoint[4];
static int nb_hw_breakpoint;
static int find_hw_breakpoint(target_ulong addr, int len, int type)
{
int n;
for (n = 0; n < nb_hw_breakpoint; n++)
if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
(hw_breakpoint[n].len == len || len == -1))
return n;
return -1;
}
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
len = 1;
break;
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
switch (len) {
case 1:
break;
case 2:
case 4:
case 8:
if (addr & (len - 1))
return -EINVAL;
break;
default:
return -EINVAL;
}
break;
default:
return -ENOSYS;
}
if (nb_hw_breakpoint == 4)
return -ENOBUFS;
if (find_hw_breakpoint(addr, len, type) >= 0)
return -EEXIST;
hw_breakpoint[nb_hw_breakpoint].addr = addr;
hw_breakpoint[nb_hw_breakpoint].len = len;
hw_breakpoint[nb_hw_breakpoint].type = type;
nb_hw_breakpoint++;
return 0;
}
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
int n;
n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
if (n < 0)
return -ENOENT;
nb_hw_breakpoint--;
hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
return 0;
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
nb_hw_breakpoint = 0;
}
static CPUWatchpoint hw_watchpoint;
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
{
int handle = 0;
int n;
if (arch_info->exception == 1) {
if (arch_info->dr6 & (1 << 14)) {
if (cpu_single_env->singlestep_enabled)
handle = 1;
} else {
for (n = 0; n < 4; n++)
if (arch_info->dr6 & (1 << n))
switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
case 0x0:
handle = 1;
break;
case 0x1:
handle = 1;
cpu_single_env->watchpoint_hit = &hw_watchpoint;
hw_watchpoint.vaddr = hw_breakpoint[n].addr;
hw_watchpoint.flags = BP_MEM_WRITE;
break;
case 0x3:
handle = 1;
cpu_single_env->watchpoint_hit = &hw_watchpoint;
hw_watchpoint.vaddr = hw_breakpoint[n].addr;
hw_watchpoint.flags = BP_MEM_ACCESS;
break;
}
}
} else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
handle = 1;
if (!handle)
kvm_update_guest_debug(cpu_single_env,
(arch_info->exception == 1) ?
KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
return handle;
}
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
{
const uint8_t type_code[] = {
[GDB_BREAKPOINT_HW] = 0x0,
[GDB_WATCHPOINT_WRITE] = 0x1,
[GDB_WATCHPOINT_ACCESS] = 0x3
};
const uint8_t len_code[] = {
[1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
};
int n;
if (kvm_sw_breakpoints_active(env))
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
if (nb_hw_breakpoint > 0) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
dbg->arch.debugreg[7] = 0x0600;
for (n = 0; n < nb_hw_breakpoint; n++) {
dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
dbg->arch.debugreg[7] |= (2 << (n * 2)) |
(type_code[hw_breakpoint[n].type] << (16 + n*4)) |
(len_code[hw_breakpoint[n].len] << (18 + n*4));
}
}
}
#endif
void kvm_arch_do_ioperm(void *_data)
{
struct ioperm_data *data = _data;
ioperm(data->start_port, data->num, data->turn_on);
}
/*
* Setup x86 specific IRQ routing
*/
int kvm_arch_init_irq_routing(void)
{
int i, r;
if (kvm_irqchip && kvm_has_gsi_routing(kvm_context)) {
kvm_clear_gsi_routes(kvm_context);
for (i = 0; i < 8; ++i) {
if (i == 2)
continue;
r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_PIC_MASTER, i);
if (r < 0)
return r;
}
for (i = 8; i < 16; ++i) {
r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_PIC_SLAVE, i - 8);
if (r < 0)
return r;
}
for (i = 0; i < 24; ++i) {
if (i == 0) {
r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_IOAPIC, 2);
} else if (i != 2) {
r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_IOAPIC, i);
}
if (r < 0)
return r;
}
kvm_commit_irq_routes(kvm_context);
}
return 0;
}
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
int reg)
{
return kvm_get_supported_cpuid(kvm_context, function, reg);
}
void kvm_arch_process_irqchip_events(CPUState *env)
{
kvm_arch_save_regs(env);
if (env->interrupt_request & CPU_INTERRUPT_INIT)
do_cpu_init(env);
if (env->interrupt_request & CPU_INTERRUPT_SIPI)
do_cpu_sipi(env);
kvm_arch_load_regs(env);
}