blob: eb48ff8f73545ba4d08ebddc62f5437f598d4fd6 [file] [log] [blame]
/*
* qemu/kvm integration
*
* Copyright (C) 2006-2008 Qumranet Technologies
*
* Licensed under the terms of the GNU GPL version 2 or higher.
*/
#ifndef THE_ORIGINAL_AND_TRUE_QEMU_KVM_H
#define THE_ORIGINAL_AND_TRUE_QEMU_KVM_H
#include "cpu.h"
#include <signal.h>
#ifdef CONFIG_KVM
#if defined(__s390__)
#include <asm/ptrace.h>
#endif
#include <stdint.h>
#ifndef __user
#define __user /* temporary, until installed via make headers_install */
#endif
#include <linux/kvm.h>
#include <signal.h>
/* FIXME: share this number with kvm */
/* FIXME: or dynamically alloc/realloc regions */
#ifdef __s390__
#define KVM_MAX_NUM_MEM_REGIONS 1u
#define MAX_VCPUS 64
#define LIBKVM_S390_ORIGIN (0UL)
#elif defined(__ia64__)
#define KVM_MAX_NUM_MEM_REGIONS 32u
#define MAX_VCPUS 256
#else
#define KVM_MAX_NUM_MEM_REGIONS 32u
#define MAX_VCPUS 16
#endif
/* kvm abi verison variable */
extern int kvm_abi;
/**
* \brief The KVM context
*
* The verbose KVM context
*/
struct kvm_context {
void *opaque;
/// is dirty pages logging enabled for all regions or not
int dirty_pages_log_all;
/// do not create in-kernel irqchip if set
int no_irqchip_creation;
/// in-kernel irqchip status
int irqchip_in_kernel;
/// ioctl to use to inject interrupts
int irqchip_inject_ioctl;
/// do not create in-kernel pit if set
int no_pit_creation;
/// in-kernel pit status
int pit_in_kernel;
/// in-kernel coalesced mmio
int coalesced_mmio;
#ifdef KVM_CAP_IRQ_ROUTING
struct kvm_irq_routing *irq_routes;
int nr_allocated_irq_routes;
#endif
void *used_gsi_bitmap;
int max_gsi;
};
struct kvm_vcpu_context
{
int fd;
struct kvm_run *run;
struct kvm_context *kvm;
uint32_t id;
};
typedef struct kvm_context *kvm_context_t;
typedef struct kvm_vcpu_context *kvm_vcpu_context_t;
#include "kvm.h"
int kvm_alloc_kernel_memory(kvm_context_t kvm, unsigned long memory,
void **vm_mem);
int kvm_alloc_userspace_memory(kvm_context_t kvm, unsigned long memory,
void **vm_mem);
int kvm_arch_create(kvm_context_t kvm, unsigned long phys_mem_bytes,
void **vm_mem);
int kvm_arch_run(kvm_vcpu_context_t vcpu);
void kvm_show_code(kvm_vcpu_context_t vcpu);
int handle_halt(kvm_vcpu_context_t vcpu);
int handle_shutdown(kvm_context_t kvm, CPUState *env);
void post_kvm_run(kvm_context_t kvm, CPUState *env);
int pre_kvm_run(kvm_context_t kvm, CPUState *env);
int handle_io_window(kvm_context_t kvm);
int handle_debug(kvm_vcpu_context_t vcpu, void *env);
int try_push_interrupts(kvm_context_t kvm);
#if defined(__x86_64__) || defined(__i386__)
struct kvm_msr_list *kvm_get_msr_list(kvm_context_t);
int kvm_get_msrs(kvm_vcpu_context_t, struct kvm_msr_entry *msrs, int n);
int kvm_set_msrs(kvm_vcpu_context_t, struct kvm_msr_entry *msrs, int n);
int kvm_get_mce_cap_supported(kvm_context_t, uint64_t *mce_cap, int *max_banks);
int kvm_setup_mce(kvm_vcpu_context_t vcpu, uint64_t *mcg_cap);
struct kvm_x86_mce;
int kvm_set_mce(kvm_vcpu_context_t vcpu, struct kvm_x86_mce *mce);
#endif
/*!
* \brief Create new KVM context
*
* This creates a new kvm_context. A KVM context is a small area of data that
* holds information about the KVM instance that gets created by this call.\n
* This should always be your first call to KVM.
*
* \param opaque Not used
* \return NULL on failure
*/
int kvm_init(int smp_cpus);
/*!
* \brief Disable the in-kernel IRQCHIP creation
*
* In-kernel irqchip is enabled by default. If userspace irqchip is to be used,
* this should be called prior to kvm_create().
*
* \param kvm Pointer to the kvm_context
*/
void kvm_disable_irqchip_creation(kvm_context_t kvm);
/*!
* \brief Disable the in-kernel PIT creation
*
* In-kernel pit is enabled by default. If userspace pit is to be used,
* this should be called prior to kvm_create().
*
* \param kvm Pointer to the kvm_context
*/
void kvm_disable_pit_creation(kvm_context_t kvm);
/*!
* \brief Create new virtual machine
*
* This creates a new virtual machine, maps physical RAM to it, and creates a
* virtual CPU for it.\n
* \n
* Memory gets mapped for addresses 0->0xA0000, 0xC0000->phys_mem_bytes
*
* \param kvm Pointer to the current kvm_context
* \param phys_mem_bytes The amount of physical ram you want the VM to have
* \param phys_mem This pointer will be set to point to the memory that
* kvm_create allocates for physical RAM
* \return 0 on success
*/
int kvm_create(kvm_context_t kvm,
unsigned long phys_mem_bytes,
void **phys_mem);
int kvm_create_vm(kvm_context_t kvm);
void kvm_create_irqchip(kvm_context_t kvm);
/*!
* \brief Create a new virtual cpu
*
* This creates a new virtual cpu (the first vcpu is created by kvm_create()).
* Should be called from a thread dedicated to the vcpu.
*
* \param kvm kvm context
* \param slot vcpu number (> 0)
* \return 0 on success, -errno on failure
*/
kvm_vcpu_context_t kvm_create_vcpu(CPUState *env, int id);
/*!
* \brief Start the VCPU
*
* This starts the VCPU and virtualization is started.\n
* \n
* This function will not return until any of these conditions are met:
* - An IO/MMIO handler does not return "0"
* - An exception that neither the guest OS, nor KVM can handle occurs
*
* \note This function will call the callbacks registered in kvm_init()
* to emulate those functions
* \note If you at any point want to interrupt the VCPU, kvm_run() will
* listen to the EINTR signal. This allows you to simulate external interrupts
* and asyncronous IO.
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should be started
* \return 0 on success, but you really shouldn't expect this function to
* return except for when an error has occured, or when you have sent it
* an EINTR signal.
*/
int kvm_run(kvm_vcpu_context_t vcpu, void *env);
/*!
* \brief Get interrupt flag from on last exit to userspace
*
* This gets the CPU interrupt flag as it was on the last exit to userspace.
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should get dumped
* \return interrupt flag value (0 or 1)
*/
int kvm_get_interrupt_flag(kvm_vcpu_context_t vcpu);
/*!
* \brief Get the value of the APIC_BASE msr as of last exit to userspace
*
* This gets the APIC_BASE msr as it was on the last exit to userspace.
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should get dumped
* \return APIC_BASE msr contents
*/
uint64_t kvm_get_apic_base(kvm_vcpu_context_t vcpu);
/*!
* \brief Check if a vcpu is ready for interrupt injection
*
* This checks if vcpu interrupts are not masked by mov ss or sti.
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should get dumped
* \return boolean indicating interrupt injection readiness
*/
int kvm_is_ready_for_interrupt_injection(kvm_vcpu_context_t vcpu);
/*!
* \brief Read VCPU registers
*
* This gets the GP registers from the VCPU and outputs them
* into a kvm_regs structure
*
* \note This function returns a \b copy of the VCPUs registers.\n
* If you wish to modify the VCPUs GP registers, you should call kvm_set_regs()
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should get dumped
* \param regs Pointer to a kvm_regs which will be populated with the VCPUs
* registers values
* \return 0 on success
*/
int kvm_get_regs(kvm_vcpu_context_t vcpu, struct kvm_regs *regs);
/*!
* \brief Write VCPU registers
*
* This sets the GP registers on the VCPU from a kvm_regs structure
*
* \note When this function returns, the regs pointer and the data it points to
* can be discarded
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should get dumped
* \param regs Pointer to a kvm_regs which will be populated with the VCPUs
* registers values
* \return 0 on success
*/
int kvm_set_regs(kvm_vcpu_context_t vcpu, struct kvm_regs *regs);
/*!
* \brief Read VCPU fpu registers
*
* This gets the FPU registers from the VCPU and outputs them
* into a kvm_fpu structure
*
* \note This function returns a \b copy of the VCPUs registers.\n
* If you wish to modify the VCPU FPU registers, you should call kvm_set_fpu()
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should get dumped
* \param fpu Pointer to a kvm_fpu which will be populated with the VCPUs
* fpu registers values
* \return 0 on success
*/
int kvm_get_fpu(kvm_vcpu_context_t vcpu, struct kvm_fpu *fpu);
/*!
* \brief Write VCPU fpu registers
*
* This sets the FPU registers on the VCPU from a kvm_fpu structure
*
* \note When this function returns, the fpu pointer and the data it points to
* can be discarded
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should get dumped
* \param fpu Pointer to a kvm_fpu which holds the new vcpu fpu state
* \return 0 on success
*/
int kvm_set_fpu(kvm_vcpu_context_t vcpu, struct kvm_fpu *fpu);
/*!
* \brief Read VCPU system registers
*
* This gets the non-GP registers from the VCPU and outputs them
* into a kvm_sregs structure
*
* \note This function returns a \b copy of the VCPUs registers.\n
* If you wish to modify the VCPUs non-GP registers, you should call
* kvm_set_sregs()
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should get dumped
* \param regs Pointer to a kvm_sregs which will be populated with the VCPUs
* registers values
* \return 0 on success
*/
int kvm_get_sregs(kvm_vcpu_context_t vcpu, struct kvm_sregs *regs);
/*!
* \brief Write VCPU system registers
*
* This sets the non-GP registers on the VCPU from a kvm_sregs structure
*
* \note When this function returns, the regs pointer and the data it points to
* can be discarded
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should get dumped
* \param regs Pointer to a kvm_sregs which will be populated with the VCPUs
* registers values
* \return 0 on success
*/
int kvm_set_sregs(kvm_vcpu_context_t vcpu, struct kvm_sregs *regs);
#ifdef KVM_CAP_MP_STATE
/*!
* * \brief Read VCPU MP state
*
*/
int kvm_get_mpstate(kvm_vcpu_context_t vcpu, struct kvm_mp_state *mp_state);
/*!
* * \brief Write VCPU MP state
*
*/
int kvm_set_mpstate(kvm_vcpu_context_t vcpu, struct kvm_mp_state *mp_state);
/*!
* * \brief Reset VCPU MP state
*
*/
static inline int kvm_reset_mpstate(kvm_vcpu_context_t vcpu)
{
struct kvm_mp_state mp_state = {.mp_state = KVM_MP_STATE_UNINITIALIZED};
return kvm_set_mpstate(vcpu, &mp_state);
}
#endif
/*!
* \brief Simulate an external vectored interrupt
*
* This allows you to simulate an external vectored interrupt.
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should get dumped
* \param irq Vector number
* \return 0 on success
*/
int kvm_inject_irq(kvm_vcpu_context_t vcpu, unsigned irq);
#ifdef KVM_CAP_SET_GUEST_DEBUG
int kvm_set_guest_debug(kvm_vcpu_context_t, struct kvm_guest_debug *dbg);
#endif
#if defined(__i386__) || defined(__x86_64__)
/*!
* \brief Setup a vcpu's cpuid instruction emulation
*
* Set up a table of cpuid function to cpuid outputs.\n
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should be initialized
* \param nent number of entries to be installed
* \param entries cpuid function entries table
* \return 0 on success, or -errno on error
*/
int kvm_setup_cpuid(kvm_vcpu_context_t vcpu, int nent,
struct kvm_cpuid_entry *entries);
/*!
* \brief Setup a vcpu's cpuid instruction emulation
*
* Set up a table of cpuid function to cpuid outputs.
* This call replaces the older kvm_setup_cpuid interface by adding a few
* parameters to support cpuid functions that have sub-leaf values.
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should be initialized
* \param nent number of entries to be installed
* \param entries cpuid function entries table
* \return 0 on success, or -errno on error
*/
int kvm_setup_cpuid2(kvm_vcpu_context_t vcpu, int nent,
struct kvm_cpuid_entry2 *entries);
/*!
* \brief Setting the number of shadow pages to be allocated to the vm
*
* \param kvm pointer to kvm_context
* \param nrshadow_pages number of pages to be allocated
*/
int kvm_set_shadow_pages(kvm_context_t kvm, unsigned int nrshadow_pages);
/*!
* \brief Getting the number of shadow pages that are allocated to the vm
*
* \param kvm pointer to kvm_context
* \param nrshadow_pages number of pages to be allocated
*/
int kvm_get_shadow_pages(kvm_context_t kvm , unsigned int *nrshadow_pages);
/*!
* \brief Set up cr8 for next time the vcpu is executed
*
* This is a fast setter for cr8, which will be applied when the
* vcpu next enters guest mode.
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should get dumped
* \param cr8 next cr8 value
*/
void kvm_set_cr8(kvm_vcpu_context_t vcpu, uint64_t cr8);
/*!
* \brief Get cr8 for sync tpr in qemu apic emulation
*
* This is a getter for cr8, which used to sync with the tpr in qemu
* apic emualtion.
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should get dumped
*/
__u64 kvm_get_cr8(kvm_vcpu_context_t vcpu);
#endif
/*!
* \brief Set a vcpu's signal mask for guest mode
*
* A vcpu can have different signals blocked in guest mode and user mode.
* This allows guest execution to be interrupted on a signal, without requiring
* that the signal be delivered to a signal handler (the signal can be
* dequeued using sigwait(2).
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should be initialized
* \param sigset signal mask for guest mode
* \return 0 on success, or -errno on error
*/
int kvm_set_signal_mask(kvm_vcpu_context_t vcpu, const sigset_t *sigset);
/*!
* \brief Dump VCPU registers
*
* This dumps some of the information that KVM has about a virtual CPU, namely:
* - GP Registers
*
* A much more verbose version of this is available as kvm_dump_vcpu()
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should get dumped
* \return 0 on success
*/
void kvm_show_regs(kvm_vcpu_context_t vcpu);
void *kvm_create_phys_mem(kvm_context_t, unsigned long phys_start,
unsigned long len, int log, int writable);
void kvm_destroy_phys_mem(kvm_context_t, unsigned long phys_start,
unsigned long len);
void kvm_unregister_memory_area(kvm_context_t, uint64_t phys_start,
unsigned long len);
int kvm_is_containing_region(kvm_context_t kvm, unsigned long phys_start, unsigned long size);
int kvm_register_phys_mem(kvm_context_t kvm,
unsigned long phys_start, void *userspace_addr,
unsigned long len, int log);
int kvm_get_dirty_pages(kvm_context_t, unsigned long phys_addr, void *buf);
int kvm_get_dirty_pages_range(kvm_context_t kvm, unsigned long phys_addr,
unsigned long end_addr, void*opaque,
int (*cb)(unsigned long start, unsigned long len,
void*bitmap, void *opaque));
int kvm_register_coalesced_mmio(kvm_context_t kvm,
uint64_t addr, uint32_t size);
int kvm_unregister_coalesced_mmio(kvm_context_t kvm,
uint64_t addr, uint32_t size);
/*!
* \brief Create a memory alias
*
* Aliases a portion of physical memory to another portion. If the guest
* accesses the alias region, it will behave exactly as if it accessed
* the target memory.
*/
int kvm_create_memory_alias(kvm_context_t,
uint64_t phys_start, uint64_t len,
uint64_t target_phys);
/*!
* \brief Destroy a memory alias
*
* Removes an alias created with kvm_create_memory_alias().
*/
int kvm_destroy_memory_alias(kvm_context_t, uint64_t phys_start);
/*!
* \brief Get a bitmap of guest ram pages which are allocated to the guest.
*
* \param kvm Pointer to the current kvm_context
* \param phys_addr Memory slot phys addr
* \param bitmap Long aligned address of a big enough bitmap (one bit per page)
*/
int kvm_get_mem_map(kvm_context_t kvm, unsigned long phys_addr, void *bitmap);
int kvm_get_mem_map_range(kvm_context_t kvm, unsigned long phys_addr,
unsigned long len, void *buf, void *opaque,
int (*cb)(unsigned long start,unsigned long len,
void* bitmap, void* opaque));
int kvm_set_irq_level(kvm_context_t kvm, int irq, int level, int *status);
int kvm_dirty_pages_log_enable_slot(kvm_context_t kvm,
uint64_t phys_start,
uint64_t len);
int kvm_dirty_pages_log_disable_slot(kvm_context_t kvm,
uint64_t phys_start,
uint64_t len);
/*!
* \brief Enable dirty-pages-logging for all memory regions
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_dirty_pages_log_enable_all(kvm_context_t kvm);
/*!
* \brief Disable dirty-page-logging for some memory regions
*
* Disable dirty-pages-logging for those memory regions that were
* created with dirty-page-logging disabled.
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_dirty_pages_log_reset(kvm_context_t kvm);
/*!
* \brief Query whether in kernel irqchip is used
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_irqchip_in_kernel(kvm_context_t kvm);
#ifdef KVM_CAP_IRQCHIP
/*!
* \brief Dump in kernel IRQCHIP contents
*
* Dump one of the in kernel irq chip devices, including PIC (master/slave)
* and IOAPIC into a kvm_irqchip structure
*
* \param kvm Pointer to the current kvm_context
* \param chip The irq chip device to be dumped
*/
int kvm_get_irqchip(kvm_context_t kvm, struct kvm_irqchip *chip);
/*!
* \brief Set in kernel IRQCHIP contents
*
* Write one of the in kernel irq chip devices, including PIC (master/slave)
* and IOAPIC
*
*
* \param kvm Pointer to the current kvm_context
* \param chip THe irq chip device to be written
*/
int kvm_set_irqchip(kvm_context_t kvm, struct kvm_irqchip *chip);
#if defined(__i386__) || defined(__x86_64__)
/*!
* \brief Get in kernel local APIC for vcpu
*
* Save the local apic state including the timer of a virtual CPU
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should be accessed
* \param s Local apic state of the specific virtual CPU
*/
int kvm_get_lapic(kvm_vcpu_context_t vcpu, struct kvm_lapic_state *s);
/*!
* \brief Set in kernel local APIC for vcpu
*
* Restore the local apic state including the timer of a virtual CPU
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should be accessed
* \param s Local apic state of the specific virtual CPU
*/
int kvm_set_lapic(kvm_vcpu_context_t vcpu, struct kvm_lapic_state *s);
#endif
/*!
* \brief Simulate an NMI
*
* This allows you to simulate a non-maskable interrupt.
*
* \param kvm Pointer to the current kvm_context
* \param vcpu Which virtual CPU should get dumped
* \return 0 on success
*/
int kvm_inject_nmi(kvm_vcpu_context_t vcpu);
#endif
/*!
* \brief Simulate an x86 MCE
*
* This allows you to simulate a x86 MCE.
*
* \param cenv Which virtual CPU should get MCE injected
* \param bank Bank number
* \param status MSR_MCI_STATUS
* \param mcg_status MSR_MCG_STATUS
* \param addr MSR_MCI_ADDR
* \param misc MSR_MCI_MISC
*/
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
uint64_t mcg_status, uint64_t addr, uint64_t misc);
/*!
* \brief Query wheather in kernel pit is used
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_pit_in_kernel(kvm_context_t kvm);
/*!
* \brief Initialize coalesced MMIO
*
* Check for coalesced MMIO capability and store in context
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_init_coalesced_mmio(kvm_context_t kvm);
#ifdef KVM_CAP_PIT
#if defined(__i386__) || defined(__x86_64__)
/*!
* \brief Get in kernel PIT of the virtual domain
*
* Save the PIT state.
*
* \param kvm Pointer to the current kvm_context
* \param s PIT state of the virtual domain
*/
int kvm_get_pit(kvm_context_t kvm, struct kvm_pit_state *s);
/*!
* \brief Set in kernel PIT of the virtual domain
*
* Restore the PIT state.
* Timer would be retriggerred after restored.
*
* \param kvm Pointer to the current kvm_context
* \param s PIT state of the virtual domain
*/
int kvm_set_pit(kvm_context_t kvm, struct kvm_pit_state *s);
int kvm_reinject_control(kvm_context_t kvm, int pit_reinject);
#ifdef KVM_CAP_PIT_STATE2
/*!
* \brief Check for kvm support of kvm_pit_state2
*
* \param kvm Pointer to the current kvm_context
* \return 0 on success
*/
int kvm_has_pit_state2(kvm_context_t kvm);
/*!
* \brief Set in kernel PIT state2 of the virtual domain
*
*
* \param kvm Pointer to the current kvm_context
* \param ps2 PIT state2 of the virtual domain
* \return 0 on success
*/
int kvm_set_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2);
/*!
* \brief Get in kernel PIT state2 of the virtual domain
*
*
* \param kvm Pointer to the current kvm_context
* \param ps2 PIT state2 of the virtual domain
* \return 0 on success
*/
int kvm_get_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2);
#endif
#endif
#endif
#ifdef KVM_CAP_VAPIC
/*!
* \brief Enable kernel tpr access reporting
*
* When tpr access reporting is enabled, the kernel will call the
* ->tpr_access() callback every time the guest vcpu accesses the tpr.
*
* \param kvm Pointer to the current kvm_context
* \param vcpu vcpu to enable tpr access reporting on
*/
int kvm_enable_tpr_access_reporting(kvm_vcpu_context_t vcpu);
/*!
* \brief Disable kernel tpr access reporting
*
* Undoes the effect of kvm_enable_tpr_access_reporting().
*
* \param kvm Pointer to the current kvm_context
* \param vcpu vcpu to disable tpr access reporting on
*/
int kvm_disable_tpr_access_reporting(kvm_vcpu_context_t vcpu);
int kvm_enable_vapic(kvm_vcpu_context_t vcpu, uint64_t vapic);
#endif
#if defined(__s390__)
int kvm_s390_initial_reset(kvm_context_t kvm, int slot);
int kvm_s390_interrupt(kvm_context_t kvm, int slot,
struct kvm_s390_interrupt *kvmint);
int kvm_s390_set_initial_psw(kvm_context_t kvm, int slot, psw_t psw);
int kvm_s390_store_status(kvm_context_t kvm, int slot, unsigned long addr);
#endif
#ifdef KVM_CAP_DEVICE_ASSIGNMENT
/*!
* \brief Notifies host kernel about a PCI device to be assigned to a guest
*
* Used for PCI device assignment, this function notifies the host
* kernel about the assigning of the physical PCI device to a guest.
*
* \param kvm Pointer to the current kvm_context
* \param assigned_dev Parameters, like bus, devfn number, etc
*/
int kvm_assign_pci_device(kvm_context_t kvm,
struct kvm_assigned_pci_dev *assigned_dev);
/*!
* \brief Assign IRQ for an assigned device
*
* Used for PCI device assignment, this function assigns IRQ numbers for
* an physical device and guest IRQ handling.
*
* \param kvm Pointer to the current kvm_context
* \param assigned_irq Parameters, like dev id, host irq, guest irq, etc
*/
int kvm_assign_irq(kvm_context_t kvm,
struct kvm_assigned_irq *assigned_irq);
#ifdef KVM_CAP_ASSIGN_DEV_IRQ
/*!
* \brief Deassign IRQ for an assigned device
*
* Used for PCI device assignment, this function deassigns IRQ numbers
* for an assigned device.
*
* \param kvm Pointer to the current kvm_context
* \param assigned_irq Parameters, like dev id, host irq, guest irq, etc
*/
int kvm_deassign_irq(kvm_context_t kvm,
struct kvm_assigned_irq *assigned_irq);
#endif
#endif
/*!
* \brief Determines whether destroying memory regions is allowed
*
* KVM before 2.6.29 had a bug when destroying memory regions.
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_destroy_memory_region_works(kvm_context_t kvm);
#ifdef KVM_CAP_DEVICE_DEASSIGNMENT
/*!
* \brief Notifies host kernel about a PCI device to be deassigned from a guest
*
* Used for hot remove PCI device, this function notifies the host
* kernel about the deassigning of the physical PCI device from a guest.
*
* \param kvm Pointer to the current kvm_context
* \param assigned_dev Parameters, like bus, devfn number, etc
*/
int kvm_deassign_pci_device(kvm_context_t kvm,
struct kvm_assigned_pci_dev *assigned_dev);
#endif
/*!
* \brief Checks whether the generic irq routing capability is present
*
* Checks whether kvm can reroute interrupts among the various interrupt
* controllers.
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_has_gsi_routing(kvm_context_t kvm);
/*!
* \brief Determines the number of gsis that can be routed
*
* Returns the number of distinct gsis that can be routed by kvm. This is
* also the number of distinct routes (if a gsi has two routes, than another
* gsi cannot be used...)
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_get_gsi_count(kvm_context_t kvm);
/*!
* \brief Clears the temporary irq routing table
*
* Clears the temporary irq routing table. Nothing is committed to the
* running VM.
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_clear_gsi_routes(kvm_context_t kvm);
/*!
* \brief Adds an irq route to the temporary irq routing table
*
* Adds an irq route to the temporary irq routing table. Nothing is
* committed to the running VM.
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_add_irq_route(kvm_context_t kvm, int gsi, int irqchip, int pin);
/*!
* \brief Removes an irq route from the temporary irq routing table
*
* Adds an irq route to the temporary irq routing table. Nothing is
* committed to the running VM.
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_del_irq_route(kvm_context_t kvm, int gsi, int irqchip, int pin);
struct kvm_irq_routing_entry;
/*!
* \brief Adds a routing entry to the temporary irq routing table
*
* Adds a filled routing entry to the temporary irq routing table. Nothing is
* committed to the running VM.
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_add_routing_entry(kvm_context_t kvm,
struct kvm_irq_routing_entry* entry);
/*!
* \brief Removes a routing from the temporary irq routing table
*
* Remove a routing to the temporary irq routing table. Nothing is
* committed to the running VM.
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_del_routing_entry(kvm_context_t kvm,
struct kvm_irq_routing_entry* entry);
/*!
* \brief Updates a routing in the temporary irq routing table
*
* Update a routing in the temporary irq routing table
* with a new value. entry type and GSI can not be changed.
* Nothing is committed to the running VM.
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_update_routing_entry(kvm_context_t kvm,
struct kvm_irq_routing_entry* entry,
struct kvm_irq_routing_entry* newentry
);
/*!
* \brief Commit the temporary irq routing table
*
* Commit the temporary irq routing table to the running VM.
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_commit_irq_routes(kvm_context_t kvm);
/*!
* \brief Get unused GSI number for irq routing table
*
* Get unused GSI number for irq routing table
*
* \param kvm Pointer to the current kvm_context
*/
int kvm_get_irq_route_gsi(kvm_context_t kvm);
/*!
* \brief Create a file descriptor for injecting interrupts
*
* Creates an eventfd based file-descriptor that maps to a specific GSI
* in the guest. eventfd compliant signaling (write() from userspace, or
* eventfd_signal() from kernelspace) will cause the GSI to inject
* itself into the guest at the next available window.
*
* \param kvm Pointer to the current kvm_context
* \param gsi GSI to assign to this fd
* \param flags reserved, must be zero
*/
int kvm_irqfd(kvm_context_t kvm, int gsi, int flags);
#ifdef KVM_CAP_DEVICE_MSIX
int kvm_assign_set_msix_nr(kvm_context_t kvm,
struct kvm_assigned_msix_nr *msix_nr);
int kvm_assign_set_msix_entry(kvm_context_t kvm,
struct kvm_assigned_msix_entry *entry);
#endif
uint32_t kvm_get_supported_cpuid(kvm_context_t kvm, uint32_t function, int reg);
#else /* !CONFIG_KVM */
typedef struct kvm_context *kvm_context_t;
typedef struct kvm_vcpu_context *kvm_vcpu_context_t;
struct kvm_pit_state { };
static inline int kvm_init(int smp_cpus) { return 0; }
static inline void kvm_inject_x86_mce(
CPUState *cenv, int bank,uint64_t status,
uint64_t mcg_status, uint64_t addr, uint64_t misc) { }
extern int kvm_allowed;
#endif /* !CONFIG_KVM */
int kvm_main_loop(void);
int kvm_qemu_init(void);
int kvm_init_ap(void);
int kvm_vcpu_inited(CPUState *env);
void kvm_load_registers(CPUState *env);
void kvm_save_registers(CPUState *env);
void kvm_load_mpstate(CPUState *env);
void kvm_save_mpstate(CPUState *env);
int kvm_cpu_exec(CPUState *env);
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type);
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type);
void kvm_remove_all_breakpoints(CPUState *current_env);
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap);
int kvm_qemu_init_env(CPUState *env);
int kvm_qemu_check_extension(int ext);
void kvm_apic_init(CPUState *env);
/* called from vcpu initialization */
void qemu_kvm_load_lapic(CPUState *env);
void kvm_hpet_enable_kpit(void);
void kvm_hpet_disable_kpit(void);
int kvm_set_irq(int irq, int level, int *status);
int kvm_physical_memory_set_dirty_tracking(int enable);
int kvm_update_dirty_pages_log(void);
int kvm_get_phys_ram_page_bitmap(unsigned char *bitmap);
void qemu_kvm_call_with_env(void (*func)(void *), void *data, CPUState *env);
void qemu_kvm_cpuid_on_env(CPUState *env);
void kvm_inject_interrupt(CPUState *env, int mask);
void kvm_update_after_sipi(CPUState *env);
void kvm_update_interrupt_request(CPUState *env);
void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
ram_addr_t phys_offset);
void *kvm_cpu_create_phys_mem(target_phys_addr_t start_addr,
unsigned long size, int log, int writable);
void kvm_cpu_destroy_phys_mem(target_phys_addr_t start_addr,
unsigned long size);
void kvm_qemu_log_memory(target_phys_addr_t start, target_phys_addr_t size,
int log);
int kvm_setup_guest_memory(void *area, unsigned long size);
int kvm_qemu_create_memory_alias(uint64_t phys_start,
uint64_t len,
uint64_t target_phys);
int kvm_qemu_destroy_memory_alias(uint64_t phys_start);
int kvm_arch_qemu_create_context(void);
void kvm_arch_save_regs(CPUState *env);
void kvm_arch_load_regs(CPUState *env);
void kvm_arch_load_mpstate(CPUState *env);
void kvm_arch_save_mpstate(CPUState *env);
int kvm_arch_qemu_init_env(CPUState *cenv);
void kvm_arch_pre_kvm_run(void *opaque, CPUState *env);
void kvm_arch_post_kvm_run(void *opaque, CPUState *env);
int kvm_arch_has_work(CPUState *env);
void kvm_arch_process_irqchip_events(CPUState *env);
int kvm_arch_try_push_interrupts(void *opaque);
void kvm_arch_push_nmi(void *opaque);
void kvm_arch_update_regs_for_sipi(CPUState *env);
void kvm_arch_cpu_reset(CPUState *env);
int kvm_set_boot_cpu_id(uint32_t id);
struct kvm_guest_debug;
struct kvm_debug_exit_arch;
struct kvm_sw_breakpoint {
target_ulong pc;
target_ulong saved_insn;
int use_count;
TAILQ_ENTRY(kvm_sw_breakpoint) entry;
};
TAILQ_HEAD(kvm_sw_breakpoint_head, kvm_sw_breakpoint);
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info);
int kvm_sw_breakpoints_active(CPUState *env);
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, target_ulong pc);
int kvm_arch_insert_sw_breakpoint(CPUState *current_env,
struct kvm_sw_breakpoint *bp);
int kvm_arch_remove_sw_breakpoint(CPUState *current_env,
struct kvm_sw_breakpoint *bp);
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
target_ulong len, int type);
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
target_ulong len, int type);
void kvm_arch_remove_all_hw_breakpoints(void);
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg);
void qemu_kvm_aio_wait_start(void);
void qemu_kvm_aio_wait(void);
void qemu_kvm_aio_wait_end(void);
void qemu_kvm_notify_work(void);
void kvm_tpr_opt_setup(void);
void kvm_tpr_access_report(CPUState *env, uint64_t rip, int is_write);
void kvm_tpr_vcpu_start(CPUState *env);
int qemu_kvm_get_dirty_pages(unsigned long phys_addr, void *buf);
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size);
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size);
int kvm_arch_init_irq_routing(void);
int kvm_mmio_read(void *opaque, uint64_t addr, uint8_t *data, int len);
int kvm_mmio_write(void *opaque, uint64_t addr, uint8_t *data, int len);
#ifdef USE_KVM_DEVICE_ASSIGNMENT
struct ioperm_data;
void kvm_ioperm(CPUState *env, void *data);
void kvm_add_ioperm_data(struct ioperm_data *data);
void kvm_remove_ioperm_data(unsigned long start_port, unsigned long num);
void kvm_arch_do_ioperm(void *_data);
#endif
#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
#define BITMAP_SIZE(m) (ALIGN(((m)>>TARGET_PAGE_BITS), HOST_LONG_BITS) / 8)
#ifdef CONFIG_KVM
#include "sys-queue.h"
extern int kvm_allowed;
extern int kvm_irqchip;
extern int kvm_pit;
extern int kvm_pit_reinject;
extern int kvm_nested;
extern kvm_context_t kvm_context;
struct ioperm_data {
unsigned long start_port;
unsigned long num;
int turn_on;
LIST_ENTRY(ioperm_data) entries;
};
void qemu_kvm_cpu_stop(CPUState *env);
int kvm_arch_halt(void *opaque, kvm_vcpu_context_t vcpu);
int handle_tpr_access(void *opaque, kvm_vcpu_context_t vcpu,
uint64_t rip, int is_write);
int kvm_has_sync_mmu(void);
#define kvm_enabled() (kvm_allowed)
#define qemu_kvm_irqchip_in_kernel() kvm_irqchip_in_kernel(kvm_context)
#define qemu_kvm_pit_in_kernel() kvm_pit_in_kernel(kvm_context)
#define qemu_kvm_has_gsi_routing() kvm_has_gsi_routing(kvm_context)
#ifdef TARGET_I386
#define qemu_kvm_has_pit_state2() kvm_has_pit_state2(kvm_context)
#endif
void kvm_init_vcpu(CPUState *env);
void kvm_load_tsc(CPUState *env);
#else
#define kvm_has_sync_mmu() (0)
#define kvm_enabled() (0)
#define kvm_nested 0
#define qemu_kvm_irqchip_in_kernel() (0)
#define qemu_kvm_pit_in_kernel() (0)
#define qemu_kvm_has_gsi_routing() (0)
#ifdef TARGET_I386
#define qemu_kvm_has_pit_state2() (0)
#endif
#define kvm_load_registers(env) do {} while(0)
#define kvm_save_registers(env) do {} while(0)
#define qemu_kvm_cpu_stop(env) do {} while(0)
static inline void kvm_init_vcpu(CPUState *env) { }
static inline void kvm_load_tsc(CPUState *env) {}
#endif
void kvm_mutex_unlock(void);
void kvm_mutex_lock(void);
static inline void qemu_mutex_unlock_iothread(void)
{
if (kvm_enabled())
kvm_mutex_unlock();
}
static inline void qemu_mutex_lock_iothread(void)
{
if (kvm_enabled())
kvm_mutex_lock();
}
int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
int kvm_log_start(target_phys_addr_t phys_addr, target_phys_addr_t len);
int kvm_log_stop(target_phys_addr_t phys_addr, target_phys_addr_t len);
static inline int kvm_sync_vcpus(void) { return 0; }
static inline void kvm_arch_get_registers(CPUState *env)
{
kvm_save_registers(env);
kvm_save_mpstate(env);
}
static inline void kvm_arch_put_registers(CPUState *env)
{
kvm_load_registers(env);
kvm_load_mpstate(env);
}
static inline void cpu_synchronize_state(CPUState *env, int modified)
{
if (kvm_enabled()) {
if (modified)
kvm_arch_put_registers(env);
else
kvm_arch_get_registers(env);
}
}
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
int reg);
static inline int kvm_set_migration_log(int enable)
{
return kvm_physical_memory_set_dirty_tracking(enable);
}
#ifdef CONFIG_KVM
typedef struct KVMSlot
{
target_phys_addr_t start_addr;
ram_addr_t memory_size;
ram_addr_t phys_offset;
int slot;
int flags;
} KVMSlot;
typedef struct kvm_dirty_log KVMDirtyLog;
typedef struct KVMState
{
KVMSlot slots[32];
int fd;
int vmfd;
int coalesced_mmio;
int broken_set_mem_region;
int migration_log;
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
#endif
struct kvm_context kvm_context;
} KVMState;
extern KVMState *kvm_state;
int kvm_ioctl(KVMState *s, int type, ...);
int kvm_vm_ioctl(KVMState *s, int type, ...);
int kvm_check_extension(KVMState *s, unsigned int ext);
#endif
#endif