blob: 272a4ef45cff0ee07ca08269433d42d8bcdb8203 [file] [log] [blame]
#include "libcflat.h"
#include "smp.h"
#define true 1
#define false 0
typedef unsigned long pt_element_t;
#define PAGE_SIZE ((pt_element_t)4096)
#define PAGE_MASK (~(PAGE_SIZE-1))
#define PT_BASE_ADDR_MASK ((pt_element_t)((((pt_element_t)1 << 40) - 1) & PAGE_MASK))
#define PT_PSE_BASE_ADDR_MASK (PT_BASE_ADDR_MASK & ~(1ull << 21))
#define PT_PRESENT_MASK ((pt_element_t)1 << 0)
#define PT_WRITABLE_MASK ((pt_element_t)1 << 1)
#define PT_USER_MASK ((pt_element_t)1 << 2)
#define PT_ACCESSED_MASK ((pt_element_t)1 << 5)
#define PT_DIRTY_MASK ((pt_element_t)1 << 6)
#define PT_PSE_MASK ((pt_element_t)1 << 7)
#define PT_NX_MASK ((pt_element_t)1 << 63)
#define CR0_WP_MASK (1UL << 16)
#define PFERR_PRESENT_MASK (1U << 0)
#define PFERR_WRITE_MASK (1U << 1)
#define PFERR_USER_MASK (1U << 2)
#define PFERR_RESERVED_MASK (1U << 3)
#define PFERR_FETCH_MASK (1U << 4)
#define MSR_EFER 0xc0000080
#define EFER_NX_MASK (1ull << 11)
/*
* page table access check tests
*/
enum {
AC_PTE_PRESENT,
AC_PTE_WRITABLE,
AC_PTE_USER,
AC_PTE_ACCESSED,
AC_PTE_DIRTY,
AC_PTE_NX,
AC_PTE_BIT51,
AC_PDE_PRESENT,
AC_PDE_WRITABLE,
AC_PDE_USER,
AC_PDE_ACCESSED,
AC_PDE_DIRTY,
AC_PDE_PSE,
AC_PDE_NX,
AC_PDE_BIT51,
AC_ACCESS_USER,
AC_ACCESS_WRITE,
AC_ACCESS_FETCH,
AC_ACCESS_TWICE,
// AC_ACCESS_PTE,
AC_CPU_EFER_NX,
AC_CPU_CR0_WP,
NR_AC_FLAGS
};
const char *ac_names[] = {
[AC_PTE_PRESENT] = "pte.p",
[AC_PTE_ACCESSED] = "pte.a",
[AC_PTE_WRITABLE] = "pte.rw",
[AC_PTE_USER] = "pte.user",
[AC_PTE_DIRTY] = "pte.d",
[AC_PTE_NX] = "pte.nx",
[AC_PTE_BIT51] = "pte.51",
[AC_PDE_PRESENT] = "pde.p",
[AC_PDE_ACCESSED] = "pde.a",
[AC_PDE_WRITABLE] = "pde.rw",
[AC_PDE_USER] = "pde.user",
[AC_PDE_DIRTY] = "pde.d",
[AC_PDE_PSE] = "pde.pse",
[AC_PDE_NX] = "pde.nx",
[AC_PDE_BIT51] = "pde.51",
[AC_ACCESS_WRITE] = "write",
[AC_ACCESS_USER] = "user",
[AC_ACCESS_FETCH] = "fetch",
[AC_ACCESS_TWICE] = "twice",
[AC_CPU_EFER_NX] = "efer.nx",
[AC_CPU_CR0_WP] = "cr0.wp",
};
static inline void *va(pt_element_t phys)
{
return (void *)phys;
}
static unsigned long read_cr0()
{
unsigned long cr0;
asm volatile ("mov %%cr0, %0" : "=r"(cr0));
return cr0;
}
static void write_cr0(unsigned long cr0)
{
asm volatile ("mov %0, %%cr0" : : "r"(cr0));
}
typedef struct {
unsigned short offset0;
unsigned short selector;
unsigned short ist : 3;
unsigned short : 5;
unsigned short type : 4;
unsigned short : 1;
unsigned short dpl : 2;
unsigned short p : 1;
unsigned short offset1;
unsigned offset2;
unsigned reserved;
} idt_entry_t;
typedef struct {
unsigned flags[NR_AC_FLAGS];
void *virt;
pt_element_t phys;
pt_element_t pt_pool;
unsigned pt_pool_size;
unsigned pt_pool_current;
pt_element_t *ptep;
pt_element_t expected_pte;
pt_element_t *pdep;
pt_element_t expected_pde;
int expected_fault;
unsigned expected_error;
idt_entry_t idt[256];
} ac_test_t;
typedef struct {
unsigned short limit;
unsigned long linear_addr;
} __attribute__((packed)) descriptor_table_t;
void lidt(idt_entry_t *idt, int nentries)
{
descriptor_table_t dt;
dt.limit = nentries * sizeof(*idt) - 1;
dt.linear_addr = (unsigned long)idt;
asm volatile ("lidt %0" : : "m"(dt));
}
void memset(void *a, unsigned char v, int n)
{
unsigned char *x = a;
while (n--)
*x++ = v;
}
unsigned short read_cs()
{
unsigned short r;
asm volatile ("mov %%cs, %0" : "=r"(r));
return r;
}
unsigned long long rdmsr(unsigned index)
{
unsigned a, d;
asm volatile("rdmsr" : "=a"(a), "=d"(d) : "c"(index));
return ((unsigned long long)d << 32) | a;
}
void wrmsr(unsigned index, unsigned long long val)
{
unsigned a = val, d = val >> 32;
asm volatile("wrmsr" : : "a"(a), "d"(d), "c"(index));
}
void set_idt_entry(idt_entry_t *e, void *addr, int dpl)
{
memset(e, 0, sizeof *e);
e->offset0 = (unsigned long)addr;
e->selector = read_cs();
e->ist = 0;
e->type = 14;
e->dpl = dpl;
e->p = 1;
e->offset1 = (unsigned long)addr >> 16;
e->offset2 = (unsigned long)addr >> 32;
}
void set_cr0_wp(int wp)
{
unsigned long cr0 = read_cr0();
cr0 &= ~CR0_WP_MASK;
if (wp)
cr0 |= CR0_WP_MASK;
write_cr0(cr0);
}
void set_efer_nx(int nx)
{
unsigned long long efer;
efer = rdmsr(MSR_EFER);
efer &= ~EFER_NX_MASK;
if (nx)
efer |= EFER_NX_MASK;
wrmsr(MSR_EFER, efer);
}
void ac_test_init(ac_test_t *at)
{
wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NX_MASK);
set_cr0_wp(1);
for (int i = 0; i < NR_AC_FLAGS; ++i)
at->flags[i] = 0;
at->virt = (void *)(0x123400000000 + 16 * smp_id());
at->phys = 32 * 1024 * 1024;
at->pt_pool = 33 * 1024 * 1024;
at->pt_pool_size = 120 * 1024 * 1024 - at->pt_pool;
at->pt_pool_current = 0;
memset(at->idt, 0, sizeof at->idt);
lidt(at->idt, 256);
extern char page_fault, kernel_entry;
set_idt_entry(&at->idt[14], &page_fault, 0);
set_idt_entry(&at->idt[0x20], &kernel_entry, 3);
}
int ac_test_bump_one(ac_test_t *at)
{
for (int i = 0; i < NR_AC_FLAGS; ++i)
if (!at->flags[i]) {
at->flags[i] = 1;
return 1;
} else
at->flags[i] = 0;
return 0;
}
_Bool ac_test_legal(ac_test_t *at)
{
if (at->flags[AC_ACCESS_FETCH] && at->flags[AC_ACCESS_WRITE])
return false;
return true;
}
int ac_test_bump(ac_test_t *at)
{
int ret;
ret = ac_test_bump_one(at);
while (ret && !ac_test_legal(at))
ret = ac_test_bump_one(at);
return ret;
}
unsigned long read_cr3()
{
unsigned long cr3;
asm volatile ("mov %%cr3, %0" : "=r"(cr3));
return cr3;
}
void invlpg(void *addr)
{
asm volatile ("invlpg (%0)" : : "r"(addr));
}
pt_element_t ac_test_alloc_pt(ac_test_t *at)
{
pt_element_t ret = at->pt_pool + at->pt_pool_current;
at->pt_pool_current += PAGE_SIZE;
return ret;
}
_Bool ac_test_enough_room(ac_test_t *at)
{
return at->pt_pool_current + 4 * PAGE_SIZE <= at->pt_pool_size;
}
void ac_test_reset_pt_pool(ac_test_t *at)
{
at->pt_pool_current = 0;
}
void ac_test_setup_pte(ac_test_t *at)
{
unsigned long root = read_cr3();
int pde_valid, pte_valid;
if (!ac_test_enough_room(at))
ac_test_reset_pt_pool(at);
at->ptep = 0;
for (int i = 4; i >= 1 && (i >= 2 || !at->flags[AC_PDE_PSE]); --i) {
pt_element_t *vroot = va(root & PT_BASE_ADDR_MASK);
unsigned index = ((unsigned long)at->virt >> (12 + (i-1) * 9)) & 511;
pt_element_t pte = 0;
switch (i) {
case 4:
case 3:
pte = vroot[index];
pte = ac_test_alloc_pt(at) | PT_PRESENT_MASK;
pte |= PT_WRITABLE_MASK | PT_USER_MASK;
break;
case 2:
if (!at->flags[AC_PDE_PSE])
pte = ac_test_alloc_pt(at);
else {
pte = at->phys & PT_PSE_BASE_ADDR_MASK;
pte |= PT_PSE_MASK;
}
if (at->flags[AC_PDE_PRESENT])
pte |= PT_PRESENT_MASK;
if (at->flags[AC_PDE_WRITABLE])
pte |= PT_WRITABLE_MASK;
if (at->flags[AC_PDE_USER])
pte |= PT_USER_MASK;
if (at->flags[AC_PDE_ACCESSED])
pte |= PT_ACCESSED_MASK;
if (at->flags[AC_PDE_DIRTY])
pte |= PT_DIRTY_MASK;
if (at->flags[AC_PDE_NX])
pte |= PT_NX_MASK;
if (at->flags[AC_PDE_BIT51])
pte |= 1ull << 51;
at->pdep = &vroot[index];
break;
case 1:
pte = at->phys & PT_BASE_ADDR_MASK;
if (at->flags[AC_PTE_PRESENT])
pte |= PT_PRESENT_MASK;
if (at->flags[AC_PTE_WRITABLE])
pte |= PT_WRITABLE_MASK;
if (at->flags[AC_PTE_USER])
pte |= PT_USER_MASK;
if (at->flags[AC_PTE_ACCESSED])
pte |= PT_ACCESSED_MASK;
if (at->flags[AC_PTE_DIRTY])
pte |= PT_DIRTY_MASK;
if (at->flags[AC_PTE_NX])
pte |= PT_NX_MASK;
if (at->flags[AC_PTE_BIT51])
pte |= 1ull << 51;
at->ptep = &vroot[index];
break;
}
vroot[index] = pte;
root = vroot[index];
}
invlpg(at->virt);
if (at->ptep)
at->expected_pte = *at->ptep;
at->expected_pde = *at->pdep;
at->expected_fault = 0;
at->expected_error = PFERR_PRESENT_MASK;
pde_valid = at->flags[AC_PDE_PRESENT]
&& !at->flags[AC_PDE_BIT51]
&& !(at->flags[AC_PDE_NX] && !at->flags[AC_CPU_EFER_NX]);
pte_valid = pde_valid
&& at->flags[AC_PTE_PRESENT]
&& !at->flags[AC_PTE_BIT51]
&& !(at->flags[AC_PTE_NX] && !at->flags[AC_CPU_EFER_NX]);
if (at->flags[AC_ACCESS_TWICE]) {
if (pde_valid) {
at->expected_pde |= PT_ACCESSED_MASK;
if (pte_valid)
at->expected_pte |= PT_ACCESSED_MASK;
}
}
if (at->flags[AC_ACCESS_USER])
at->expected_error |= PFERR_USER_MASK;
if (at->flags[AC_ACCESS_WRITE])
at->expected_error |= PFERR_WRITE_MASK;
if (at->flags[AC_ACCESS_FETCH])
at->expected_error |= PFERR_FETCH_MASK;
if (!at->flags[AC_PDE_PRESENT]) {
at->expected_fault = 1;
at->expected_error &= ~PFERR_PRESENT_MASK;
} else if (!pde_valid) {
at->expected_fault = 1;
at->expected_error |= PFERR_RESERVED_MASK;
}
if (at->flags[AC_ACCESS_USER] && !at->flags[AC_PDE_USER])
at->expected_fault = 1;
if (at->flags[AC_ACCESS_WRITE]
&& !at->flags[AC_PDE_WRITABLE]
&& (at->flags[AC_CPU_CR0_WP] || at->flags[AC_ACCESS_USER]))
at->expected_fault = 1;
if (at->flags[AC_ACCESS_FETCH] && at->flags[AC_PDE_NX])
at->expected_fault = 1;
if (at->expected_fault)
goto fault;
at->expected_pde |= PT_ACCESSED_MASK;
if (at->flags[AC_PDE_PSE]) {
if (at->flags[AC_ACCESS_WRITE])
at->expected_pde |= PT_DIRTY_MASK;
goto no_pte;
}
if (!at->flags[AC_PTE_PRESENT]) {
at->expected_fault = 1;
at->expected_error &= ~PFERR_PRESENT_MASK;
} else if (!pte_valid) {
at->expected_fault = 1;
at->expected_error |= PFERR_RESERVED_MASK;
}
if (at->flags[AC_ACCESS_USER] && !at->flags[AC_PTE_USER])
at->expected_fault = 1;
if (at->flags[AC_ACCESS_WRITE]
&& !at->flags[AC_PTE_WRITABLE]
&& (at->flags[AC_CPU_CR0_WP] || at->flags[AC_ACCESS_USER]))
at->expected_fault = 1;
if (at->flags[AC_ACCESS_FETCH] && at->flags[AC_PTE_NX])
at->expected_fault = 1;
if (at->expected_fault)
goto fault;
at->expected_pte |= PT_ACCESSED_MASK;
if (at->flags[AC_ACCESS_WRITE])
at->expected_pte |= PT_DIRTY_MASK;
no_pte:
fault:
;
}
int ac_test_do_access(ac_test_t *at)
{
static unsigned unique = 42;
int fault = 0;
unsigned e;
static unsigned char user_stack[4096];
unsigned long rsp;
++unique;
*((unsigned char *)at->phys) = 0xc3; /* ret */
unsigned r = unique;
set_cr0_wp(at->flags[AC_CPU_CR0_WP]);
set_efer_nx(at->flags[AC_CPU_EFER_NX]);
if (at->flags[AC_ACCESS_TWICE]) {
asm volatile (
"mov $fixed2, %%rsi \n\t"
"mov (%[addr]), %[reg] \n\t"
"fixed2:"
: [reg]"=r"(r), [fault]"=a"(fault), "=b"(e)
: [addr]"r"(at->virt)
: "rsi"
);
fault = 0;
}
asm volatile ("mov $fixed1, %%rsi \n\t"
"mov %%rsp, %%rdx \n\t"
"cmp $0, %[user] \n\t"
"jz do_access \n\t"
"push %%rax; mov %[user_ds], %%ax; mov %%ax, %%ds; pop %%rax \n\t"
"pushq %[user_ds] \n\t"
"pushq %[user_stack_top] \n\t"
"pushfq \n\t"
"pushq %[user_cs] \n\t"
"pushq $do_access \n\t"
"iretq \n"
"do_access: \n\t"
"cmp $0, %[fetch] \n\t"
"jnz 2f \n\t"
"cmp $0, %[write] \n\t"
"jnz 1f \n\t"
"mov (%[addr]), %[reg] \n\t"
"jmp done \n\t"
"1: mov %[reg], (%[addr]) \n\t"
"jmp done \n\t"
"2: call *%[addr] \n\t"
"done: \n"
"fixed1: \n"
"int %[kernel_entry_vector] \n\t"
"back_to_kernel:"
: [reg]"+r"(r), "+a"(fault), "=b"(e), "=&d"(rsp)
: [addr]"r"(at->virt),
[write]"r"(at->flags[AC_ACCESS_WRITE]),
[user]"r"(at->flags[AC_ACCESS_USER]),
[fetch]"r"(at->flags[AC_ACCESS_FETCH]),
[user_ds]"i"(32+3),
[user_cs]"i"(24+3),
[user_stack_top]"r"(user_stack + sizeof user_stack),
[kernel_entry_vector]"i"(0x20)
: "rsi");
asm volatile (".section .text.pf \n\t"
"page_fault: \n\t"
"pop %rbx \n\t"
"mov %rsi, (%rsp) \n\t"
"movl $1, %eax \n\t"
"iretq \n\t"
".section .text");
asm volatile (".section .text.entry \n\t"
"kernel_entry: \n\t"
"mov %rdx, %rsp \n\t"
"jmp back_to_kernel \n\t"
".section .text");
if (fault && !at->expected_fault) {
printf("FAIL: unexpected fault\n");
return 0;
}
if (!fault && at->expected_fault) {
printf("FAIL: unexpected access\n");
return 0;
}
if (fault && e != at->expected_error) {
printf("FAIL: error code %x expected %x\n", e, at->expected_error);
return 0;
}
if (at->ptep && *at->ptep != at->expected_pte) {
printf("FAIL: pte %x expected %x\n", *at->ptep, at->expected_pte);
return 0;
}
if (*at->pdep != at->expected_pde) {
printf("FAIL: pde %x expected %x\n", *at->pdep, at->expected_pde);
return 0;
}
printf("PASS\n");
return 1;
}
int ac_test_exec(ac_test_t *at)
{
int r;
char line[5000];
*line = 0;
strcat(line, "test");
for (int i = 0; i < NR_AC_FLAGS; ++i)
if (at->flags[i]) {
strcat(line, " ");
strcat(line, ac_names[i]);
}
strcat(line, ": ");
printf("%s", line);
ac_test_setup_pte(at);
r = ac_test_do_access(at);
return r;
}
int ac_test_run(void)
{
static ac_test_t at;
int tests, successes;
printf("run\n");
tests = successes = 0;
ac_test_init(&at);
do {
++tests;
successes += ac_test_exec(&at);
} while (ac_test_bump(&at));
printf("\n%d tests, %d failures\n", tests, tests - successes);
return successes == tests;
}
int main()
{
int r;
printf("starting test\n\n");
smp_init((void(*)(void))ac_test_run);
r = ac_test_run();
return r ? 0 : 1;
}