| /* |
| * qemu/kvm integration, x86 specific code |
| * |
| * Copyright (C) 2006-2008 Qumranet Technologies |
| * |
| * Licensed under the terms of the GNU GPL version 2 or higher. |
| */ |
| |
| #include "config.h" |
| #include "config-host.h" |
| |
| #include <string.h> |
| #include "hw/hw.h" |
| #include "gdbstub.h" |
| #include <sys/io.h> |
| |
| #include "qemu-kvm.h" |
| #include <libkvm.h> |
| #include <pthread.h> |
| #include <sys/utsname.h> |
| #include <linux/kvm_para.h> |
| |
| #define MSR_IA32_TSC 0x10 |
| |
| static struct kvm_msr_list *kvm_msr_list; |
| extern unsigned int kvm_shadow_memory; |
| static int kvm_has_msr_star; |
| |
| static int lm_capable_kernel; |
| |
| int kvm_qemu_create_memory_alias(uint64_t phys_start, |
| uint64_t len, |
| uint64_t target_phys) |
| { |
| return kvm_create_memory_alias(kvm_context, phys_start, len, target_phys); |
| } |
| |
| int kvm_qemu_destroy_memory_alias(uint64_t phys_start) |
| { |
| return kvm_destroy_memory_alias(kvm_context, phys_start); |
| } |
| |
| int kvm_arch_qemu_create_context(void) |
| { |
| int i; |
| struct utsname utsname; |
| |
| uname(&utsname); |
| lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; |
| |
| if (kvm_shadow_memory) |
| kvm_set_shadow_pages(kvm_context, kvm_shadow_memory); |
| |
| kvm_msr_list = kvm_get_msr_list(kvm_context); |
| if (!kvm_msr_list) |
| return -1; |
| for (i = 0; i < kvm_msr_list->nmsrs; ++i) |
| if (kvm_msr_list->indices[i] == MSR_STAR) |
| kvm_has_msr_star = 1; |
| return 0; |
| } |
| |
| static void set_msr_entry(struct kvm_msr_entry *entry, uint32_t index, |
| uint64_t data) |
| { |
| entry->index = index; |
| entry->data = data; |
| } |
| |
| /* returns 0 on success, non-0 on failure */ |
| static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env) |
| { |
| switch (entry->index) { |
| case MSR_IA32_SYSENTER_CS: |
| env->sysenter_cs = entry->data; |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| env->sysenter_esp = entry->data; |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| env->sysenter_eip = entry->data; |
| break; |
| case MSR_STAR: |
| env->star = entry->data; |
| break; |
| #ifdef TARGET_X86_64 |
| case MSR_CSTAR: |
| env->cstar = entry->data; |
| break; |
| case MSR_KERNELGSBASE: |
| env->kernelgsbase = entry->data; |
| break; |
| case MSR_FMASK: |
| env->fmask = entry->data; |
| break; |
| case MSR_LSTAR: |
| env->lstar = entry->data; |
| break; |
| #endif |
| case MSR_IA32_TSC: |
| env->tsc = entry->data; |
| break; |
| case MSR_VM_HSAVE_PA: |
| env->vm_hsave = entry->data; |
| break; |
| default: |
| printf("Warning unknown msr index 0x%x\n", entry->index); |
| return 1; |
| } |
| return 0; |
| } |
| |
| #ifdef TARGET_X86_64 |
| #define MSR_COUNT 9 |
| #else |
| #define MSR_COUNT 5 |
| #endif |
| |
| static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
| { |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->type = 3; |
| lhs->present = 1; |
| lhs->dpl = 3; |
| lhs->db = 0; |
| lhs->s = 1; |
| lhs->l = 0; |
| lhs->g = 0; |
| lhs->avl = 0; |
| lhs->unusable = 0; |
| } |
| |
| static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
| { |
| unsigned flags = rhs->flags; |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; |
| lhs->present = (flags & DESC_P_MASK) != 0; |
| lhs->dpl = rhs->selector & 3; |
| lhs->db = (flags >> DESC_B_SHIFT) & 1; |
| lhs->s = (flags & DESC_S_MASK) != 0; |
| lhs->l = (flags >> DESC_L_SHIFT) & 1; |
| lhs->g = (flags & DESC_G_MASK) != 0; |
| lhs->avl = (flags & DESC_AVL_MASK) != 0; |
| lhs->unusable = 0; |
| } |
| |
| static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) |
| { |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->flags = |
| (rhs->type << DESC_TYPE_SHIFT) |
| | (rhs->present * DESC_P_MASK) |
| | (rhs->dpl << DESC_DPL_SHIFT) |
| | (rhs->db << DESC_B_SHIFT) |
| | (rhs->s * DESC_S_MASK) |
| | (rhs->l << DESC_L_SHIFT) |
| | (rhs->g * DESC_G_MASK) |
| | (rhs->avl * DESC_AVL_MASK); |
| } |
| |
| void kvm_arch_load_regs(CPUState *env) |
| { |
| struct kvm_regs regs; |
| struct kvm_fpu fpu; |
| struct kvm_sregs sregs; |
| struct kvm_msr_entry msrs[MSR_COUNT]; |
| int rc, n, i; |
| |
| regs.rax = env->regs[R_EAX]; |
| regs.rbx = env->regs[R_EBX]; |
| regs.rcx = env->regs[R_ECX]; |
| regs.rdx = env->regs[R_EDX]; |
| regs.rsi = env->regs[R_ESI]; |
| regs.rdi = env->regs[R_EDI]; |
| regs.rsp = env->regs[R_ESP]; |
| regs.rbp = env->regs[R_EBP]; |
| #ifdef TARGET_X86_64 |
| regs.r8 = env->regs[8]; |
| regs.r9 = env->regs[9]; |
| regs.r10 = env->regs[10]; |
| regs.r11 = env->regs[11]; |
| regs.r12 = env->regs[12]; |
| regs.r13 = env->regs[13]; |
| regs.r14 = env->regs[14]; |
| regs.r15 = env->regs[15]; |
| #endif |
| |
| regs.rflags = env->eflags; |
| regs.rip = env->eip; |
| |
| kvm_set_regs(kvm_context, env->cpu_index, ®s); |
| |
| memset(&fpu, 0, sizeof fpu); |
| fpu.fsw = env->fpus & ~(7 << 11); |
| fpu.fsw |= (env->fpstt & 7) << 11; |
| fpu.fcw = env->fpuc; |
| for (i = 0; i < 8; ++i) |
| fpu.ftwx |= (!env->fptags[i]) << i; |
| memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
| memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); |
| fpu.mxcsr = env->mxcsr; |
| kvm_set_fpu(kvm_context, env->cpu_index, &fpu); |
| |
| memcpy(sregs.interrupt_bitmap, env->interrupt_bitmap, sizeof(sregs.interrupt_bitmap)); |
| |
| if ((env->eflags & VM_MASK)) { |
| set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
| set_v8086_seg(&sregs.ds, &env->segs[R_DS]); |
| set_v8086_seg(&sregs.es, &env->segs[R_ES]); |
| set_v8086_seg(&sregs.fs, &env->segs[R_FS]); |
| set_v8086_seg(&sregs.gs, &env->segs[R_GS]); |
| set_v8086_seg(&sregs.ss, &env->segs[R_SS]); |
| } else { |
| set_seg(&sregs.cs, &env->segs[R_CS]); |
| set_seg(&sregs.ds, &env->segs[R_DS]); |
| set_seg(&sregs.es, &env->segs[R_ES]); |
| set_seg(&sregs.fs, &env->segs[R_FS]); |
| set_seg(&sregs.gs, &env->segs[R_GS]); |
| set_seg(&sregs.ss, &env->segs[R_SS]); |
| |
| if (env->cr[0] & CR0_PE_MASK) { |
| /* force ss cpl to cs cpl */ |
| sregs.ss.selector = (sregs.ss.selector & ~3) | |
| (sregs.cs.selector & 3); |
| sregs.ss.dpl = sregs.ss.selector & 3; |
| } |
| } |
| |
| set_seg(&sregs.tr, &env->tr); |
| set_seg(&sregs.ldt, &env->ldt); |
| |
| sregs.idt.limit = env->idt.limit; |
| sregs.idt.base = env->idt.base; |
| sregs.gdt.limit = env->gdt.limit; |
| sregs.gdt.base = env->gdt.base; |
| |
| sregs.cr0 = env->cr[0]; |
| sregs.cr2 = env->cr[2]; |
| sregs.cr3 = env->cr[3]; |
| sregs.cr4 = env->cr[4]; |
| |
| sregs.cr8 = cpu_get_apic_tpr(env); |
| sregs.apic_base = cpu_get_apic_base(env); |
| |
| sregs.efer = env->efer; |
| |
| kvm_set_sregs(kvm_context, env->cpu_index, &sregs); |
| |
| /* msrs */ |
| n = 0; |
| set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
| set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); |
| set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); |
| if (kvm_has_msr_star) |
| set_msr_entry(&msrs[n++], MSR_STAR, env->star); |
| set_msr_entry(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); |
| #ifdef TARGET_X86_64 |
| if (lm_capable_kernel) { |
| set_msr_entry(&msrs[n++], MSR_CSTAR, env->cstar); |
| set_msr_entry(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); |
| set_msr_entry(&msrs[n++], MSR_FMASK, env->fmask); |
| set_msr_entry(&msrs[n++], MSR_LSTAR , env->lstar); |
| } |
| #endif |
| |
| rc = kvm_set_msrs(kvm_context, env->cpu_index, msrs, n); |
| if (rc == -1) |
| perror("kvm_set_msrs FAILED"); |
| } |
| |
| void kvm_load_tsc(CPUState *env) |
| { |
| int rc; |
| struct kvm_msr_entry msr; |
| |
| set_msr_entry(&msr, MSR_IA32_TSC, env->tsc); |
| |
| rc = kvm_set_msrs(kvm_context, env->cpu_index, &msr, 1); |
| if (rc == -1) |
| perror("kvm_set_tsc FAILED.\n"); |
| } |
| |
| void kvm_save_mpstate(CPUState *env) |
| { |
| #ifdef KVM_CAP_MP_STATE |
| int r; |
| struct kvm_mp_state mp_state; |
| |
| r = kvm_get_mpstate(kvm_context, env->cpu_index, &mp_state); |
| if (r < 0) |
| env->mp_state = -1; |
| else |
| env->mp_state = mp_state.mp_state; |
| #endif |
| } |
| |
| void kvm_load_mpstate(CPUState *env) |
| { |
| #ifdef KVM_CAP_MP_STATE |
| struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; |
| |
| /* |
| * -1 indicates that the host did not support GET_MP_STATE ioctl, |
| * so don't touch it. |
| */ |
| if (env->mp_state != -1) |
| kvm_set_mpstate(kvm_context, env->cpu_index, &mp_state); |
| #endif |
| } |
| |
| void kvm_arch_save_regs(CPUState *env) |
| { |
| struct kvm_regs regs; |
| struct kvm_fpu fpu; |
| struct kvm_sregs sregs; |
| struct kvm_msr_entry msrs[MSR_COUNT]; |
| uint32_t hflags; |
| uint32_t i, n, rc; |
| |
| kvm_get_regs(kvm_context, env->cpu_index, ®s); |
| |
| env->regs[R_EAX] = regs.rax; |
| env->regs[R_EBX] = regs.rbx; |
| env->regs[R_ECX] = regs.rcx; |
| env->regs[R_EDX] = regs.rdx; |
| env->regs[R_ESI] = regs.rsi; |
| env->regs[R_EDI] = regs.rdi; |
| env->regs[R_ESP] = regs.rsp; |
| env->regs[R_EBP] = regs.rbp; |
| #ifdef TARGET_X86_64 |
| env->regs[8] = regs.r8; |
| env->regs[9] = regs.r9; |
| env->regs[10] = regs.r10; |
| env->regs[11] = regs.r11; |
| env->regs[12] = regs.r12; |
| env->regs[13] = regs.r13; |
| env->regs[14] = regs.r14; |
| env->regs[15] = regs.r15; |
| #endif |
| |
| env->eflags = regs.rflags; |
| env->eip = regs.rip; |
| |
| kvm_get_fpu(kvm_context, env->cpu_index, &fpu); |
| env->fpstt = (fpu.fsw >> 11) & 7; |
| env->fpus = fpu.fsw; |
| env->fpuc = fpu.fcw; |
| for (i = 0; i < 8; ++i) |
| env->fptags[i] = !((fpu.ftwx >> i) & 1); |
| memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
| memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); |
| env->mxcsr = fpu.mxcsr; |
| |
| kvm_get_sregs(kvm_context, env->cpu_index, &sregs); |
| |
| memcpy(env->interrupt_bitmap, sregs.interrupt_bitmap, sizeof(env->interrupt_bitmap)); |
| |
| get_seg(&env->segs[R_CS], &sregs.cs); |
| get_seg(&env->segs[R_DS], &sregs.ds); |
| get_seg(&env->segs[R_ES], &sregs.es); |
| get_seg(&env->segs[R_FS], &sregs.fs); |
| get_seg(&env->segs[R_GS], &sregs.gs); |
| get_seg(&env->segs[R_SS], &sregs.ss); |
| |
| get_seg(&env->tr, &sregs.tr); |
| get_seg(&env->ldt, &sregs.ldt); |
| |
| env->idt.limit = sregs.idt.limit; |
| env->idt.base = sregs.idt.base; |
| env->gdt.limit = sregs.gdt.limit; |
| env->gdt.base = sregs.gdt.base; |
| |
| env->cr[0] = sregs.cr0; |
| env->cr[2] = sregs.cr2; |
| env->cr[3] = sregs.cr3; |
| env->cr[4] = sregs.cr4; |
| |
| cpu_set_apic_base(env, sregs.apic_base); |
| |
| env->efer = sregs.efer; |
| //cpu_set_apic_tpr(env, sregs.cr8); |
| |
| #define HFLAG_COPY_MASK ~( \ |
| HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ |
| HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ |
| HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ |
| HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) |
| |
| |
| |
| hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; |
| hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); |
| hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & |
| (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
| hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
| hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << |
| (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); |
| |
| if (env->efer & MSR_EFER_LMA) { |
| hflags |= HF_LMA_MASK; |
| } |
| |
| if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { |
| hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; |
| } else { |
| hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> |
| (DESC_B_SHIFT - HF_CS32_SHIFT); |
| hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
| (DESC_B_SHIFT - HF_SS32_SHIFT); |
| if (!(env->cr[0] & CR0_PE_MASK) || |
| (env->eflags & VM_MASK) || |
| !(hflags & HF_CS32_MASK)) { |
| hflags |= HF_ADDSEG_MASK; |
| } else { |
| hflags |= ((env->segs[R_DS].base | |
| env->segs[R_ES].base | |
| env->segs[R_SS].base) != 0) << |
| HF_ADDSEG_SHIFT; |
| } |
| } |
| env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; |
| |
| /* msrs */ |
| n = 0; |
| msrs[n++].index = MSR_IA32_SYSENTER_CS; |
| msrs[n++].index = MSR_IA32_SYSENTER_ESP; |
| msrs[n++].index = MSR_IA32_SYSENTER_EIP; |
| if (kvm_has_msr_star) |
| msrs[n++].index = MSR_STAR; |
| msrs[n++].index = MSR_IA32_TSC; |
| msrs[n++].index = MSR_VM_HSAVE_PA; |
| #ifdef TARGET_X86_64 |
| if (lm_capable_kernel) { |
| msrs[n++].index = MSR_CSTAR; |
| msrs[n++].index = MSR_KERNELGSBASE; |
| msrs[n++].index = MSR_FMASK; |
| msrs[n++].index = MSR_LSTAR; |
| } |
| #endif |
| rc = kvm_get_msrs(kvm_context, env->cpu_index, msrs, n); |
| if (rc == -1) { |
| perror("kvm_get_msrs FAILED"); |
| } |
| else { |
| n = rc; /* actual number of MSRs */ |
| for (i=0 ; i<n; i++) { |
| if (get_msr_entry(&msrs[i], env)) |
| return; |
| } |
| } |
| } |
| |
| static void do_cpuid_ent(struct kvm_cpuid_entry2 *e, uint32_t function, |
| uint32_t count, CPUState *env) |
| { |
| env->regs[R_EAX] = function; |
| env->regs[R_ECX] = count; |
| qemu_kvm_cpuid_on_env(env); |
| e->function = function; |
| e->flags = 0; |
| e->index = 0; |
| e->eax = env->regs[R_EAX]; |
| e->ebx = env->regs[R_EBX]; |
| e->ecx = env->regs[R_ECX]; |
| e->edx = env->regs[R_EDX]; |
| } |
| |
| struct kvm_para_features { |
| int cap; |
| int feature; |
| } para_features[] = { |
| #ifdef KVM_CAP_CLOCKSOURCE |
| { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, |
| #endif |
| #ifdef KVM_CAP_NOP_IO_DELAY |
| { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, |
| #endif |
| #ifdef KVM_CAP_PV_MMU |
| { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, |
| #endif |
| #ifdef KVM_CAP_CR3_CACHE |
| { KVM_CAP_CR3_CACHE, KVM_FEATURE_CR3_CACHE }, |
| #endif |
| { -1, -1 } |
| }; |
| |
| static int get_para_features(kvm_context_t kvm_context) |
| { |
| int i, features = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(para_features)-1; i++) { |
| if (kvm_check_extension(kvm_context, para_features[i].cap)) |
| features |= (1 << para_features[i].feature); |
| } |
| |
| return features; |
| } |
| |
| int kvm_arch_qemu_init_env(CPUState *cenv) |
| { |
| struct kvm_cpuid_entry2 cpuid_ent[100]; |
| #ifdef KVM_CPUID_SIGNATURE |
| struct kvm_cpuid_entry2 *pv_ent; |
| uint32_t signature[3]; |
| #endif |
| int cpuid_nent = 0; |
| CPUState copy; |
| uint32_t i, j, limit; |
| |
| copy = *cenv; |
| |
| #ifdef KVM_CPUID_SIGNATURE |
| /* Paravirtualization CPUIDs */ |
| memcpy(signature, "KVMKVMKVM\0\0\0", 12); |
| pv_ent = &cpuid_ent[cpuid_nent++]; |
| memset(pv_ent, 0, sizeof(*pv_ent)); |
| pv_ent->function = KVM_CPUID_SIGNATURE; |
| pv_ent->eax = 0; |
| pv_ent->ebx = signature[0]; |
| pv_ent->ecx = signature[1]; |
| pv_ent->edx = signature[2]; |
| |
| pv_ent = &cpuid_ent[cpuid_nent++]; |
| memset(pv_ent, 0, sizeof(*pv_ent)); |
| pv_ent->function = KVM_CPUID_FEATURES; |
| pv_ent->eax = get_para_features(kvm_context); |
| #endif |
| |
| copy.regs[R_EAX] = 0; |
| qemu_kvm_cpuid_on_env(©); |
| limit = copy.regs[R_EAX]; |
| |
| for (i = 0; i <= limit; ++i) { |
| if (i == 4 || i == 0xb || i == 0xd) { |
| for (j = 0; ; ++j) { |
| do_cpuid_ent(&cpuid_ent[cpuid_nent], i, j, ©); |
| |
| cpuid_ent[cpuid_nent].flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| cpuid_ent[cpuid_nent].index = j; |
| |
| cpuid_nent++; |
| |
| if (i == 4 && copy.regs[R_EAX] == 0) |
| break; |
| if (i == 0xb && !(copy.regs[R_ECX] & 0xff00)) |
| break; |
| if (i == 0xd && copy.regs[R_EAX] == 0) |
| break; |
| } |
| } else |
| do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, 0, ©); |
| } |
| |
| copy.regs[R_EAX] = 0x80000000; |
| qemu_kvm_cpuid_on_env(©); |
| limit = copy.regs[R_EAX]; |
| |
| for (i = 0x80000000; i <= limit; ++i) |
| do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, 0, ©); |
| |
| kvm_setup_cpuid2(kvm_context, cenv->cpu_index, cpuid_nent, cpuid_ent); |
| return 0; |
| } |
| |
| int kvm_arch_halt(void *opaque, int vcpu) |
| { |
| CPUState *env = cpu_single_env; |
| |
| if (!((env->interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->eflags & IF_MASK)) && |
| !(env->interrupt_request & CPU_INTERRUPT_NMI)) { |
| env->halted = 1; |
| env->exception_index = EXCP_HLT; |
| } |
| return 1; |
| } |
| |
| void kvm_arch_pre_kvm_run(void *opaque, CPUState *env) |
| { |
| if (!kvm_irqchip_in_kernel(kvm_context)) |
| kvm_set_cr8(kvm_context, env->cpu_index, cpu_get_apic_tpr(env)); |
| } |
| |
| void kvm_arch_post_kvm_run(void *opaque, CPUState *env) |
| { |
| int vcpu = env->cpu_index; |
| |
| cpu_single_env = env; |
| |
| env->eflags = kvm_get_interrupt_flag(kvm_context, vcpu) |
| ? env->eflags | IF_MASK : env->eflags & ~IF_MASK; |
| |
| cpu_set_apic_tpr(env, kvm_get_cr8(kvm_context, vcpu)); |
| cpu_set_apic_base(env, kvm_get_apic_base(kvm_context, vcpu)); |
| } |
| |
| int kvm_arch_has_work(CPUState *env) |
| { |
| if (((env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT)) && |
| (env->eflags & IF_MASK)) || |
| (env->interrupt_request & CPU_INTERRUPT_NMI)) |
| return 1; |
| return 0; |
| } |
| |
| int kvm_arch_try_push_interrupts(void *opaque) |
| { |
| CPUState *env = cpu_single_env; |
| int r, irq; |
| |
| if (kvm_is_ready_for_interrupt_injection(kvm_context, env->cpu_index) && |
| (env->interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->eflags & IF_MASK)) { |
| env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
| irq = cpu_get_pic_interrupt(env); |
| if (irq >= 0) { |
| r = kvm_inject_irq(kvm_context, env->cpu_index, irq); |
| if (r < 0) |
| printf("cpu %d fail inject %x\n", env->cpu_index, irq); |
| } |
| } |
| |
| return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0; |
| } |
| |
| #ifdef KVM_CAP_USER_NMI |
| void kvm_arch_push_nmi(void *opaque) |
| { |
| CPUState *env = cpu_single_env; |
| int r; |
| |
| if (likely(!(env->interrupt_request & CPU_INTERRUPT_NMI))) |
| return; |
| |
| env->interrupt_request &= ~CPU_INTERRUPT_NMI; |
| r = kvm_inject_nmi(kvm_context, env->cpu_index); |
| if (r < 0) |
| printf("cpu %d fail inject NMI\n", env->cpu_index); |
| } |
| #endif /* KVM_CAP_USER_NMI */ |
| |
| void kvm_arch_update_regs_for_sipi(CPUState *env) |
| { |
| SegmentCache cs = env->segs[R_CS]; |
| |
| kvm_arch_save_regs(env); |
| env->segs[R_CS] = cs; |
| env->eip = 0; |
| kvm_arch_load_regs(env); |
| } |
| |
| int handle_tpr_access(void *opaque, int vcpu, |
| uint64_t rip, int is_write) |
| { |
| kvm_tpr_access_report(cpu_single_env, rip, is_write); |
| return 0; |
| } |
| |
| void kvm_arch_cpu_reset(CPUState *env) |
| { |
| kvm_arch_load_regs(env); |
| if (env->cpu_index != 0) { |
| if (kvm_irqchip_in_kernel(kvm_context)) { |
| #ifdef KVM_CAP_MP_STATE |
| kvm_reset_mpstate(kvm_context, env->cpu_index); |
| #endif |
| } else { |
| env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
| env->halted = 1; |
| env->exception_index = EXCP_HLT; |
| } |
| } |
| } |
| |
| int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
| { |
| uint8_t int3 = 0xcc; |
| |
| if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
| cpu_memory_rw_debug(env, bp->pc, &int3, 1, 1)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
| { |
| uint8_t int3; |
| |
| if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
| cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| #ifdef KVM_CAP_SET_GUEST_DEBUG |
| static struct { |
| target_ulong addr; |
| int len; |
| int type; |
| } hw_breakpoint[4]; |
| |
| static int nb_hw_breakpoint; |
| |
| static int find_hw_breakpoint(target_ulong addr, int len, int type) |
| { |
| int n; |
| |
| for (n = 0; n < nb_hw_breakpoint; n++) |
| if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
| (hw_breakpoint[n].len == len || len == -1)) |
| return n; |
| return -1; |
| } |
| |
| int kvm_arch_insert_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| switch (type) { |
| case GDB_BREAKPOINT_HW: |
| len = 1; |
| break; |
| case GDB_WATCHPOINT_WRITE: |
| case GDB_WATCHPOINT_ACCESS: |
| switch (len) { |
| case 1: |
| break; |
| case 2: |
| case 4: |
| case 8: |
| if (addr & (len - 1)) |
| return -EINVAL; |
| break; |
| default: |
| return -EINVAL; |
| } |
| break; |
| default: |
| return -ENOSYS; |
| } |
| |
| if (nb_hw_breakpoint == 4) |
| return -ENOBUFS; |
| |
| if (find_hw_breakpoint(addr, len, type) >= 0) |
| return -EEXIST; |
| |
| hw_breakpoint[nb_hw_breakpoint].addr = addr; |
| hw_breakpoint[nb_hw_breakpoint].len = len; |
| hw_breakpoint[nb_hw_breakpoint].type = type; |
| nb_hw_breakpoint++; |
| |
| return 0; |
| } |
| |
| int kvm_arch_remove_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| int n; |
| |
| n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); |
| if (n < 0) |
| return -ENOENT; |
| |
| nb_hw_breakpoint--; |
| hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; |
| |
| return 0; |
| } |
| |
| void kvm_arch_remove_all_hw_breakpoints(void) |
| { |
| nb_hw_breakpoint = 0; |
| } |
| |
| static CPUWatchpoint hw_watchpoint; |
| |
| int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info) |
| { |
| int handle = 0; |
| int n; |
| |
| if (arch_info->exception == 1) { |
| if (arch_info->dr6 & (1 << 14)) { |
| if (cpu_single_env->singlestep_enabled) |
| handle = 1; |
| } else { |
| for (n = 0; n < 4; n++) |
| if (arch_info->dr6 & (1 << n)) |
| switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
| case 0x0: |
| handle = 1; |
| break; |
| case 0x1: |
| handle = 1; |
| cpu_single_env->watchpoint_hit = &hw_watchpoint; |
| hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
| hw_watchpoint.flags = BP_MEM_WRITE; |
| break; |
| case 0x3: |
| handle = 1; |
| cpu_single_env->watchpoint_hit = &hw_watchpoint; |
| hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
| hw_watchpoint.flags = BP_MEM_ACCESS; |
| break; |
| } |
| } |
| } else if (kvm_find_sw_breakpoint(arch_info->pc)) |
| handle = 1; |
| |
| if (!handle) |
| kvm_update_guest_debug(cpu_single_env, |
| (arch_info->exception == 1) ? |
| KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP); |
| |
| return handle; |
| } |
| |
| void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg) |
| { |
| const uint8_t type_code[] = { |
| [GDB_BREAKPOINT_HW] = 0x0, |
| [GDB_WATCHPOINT_WRITE] = 0x1, |
| [GDB_WATCHPOINT_ACCESS] = 0x3 |
| }; |
| const uint8_t len_code[] = { |
| [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 |
| }; |
| int n; |
| |
| if (!TAILQ_EMPTY(&kvm_sw_breakpoints)) |
| dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
| |
| if (nb_hw_breakpoint > 0) { |
| dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; |
| dbg->arch.debugreg[7] = 0x0600; |
| for (n = 0; n < nb_hw_breakpoint; n++) { |
| dbg->arch.debugreg[n] = hw_breakpoint[n].addr; |
| dbg->arch.debugreg[7] |= (2 << (n * 2)) | |
| (type_code[hw_breakpoint[n].type] << (16 + n*4)) | |
| (len_code[hw_breakpoint[n].len] << (18 + n*4)); |
| } |
| } |
| } |
| #endif |
| |
| void kvm_arch_do_ioperm(void *_data) |
| { |
| struct ioperm_data *data = _data; |
| ioperm(data->start_port, data->num, data->turn_on); |
| } |
| |
| uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, |
| int reg) |
| { |
| return kvm_get_supported_cpuid(kvm_context, function, reg); |
| } |