blob: 838ae186d524b4724708fca2956ed3b7ddef7357 [file] [log] [blame]
/*
* qemu/kvm integration, x86 specific code
*
* Copyright (C) 2006-2008 Qumranet Technologies
*
* Licensed under the terms of the GNU GPL version 2 or higher.
*/
#include "config.h"
#include "config-host.h"
#include <string.h>
#include "hw/hw.h"
#include "gdbstub.h"
#include <sys/io.h>
#include "qemu-kvm.h"
#include <libkvm.h>
#include <pthread.h>
#include <sys/utsname.h>
#include <linux/kvm_para.h>
#define MSR_IA32_TSC 0x10
static struct kvm_msr_list *kvm_msr_list;
extern unsigned int kvm_shadow_memory;
static int kvm_has_msr_star;
static int lm_capable_kernel;
int kvm_qemu_create_memory_alias(uint64_t phys_start,
uint64_t len,
uint64_t target_phys)
{
return kvm_create_memory_alias(kvm_context, phys_start, len, target_phys);
}
int kvm_qemu_destroy_memory_alias(uint64_t phys_start)
{
return kvm_destroy_memory_alias(kvm_context, phys_start);
}
int kvm_arch_qemu_create_context(void)
{
int i;
struct utsname utsname;
uname(&utsname);
lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
if (kvm_shadow_memory)
kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
kvm_msr_list = kvm_get_msr_list(kvm_context);
if (!kvm_msr_list)
return -1;
for (i = 0; i < kvm_msr_list->nmsrs; ++i)
if (kvm_msr_list->indices[i] == MSR_STAR)
kvm_has_msr_star = 1;
return 0;
}
static void set_msr_entry(struct kvm_msr_entry *entry, uint32_t index,
uint64_t data)
{
entry->index = index;
entry->data = data;
}
/* returns 0 on success, non-0 on failure */
static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
{
switch (entry->index) {
case MSR_IA32_SYSENTER_CS:
env->sysenter_cs = entry->data;
break;
case MSR_IA32_SYSENTER_ESP:
env->sysenter_esp = entry->data;
break;
case MSR_IA32_SYSENTER_EIP:
env->sysenter_eip = entry->data;
break;
case MSR_STAR:
env->star = entry->data;
break;
#ifdef TARGET_X86_64
case MSR_CSTAR:
env->cstar = entry->data;
break;
case MSR_KERNELGSBASE:
env->kernelgsbase = entry->data;
break;
case MSR_FMASK:
env->fmask = entry->data;
break;
case MSR_LSTAR:
env->lstar = entry->data;
break;
#endif
case MSR_IA32_TSC:
env->tsc = entry->data;
break;
case MSR_VM_HSAVE_PA:
env->vm_hsave = entry->data;
break;
default:
printf("Warning unknown msr index 0x%x\n", entry->index);
return 1;
}
return 0;
}
#ifdef TARGET_X86_64
#define MSR_COUNT 9
#else
#define MSR_COUNT 5
#endif
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->type = 3;
lhs->present = 1;
lhs->dpl = 3;
lhs->db = 0;
lhs->s = 1;
lhs->l = 0;
lhs->g = 0;
lhs->avl = 0;
lhs->unusable = 0;
}
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
unsigned flags = rhs->flags;
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
lhs->present = (flags & DESC_P_MASK) != 0;
lhs->dpl = rhs->selector & 3;
lhs->db = (flags >> DESC_B_SHIFT) & 1;
lhs->s = (flags & DESC_S_MASK) != 0;
lhs->l = (flags >> DESC_L_SHIFT) & 1;
lhs->g = (flags & DESC_G_MASK) != 0;
lhs->avl = (flags & DESC_AVL_MASK) != 0;
lhs->unusable = 0;
}
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
{
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->flags =
(rhs->type << DESC_TYPE_SHIFT)
| (rhs->present * DESC_P_MASK)
| (rhs->dpl << DESC_DPL_SHIFT)
| (rhs->db << DESC_B_SHIFT)
| (rhs->s * DESC_S_MASK)
| (rhs->l << DESC_L_SHIFT)
| (rhs->g * DESC_G_MASK)
| (rhs->avl * DESC_AVL_MASK);
}
void kvm_arch_load_regs(CPUState *env)
{
struct kvm_regs regs;
struct kvm_fpu fpu;
struct kvm_sregs sregs;
struct kvm_msr_entry msrs[MSR_COUNT];
int rc, n, i;
regs.rax = env->regs[R_EAX];
regs.rbx = env->regs[R_EBX];
regs.rcx = env->regs[R_ECX];
regs.rdx = env->regs[R_EDX];
regs.rsi = env->regs[R_ESI];
regs.rdi = env->regs[R_EDI];
regs.rsp = env->regs[R_ESP];
regs.rbp = env->regs[R_EBP];
#ifdef TARGET_X86_64
regs.r8 = env->regs[8];
regs.r9 = env->regs[9];
regs.r10 = env->regs[10];
regs.r11 = env->regs[11];
regs.r12 = env->regs[12];
regs.r13 = env->regs[13];
regs.r14 = env->regs[14];
regs.r15 = env->regs[15];
#endif
regs.rflags = env->eflags;
regs.rip = env->eip;
kvm_set_regs(kvm_context, env->cpu_index, &regs);
memset(&fpu, 0, sizeof fpu);
fpu.fsw = env->fpus & ~(7 << 11);
fpu.fsw |= (env->fpstt & 7) << 11;
fpu.fcw = env->fpuc;
for (i = 0; i < 8; ++i)
fpu.ftwx |= (!env->fptags[i]) << i;
memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
fpu.mxcsr = env->mxcsr;
kvm_set_fpu(kvm_context, env->cpu_index, &fpu);
memcpy(sregs.interrupt_bitmap, env->interrupt_bitmap, sizeof(sregs.interrupt_bitmap));
if ((env->eflags & VM_MASK)) {
set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
set_v8086_seg(&sregs.es, &env->segs[R_ES]);
set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
} else {
set_seg(&sregs.cs, &env->segs[R_CS]);
set_seg(&sregs.ds, &env->segs[R_DS]);
set_seg(&sregs.es, &env->segs[R_ES]);
set_seg(&sregs.fs, &env->segs[R_FS]);
set_seg(&sregs.gs, &env->segs[R_GS]);
set_seg(&sregs.ss, &env->segs[R_SS]);
if (env->cr[0] & CR0_PE_MASK) {
/* force ss cpl to cs cpl */
sregs.ss.selector = (sregs.ss.selector & ~3) |
(sregs.cs.selector & 3);
sregs.ss.dpl = sregs.ss.selector & 3;
}
}
set_seg(&sregs.tr, &env->tr);
set_seg(&sregs.ldt, &env->ldt);
sregs.idt.limit = env->idt.limit;
sregs.idt.base = env->idt.base;
sregs.gdt.limit = env->gdt.limit;
sregs.gdt.base = env->gdt.base;
sregs.cr0 = env->cr[0];
sregs.cr2 = env->cr[2];
sregs.cr3 = env->cr[3];
sregs.cr4 = env->cr[4];
sregs.cr8 = cpu_get_apic_tpr(env);
sregs.apic_base = cpu_get_apic_base(env);
sregs.efer = env->efer;
kvm_set_sregs(kvm_context, env->cpu_index, &sregs);
/* msrs */
n = 0;
set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
if (kvm_has_msr_star)
set_msr_entry(&msrs[n++], MSR_STAR, env->star);
set_msr_entry(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
#ifdef TARGET_X86_64
if (lm_capable_kernel) {
set_msr_entry(&msrs[n++], MSR_CSTAR, env->cstar);
set_msr_entry(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
set_msr_entry(&msrs[n++], MSR_FMASK, env->fmask);
set_msr_entry(&msrs[n++], MSR_LSTAR , env->lstar);
}
#endif
rc = kvm_set_msrs(kvm_context, env->cpu_index, msrs, n);
if (rc == -1)
perror("kvm_set_msrs FAILED");
}
void kvm_load_tsc(CPUState *env)
{
int rc;
struct kvm_msr_entry msr;
set_msr_entry(&msr, MSR_IA32_TSC, env->tsc);
rc = kvm_set_msrs(kvm_context, env->cpu_index, &msr, 1);
if (rc == -1)
perror("kvm_set_tsc FAILED.\n");
}
void kvm_save_mpstate(CPUState *env)
{
#ifdef KVM_CAP_MP_STATE
int r;
struct kvm_mp_state mp_state;
r = kvm_get_mpstate(kvm_context, env->cpu_index, &mp_state);
if (r < 0)
env->mp_state = -1;
else
env->mp_state = mp_state.mp_state;
#endif
}
void kvm_load_mpstate(CPUState *env)
{
#ifdef KVM_CAP_MP_STATE
struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
/*
* -1 indicates that the host did not support GET_MP_STATE ioctl,
* so don't touch it.
*/
if (env->mp_state != -1)
kvm_set_mpstate(kvm_context, env->cpu_index, &mp_state);
#endif
}
void kvm_arch_save_regs(CPUState *env)
{
struct kvm_regs regs;
struct kvm_fpu fpu;
struct kvm_sregs sregs;
struct kvm_msr_entry msrs[MSR_COUNT];
uint32_t hflags;
uint32_t i, n, rc;
kvm_get_regs(kvm_context, env->cpu_index, &regs);
env->regs[R_EAX] = regs.rax;
env->regs[R_EBX] = regs.rbx;
env->regs[R_ECX] = regs.rcx;
env->regs[R_EDX] = regs.rdx;
env->regs[R_ESI] = regs.rsi;
env->regs[R_EDI] = regs.rdi;
env->regs[R_ESP] = regs.rsp;
env->regs[R_EBP] = regs.rbp;
#ifdef TARGET_X86_64
env->regs[8] = regs.r8;
env->regs[9] = regs.r9;
env->regs[10] = regs.r10;
env->regs[11] = regs.r11;
env->regs[12] = regs.r12;
env->regs[13] = regs.r13;
env->regs[14] = regs.r14;
env->regs[15] = regs.r15;
#endif
env->eflags = regs.rflags;
env->eip = regs.rip;
kvm_get_fpu(kvm_context, env->cpu_index, &fpu);
env->fpstt = (fpu.fsw >> 11) & 7;
env->fpus = fpu.fsw;
env->fpuc = fpu.fcw;
for (i = 0; i < 8; ++i)
env->fptags[i] = !((fpu.ftwx >> i) & 1);
memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
env->mxcsr = fpu.mxcsr;
kvm_get_sregs(kvm_context, env->cpu_index, &sregs);
memcpy(env->interrupt_bitmap, sregs.interrupt_bitmap, sizeof(env->interrupt_bitmap));
get_seg(&env->segs[R_CS], &sregs.cs);
get_seg(&env->segs[R_DS], &sregs.ds);
get_seg(&env->segs[R_ES], &sregs.es);
get_seg(&env->segs[R_FS], &sregs.fs);
get_seg(&env->segs[R_GS], &sregs.gs);
get_seg(&env->segs[R_SS], &sregs.ss);
get_seg(&env->tr, &sregs.tr);
get_seg(&env->ldt, &sregs.ldt);
env->idt.limit = sregs.idt.limit;
env->idt.base = sregs.idt.base;
env->gdt.limit = sregs.gdt.limit;
env->gdt.base = sregs.gdt.base;
env->cr[0] = sregs.cr0;
env->cr[2] = sregs.cr2;
env->cr[3] = sregs.cr3;
env->cr[4] = sregs.cr4;
cpu_set_apic_base(env, sregs.apic_base);
env->efer = sregs.efer;
//cpu_set_apic_tpr(env, sregs.cr8);
#define HFLAG_COPY_MASK ~( \
HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
(HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
if (env->efer & MSR_EFER_LMA) {
hflags |= HF_LMA_MASK;
}
if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
} else {
hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_CS32_SHIFT);
hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_SS32_SHIFT);
if (!(env->cr[0] & CR0_PE_MASK) ||
(env->eflags & VM_MASK) ||
!(hflags & HF_CS32_MASK)) {
hflags |= HF_ADDSEG_MASK;
} else {
hflags |= ((env->segs[R_DS].base |
env->segs[R_ES].base |
env->segs[R_SS].base) != 0) <<
HF_ADDSEG_SHIFT;
}
}
env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
/* msrs */
n = 0;
msrs[n++].index = MSR_IA32_SYSENTER_CS;
msrs[n++].index = MSR_IA32_SYSENTER_ESP;
msrs[n++].index = MSR_IA32_SYSENTER_EIP;
if (kvm_has_msr_star)
msrs[n++].index = MSR_STAR;
msrs[n++].index = MSR_IA32_TSC;
msrs[n++].index = MSR_VM_HSAVE_PA;
#ifdef TARGET_X86_64
if (lm_capable_kernel) {
msrs[n++].index = MSR_CSTAR;
msrs[n++].index = MSR_KERNELGSBASE;
msrs[n++].index = MSR_FMASK;
msrs[n++].index = MSR_LSTAR;
}
#endif
rc = kvm_get_msrs(kvm_context, env->cpu_index, msrs, n);
if (rc == -1) {
perror("kvm_get_msrs FAILED");
}
else {
n = rc; /* actual number of MSRs */
for (i=0 ; i<n; i++) {
if (get_msr_entry(&msrs[i], env))
return;
}
}
}
static void do_cpuid_ent(struct kvm_cpuid_entry2 *e, uint32_t function,
uint32_t count, CPUState *env)
{
env->regs[R_EAX] = function;
env->regs[R_ECX] = count;
qemu_kvm_cpuid_on_env(env);
e->function = function;
e->flags = 0;
e->index = 0;
e->eax = env->regs[R_EAX];
e->ebx = env->regs[R_EBX];
e->ecx = env->regs[R_ECX];
e->edx = env->regs[R_EDX];
}
struct kvm_para_features {
int cap;
int feature;
} para_features[] = {
#ifdef KVM_CAP_CLOCKSOURCE
{ KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
#endif
#ifdef KVM_CAP_NOP_IO_DELAY
{ KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
#endif
#ifdef KVM_CAP_PV_MMU
{ KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
#endif
#ifdef KVM_CAP_CR3_CACHE
{ KVM_CAP_CR3_CACHE, KVM_FEATURE_CR3_CACHE },
#endif
{ -1, -1 }
};
static int get_para_features(kvm_context_t kvm_context)
{
int i, features = 0;
for (i = 0; i < ARRAY_SIZE(para_features)-1; i++) {
if (kvm_check_extension(kvm_context, para_features[i].cap))
features |= (1 << para_features[i].feature);
}
return features;
}
int kvm_arch_qemu_init_env(CPUState *cenv)
{
struct kvm_cpuid_entry2 cpuid_ent[100];
#ifdef KVM_CPUID_SIGNATURE
struct kvm_cpuid_entry2 *pv_ent;
uint32_t signature[3];
#endif
int cpuid_nent = 0;
CPUState copy;
uint32_t i, j, limit;
copy = *cenv;
#ifdef KVM_CPUID_SIGNATURE
/* Paravirtualization CPUIDs */
memcpy(signature, "KVMKVMKVM\0\0\0", 12);
pv_ent = &cpuid_ent[cpuid_nent++];
memset(pv_ent, 0, sizeof(*pv_ent));
pv_ent->function = KVM_CPUID_SIGNATURE;
pv_ent->eax = 0;
pv_ent->ebx = signature[0];
pv_ent->ecx = signature[1];
pv_ent->edx = signature[2];
pv_ent = &cpuid_ent[cpuid_nent++];
memset(pv_ent, 0, sizeof(*pv_ent));
pv_ent->function = KVM_CPUID_FEATURES;
pv_ent->eax = get_para_features(kvm_context);
#endif
copy.regs[R_EAX] = 0;
qemu_kvm_cpuid_on_env(&copy);
limit = copy.regs[R_EAX];
for (i = 0; i <= limit; ++i) {
if (i == 4 || i == 0xb || i == 0xd) {
for (j = 0; ; ++j) {
do_cpuid_ent(&cpuid_ent[cpuid_nent], i, j, &copy);
cpuid_ent[cpuid_nent].flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
cpuid_ent[cpuid_nent].index = j;
cpuid_nent++;
if (i == 4 && copy.regs[R_EAX] == 0)
break;
if (i == 0xb && !(copy.regs[R_ECX] & 0xff00))
break;
if (i == 0xd && copy.regs[R_EAX] == 0)
break;
}
} else
do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, 0, &copy);
}
copy.regs[R_EAX] = 0x80000000;
qemu_kvm_cpuid_on_env(&copy);
limit = copy.regs[R_EAX];
for (i = 0x80000000; i <= limit; ++i)
do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, 0, &copy);
kvm_setup_cpuid2(kvm_context, cenv->cpu_index, cpuid_nent, cpuid_ent);
return 0;
}
int kvm_arch_halt(void *opaque, int vcpu)
{
CPUState *env = cpu_single_env;
if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) &&
!(env->interrupt_request & CPU_INTERRUPT_NMI)) {
env->halted = 1;
env->exception_index = EXCP_HLT;
}
return 1;
}
void kvm_arch_pre_kvm_run(void *opaque, CPUState *env)
{
if (!kvm_irqchip_in_kernel(kvm_context))
kvm_set_cr8(kvm_context, env->cpu_index, cpu_get_apic_tpr(env));
}
void kvm_arch_post_kvm_run(void *opaque, CPUState *env)
{
int vcpu = env->cpu_index;
cpu_single_env = env;
env->eflags = kvm_get_interrupt_flag(kvm_context, vcpu)
? env->eflags | IF_MASK : env->eflags & ~IF_MASK;
cpu_set_apic_tpr(env, kvm_get_cr8(kvm_context, vcpu));
cpu_set_apic_base(env, kvm_get_apic_base(kvm_context, vcpu));
}
int kvm_arch_has_work(CPUState *env)
{
if (((env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT)) &&
(env->eflags & IF_MASK)) ||
(env->interrupt_request & CPU_INTERRUPT_NMI))
return 1;
return 0;
}
int kvm_arch_try_push_interrupts(void *opaque)
{
CPUState *env = cpu_single_env;
int r, irq;
if (kvm_is_ready_for_interrupt_injection(kvm_context, env->cpu_index) &&
(env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) {
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
irq = cpu_get_pic_interrupt(env);
if (irq >= 0) {
r = kvm_inject_irq(kvm_context, env->cpu_index, irq);
if (r < 0)
printf("cpu %d fail inject %x\n", env->cpu_index, irq);
}
}
return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
}
#ifdef KVM_CAP_USER_NMI
void kvm_arch_push_nmi(void *opaque)
{
CPUState *env = cpu_single_env;
int r;
if (likely(!(env->interrupt_request & CPU_INTERRUPT_NMI)))
return;
env->interrupt_request &= ~CPU_INTERRUPT_NMI;
r = kvm_inject_nmi(kvm_context, env->cpu_index);
if (r < 0)
printf("cpu %d fail inject NMI\n", env->cpu_index);
}
#endif /* KVM_CAP_USER_NMI */
void kvm_arch_update_regs_for_sipi(CPUState *env)
{
SegmentCache cs = env->segs[R_CS];
kvm_arch_save_regs(env);
env->segs[R_CS] = cs;
env->eip = 0;
kvm_arch_load_regs(env);
}
int handle_tpr_access(void *opaque, int vcpu,
uint64_t rip, int is_write)
{
kvm_tpr_access_report(cpu_single_env, rip, is_write);
return 0;
}
void kvm_arch_cpu_reset(CPUState *env)
{
kvm_arch_load_regs(env);
if (env->cpu_index != 0) {
if (kvm_irqchip_in_kernel(kvm_context)) {
#ifdef KVM_CAP_MP_STATE
kvm_reset_mpstate(kvm_context, env->cpu_index);
#endif
} else {
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
env->halted = 1;
env->exception_index = EXCP_HLT;
}
}
}
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
{
uint8_t int3 = 0xcc;
if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
cpu_memory_rw_debug(env, bp->pc, &int3, 1, 1))
return -EINVAL;
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
{
uint8_t int3;
if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
return -EINVAL;
return 0;
}
#ifdef KVM_CAP_SET_GUEST_DEBUG
static struct {
target_ulong addr;
int len;
int type;
} hw_breakpoint[4];
static int nb_hw_breakpoint;
static int find_hw_breakpoint(target_ulong addr, int len, int type)
{
int n;
for (n = 0; n < nb_hw_breakpoint; n++)
if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
(hw_breakpoint[n].len == len || len == -1))
return n;
return -1;
}
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
len = 1;
break;
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
switch (len) {
case 1:
break;
case 2:
case 4:
case 8:
if (addr & (len - 1))
return -EINVAL;
break;
default:
return -EINVAL;
}
break;
default:
return -ENOSYS;
}
if (nb_hw_breakpoint == 4)
return -ENOBUFS;
if (find_hw_breakpoint(addr, len, type) >= 0)
return -EEXIST;
hw_breakpoint[nb_hw_breakpoint].addr = addr;
hw_breakpoint[nb_hw_breakpoint].len = len;
hw_breakpoint[nb_hw_breakpoint].type = type;
nb_hw_breakpoint++;
return 0;
}
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
int n;
n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
if (n < 0)
return -ENOENT;
nb_hw_breakpoint--;
hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
return 0;
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
nb_hw_breakpoint = 0;
}
static CPUWatchpoint hw_watchpoint;
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
{
int handle = 0;
int n;
if (arch_info->exception == 1) {
if (arch_info->dr6 & (1 << 14)) {
if (cpu_single_env->singlestep_enabled)
handle = 1;
} else {
for (n = 0; n < 4; n++)
if (arch_info->dr6 & (1 << n))
switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
case 0x0:
handle = 1;
break;
case 0x1:
handle = 1;
cpu_single_env->watchpoint_hit = &hw_watchpoint;
hw_watchpoint.vaddr = hw_breakpoint[n].addr;
hw_watchpoint.flags = BP_MEM_WRITE;
break;
case 0x3:
handle = 1;
cpu_single_env->watchpoint_hit = &hw_watchpoint;
hw_watchpoint.vaddr = hw_breakpoint[n].addr;
hw_watchpoint.flags = BP_MEM_ACCESS;
break;
}
}
} else if (kvm_find_sw_breakpoint(arch_info->pc))
handle = 1;
if (!handle)
kvm_update_guest_debug(cpu_single_env,
(arch_info->exception == 1) ?
KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
return handle;
}
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
{
const uint8_t type_code[] = {
[GDB_BREAKPOINT_HW] = 0x0,
[GDB_WATCHPOINT_WRITE] = 0x1,
[GDB_WATCHPOINT_ACCESS] = 0x3
};
const uint8_t len_code[] = {
[1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
};
int n;
if (!TAILQ_EMPTY(&kvm_sw_breakpoints))
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
if (nb_hw_breakpoint > 0) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
dbg->arch.debugreg[7] = 0x0600;
for (n = 0; n < nb_hw_breakpoint; n++) {
dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
dbg->arch.debugreg[7] |= (2 << (n * 2)) |
(type_code[hw_breakpoint[n].type] << (16 + n*4)) |
(len_code[hw_breakpoint[n].len] << (18 + n*4));
}
}
}
#endif
void kvm_arch_do_ioperm(void *_data)
{
struct ioperm_data *data = _data;
ioperm(data->start_port, data->num, data->turn_on);
}
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
int reg)
{
return kvm_get_supported_cpuid(kvm_context, function, reg);
}