blob: d00a20e38bb5975ffa31ea68ea4b0f81c9e6ccf0 [file] [log] [blame]
/*
* Copyright (c) 2007, Neocleus Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
*
*
* Assign a PCI device from the host to a guest VM.
*
* Adapted for KVM by Qumranet.
*
* Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
* Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
* Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
* Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
* Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
*/
#include <stdio.h>
#include <unistd.h>
#include <sys/io.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "qemu-kvm.h"
#include "hw.h"
#include "pc.h"
#include "qemu-error.h"
#include "console.h"
#include "device-assignment.h"
#include "loader.h"
#include "monitor.h"
#include <pci/header.h>
/* From linux/ioport.h */
#define IORESOURCE_IO 0x00000100 /* Resource type */
#define IORESOURCE_MEM 0x00000200
#define IORESOURCE_IRQ 0x00000400
#define IORESOURCE_DMA 0x00000800
#define IORESOURCE_PREFETCH 0x00001000 /* No side effects */
/* #define DEVICE_ASSIGNMENT_DEBUG 1 */
#ifdef DEVICE_ASSIGNMENT_DEBUG
#define DEBUG(fmt, ...) \
do { \
fprintf(stderr, "%s: " fmt, __func__ , __VA_ARGS__); \
} while (0)
#else
#define DEBUG(fmt, ...) do { } while(0)
#endif
static void assigned_dev_load_option_rom(AssignedDevice *dev);
static void assigned_dev_unregister_msix_mmio(AssignedDevice *dev);
static uint32_t assigned_dev_ioport_rw(AssignedDevRegion *dev_region,
uint32_t addr, int len, uint32_t *val)
{
uint32_t ret = 0;
uint32_t offset = addr - dev_region->e_physbase;
int fd = dev_region->region->resource_fd;
if (fd >= 0) {
if (val) {
DEBUG("pwrite val=%x, len=%d, e_phys=%x, offset=%x\n",
*val, len, addr, offset);
if (pwrite(fd, val, len, offset) != len) {
fprintf(stderr, "%s - pwrite failed %s\n",
__func__, strerror(errno));
}
} else {
if (pread(fd, &ret, len, offset) != len) {
fprintf(stderr, "%s - pread failed %s\n",
__func__, strerror(errno));
ret = (1UL << (len * 8)) - 1;
}
DEBUG("pread ret=%x, len=%d, e_phys=%x, offset=%x\n",
ret, len, addr, offset);
}
} else {
uint32_t port = offset + dev_region->u.r_baseport;
if (val) {
DEBUG("out val=%x, len=%d, e_phys=%x, host=%x\n",
*val, len, addr, port);
switch (len) {
case 1:
outb(*val, port);
break;
case 2:
outw(*val, port);
break;
case 4:
outl(*val, port);
break;
}
} else {
switch (len) {
case 1:
ret = inb(port);
break;
case 2:
ret = inw(port);
break;
case 4:
ret = inl(port);
break;
}
DEBUG("in val=%x, len=%d, e_phys=%x, host=%x\n",
ret, len, addr, port);
}
}
return ret;
}
static void assigned_dev_ioport_writeb(void *opaque, uint32_t addr,
uint32_t value)
{
assigned_dev_ioport_rw(opaque, addr, 1, &value);
return;
}
static void assigned_dev_ioport_writew(void *opaque, uint32_t addr,
uint32_t value)
{
assigned_dev_ioport_rw(opaque, addr, 2, &value);
return;
}
static void assigned_dev_ioport_writel(void *opaque, uint32_t addr,
uint32_t value)
{
assigned_dev_ioport_rw(opaque, addr, 4, &value);
return;
}
static uint32_t assigned_dev_ioport_readb(void *opaque, uint32_t addr)
{
return assigned_dev_ioport_rw(opaque, addr, 1, NULL);
}
static uint32_t assigned_dev_ioport_readw(void *opaque, uint32_t addr)
{
return assigned_dev_ioport_rw(opaque, addr, 2, NULL);
}
static uint32_t assigned_dev_ioport_readl(void *opaque, uint32_t addr)
{
return assigned_dev_ioport_rw(opaque, addr, 4, NULL);
}
static uint32_t slow_bar_readb(void *opaque, target_phys_addr_t addr)
{
AssignedDevRegion *d = opaque;
uint8_t *in = d->u.r_virtbase + addr;
uint32_t r;
r = *in;
DEBUG("slow_bar_readl addr=0x" TARGET_FMT_plx " val=0x%08x\n", addr, r);
return r;
}
static uint32_t slow_bar_readw(void *opaque, target_phys_addr_t addr)
{
AssignedDevRegion *d = opaque;
uint16_t *in = d->u.r_virtbase + addr;
uint32_t r;
r = *in;
DEBUG("slow_bar_readl addr=0x" TARGET_FMT_plx " val=0x%08x\n", addr, r);
return r;
}
static uint32_t slow_bar_readl(void *opaque, target_phys_addr_t addr)
{
AssignedDevRegion *d = opaque;
uint32_t *in = d->u.r_virtbase + addr;
uint32_t r;
r = *in;
DEBUG("slow_bar_readl addr=0x" TARGET_FMT_plx " val=0x%08x\n", addr, r);
return r;
}
static void slow_bar_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
AssignedDevRegion *d = opaque;
uint8_t *out = d->u.r_virtbase + addr;
DEBUG("slow_bar_writeb addr=0x" TARGET_FMT_plx " val=0x%02x\n", addr, val);
*out = val;
}
static void slow_bar_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
AssignedDevRegion *d = opaque;
uint16_t *out = d->u.r_virtbase + addr;
DEBUG("slow_bar_writew addr=0x" TARGET_FMT_plx " val=0x%04x\n", addr, val);
*out = val;
}
static void slow_bar_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
AssignedDevRegion *d = opaque;
uint32_t *out = d->u.r_virtbase + addr;
DEBUG("slow_bar_writel addr=0x" TARGET_FMT_plx " val=0x%08x\n", addr, val);
*out = val;
}
static CPUWriteMemoryFunc * const slow_bar_write[] = {
&slow_bar_writeb,
&slow_bar_writew,
&slow_bar_writel
};
static CPUReadMemoryFunc * const slow_bar_read[] = {
&slow_bar_readb,
&slow_bar_readw,
&slow_bar_readl
};
static void assigned_dev_iomem_map_slow(PCIDevice *pci_dev, int region_num,
pcibus_t e_phys, pcibus_t e_size,
int type)
{
AssignedDevice *r_dev = container_of(pci_dev, AssignedDevice, dev);
AssignedDevRegion *region = &r_dev->v_addrs[region_num];
PCIRegion *real_region = &r_dev->real_device.regions[region_num];
int m;
DEBUG("%s", "slow map\n");
if (region_num == PCI_ROM_SLOT)
m = cpu_register_io_memory(slow_bar_read, NULL, region);
else
m = cpu_register_io_memory(slow_bar_read, slow_bar_write, region);
cpu_register_physical_memory(e_phys, e_size, m);
/* MSI-X MMIO page */
if ((e_size > 0) &&
real_region->base_addr <= r_dev->msix_table_addr &&
real_region->base_addr + real_region->size >= r_dev->msix_table_addr) {
int offset = r_dev->msix_table_addr - real_region->base_addr;
cpu_register_physical_memory(e_phys + offset,
TARGET_PAGE_SIZE, r_dev->mmio_index);
}
}
static void assigned_dev_iomem_map(PCIDevice *pci_dev, int region_num,
pcibus_t e_phys, pcibus_t e_size, int type)
{
AssignedDevice *r_dev = container_of(pci_dev, AssignedDevice, dev);
AssignedDevRegion *region = &r_dev->v_addrs[region_num];
PCIRegion *real_region = &r_dev->real_device.regions[region_num];
int ret = 0, flags = 0;
DEBUG("e_phys=%08" FMT_PCIBUS " r_virt=%p type=%d len=%08" FMT_PCIBUS " region_num=%d \n",
e_phys, region->u.r_virtbase, type, e_size, region_num);
region->e_physbase = e_phys;
region->e_size = e_size;
if (e_size > 0) {
if (region_num == PCI_ROM_SLOT)
flags |= IO_MEM_ROM;
cpu_register_physical_memory(e_phys, e_size, region->memory_index | flags);
/* deal with MSI-X MMIO page */
if (real_region->base_addr <= r_dev->msix_table_addr &&
real_region->base_addr + real_region->size >=
r_dev->msix_table_addr) {
int offset = r_dev->msix_table_addr - real_region->base_addr;
cpu_register_physical_memory(e_phys + offset,
TARGET_PAGE_SIZE, r_dev->mmio_index);
}
}
if (ret != 0) {
fprintf(stderr, "%s: Error: create new mapping failed\n", __func__);
exit(1);
}
}
static void assigned_dev_ioport_map(PCIDevice *pci_dev, int region_num,
pcibus_t addr, pcibus_t size, int type)
{
AssignedDevice *r_dev = container_of(pci_dev, AssignedDevice, dev);
AssignedDevRegion *region = &r_dev->v_addrs[region_num];
int first_map = (region->e_size == 0);
CPUState *env;
region->e_physbase = addr;
region->e_size = size;
DEBUG("e_phys=0x%" FMT_PCIBUS " r_baseport=%x type=0x%x len=%" FMT_PCIBUS " region_num=%d \n",
addr, region->u.r_baseport, type, size, region_num);
if (first_map && region->region->resource_fd < 0) {
struct ioperm_data *data;
data = qemu_mallocz(sizeof(struct ioperm_data));
if (data == NULL) {
fprintf(stderr, "%s: Out of memory\n", __func__);
exit(1);
}
data->start_port = region->u.r_baseport;
data->num = region->r_size;
data->turn_on = 1;
kvm_add_ioperm_data(data);
for (env = first_cpu; env; env = env->next_cpu)
kvm_ioperm(env, data);
}
register_ioport_read(addr, size, 1, assigned_dev_ioport_readb,
(r_dev->v_addrs + region_num));
register_ioport_read(addr, size, 2, assigned_dev_ioport_readw,
(r_dev->v_addrs + region_num));
register_ioport_read(addr, size, 4, assigned_dev_ioport_readl,
(r_dev->v_addrs + region_num));
register_ioport_write(addr, size, 1, assigned_dev_ioport_writeb,
(r_dev->v_addrs + region_num));
register_ioport_write(addr, size, 2, assigned_dev_ioport_writew,
(r_dev->v_addrs + region_num));
register_ioport_write(addr, size, 4, assigned_dev_ioport_writel,
(r_dev->v_addrs + region_num));
}
static uint32_t assigned_dev_pci_read(PCIDevice *d, int pos, int len)
{
AssignedDevice *pci_dev = container_of(d, AssignedDevice, dev);
uint32_t val;
ssize_t ret;
int fd = pci_dev->real_device.config_fd;
again:
ret = pread(fd, &val, len, pos);
if (ret != len) {
if ((ret < 0) && (errno == EINTR || errno == EAGAIN))
goto again;
fprintf(stderr, "%s: pread failed, ret = %zd errno = %d\n",
__func__, ret, errno);
exit(1);
}
return val;
}
static uint8_t assigned_dev_pci_read_byte(PCIDevice *d, int pos)
{
return (uint8_t)assigned_dev_pci_read(d, pos, 1);
}
static uint16_t assigned_dev_pci_read_word(PCIDevice *d, int pos)
{
return (uint16_t)assigned_dev_pci_read(d, pos, 2);
}
static uint32_t assigned_dev_pci_read_long(PCIDevice *d, int pos)
{
return assigned_dev_pci_read(d, pos, 4);
}
static uint8_t pci_find_cap_offset(PCIDevice *d, uint8_t cap)
{
int id;
int max_cap = 48;
int pos = PCI_CAPABILITY_LIST;
int status;
status = assigned_dev_pci_read_byte(d, PCI_STATUS);
if ((status & PCI_STATUS_CAP_LIST) == 0)
return 0;
while (max_cap--) {
pos = assigned_dev_pci_read_byte(d, pos);
if (pos < 0x40)
break;
pos &= ~3;
id = assigned_dev_pci_read_byte(d, pos + PCI_CAP_LIST_ID);
if (id == 0xff)
break;
if (id == cap)
return pos;
pos += PCI_CAP_LIST_NEXT;
}
return 0;
}
static void assigned_dev_pci_write_config(PCIDevice *d, uint32_t address,
uint32_t val, int len)
{
int fd;
ssize_t ret;
AssignedDevice *pci_dev = container_of(d, AssignedDevice, dev);
DEBUG("(%x.%x): address=%04x val=0x%08x len=%d\n",
((d->devfn >> 3) & 0x1F), (d->devfn & 0x7),
(uint16_t) address, val, len);
if (address == 0x4) {
pci_default_write_config(d, address, val, len);
/* Continue to program the card */
}
if ((address >= 0x10 && address <= 0x24) || address == 0x30 ||
address == 0x34 || address == 0x3c || address == 0x3d ||
pci_access_cap_config(d, address, len)) {
/* used for update-mappings (BAR emulation) */
pci_default_write_config(d, address, val, len);
return;
}
DEBUG("NON BAR (%x.%x): address=%04x val=0x%08x len=%d\n",
((d->devfn >> 3) & 0x1F), (d->devfn & 0x7),
(uint16_t) address, val, len);
fd = pci_dev->real_device.config_fd;
again:
ret = pwrite(fd, &val, len, address);
if (ret != len) {
if ((ret < 0) && (errno == EINTR || errno == EAGAIN))
goto again;
fprintf(stderr, "%s: pwrite failed, ret = %zd errno = %d\n",
__func__, ret, errno);
exit(1);
}
}
static uint32_t assigned_dev_pci_read_config(PCIDevice *d, uint32_t address,
int len)
{
uint32_t val = 0;
int fd;
ssize_t ret;
AssignedDevice *pci_dev = container_of(d, AssignedDevice, dev);
if (address < 0x4 || (pci_dev->need_emulate_cmd && address == 0x4) ||
(address >= 0x10 && address <= 0x24) || address == 0x30 ||
address == 0x34 || address == 0x3c || address == 0x3d ||
pci_access_cap_config(d, address, len)) {
val = pci_default_read_config(d, address, len);
DEBUG("(%x.%x): address=%04x val=0x%08x len=%d\n",
(d->devfn >> 3) & 0x1F, (d->devfn & 0x7), address, val, len);
return val;
}
/* vga specific, remove later */
if (address == 0xFC)
goto do_log;
fd = pci_dev->real_device.config_fd;
again:
ret = pread(fd, &val, len, address);
if (ret != len) {
if ((ret < 0) && (errno == EINTR || errno == EAGAIN))
goto again;
fprintf(stderr, "%s: pread failed, ret = %zd errno = %d\n",
__func__, ret, errno);
exit(1);
}
do_log:
DEBUG("(%x.%x): address=%04x val=0x%08x len=%d\n",
(d->devfn >> 3) & 0x1F, (d->devfn & 0x7), address, val, len);
if (!pci_dev->cap.available) {
/* kill the special capabilities */
if (address == 4 && len == 4)
val &= ~0x100000;
else if (address == 6)
val &= ~0x10;
}
return val;
}
static int assigned_dev_register_regions(PCIRegion *io_regions,
unsigned long regions_num,
AssignedDevice *pci_dev)
{
uint32_t i;
PCIRegion *cur_region = io_regions;
for (i = 0; i < regions_num; i++, cur_region++) {
if (!cur_region->valid)
continue;
pci_dev->v_addrs[i].num = i;
/* handle memory io regions */
if (cur_region->type & IORESOURCE_MEM) {
int slow_map = 0;
int t = cur_region->type & IORESOURCE_PREFETCH
? PCI_BASE_ADDRESS_MEM_PREFETCH
: PCI_BASE_ADDRESS_SPACE_MEMORY;
if (cur_region->size & 0xFFF) {
if (i != PCI_ROM_SLOT) {
fprintf(stderr, "PCI region %d at address 0x%llx "
"has size 0x%x, which is not a multiple of 4K. "
"You might experience some performance hit "
"due to that.\n",
i, (unsigned long long)cur_region->base_addr,
cur_region->size);
}
slow_map = 1;
}
/* map physical memory */
pci_dev->v_addrs[i].e_physbase = cur_region->base_addr;
if (i == PCI_ROM_SLOT) {
pci_dev->v_addrs[i].u.r_virtbase =
mmap(NULL,
cur_region->size,
PROT_WRITE | PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE,
0, (off_t) 0);
} else {
pci_dev->v_addrs[i].u.r_virtbase =
mmap(NULL,
cur_region->size,
PROT_WRITE | PROT_READ, MAP_SHARED,
cur_region->resource_fd, (off_t) 0);
}
if (pci_dev->v_addrs[i].u.r_virtbase == MAP_FAILED) {
pci_dev->v_addrs[i].u.r_virtbase = NULL;
fprintf(stderr, "%s: Error: Couldn't mmap 0x%x!"
"\n", __func__,
(uint32_t) (cur_region->base_addr));
return -1;
}
if (i == PCI_ROM_SLOT) {
memset(pci_dev->v_addrs[i].u.r_virtbase, 0,
(cur_region->size + 0xFFF) & 0xFFFFF000);
mprotect(pci_dev->v_addrs[PCI_ROM_SLOT].u.r_virtbase,
(cur_region->size + 0xFFF) & 0xFFFFF000, PROT_READ);
}
pci_dev->v_addrs[i].r_size = cur_region->size;
pci_dev->v_addrs[i].e_size = 0;
/* add offset */
pci_dev->v_addrs[i].u.r_virtbase +=
(cur_region->base_addr & 0xFFF);
if (!slow_map) {
void *virtbase = pci_dev->v_addrs[i].u.r_virtbase;
char name[32];
snprintf(name, sizeof(name), "%s.bar%d",
pci_dev->dev.qdev.info->name, i);
pci_dev->v_addrs[i].memory_index =
qemu_ram_alloc_from_ptr(&pci_dev->dev.qdev,
name, cur_region->size,
virtbase);
} else
pci_dev->v_addrs[i].memory_index = 0;
pci_register_bar((PCIDevice *) pci_dev, i,
cur_region->size, t,
slow_map ? assigned_dev_iomem_map_slow
: assigned_dev_iomem_map);
continue;
} else {
/* handle port io regions */
uint32_t val;
int ret;
/* Test kernel support for ioport resource read/write. Old
* kernels return EIO. New kernels only allow 1/2/4 byte reads
* so should return EINVAL for a 3 byte read */
ret = pread(pci_dev->v_addrs[i].region->resource_fd, &val, 3, 0);
if (ret == 3) {
fprintf(stderr, "I/O port resource supports 3 byte read?!\n");
abort();
} else if (errno != EINVAL) {
fprintf(stderr, "Using raw in/out ioport access (sysfs - %s)\n",
strerror(errno));
close(pci_dev->v_addrs[i].region->resource_fd);
pci_dev->v_addrs[i].region->resource_fd = -1;
}
pci_dev->v_addrs[i].e_physbase = cur_region->base_addr;
pci_dev->v_addrs[i].u.r_baseport = cur_region->base_addr;
pci_dev->v_addrs[i].r_size = cur_region->size;
pci_dev->v_addrs[i].e_size = 0;
pci_register_bar((PCIDevice *) pci_dev, i,
cur_region->size, PCI_BASE_ADDRESS_SPACE_IO,
assigned_dev_ioport_map);
/* not relevant for port io */
pci_dev->v_addrs[i].memory_index = 0;
}
}
/* success */
return 0;
}
static int get_real_id(const char *devpath, const char *idname, uint16_t *val)
{
FILE *f;
char name[128];
long id;
snprintf(name, sizeof(name), "%s%s", devpath, idname);
f = fopen(name, "r");
if (f == NULL) {
fprintf(stderr, "%s: %s: %m\n", __func__, name);
return -1;
}
if (fscanf(f, "%li\n", &id) == 1) {
*val = id;
} else {
return -1;
}
fclose(f);
return 0;
}
static int get_real_vendor_id(const char *devpath, uint16_t *val)
{
return get_real_id(devpath, "vendor", val);
}
static int get_real_device_id(const char *devpath, uint16_t *val)
{
return get_real_id(devpath, "device", val);
}
static int get_real_device(AssignedDevice *pci_dev, uint16_t r_seg,
uint8_t r_bus, uint8_t r_dev, uint8_t r_func)
{
char dir[128], name[128];
int fd, r = 0, v;
FILE *f;
unsigned long long start, end, size, flags;
uint16_t id;
struct stat statbuf;
PCIRegion *rp;
PCIDevRegions *dev = &pci_dev->real_device;
dev->region_number = 0;
snprintf(dir, sizeof(dir), "/sys/bus/pci/devices/%04x:%02x:%02x.%x/",
r_seg, r_bus, r_dev, r_func);
snprintf(name, sizeof(name), "%sconfig", dir);
if (pci_dev->configfd_name && *pci_dev->configfd_name) {
if (qemu_isdigit(pci_dev->configfd_name[0])) {
dev->config_fd = strtol(pci_dev->configfd_name, NULL, 0);
} else {
dev->config_fd = monitor_get_fd(cur_mon, pci_dev->configfd_name);
if (dev->config_fd < 0) {
fprintf(stderr, "%s: (%s) unkown\n", __func__,
pci_dev->configfd_name);
return 1;
}
}
} else {
dev->config_fd = open(name, O_RDWR);
if (dev->config_fd == -1) {
fprintf(stderr, "%s: %s: %m\n", __func__, name);
return 1;
}
}
again:
r = read(dev->config_fd, pci_dev->dev.config,
pci_config_size(&pci_dev->dev));
if (r < 0) {
if (errno == EINTR || errno == EAGAIN)
goto again;
fprintf(stderr, "%s: read failed, errno = %d\n", __func__, errno);
}
snprintf(name, sizeof(name), "%sresource", dir);
f = fopen(name, "r");
if (f == NULL) {
fprintf(stderr, "%s: %s: %m\n", __func__, name);
return 1;
}
for (r = 0; r < PCI_NUM_REGIONS; r++) {
if (fscanf(f, "%lli %lli %lli\n", &start, &end, &flags) != 3)
break;
rp = dev->regions + r;
rp->valid = 0;
rp->resource_fd = -1;
size = end - start + 1;
flags &= IORESOURCE_IO | IORESOURCE_MEM | IORESOURCE_PREFETCH;
if (size == 0 || (flags & ~IORESOURCE_PREFETCH) == 0)
continue;
if (flags & IORESOURCE_MEM) {
flags &= ~IORESOURCE_IO;
} else {
flags &= ~IORESOURCE_PREFETCH;
}
if (r != PCI_ROM_SLOT) {
snprintf(name, sizeof(name), "%sresource%d", dir, r);
fd = open(name, O_RDWR);
if (fd == -1)
continue;
rp->resource_fd = fd;
}
rp->type = flags;
rp->valid = 1;
rp->base_addr = start;
rp->size = size;
pci_dev->v_addrs[r].region = rp;
DEBUG("region %d size %d start 0x%llx type %d resource_fd %d\n",
r, rp->size, start, rp->type, rp->resource_fd);
}
fclose(f);
/* read and fill vendor ID */
v = get_real_vendor_id(dir, &id);
if (v) {
return 1;
}
pci_dev->dev.config[0] = id & 0xff;
pci_dev->dev.config[1] = (id & 0xff00) >> 8;
/* read and fill device ID */
v = get_real_device_id(dir, &id);
if (v) {
return 1;
}
pci_dev->dev.config[2] = id & 0xff;
pci_dev->dev.config[3] = (id & 0xff00) >> 8;
/* dealing with virtual function device */
snprintf(name, sizeof(name), "%sphysfn/", dir);
if (!stat(name, &statbuf))
pci_dev->need_emulate_cmd = 1;
else
pci_dev->need_emulate_cmd = 0;
dev->region_number = r;
return 0;
}
static QLIST_HEAD(, AssignedDevice) devs = QLIST_HEAD_INITIALIZER(devs);
#ifdef KVM_CAP_IRQ_ROUTING
static void free_dev_irq_entries(AssignedDevice *dev)
{
int i;
for (i = 0; i < dev->irq_entries_nr; i++)
kvm_del_routing_entry(kvm_context, &dev->entry[i]);
free(dev->entry);
dev->entry = NULL;
dev->irq_entries_nr = 0;
}
#endif
static void free_assigned_device(AssignedDevice *dev)
{
if (dev) {
int i;
for (i = 0; i < dev->real_device.region_number; i++) {
PCIRegion *pci_region = &dev->real_device.regions[i];
AssignedDevRegion *region = &dev->v_addrs[i];
if (!pci_region->valid)
continue;
if (pci_region->type & IORESOURCE_IO) {
if (pci_region->resource_fd < 0) {
kvm_remove_ioperm_data(region->u.r_baseport,
region->r_size);
}
} else if (pci_region->type & IORESOURCE_MEM) {
if (region->u.r_virtbase) {
if (region->memory_index) {
cpu_register_physical_memory(region->e_physbase,
region->e_size,
IO_MEM_UNASSIGNED);
qemu_ram_unmap(region->memory_index);
}
if (munmap(region->u.r_virtbase,
(pci_region->size + 0xFFF) & 0xFFFFF000))
fprintf(stderr,
"Failed to unmap assigned device region: %s\n",
strerror(errno));
}
}
if (pci_region->resource_fd >= 0) {
close(pci_region->resource_fd);
}
}
if (dev->cap.available & ASSIGNED_DEVICE_CAP_MSIX)
assigned_dev_unregister_msix_mmio(dev);
if (dev->real_device.config_fd >= 0) {
close(dev->real_device.config_fd);
}
#ifdef KVM_CAP_IRQ_ROUTING
free_dev_irq_entries(dev);
#endif
}
}
static uint32_t calc_assigned_dev_id(uint16_t seg, uint8_t bus, uint8_t devfn)
{
return (uint32_t)seg << 16 | (uint32_t)bus << 8 | (uint32_t)devfn;
}
static void assign_failed_examine(AssignedDevice *dev)
{
char name[PATH_MAX], dir[PATH_MAX], driver[PATH_MAX] = {}, *ns;
uint16_t vendor_id, device_id;
int r;
sprintf(dir, "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/",
dev->host.seg, dev->host.bus, dev->host.dev, dev->host.func);
sprintf(name, "%sdriver", dir);
r = readlink(name, driver, sizeof(driver));
if ((r <= 0) || r >= sizeof(driver) || !(ns = strrchr(driver, '/'))) {
goto fail;
}
ns++;
if (get_real_vendor_id(dir, &vendor_id) ||
get_real_device_id(dir, &device_id)) {
goto fail;
}
fprintf(stderr, "*** The driver '%s' is occupying your device "
"%04x:%02x:%02x.%x.\n",
ns, dev->host.seg, dev->host.bus, dev->host.dev, dev->host.func);
fprintf(stderr, "***\n");
fprintf(stderr, "*** You can try the following commands to free it:\n");
fprintf(stderr, "***\n");
fprintf(stderr, "*** $ echo \"%04x %04x\" > /sys/bus/pci/drivers/pci-stub/"
"new_id\n", vendor_id, device_id);
fprintf(stderr, "*** $ echo \"%04x:%02x:%02x.%x\" > /sys/bus/pci/drivers/"
"%s/unbind\n",
dev->host.seg, dev->host.bus, dev->host.dev, dev->host.func, ns);
fprintf(stderr, "*** $ echo \"%04x:%02x:%02x.%x\" > /sys/bus/pci/drivers/"
"pci-stub/bind\n",
dev->host.seg, dev->host.bus, dev->host.dev, dev->host.func);
fprintf(stderr, "*** $ echo \"%04x %04x\" > /sys/bus/pci/drivers/pci-stub"
"/remove_id\n", vendor_id, device_id);
fprintf(stderr, "***\n");
return;
fail:
fprintf(stderr, "Couldn't find out why.\n");
}
static int assign_device(AssignedDevice *dev)
{
struct kvm_assigned_pci_dev assigned_dev_data;
int r;
#ifdef KVM_CAP_PCI_SEGMENT
/* Only pass non-zero PCI segment to capable module */
if (!kvm_check_extension(kvm_state, KVM_CAP_PCI_SEGMENT) &&
dev->h_segnr) {
fprintf(stderr, "Can't assign device inside non-zero PCI segment "
"as this KVM module doesn't support it.\n");
return -ENODEV;
}
#endif
memset(&assigned_dev_data, 0, sizeof(assigned_dev_data));
assigned_dev_data.assigned_dev_id =
calc_assigned_dev_id(dev->h_segnr, dev->h_busnr, dev->h_devfn);
#ifdef KVM_CAP_PCI_SEGMENT
assigned_dev_data.segnr = dev->h_segnr;
#endif
assigned_dev_data.busnr = dev->h_busnr;
assigned_dev_data.devfn = dev->h_devfn;
#ifdef KVM_CAP_IOMMU
/* We always enable the IOMMU unless disabled on the command line */
if (dev->use_iommu) {
if (!kvm_check_extension(kvm_state, KVM_CAP_IOMMU)) {
fprintf(stderr, "No IOMMU found. Unable to assign device \"%s\"\n",
dev->dev.qdev.id);
return -ENODEV;
}
assigned_dev_data.flags |= KVM_DEV_ASSIGN_ENABLE_IOMMU;
}
#else
dev->use_iommu = 0;
#endif
r = kvm_assign_pci_device(kvm_context, &assigned_dev_data);
if (r < 0) {
fprintf(stderr, "Failed to assign device \"%s\" : %s\n",
dev->dev.qdev.id, strerror(-r));
switch (r) {
case -EBUSY:
assign_failed_examine(dev);
break;
default:
break;
}
}
return r;
}
static int assign_irq(AssignedDevice *dev)
{
struct kvm_assigned_irq assigned_irq_data;
int irq, r = 0;
/* Interrupt PIN 0 means don't use INTx */
if (assigned_dev_pci_read_byte(&dev->dev, PCI_INTERRUPT_PIN) == 0)
return 0;
irq = pci_map_irq(&dev->dev, dev->intpin);
irq = piix_get_irq(irq);
#ifdef TARGET_IA64
irq = ipf_map_irq(&dev->dev, irq);
#endif
if (dev->girq == irq)
return r;
memset(&assigned_irq_data, 0, sizeof(assigned_irq_data));
assigned_irq_data.assigned_dev_id =
calc_assigned_dev_id(dev->h_segnr, dev->h_busnr, dev->h_devfn);
assigned_irq_data.guest_irq = irq;
assigned_irq_data.host_irq = dev->real_device.irq;
#ifdef KVM_CAP_ASSIGN_DEV_IRQ
if (dev->irq_requested_type) {
assigned_irq_data.flags = dev->irq_requested_type;
r = kvm_deassign_irq(kvm_context, &assigned_irq_data);
/* -ENXIO means no assigned irq */
if (r && r != -ENXIO)
perror("assign_irq: deassign");
}
assigned_irq_data.flags = KVM_DEV_IRQ_GUEST_INTX;
if (dev->cap.available & ASSIGNED_DEVICE_CAP_MSI)
assigned_irq_data.flags |= KVM_DEV_IRQ_HOST_MSI;
else
assigned_irq_data.flags |= KVM_DEV_IRQ_HOST_INTX;
#endif
r = kvm_assign_irq(kvm_context, &assigned_irq_data);
if (r < 0) {
fprintf(stderr, "Failed to assign irq for \"%s\": %s\n",
dev->dev.qdev.id, strerror(-r));
fprintf(stderr, "Perhaps you are assigning a device "
"that shares an IRQ with another device?\n");
return r;
}
dev->girq = irq;
dev->irq_requested_type = assigned_irq_data.flags;
return r;
}
static void deassign_device(AssignedDevice *dev)
{
#ifdef KVM_CAP_DEVICE_DEASSIGNMENT
struct kvm_assigned_pci_dev assigned_dev_data;
int r;
memset(&assigned_dev_data, 0, sizeof(assigned_dev_data));
assigned_dev_data.assigned_dev_id =
calc_assigned_dev_id(dev->h_segnr, dev->h_busnr, dev->h_devfn);
r = kvm_deassign_pci_device(kvm_context, &assigned_dev_data);
if (r < 0)
fprintf(stderr, "Failed to deassign device \"%s\" : %s\n",
dev->dev.qdev.id, strerror(-r));
#endif
}
#if 0
AssignedDevInfo *get_assigned_device(int pcibus, int slot)
{
AssignedDevice *assigned_dev = NULL;
AssignedDevInfo *adev = NULL;
QLIST_FOREACH(adev, &adev_head, next) {
assigned_dev = adev->assigned_dev;
if (pci_bus_num(assigned_dev->dev.bus) == pcibus &&
PCI_SLOT(assigned_dev->dev.devfn) == slot)
return adev;
}
return NULL;
}
#endif
/* The pci config space got updated. Check if irq numbers have changed
* for our devices
*/
void assigned_dev_update_irqs(void)
{
AssignedDevice *dev, *next;
int r;
dev = QLIST_FIRST(&devs);
while (dev) {
next = QLIST_NEXT(dev, next);
r = assign_irq(dev);
if (r < 0)
qdev_unplug(&dev->dev.qdev);
dev = next;
}
}
#ifdef KVM_CAP_IRQ_ROUTING
#ifdef KVM_CAP_DEVICE_MSI
static void assigned_dev_update_msi(PCIDevice *pci_dev, unsigned int ctrl_pos)
{
struct kvm_assigned_irq assigned_irq_data;
AssignedDevice *assigned_dev = container_of(pci_dev, AssignedDevice, dev);
uint8_t ctrl_byte = pci_dev->config[ctrl_pos];
int r;
memset(&assigned_irq_data, 0, sizeof assigned_irq_data);
assigned_irq_data.assigned_dev_id =
calc_assigned_dev_id(assigned_dev->h_segnr, assigned_dev->h_busnr,
(uint8_t)assigned_dev->h_devfn);
/* Some guests gratuitously disable MSI even if they're not using it,
* try to catch this by only deassigning irqs if the guest is using
* MSI or intends to start. */
if ((assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MSI) ||
(ctrl_byte & PCI_MSI_FLAGS_ENABLE)) {
assigned_irq_data.flags = assigned_dev->irq_requested_type;
free_dev_irq_entries(assigned_dev);
r = kvm_deassign_irq(kvm_context, &assigned_irq_data);
/* -ENXIO means no assigned irq */
if (r && r != -ENXIO)
perror("assigned_dev_update_msi: deassign irq");
assigned_dev->irq_requested_type = 0;
}
if (ctrl_byte & PCI_MSI_FLAGS_ENABLE) {
assigned_dev->entry = calloc(1, sizeof(struct kvm_irq_routing_entry));
if (!assigned_dev->entry) {
perror("assigned_dev_update_msi: ");
return;
}
assigned_dev->entry->u.msi.address_lo =
*(uint32_t *)(pci_dev->config + pci_dev->cap.start +
PCI_MSI_ADDRESS_LO);
assigned_dev->entry->u.msi.address_hi = 0;
assigned_dev->entry->u.msi.data = *(uint16_t *)(pci_dev->config +
pci_dev->cap.start + PCI_MSI_DATA_32);
assigned_dev->entry->type = KVM_IRQ_ROUTING_MSI;
r = kvm_get_irq_route_gsi(kvm_context);
if (r < 0) {
perror("assigned_dev_update_msi: kvm_get_irq_route_gsi");
return;
}
assigned_dev->entry->gsi = r;
kvm_add_routing_entry(kvm_context, assigned_dev->entry);
if (kvm_commit_irq_routes(kvm_context) < 0) {
perror("assigned_dev_update_msi: kvm_commit_irq_routes");
assigned_dev->cap.state &= ~ASSIGNED_DEVICE_MSI_ENABLED;
return;
}
assigned_dev->irq_entries_nr = 1;
assigned_irq_data.guest_irq = assigned_dev->entry->gsi;
assigned_irq_data.flags = KVM_DEV_IRQ_HOST_MSI | KVM_DEV_IRQ_GUEST_MSI;
if (kvm_assign_irq(kvm_context, &assigned_irq_data) < 0)
perror("assigned_dev_enable_msi: assign irq");
assigned_dev->irq_requested_type = assigned_irq_data.flags;
}
}
#endif
#ifdef KVM_CAP_DEVICE_MSIX
static int assigned_dev_update_msix_mmio(PCIDevice *pci_dev)
{
AssignedDevice *adev = container_of(pci_dev, AssignedDevice, dev);
uint16_t entries_nr = 0, entries_max_nr;
int pos = 0, i, r = 0;
uint32_t msg_addr, msg_upper_addr, msg_data, msg_ctrl;
struct kvm_assigned_msix_nr msix_nr;
struct kvm_assigned_msix_entry msix_entry;
void *va = adev->msix_table_page;
if (adev->cap.available & ASSIGNED_DEVICE_CAP_MSI)
pos = pci_dev->cap.start + PCI_CAPABILITY_CONFIG_MSI_LENGTH;
else
pos = pci_dev->cap.start;
entries_max_nr = *(uint16_t *)(pci_dev->config + pos + 2);
entries_max_nr &= PCI_MSIX_TABSIZE;
entries_max_nr += 1;
/* Get the usable entry number for allocating */
for (i = 0; i < entries_max_nr; i++) {
memcpy(&msg_ctrl, va + i * 16 + 12, 4);
memcpy(&msg_data, va + i * 16 + 8, 4);
/* Ignore unused entry even it's unmasked */
if (msg_data == 0)
continue;
entries_nr ++;
}
if (entries_nr == 0) {
fprintf(stderr, "MSI-X entry number is zero!\n");
return -EINVAL;
}
msix_nr.assigned_dev_id = calc_assigned_dev_id(adev->h_segnr, adev->h_busnr,
(uint8_t)adev->h_devfn);
msix_nr.entry_nr = entries_nr;
r = kvm_assign_set_msix_nr(kvm_context, &msix_nr);
if (r != 0) {
fprintf(stderr, "fail to set MSI-X entry number for MSIX! %s\n",
strerror(-r));
return r;
}
free_dev_irq_entries(adev);
adev->irq_entries_nr = entries_nr;
adev->entry = calloc(entries_nr, sizeof(struct kvm_irq_routing_entry));
if (!adev->entry) {
perror("assigned_dev_update_msix_mmio: ");
return -errno;
}
msix_entry.assigned_dev_id = msix_nr.assigned_dev_id;
entries_nr = 0;
for (i = 0; i < entries_max_nr; i++) {
if (entries_nr >= msix_nr.entry_nr)
break;
memcpy(&msg_ctrl, va + i * 16 + 12, 4);
memcpy(&msg_data, va + i * 16 + 8, 4);
if (msg_data == 0)
continue;
memcpy(&msg_addr, va + i * 16, 4);
memcpy(&msg_upper_addr, va + i * 16 + 4, 4);
r = kvm_get_irq_route_gsi(kvm_context);
if (r < 0)
return r;
adev->entry[entries_nr].gsi = r;
adev->entry[entries_nr].type = KVM_IRQ_ROUTING_MSI;
adev->entry[entries_nr].flags = 0;
adev->entry[entries_nr].u.msi.address_lo = msg_addr;
adev->entry[entries_nr].u.msi.address_hi = msg_upper_addr;
adev->entry[entries_nr].u.msi.data = msg_data;
DEBUG("MSI-X data 0x%x, MSI-X addr_lo 0x%x\n!", msg_data, msg_addr);
kvm_add_routing_entry(kvm_context, &adev->entry[entries_nr]);
msix_entry.gsi = adev->entry[entries_nr].gsi;
msix_entry.entry = i;
r = kvm_assign_set_msix_entry(kvm_context, &msix_entry);
if (r) {
fprintf(stderr, "fail to set MSI-X entry! %s\n", strerror(-r));
break;
}
DEBUG("MSI-X entry gsi 0x%x, entry %d\n!",
msix_entry.gsi, msix_entry.entry);
entries_nr ++;
}
if (r == 0 && kvm_commit_irq_routes(kvm_context) < 0) {
perror("assigned_dev_update_msix_mmio: kvm_commit_irq_routes");
return -EINVAL;
}
return r;
}
static void assigned_dev_update_msix(PCIDevice *pci_dev, unsigned int ctrl_pos)
{
struct kvm_assigned_irq assigned_irq_data;
AssignedDevice *assigned_dev = container_of(pci_dev, AssignedDevice, dev);
uint16_t *ctrl_word = (uint16_t *)(pci_dev->config + ctrl_pos);
int r;
memset(&assigned_irq_data, 0, sizeof assigned_irq_data);
assigned_irq_data.assigned_dev_id =
calc_assigned_dev_id(assigned_dev->h_segnr, assigned_dev->h_busnr,
(uint8_t)assigned_dev->h_devfn);
/* Some guests gratuitously disable MSIX even if they're not using it,
* try to catch this by only deassigning irqs if the guest is using
* MSIX or intends to start. */
if ((assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MSIX) ||
(*ctrl_word & PCI_MSIX_ENABLE)) {
assigned_irq_data.flags = assigned_dev->irq_requested_type;
free_dev_irq_entries(assigned_dev);
r = kvm_deassign_irq(kvm_context, &assigned_irq_data);
/* -ENXIO means no assigned irq */
if (r && r != -ENXIO)
perror("assigned_dev_update_msix: deassign irq");
assigned_dev->irq_requested_type = 0;
}
if (*ctrl_word & PCI_MSIX_ENABLE) {
assigned_irq_data.flags = KVM_DEV_IRQ_HOST_MSIX |
KVM_DEV_IRQ_GUEST_MSIX;
if (assigned_dev_update_msix_mmio(pci_dev) < 0) {
perror("assigned_dev_update_msix_mmio");
return;
}
if (kvm_assign_irq(kvm_context, &assigned_irq_data) < 0) {
perror("assigned_dev_enable_msix: assign irq");
return;
}
assigned_dev->irq_requested_type = assigned_irq_data.flags;
}
}
#endif
#endif
static void assigned_device_pci_cap_write_config(PCIDevice *pci_dev, uint32_t address,
uint32_t val, int len)
{
AssignedDevice *assigned_dev = container_of(pci_dev, AssignedDevice, dev);
unsigned int pos = pci_dev->cap.start, ctrl_pos;
pci_default_cap_write_config(pci_dev, address, val, len);
#ifdef KVM_CAP_IRQ_ROUTING
#ifdef KVM_CAP_DEVICE_MSI
if (assigned_dev->cap.available & ASSIGNED_DEVICE_CAP_MSI) {
ctrl_pos = pos + PCI_MSI_FLAGS;
if (address <= ctrl_pos && address + len > ctrl_pos)
assigned_dev_update_msi(pci_dev, ctrl_pos);
pos += PCI_CAPABILITY_CONFIG_MSI_LENGTH;
}
#endif
#ifdef KVM_CAP_DEVICE_MSIX
if (assigned_dev->cap.available & ASSIGNED_DEVICE_CAP_MSIX) {
ctrl_pos = pos + 3;
if (address <= ctrl_pos && address + len > ctrl_pos) {
ctrl_pos--; /* control is word long */
assigned_dev_update_msix(pci_dev, ctrl_pos);
}
pos += PCI_CAPABILITY_CONFIG_MSIX_LENGTH;
}
#endif
#endif
return;
}
static int assigned_device_pci_cap_init(PCIDevice *pci_dev)
{
AssignedDevice *dev = container_of(pci_dev, AssignedDevice, dev);
PCIRegion *pci_region = dev->real_device.regions;
int next_cap_pt = 0;
pci_dev->cap.length = 0;
#ifdef KVM_CAP_IRQ_ROUTING
#ifdef KVM_CAP_DEVICE_MSI
/* Expose MSI capability
* MSI capability is the 1st capability in capability config */
if (pci_find_cap_offset(pci_dev, PCI_CAP_ID_MSI)) {
dev->cap.available |= ASSIGNED_DEVICE_CAP_MSI;
memset(&pci_dev->config[pci_dev->cap.start + pci_dev->cap.length],
0, PCI_CAPABILITY_CONFIG_MSI_LENGTH);
pci_dev->config[pci_dev->cap.start + pci_dev->cap.length] =
PCI_CAP_ID_MSI;
pci_dev->cap.length += PCI_CAPABILITY_CONFIG_MSI_LENGTH;
next_cap_pt = 1;
}
#endif
#ifdef KVM_CAP_DEVICE_MSIX
/* Expose MSI-X capability */
if (pci_find_cap_offset(pci_dev, PCI_CAP_ID_MSIX)) {
int pos, entry_nr, bar_nr;
uint32_t msix_table_entry;
dev->cap.available |= ASSIGNED_DEVICE_CAP_MSIX;
memset(&pci_dev->config[pci_dev->cap.start + pci_dev->cap.length],
0, PCI_CAPABILITY_CONFIG_MSIX_LENGTH);
pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_MSIX);
entry_nr = assigned_dev_pci_read_word(pci_dev, pos + 2) &
PCI_MSIX_TABSIZE;
pci_dev->config[pci_dev->cap.start + pci_dev->cap.length] = 0x11;
*(uint16_t *)(pci_dev->config + pci_dev->cap.start +
pci_dev->cap.length + 2) = entry_nr;
msix_table_entry = assigned_dev_pci_read_long(pci_dev,
pos + PCI_MSIX_TABLE);
*(uint32_t *)(pci_dev->config + pci_dev->cap.start +
pci_dev->cap.length + PCI_MSIX_TABLE) = msix_table_entry;
*(uint32_t *)(pci_dev->config + pci_dev->cap.start +
pci_dev->cap.length + PCI_MSIX_PBA) =
assigned_dev_pci_read_long(pci_dev, pos + PCI_MSIX_PBA);
bar_nr = msix_table_entry & PCI_MSIX_BIR;
msix_table_entry &= ~PCI_MSIX_BIR;
dev->msix_table_addr = pci_region[bar_nr].base_addr + msix_table_entry;
if (next_cap_pt != 0) {
pci_dev->config[pci_dev->cap.start + next_cap_pt] =
pci_dev->cap.start + pci_dev->cap.length;
next_cap_pt += PCI_CAPABILITY_CONFIG_MSI_LENGTH;
} else
next_cap_pt = 1;
pci_dev->cap.length += PCI_CAPABILITY_CONFIG_MSIX_LENGTH;
}
#endif
#endif
return 0;
}
static uint32_t msix_mmio_readl(void *opaque, target_phys_addr_t addr)
{
AssignedDevice *adev = opaque;
unsigned int offset = addr & 0xfff;
void *page = adev->msix_table_page;
uint32_t val = 0;
memcpy(&val, (void *)((char *)page + offset), 4);
return val;
}
static uint32_t msix_mmio_readb(void *opaque, target_phys_addr_t addr)
{
return ((msix_mmio_readl(opaque, addr & ~3)) >>
(8 * (addr & 3))) & 0xff;
}
static uint32_t msix_mmio_readw(void *opaque, target_phys_addr_t addr)
{
return ((msix_mmio_readl(opaque, addr & ~3)) >>
(8 * (addr & 3))) & 0xffff;
}
static void msix_mmio_writel(void *opaque,
target_phys_addr_t addr, uint32_t val)
{
AssignedDevice *adev = opaque;
unsigned int offset = addr & 0xfff;
void *page = adev->msix_table_page;
DEBUG("write to MSI-X entry table mmio offset 0x%lx, val 0x%x\n",
addr, val);
memcpy((void *)((char *)page + offset), &val, 4);
}
static void msix_mmio_writew(void *opaque,
target_phys_addr_t addr, uint32_t val)
{
msix_mmio_writel(opaque, addr & ~3,
(val & 0xffff) << (8*(addr & 3)));
}
static void msix_mmio_writeb(void *opaque,
target_phys_addr_t addr, uint32_t val)
{
msix_mmio_writel(opaque, addr & ~3,
(val & 0xff) << (8*(addr & 3)));
}
static CPUWriteMemoryFunc *msix_mmio_write[] = {
msix_mmio_writeb, msix_mmio_writew, msix_mmio_writel
};
static CPUReadMemoryFunc *msix_mmio_read[] = {
msix_mmio_readb, msix_mmio_readw, msix_mmio_readl
};
static int assigned_dev_register_msix_mmio(AssignedDevice *dev)
{
dev->msix_table_page = mmap(NULL, 0x1000,
PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, 0, 0);
if (dev->msix_table_page == MAP_FAILED) {
fprintf(stderr, "fail allocate msix_table_page! %s\n",
strerror(errno));
return -EFAULT;
}
memset(dev->msix_table_page, 0, 0x1000);
dev->mmio_index = cpu_register_io_memory(
msix_mmio_read, msix_mmio_write, dev);
return 0;
}
static void assigned_dev_unregister_msix_mmio(AssignedDevice *dev)
{
if (!dev->msix_table_page)
return;
cpu_unregister_io_memory(dev->mmio_index);
dev->mmio_index = 0;
if (munmap(dev->msix_table_page, 0x1000) == -1) {
fprintf(stderr, "error unmapping msix_table_page! %s\n",
strerror(errno));
}
dev->msix_table_page = NULL;
}
static int assigned_initfn(struct PCIDevice *pci_dev)
{
AssignedDevice *dev = DO_UPCAST(AssignedDevice, dev, pci_dev);
uint8_t e_device, e_intx;
int r;
if (!dev->host.seg && !dev->host.bus && !dev->host.dev && !dev->host.func) {
error_report("pci-assign: error: no host device specified");
return -1;
}
if (get_real_device(dev, dev->host.seg, dev->host.bus,
dev->host.dev, dev->host.func)) {
error_report("pci-assign: Error: Couldn't get real device (%s)!",
dev->dev.qdev.id);
goto out;
}
/* handle real device's MMIO/PIO BARs */
if (assigned_dev_register_regions(dev->real_device.regions,
dev->real_device.region_number,
dev))
goto out;
/* handle interrupt routing */
e_device = (dev->dev.devfn >> 3) & 0x1f;
e_intx = dev->dev.config[0x3d] - 1;
dev->intpin = e_intx;
dev->run = 0;
dev->girq = -1;
dev->h_segnr = dev->host.seg;
dev->h_busnr = dev->host.bus;
dev->h_devfn = PCI_DEVFN(dev->host.dev, dev->host.func);
if (pci_enable_capability_support(pci_dev, 0, NULL,
assigned_device_pci_cap_write_config,
assigned_device_pci_cap_init) < 0)
goto out;
/* assign device to guest */
r = assign_device(dev);
if (r < 0)
goto out;
/* assign irq for the device */
r = assign_irq(dev);
if (r < 0)
goto assigned_out;
/* intercept MSI-X entry page in the MMIO */
if (dev->cap.available & ASSIGNED_DEVICE_CAP_MSIX)
if (assigned_dev_register_msix_mmio(dev))
goto assigned_out;
assigned_dev_load_option_rom(dev);
QLIST_INSERT_HEAD(&devs, dev, next);
return 0;
assigned_out:
deassign_device(dev);
out:
free_assigned_device(dev);
return -1;
}
static int assigned_exitfn(struct PCIDevice *pci_dev)
{
AssignedDevice *dev = DO_UPCAST(AssignedDevice, dev, pci_dev);
QLIST_REMOVE(dev, next);
deassign_device(dev);
free_assigned_device(dev);
return 0;
}
static int parse_hostaddr(DeviceState *dev, Property *prop, const char *str)
{
PCIHostDevice *ptr = qdev_get_prop_ptr(dev, prop);
int rc;
rc = pci_parse_host_devaddr(str, &ptr->seg, &ptr->bus, &ptr->dev, &ptr->func);
if (rc != 0)
return -1;
return 0;
}
static int print_hostaddr(DeviceState *dev, Property *prop, char *dest, size_t len)
{
PCIHostDevice *ptr = qdev_get_prop_ptr(dev, prop);
return snprintf(dest, len, "%02x:%02x.%x", ptr->bus, ptr->dev, ptr->func);
}
PropertyInfo qdev_prop_hostaddr = {
.name = "pci-hostaddr",
.type = -1,
.size = sizeof(PCIHostDevice),
.parse = parse_hostaddr,
.print = print_hostaddr,
};
static PCIDeviceInfo assign_info = {
.qdev.name = "pci-assign",
.qdev.desc = "pass through host pci devices to the guest",
.qdev.size = sizeof(AssignedDevice),
.init = assigned_initfn,
.exit = assigned_exitfn,
.config_read = assigned_dev_pci_read_config,
.config_write = assigned_dev_pci_write_config,
.qdev.props = (Property[]) {
DEFINE_PROP("host", AssignedDevice, host, qdev_prop_hostaddr, PCIHostDevice),
DEFINE_PROP_UINT32("iommu", AssignedDevice, use_iommu, 1),
DEFINE_PROP_STRING("configfd", AssignedDevice, configfd_name),
DEFINE_PROP_END_OF_LIST(),
},
};
static void assign_register_devices(void)
{
pci_qdev_register(&assign_info);
}
device_init(assign_register_devices)
/*
* Syntax to assign device:
*
* -pcidevice host=bus:dev.func[,dma=none][,name=Foo]
*
* Example:
* -pcidevice host=00:13.0,dma=pvdma
*
* dma can currently only be 'none' to disable iommu support.
*/
QemuOpts *add_assigned_device(const char *arg)
{
QemuOpts *opts = NULL;
char host[64], id[64], dma[8];
int r;
r = get_param_value(host, sizeof(host), "host", arg);
if (!r)
goto bad;
r = get_param_value(id, sizeof(id), "id", arg);
if (!r)
r = get_param_value(id, sizeof(id), "name", arg);
if (!r)
r = get_param_value(id, sizeof(id), "host", arg);
opts = qemu_opts_create(&qemu_device_opts, id, 0);
if (!opts)
goto bad;
qemu_opt_set(opts, "driver", "pci-assign");
qemu_opt_set(opts, "host", host);
#ifdef KVM_CAP_IOMMU
r = get_param_value(dma, sizeof(dma), "dma", arg);
if (r && !strncmp(dma, "none", 4))
qemu_opt_set(opts, "iommu", "0");
#endif
qemu_opts_print(opts, NULL);
return opts;
bad:
fprintf(stderr, "pcidevice argument parse error; "
"please check the help text for usage\n");
if (opts)
qemu_opts_del(opts);
return NULL;
}
void add_assigned_devices(PCIBus *bus, const char **devices, int n_devices)
{
QemuOpts *opts;
int i;
for (i = 0; i < n_devices; i++) {
opts = add_assigned_device(devices[i]);
if (opts == NULL) {
fprintf(stderr, "Could not add assigned device %s\n", devices[i]);
exit(1);
}
/* generic code will call qdev_device_add() for the device */
}
}
/*
* Scan the assigned devices for the devices that have an option ROM, and then
* load the corresponding ROM data to RAM. If an error occurs while loading an
* option ROM, we just ignore that option ROM and continue with the next one.
*/
static void assigned_dev_load_option_rom(AssignedDevice *dev)
{
int size, len, ret;
void *buf;
FILE *fp;
uint8_t i = 1;
char rom_file[64];
snprintf(rom_file, sizeof(rom_file),
"/sys/bus/pci/devices/%04x:%02x:%02x.%01x/rom",
dev->host.seg, dev->host.bus, dev->host.dev, dev->host.func);
if (access(rom_file, F_OK))
return;
/* Write something to the ROM file to enable it */
fp = fopen(rom_file, "wb");
if (fp == NULL)
return;
len = fwrite(&i, 1, 1, fp);
fclose(fp);
if (len != 1)
return;
/* The file has to be closed and reopened, otherwise it won't work */
fp = fopen(rom_file, "rb");
if (fp == NULL)
return;
fseek(fp, 0, SEEK_END);
size = ftell(fp);
fseek(fp, 0, SEEK_SET);
buf = malloc(size);
if (buf == NULL) {
fclose(fp);
return;
}
ret = fread(buf, size, 1, fp);
if (!feof(fp) || ferror(fp) || ret != 1) {
free(buf);
fclose(fp);
return;
}
fclose(fp);
/* Copy ROM contents into the space backing the ROM BAR */
if (dev->v_addrs[PCI_ROM_SLOT].r_size >= size &&
dev->v_addrs[PCI_ROM_SLOT].u.r_virtbase) {
mprotect(dev->v_addrs[PCI_ROM_SLOT].u.r_virtbase,
size, PROT_READ | PROT_WRITE);
memcpy(dev->v_addrs[PCI_ROM_SLOT].u.r_virtbase,
buf, size);
mprotect(dev->v_addrs[PCI_ROM_SLOT].u.r_virtbase,
size, PROT_READ);
}
free(buf);
}