blob: 0ad18f6e51356f005cc94d9e2894e73b209beeb4 [file] [log] [blame]
/*
* qemu/kvm integration, x86 specific code
*
* Copyright (C) 2006-2008 Qumranet Technologies
*
* Licensed under the terms of the GNU GPL version 2 or higher.
*/
#include "config.h"
#include "config-host.h"
#include <string.h>
#include "hw/hw.h"
#include "gdbstub.h"
#include <sys/io.h>
#include "qemu-kvm.h"
#include "libkvm.h"
#include <pthread.h>
#include <sys/utsname.h>
#include <linux/kvm_para.h>
#include <sys/ioctl.h>
#include "kvm.h"
#include "hw/apic.h"
#define MSR_IA32_TSC 0x10
static struct kvm_msr_list *kvm_msr_list;
extern unsigned int kvm_shadow_memory;
static int kvm_has_msr_star;
static int kvm_has_vm_hsave_pa;
static int lm_capable_kernel;
int kvm_set_tss_addr(kvm_context_t kvm, unsigned long addr)
{
int r;
/*
* Tell fw_cfg to notify the BIOS to reserve the range.
*/
if (e820_add_entry(addr, 0x4000, E820_RESERVED) < 0) {
perror("e820_add_entry() table is full");
exit(1);
}
r = kvm_vm_ioctl(kvm_state, KVM_SET_TSS_ADDR, addr);
if (r < 0) {
fprintf(stderr, "kvm_set_tss_addr: %m\n");
return r;
}
return 0;
}
static int kvm_init_tss(kvm_context_t kvm)
{
int r;
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
if (r > 0) {
/*
* this address is 3 pages before the bios, and the bios should present
* as unavaible memory
*/
r = kvm_set_tss_addr(kvm, 0xfeffd000);
if (r < 0) {
fprintf(stderr, "kvm_init_tss: unable to set tss addr\n");
return r;
}
} else {
fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
}
return 0;
}
static int kvm_set_identity_map_addr(kvm_context_t kvm, uint64_t addr)
{
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
int r;
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_IDENTITY_MAP_ADDR);
if (r > 0) {
r = kvm_vm_ioctl(kvm_state, KVM_SET_IDENTITY_MAP_ADDR, &addr);
if (r == -1) {
fprintf(stderr, "kvm_set_identity_map_addr: %m\n");
return -errno;
}
return 0;
}
#endif
return -ENOSYS;
}
static int kvm_init_identity_map_page(kvm_context_t kvm)
{
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
int r;
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_IDENTITY_MAP_ADDR);
if (r > 0) {
/*
* this address is 4 pages before the bios, and the bios should present
* as unavaible memory
*/
r = kvm_set_identity_map_addr(kvm, 0xfeffc000);
if (r < 0) {
fprintf(stderr, "kvm_init_identity_map_page: "
"unable to set identity mapping addr\n");
return r;
}
}
#endif
return 0;
}
static int kvm_create_pit(kvm_context_t kvm)
{
#ifdef KVM_CAP_PIT
int r;
kvm_state->pit_in_kernel = 0;
if (!kvm->no_pit_creation) {
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_PIT);
if (r > 0) {
r = kvm_vm_ioctl(kvm_state, KVM_CREATE_PIT);
if (r >= 0)
kvm_state->pit_in_kernel = 1;
else {
fprintf(stderr, "Create kernel PIC irqchip failed\n");
return r;
}
}
}
#endif
return 0;
}
int kvm_arch_create(kvm_context_t kvm, unsigned long phys_mem_bytes,
void **vm_mem)
{
int r = 0;
r = kvm_init_tss(kvm);
if (r < 0)
return r;
r = kvm_init_identity_map_page(kvm);
if (r < 0)
return r;
r = kvm_create_pit(kvm);
if (r < 0)
return r;
r = kvm_init_coalesced_mmio(kvm);
if (r < 0)
return r;
return 0;
}
#ifdef KVM_EXIT_TPR_ACCESS
static int kvm_handle_tpr_access(CPUState *env)
{
struct kvm_run *run = env->kvm_run;
kvm_tpr_access_report(env,
run->tpr_access.rip,
run->tpr_access.is_write);
return 0;
}
int kvm_enable_vapic(CPUState *env, uint64_t vapic)
{
struct kvm_vapic_addr va = {
.vapic_addr = vapic,
};
return kvm_vcpu_ioctl(env, KVM_SET_VAPIC_ADDR, &va);
}
#endif
int kvm_arch_run(CPUState *env)
{
int r = 0;
struct kvm_run *run = env->kvm_run;
switch (run->exit_reason) {
#ifdef KVM_EXIT_SET_TPR
case KVM_EXIT_SET_TPR:
break;
#endif
#ifdef KVM_EXIT_TPR_ACCESS
case KVM_EXIT_TPR_ACCESS:
r = kvm_handle_tpr_access(env);
break;
#endif
default:
r = 1;
break;
}
return r;
}
#ifdef KVM_CAP_IRQCHIP
int kvm_get_lapic(CPUState *env, struct kvm_lapic_state *s)
{
int r = 0;
if (!kvm_irqchip_in_kernel())
return r;
r = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, s);
if (r < 0)
fprintf(stderr, "KVM_GET_LAPIC failed\n");
return r;
}
int kvm_set_lapic(CPUState *env, struct kvm_lapic_state *s)
{
int r = 0;
if (!kvm_irqchip_in_kernel())
return 0;
r = kvm_vcpu_ioctl(env, KVM_SET_LAPIC, s);
if (r < 0)
fprintf(stderr, "KVM_SET_LAPIC failed\n");
return r;
}
#endif
#ifdef KVM_CAP_PIT
int kvm_get_pit(kvm_context_t kvm, struct kvm_pit_state *s)
{
if (!kvm_pit_in_kernel())
return 0;
return kvm_vm_ioctl(kvm_state, KVM_GET_PIT, s);
}
int kvm_set_pit(kvm_context_t kvm, struct kvm_pit_state *s)
{
if (!kvm_pit_in_kernel())
return 0;
return kvm_vm_ioctl(kvm_state, KVM_SET_PIT, s);
}
#ifdef KVM_CAP_PIT_STATE2
int kvm_get_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2)
{
if (!kvm_pit_in_kernel())
return 0;
return kvm_vm_ioctl(kvm_state, KVM_GET_PIT2, ps2);
}
int kvm_set_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2)
{
if (!kvm_pit_in_kernel())
return 0;
return kvm_vm_ioctl(kvm_state, KVM_SET_PIT2, ps2);
}
#endif
#endif
int kvm_has_pit_state2(kvm_context_t kvm)
{
int r = 0;
#ifdef KVM_CAP_PIT_STATE2
r = kvm_check_extension(kvm_state, KVM_CAP_PIT_STATE2);
#endif
return r;
}
void kvm_show_code(CPUState *env)
{
#define SHOW_CODE_LEN 50
struct kvm_regs regs;
struct kvm_sregs sregs;
int r, n;
int back_offset;
unsigned char code;
char code_str[SHOW_CODE_LEN * 3 + 1];
unsigned long rip;
r = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
if (r < 0 ) {
perror("KVM_GET_SREGS");
return;
}
r = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
if (r < 0) {
perror("KVM_GET_REGS");
return;
}
rip = sregs.cs.base + regs.rip;
back_offset = regs.rip;
if (back_offset > 20)
back_offset = 20;
*code_str = 0;
for (n = -back_offset; n < SHOW_CODE_LEN-back_offset; ++n) {
if (n == 0)
strcat(code_str, " -->");
cpu_physical_memory_rw(rip + n, &code, 1, 1);
sprintf(code_str + strlen(code_str), " %02x", code);
}
fprintf(stderr, "code:%s\n", code_str);
}
/*
* Returns available msr list. User must free.
*/
static struct kvm_msr_list *kvm_get_msr_list(void)
{
struct kvm_msr_list sizer, *msrs;
int r;
sizer.nmsrs = 0;
r = kvm_ioctl(kvm_state, KVM_GET_MSR_INDEX_LIST, &sizer);
if (r < 0 && r != -E2BIG)
return NULL;
/* Old kernel modules had a bug and could write beyond the provided
memory. Allocate at least a safe amount of 1K. */
msrs = qemu_malloc(MAX(1024, sizeof(*msrs) +
sizer.nmsrs * sizeof(*msrs->indices)));
msrs->nmsrs = sizer.nmsrs;
r = kvm_ioctl(kvm_state, KVM_GET_MSR_INDEX_LIST, msrs);
if (r < 0) {
free(msrs);
errno = r;
return NULL;
}
return msrs;
}
int kvm_get_msrs(CPUState *env, struct kvm_msr_entry *msrs, int n)
{
struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
int r;
kmsrs->nmsrs = n;
memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
free(kmsrs);
return r;
}
int kvm_set_msrs(CPUState *env, struct kvm_msr_entry *msrs, int n)
{
struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
int r;
kmsrs->nmsrs = n;
memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
r = kvm_vcpu_ioctl(env, KVM_SET_MSRS, kmsrs);
free(kmsrs);
return r;
}
int kvm_get_mce_cap_supported(kvm_context_t kvm, uint64_t *mce_cap,
int *max_banks)
{
#ifdef KVM_CAP_MCE
int r;
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
if (r > 0) {
*max_banks = r;
return kvm_ioctl(kvm_state, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
}
#endif
return -ENOSYS;
}
int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
{
#ifdef KVM_CAP_MCE
return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
#else
return -ENOSYS;
#endif
}
int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
{
#ifdef KVM_CAP_MCE
return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
#else
return -ENOSYS;
#endif
}
static void print_seg(FILE *file, const char *name, struct kvm_segment *seg)
{
fprintf(stderr,
"%s %04x (%08llx/%08x p %d dpl %d db %d s %d type %x l %d"
" g %d avl %d)\n",
name, seg->selector, seg->base, seg->limit, seg->present,
seg->dpl, seg->db, seg->s, seg->type, seg->l, seg->g,
seg->avl);
}
static void print_dt(FILE *file, const char *name, struct kvm_dtable *dt)
{
fprintf(stderr, "%s %llx/%x\n", name, dt->base, dt->limit);
}
void kvm_show_regs(CPUState *env)
{
struct kvm_regs regs;
struct kvm_sregs sregs;
int r;
r = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
if (r < 0) {
perror("KVM_GET_REGS");
return;
}
fprintf(stderr,
"rax %016llx rbx %016llx rcx %016llx rdx %016llx\n"
"rsi %016llx rdi %016llx rsp %016llx rbp %016llx\n"
"r8 %016llx r9 %016llx r10 %016llx r11 %016llx\n"
"r12 %016llx r13 %016llx r14 %016llx r15 %016llx\n"
"rip %016llx rflags %08llx\n",
regs.rax, regs.rbx, regs.rcx, regs.rdx,
regs.rsi, regs.rdi, regs.rsp, regs.rbp,
regs.r8, regs.r9, regs.r10, regs.r11,
regs.r12, regs.r13, regs.r14, regs.r15,
regs.rip, regs.rflags);
r = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
if (r < 0) {
perror("KVM_GET_SREGS");
return;
}
print_seg(stderr, "cs", &sregs.cs);
print_seg(stderr, "ds", &sregs.ds);
print_seg(stderr, "es", &sregs.es);
print_seg(stderr, "ss", &sregs.ss);
print_seg(stderr, "fs", &sregs.fs);
print_seg(stderr, "gs", &sregs.gs);
print_seg(stderr, "tr", &sregs.tr);
print_seg(stderr, "ldt", &sregs.ldt);
print_dt(stderr, "gdt", &sregs.gdt);
print_dt(stderr, "idt", &sregs.idt);
fprintf(stderr, "cr0 %llx cr2 %llx cr3 %llx cr4 %llx cr8 %llx"
" efer %llx\n",
sregs.cr0, sregs.cr2, sregs.cr3, sregs.cr4, sregs.cr8,
sregs.efer);
}
static void kvm_set_cr8(CPUState *env, uint64_t cr8)
{
env->kvm_run->cr8 = cr8;
}
int kvm_setup_cpuid(CPUState *env, int nent,
struct kvm_cpuid_entry *entries)
{
struct kvm_cpuid *cpuid;
int r;
cpuid = qemu_malloc(sizeof(*cpuid) + nent * sizeof(*entries));
cpuid->nent = nent;
memcpy(cpuid->entries, entries, nent * sizeof(*entries));
r = kvm_vcpu_ioctl(env, KVM_SET_CPUID, cpuid);
free(cpuid);
return r;
}
int kvm_setup_cpuid2(CPUState *env, int nent,
struct kvm_cpuid_entry2 *entries)
{
struct kvm_cpuid2 *cpuid;
int r;
cpuid = qemu_malloc(sizeof(*cpuid) + nent * sizeof(*entries));
cpuid->nent = nent;
memcpy(cpuid->entries, entries, nent * sizeof(*entries));
r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, cpuid);
free(cpuid);
return r;
}
int kvm_set_shadow_pages(kvm_context_t kvm, unsigned int nrshadow_pages)
{
#ifdef KVM_CAP_MMU_SHADOW_CACHE_CONTROL
int r;
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION,
KVM_CAP_MMU_SHADOW_CACHE_CONTROL);
if (r > 0) {
r = kvm_vm_ioctl(kvm_state, KVM_SET_NR_MMU_PAGES, nrshadow_pages);
if (r < 0) {
fprintf(stderr, "kvm_set_shadow_pages: %m\n");
return r;
}
return 0;
}
#endif
return -1;
}
int kvm_get_shadow_pages(kvm_context_t kvm, unsigned int *nrshadow_pages)
{
#ifdef KVM_CAP_MMU_SHADOW_CACHE_CONTROL
int r;
r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION,
KVM_CAP_MMU_SHADOW_CACHE_CONTROL);
if (r > 0) {
*nrshadow_pages = kvm_vm_ioctl(kvm_state, KVM_GET_NR_MMU_PAGES);
return 0;
}
#endif
return -1;
}
#ifdef KVM_CAP_VAPIC
static int kvm_enable_tpr_access_reporting(CPUState *env)
{
int r;
struct kvm_tpr_access_ctl tac = { .enabled = 1 };
r = kvm_ioctl(env->kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_VAPIC);
if (r <= 0)
return -ENOSYS;
return kvm_vcpu_ioctl(env, KVM_TPR_ACCESS_REPORTING, &tac);
}
#endif
#ifdef KVM_CAP_ADJUST_CLOCK
static struct kvm_clock_data kvmclock_data;
static void kvmclock_pre_save(void *opaque)
{
struct kvm_clock_data *cl = opaque;
kvm_vm_ioctl(kvm_state, KVM_GET_CLOCK, cl);
}
static int kvmclock_post_load(void *opaque, int version_id)
{
struct kvm_clock_data *cl = opaque;
return kvm_vm_ioctl(kvm_state, KVM_SET_CLOCK, cl);
}
static const VMStateDescription vmstate_kvmclock= {
.name = "kvmclock",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.pre_save = kvmclock_pre_save,
.post_load = kvmclock_post_load,
.fields = (VMStateField []) {
VMSTATE_U64(clock, struct kvm_clock_data),
VMSTATE_END_OF_LIST()
}
};
#endif
int kvm_arch_qemu_create_context(void)
{
int i, r;
struct utsname utsname;
uname(&utsname);
lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
if (kvm_shadow_memory)
kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
kvm_msr_list = kvm_get_msr_list();
if (!kvm_msr_list)
return -1;
for (i = 0; i < kvm_msr_list->nmsrs; ++i) {
if (kvm_msr_list->indices[i] == MSR_STAR)
kvm_has_msr_star = 1;
if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA)
kvm_has_vm_hsave_pa = 1;
}
#ifdef KVM_CAP_ADJUST_CLOCK
if (kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK))
vmstate_register(NULL, 0, &vmstate_kvmclock, &kvmclock_data);
#endif
r = kvm_set_boot_cpu_id(0);
if (r < 0 && r != -ENOSYS) {
return r;
}
return 0;
}
/* returns 0 on success, non-0 on failure */
static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
{
switch (entry->index) {
case MSR_IA32_SYSENTER_CS:
env->sysenter_cs = entry->data;
break;
case MSR_IA32_SYSENTER_ESP:
env->sysenter_esp = entry->data;
break;
case MSR_IA32_SYSENTER_EIP:
env->sysenter_eip = entry->data;
break;
case MSR_STAR:
env->star = entry->data;
break;
#ifdef TARGET_X86_64
case MSR_CSTAR:
env->cstar = entry->data;
break;
case MSR_KERNELGSBASE:
env->kernelgsbase = entry->data;
break;
case MSR_FMASK:
env->fmask = entry->data;
break;
case MSR_LSTAR:
env->lstar = entry->data;
break;
#endif
case MSR_IA32_TSC:
env->tsc = entry->data;
break;
case MSR_VM_HSAVE_PA:
env->vm_hsave = entry->data;
break;
case MSR_KVM_SYSTEM_TIME:
env->system_time_msr = entry->data;
break;
case MSR_KVM_WALL_CLOCK:
env->wall_clock_msr = entry->data;
break;
#ifdef KVM_CAP_MCE
case MSR_MCG_STATUS:
env->mcg_status = entry->data;
break;
case MSR_MCG_CTL:
env->mcg_ctl = entry->data;
break;
#endif
default:
#ifdef KVM_CAP_MCE
if (entry->index >= MSR_MC0_CTL && \
entry->index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
env->mce_banks[entry->index - MSR_MC0_CTL] = entry->data;
break;
}
#endif
printf("Warning unknown msr index 0x%x\n", entry->index);
return 1;
}
return 0;
}
static void kvm_arch_save_mpstate(CPUState *env)
{
#ifdef KVM_CAP_MP_STATE
int r;
struct kvm_mp_state mp_state;
r = kvm_get_mpstate(env, &mp_state);
if (r < 0) {
env->mp_state = -1;
} else {
env->mp_state = mp_state.mp_state;
if (kvm_irqchip_in_kernel()) {
env->halted = (env->mp_state == KVM_MP_STATE_HALTED);
}
}
#else
env->mp_state = -1;
#endif
}
static void kvm_arch_load_mpstate(CPUState *env)
{
#ifdef KVM_CAP_MP_STATE
struct kvm_mp_state mp_state;
/*
* -1 indicates that the host did not support GET_MP_STATE ioctl,
* so don't touch it.
*/
if (env->mp_state != -1) {
mp_state.mp_state = env->mp_state;
kvm_set_mpstate(env, &mp_state);
}
#endif
}
static void kvm_reset_mpstate(CPUState *env)
{
#ifdef KVM_CAP_MP_STATE
if (kvm_check_extension(kvm_state, KVM_CAP_MP_STATE)) {
if (kvm_irqchip_in_kernel()) {
env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
KVM_MP_STATE_UNINITIALIZED;
} else {
env->mp_state = KVM_MP_STATE_RUNNABLE;
}
}
#endif
}
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->type = 3;
lhs->present = 1;
lhs->dpl = 3;
lhs->db = 0;
lhs->s = 1;
lhs->l = 0;
lhs->g = 0;
lhs->avl = 0;
lhs->unusable = 0;
}
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
unsigned flags = rhs->flags;
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
lhs->present = (flags & DESC_P_MASK) != 0;
lhs->dpl = rhs->selector & 3;
lhs->db = (flags >> DESC_B_SHIFT) & 1;
lhs->s = (flags & DESC_S_MASK) != 0;
lhs->l = (flags >> DESC_L_SHIFT) & 1;
lhs->g = (flags & DESC_G_MASK) != 0;
lhs->avl = (flags & DESC_AVL_MASK) != 0;
lhs->unusable = 0;
}
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
{
lhs->selector = rhs->selector;
lhs->base = rhs->base;
lhs->limit = rhs->limit;
lhs->flags =
(rhs->type << DESC_TYPE_SHIFT)
| (rhs->present * DESC_P_MASK)
| (rhs->dpl << DESC_DPL_SHIFT)
| (rhs->db << DESC_B_SHIFT)
| (rhs->s * DESC_S_MASK)
| (rhs->l << DESC_L_SHIFT)
| (rhs->g * DESC_G_MASK)
| (rhs->avl * DESC_AVL_MASK);
}
#define XSAVE_CWD_RIP 2
#define XSAVE_CWD_RDP 4
#define XSAVE_MXCSR 6
#define XSAVE_ST_SPACE 8
#define XSAVE_XMM_SPACE 40
#define XSAVE_XSTATE_BV 128
#define XSAVE_YMMH_SPACE 144
void kvm_arch_load_regs(CPUState *env, int level)
{
struct kvm_regs regs;
struct kvm_fpu fpu;
struct kvm_sregs sregs;
struct kvm_msr_entry msrs[100];
int rc, n, i;
assert(kvm_cpu_is_stopped(env) || env->thread_id == kvm_get_thread_id());
regs.rax = env->regs[R_EAX];
regs.rbx = env->regs[R_EBX];
regs.rcx = env->regs[R_ECX];
regs.rdx = env->regs[R_EDX];
regs.rsi = env->regs[R_ESI];
regs.rdi = env->regs[R_EDI];
regs.rsp = env->regs[R_ESP];
regs.rbp = env->regs[R_EBP];
#ifdef TARGET_X86_64
regs.r8 = env->regs[8];
regs.r9 = env->regs[9];
regs.r10 = env->regs[10];
regs.r11 = env->regs[11];
regs.r12 = env->regs[12];
regs.r13 = env->regs[13];
regs.r14 = env->regs[14];
regs.r15 = env->regs[15];
#endif
regs.rflags = env->eflags;
regs.rip = env->eip;
kvm_set_regs(env, &regs);
#ifdef KVM_CAP_XSAVE
if (kvm_check_extension(kvm_state, KVM_CAP_XSAVE)) {
struct kvm_xsave* xsave;
uint16_t cwd, swd, twd, fop;
xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
memset(xsave, 0, sizeof(struct kvm_xsave));
cwd = swd = twd = fop = 0;
swd = env->fpus & ~(7 << 11);
swd |= (env->fpstt & 7) << 11;
cwd = env->fpuc;
for (i = 0; i < 8; ++i)
twd |= (!env->fptags[i]) << i;
xsave->region[0] = (uint32_t)(swd << 16) + cwd;
xsave->region[1] = (uint32_t)(fop << 16) + twd;
memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
sizeof env->fpregs);
memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
sizeof env->xmm_regs);
xsave->region[XSAVE_MXCSR] = env->mxcsr;
*(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
sizeof env->ymmh_regs);
kvm_set_xsave(env, xsave);
if (kvm_check_extension(kvm_state, KVM_CAP_XCRS)) {
struct kvm_xcrs xcrs;
xcrs.nr_xcrs = 1;
xcrs.flags = 0;
xcrs.xcrs[0].xcr = 0;
xcrs.xcrs[0].value = env->xcr0;
kvm_set_xcrs(env, &xcrs);
}
qemu_free(xsave);
} else {
#endif
memset(&fpu, 0, sizeof fpu);
fpu.fsw = env->fpus & ~(7 << 11);
fpu.fsw |= (env->fpstt & 7) << 11;
fpu.fcw = env->fpuc;
for (i = 0; i < 8; ++i)
fpu.ftwx |= (!env->fptags[i]) << i;
memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
fpu.mxcsr = env->mxcsr;
kvm_set_fpu(env, &fpu);
#ifdef KVM_CAP_XSAVE
}
#endif
memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
if (env->interrupt_injected >= 0) {
sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
(uint64_t)1 << (env->interrupt_injected % 64);
}
if ((env->eflags & VM_MASK)) {
set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
set_v8086_seg(&sregs.es, &env->segs[R_ES]);
set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
} else {
set_seg(&sregs.cs, &env->segs[R_CS]);
set_seg(&sregs.ds, &env->segs[R_DS]);
set_seg(&sregs.es, &env->segs[R_ES]);
set_seg(&sregs.fs, &env->segs[R_FS]);
set_seg(&sregs.gs, &env->segs[R_GS]);
set_seg(&sregs.ss, &env->segs[R_SS]);
if (env->cr[0] & CR0_PE_MASK) {
/* force ss cpl to cs cpl */
sregs.ss.selector = (sregs.ss.selector & ~3) |
(sregs.cs.selector & 3);
sregs.ss.dpl = sregs.ss.selector & 3;
}
}
set_seg(&sregs.tr, &env->tr);
set_seg(&sregs.ldt, &env->ldt);
sregs.idt.limit = env->idt.limit;
sregs.idt.base = env->idt.base;
sregs.gdt.limit = env->gdt.limit;
sregs.gdt.base = env->gdt.base;
sregs.cr0 = env->cr[0];
sregs.cr2 = env->cr[2];
sregs.cr3 = env->cr[3];
sregs.cr4 = env->cr[4];
sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
sregs.apic_base = cpu_get_apic_base(env->apic_state);
sregs.efer = env->efer;
kvm_set_sregs(env, &sregs);
/* msrs */
n = 0;
/* Remember to increase msrs size if you add new registers below */
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
if (kvm_has_msr_star)
kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
if (kvm_has_vm_hsave_pa)
kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
#ifdef TARGET_X86_64
if (lm_capable_kernel) {
kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
kvm_msr_entry_set(&msrs[n++], MSR_LSTAR , env->lstar);
}
#endif
if (level == KVM_PUT_FULL_STATE) {
/*
* KVM is yet unable to synchronize TSC values of multiple VCPUs on
* writeback. Until this is fixed, we only write the offset to SMP
* guests after migration, desynchronizing the VCPUs, but avoiding
* huge jump-backs that would occur without any writeback at all.
*/
if (smp_cpus == 1 || env->tsc != 0) {
kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
}
kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, env->system_time_msr);
kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
}
#ifdef KVM_CAP_MCE
if (env->mcg_cap) {
if (level == KVM_PUT_RESET_STATE)
kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
else if (level == KVM_PUT_FULL_STATE) {
kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
for (i = 0; i < (env->mcg_cap & 0xff); i++)
kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
}
}
#endif
rc = kvm_set_msrs(env, msrs, n);
if (rc == -1)
perror("kvm_set_msrs FAILED");
if (level >= KVM_PUT_RESET_STATE) {
kvm_arch_load_mpstate(env);
kvm_load_lapic(env);
}
if (level == KVM_PUT_FULL_STATE) {
if (env->kvm_vcpu_update_vapic)
kvm_tpr_enable_vapic(env);
}
kvm_put_vcpu_events(env, level);
kvm_put_debugregs(env);
/* must be last */
kvm_guest_debug_workarounds(env);
}
void kvm_arch_save_regs(CPUState *env)
{
struct kvm_regs regs;
struct kvm_fpu fpu;
struct kvm_sregs sregs;
struct kvm_msr_entry msrs[100];
uint32_t hflags;
uint32_t i, n, rc, bit;
assert(kvm_cpu_is_stopped(env) || env->thread_id == kvm_get_thread_id());
kvm_get_regs(env, &regs);
env->regs[R_EAX] = regs.rax;
env->regs[R_EBX] = regs.rbx;
env->regs[R_ECX] = regs.rcx;
env->regs[R_EDX] = regs.rdx;
env->regs[R_ESI] = regs.rsi;
env->regs[R_EDI] = regs.rdi;
env->regs[R_ESP] = regs.rsp;
env->regs[R_EBP] = regs.rbp;
#ifdef TARGET_X86_64
env->regs[8] = regs.r8;
env->regs[9] = regs.r9;
env->regs[10] = regs.r10;
env->regs[11] = regs.r11;
env->regs[12] = regs.r12;
env->regs[13] = regs.r13;
env->regs[14] = regs.r14;
env->regs[15] = regs.r15;
#endif
env->eflags = regs.rflags;
env->eip = regs.rip;
#ifdef KVM_CAP_XSAVE
if (kvm_check_extension(kvm_state, KVM_CAP_XSAVE)) {
struct kvm_xsave* xsave;
uint16_t cwd, swd, twd, fop;
xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
kvm_get_xsave(env, xsave);
cwd = (uint16_t)xsave->region[0];
swd = (uint16_t)(xsave->region[0] >> 16);
twd = (uint16_t)xsave->region[1];
fop = (uint16_t)(xsave->region[1] >> 16);
env->fpstt = (swd >> 11) & 7;
env->fpus = swd;
env->fpuc = cwd;
for (i = 0; i < 8; ++i)
env->fptags[i] = !((twd >> i) & 1);
env->mxcsr = xsave->region[XSAVE_MXCSR];
memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
sizeof env->fpregs);
memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
sizeof env->xmm_regs);
env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
sizeof env->ymmh_regs);
if (kvm_check_extension(kvm_state, KVM_CAP_XCRS)) {
struct kvm_xcrs xcrs;
kvm_get_xcrs(env, &xcrs);
if (xcrs.xcrs[0].xcr == 0)
env->xcr0 = xcrs.xcrs[0].value;
}
qemu_free(xsave);
} else {
#endif
kvm_get_fpu(env, &fpu);
env->fpstt = (fpu.fsw >> 11) & 7;
env->fpus = fpu.fsw;
env->fpuc = fpu.fcw;
for (i = 0; i < 8; ++i)
env->fptags[i] = !((fpu.ftwx >> i) & 1);
memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
env->mxcsr = fpu.mxcsr;
#ifdef KVM_CAP_XSAVE
}
#endif
kvm_get_sregs(env, &sregs);
/* There can only be one pending IRQ set in the bitmap at a time, so try
to find it and save its number instead (-1 for none). */
env->interrupt_injected = -1;
for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
if (sregs.interrupt_bitmap[i]) {
bit = ctz64(sregs.interrupt_bitmap[i]);
env->interrupt_injected = i * 64 + bit;
break;
}
}
get_seg(&env->segs[R_CS], &sregs.cs);
get_seg(&env->segs[R_DS], &sregs.ds);
get_seg(&env->segs[R_ES], &sregs.es);
get_seg(&env->segs[R_FS], &sregs.fs);
get_seg(&env->segs[R_GS], &sregs.gs);
get_seg(&env->segs[R_SS], &sregs.ss);
get_seg(&env->tr, &sregs.tr);
get_seg(&env->ldt, &sregs.ldt);
env->idt.limit = sregs.idt.limit;
env->idt.base = sregs.idt.base;
env->gdt.limit = sregs.gdt.limit;
env->gdt.base = sregs.gdt.base;
env->cr[0] = sregs.cr0;
env->cr[2] = sregs.cr2;
env->cr[3] = sregs.cr3;
env->cr[4] = sregs.cr4;
cpu_set_apic_base(env->apic_state, sregs.apic_base);
env->efer = sregs.efer;
//cpu_set_apic_tpr(env, sregs.cr8);
#define HFLAG_COPY_MASK ~( \
HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
(HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
if (env->efer & MSR_EFER_LMA) {
hflags |= HF_LMA_MASK;
}
if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
} else {
hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_CS32_SHIFT);
hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_SS32_SHIFT);
if (!(env->cr[0] & CR0_PE_MASK) ||
(env->eflags & VM_MASK) ||
!(hflags & HF_CS32_MASK)) {
hflags |= HF_ADDSEG_MASK;
} else {
hflags |= ((env->segs[R_DS].base |
env->segs[R_ES].base |
env->segs[R_SS].base) != 0) <<
HF_ADDSEG_SHIFT;
}
}
env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
/* msrs */
n = 0;
/* Remember to increase msrs size if you add new registers below */
msrs[n++].index = MSR_IA32_SYSENTER_CS;
msrs[n++].index = MSR_IA32_SYSENTER_ESP;
msrs[n++].index = MSR_IA32_SYSENTER_EIP;
if (kvm_has_msr_star)
msrs[n++].index = MSR_STAR;
msrs[n++].index = MSR_IA32_TSC;
if (kvm_has_vm_hsave_pa)
msrs[n++].index = MSR_VM_HSAVE_PA;
#ifdef TARGET_X86_64
if (lm_capable_kernel) {
msrs[n++].index = MSR_CSTAR;
msrs[n++].index = MSR_KERNELGSBASE;
msrs[n++].index = MSR_FMASK;
msrs[n++].index = MSR_LSTAR;
}
#endif
msrs[n++].index = MSR_KVM_SYSTEM_TIME;
msrs[n++].index = MSR_KVM_WALL_CLOCK;
#ifdef KVM_CAP_MCE
if (env->mcg_cap) {
msrs[n++].index = MSR_MCG_STATUS;
msrs[n++].index = MSR_MCG_CTL;
for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
msrs[n++].index = MSR_MC0_CTL + i;
}
#endif
rc = kvm_get_msrs(env, msrs, n);
if (rc == -1) {
perror("kvm_get_msrs FAILED");
}
else {
n = rc; /* actual number of MSRs */
for (i=0 ; i<n; i++) {
if (get_msr_entry(&msrs[i], env))
return;
}
}
kvm_arch_save_mpstate(env);
kvm_save_lapic(env);
kvm_get_vcpu_events(env);
kvm_get_debugregs(env);
}
static int _kvm_arch_init_vcpu(CPUState *env)
{
kvm_arch_reset_vcpu(env);
#ifdef KVM_CAP_MCE
if (((env->cpuid_version >> 8)&0xF) >= 6
&& (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
&& kvm_check_extension(kvm_state, KVM_CAP_MCE) > 0) {
uint64_t mcg_cap;
int banks;
if (kvm_get_mce_cap_supported(kvm_context, &mcg_cap, &banks))
perror("kvm_get_mce_cap_supported FAILED");
else {
if (banks > MCE_BANKS_DEF)
banks = MCE_BANKS_DEF;
mcg_cap &= MCE_CAP_DEF;
mcg_cap |= banks;
if (kvm_setup_mce(env, &mcg_cap))
perror("kvm_setup_mce FAILED");
else
env->mcg_cap = mcg_cap;
}
}
#endif
#ifdef KVM_EXIT_TPR_ACCESS
kvm_enable_tpr_access_reporting(env);
#endif
kvm_reset_mpstate(env);
return 0;
}
int kvm_arch_halt(CPUState *env)
{
if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) &&
!(env->interrupt_request & CPU_INTERRUPT_NMI)) {
env->halted = 1;
}
return 1;
}
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
{
if (!kvm_irqchip_in_kernel())
kvm_set_cr8(env, cpu_get_apic_tpr(env->apic_state));
return 0;
}
int kvm_arch_has_work(CPUState *env)
{
if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) ||
(env->interrupt_request & CPU_INTERRUPT_NMI))
return 1;
return 0;
}
int kvm_arch_try_push_interrupts(void *opaque)
{
CPUState *env = cpu_single_env;
int r, irq;
if (kvm_is_ready_for_interrupt_injection(env) &&
(env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) {
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
irq = cpu_get_pic_interrupt(env);
if (irq >= 0) {
r = kvm_inject_irq(env, irq);
if (r < 0)
printf("cpu %d fail inject %x\n", env->cpu_index, irq);
}
}
return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
}
#ifdef KVM_CAP_USER_NMI
void kvm_arch_push_nmi(void *opaque)
{
CPUState *env = cpu_single_env;
int r;
if (likely(!(env->interrupt_request & CPU_INTERRUPT_NMI)))
return;
env->interrupt_request &= ~CPU_INTERRUPT_NMI;
r = kvm_inject_nmi(env);
if (r < 0)
printf("cpu %d fail inject NMI\n", env->cpu_index);
}
#endif /* KVM_CAP_USER_NMI */
static int kvm_reset_msrs(CPUState *env)
{
struct {
struct kvm_msrs info;
struct kvm_msr_entry entries[100];
} msr_data;
int n;
struct kvm_msr_entry *msrs = msr_data.entries;
uint32_t index;
uint64_t data;
if (!kvm_msr_list)
return -1;
for (n = 0; n < kvm_msr_list->nmsrs; n++) {
index = kvm_msr_list->indices[n];
switch (index) {
case MSR_PAT:
data = 0x0007040600070406ULL;
break;
default:
data = 0;
}
kvm_msr_entry_set(&msrs[n], index, data);
}
msr_data.info.nmsrs = n;
return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
}
void kvm_arch_cpu_reset(CPUState *env)
{
kvm_reset_msrs(env);
kvm_arch_reset_vcpu(env);
kvm_reset_mpstate(env);
}
#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
void kvm_arch_do_ioperm(void *_data)
{
struct ioperm_data *data = _data;
ioperm(data->start_port, data->num, data->turn_on);
}
#endif
/*
* Setup x86 specific IRQ routing
*/
int kvm_arch_init_irq_routing(void)
{
int i, r;
if (kvm_irqchip && kvm_has_gsi_routing(kvm_context)) {
kvm_clear_gsi_routes(kvm_context);
for (i = 0; i < 8; ++i) {
if (i == 2)
continue;
r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_PIC_MASTER, i);
if (r < 0)
return r;
}
for (i = 8; i < 16; ++i) {
r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_PIC_SLAVE, i - 8);
if (r < 0)
return r;
}
for (i = 0; i < 24; ++i) {
if (i == 0) {
r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_IOAPIC, 2);
} else if (i != 2) {
r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_IOAPIC, i);
}
if (r < 0)
return r;
}
kvm_commit_irq_routes(kvm_context);
}
return 0;
}
void kvm_arch_process_irqchip_events(CPUState *env)
{
if (env->interrupt_request & CPU_INTERRUPT_INIT) {
kvm_cpu_synchronize_state(env);
do_cpu_init(env);
}
if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
kvm_cpu_synchronize_state(env);
do_cpu_sipi(env);
}
}