blob: dfc136a3943e7ea912362a4f461bcec447dcbe6c [file] [log] [blame]
#include <net/if.h>
#include <errno.h>
#include <string.h>
#include <stdbool.h>
#include <netlink/genl/genl.h>
#include <netlink/genl/family.h>
#include <netlink/genl/ctrl.h>
#include <netlink/msg.h>
#include <netlink/attr.h>
#include "nl80211.h"
#include "iw.h"
#define WLAN_CAPABILITY_ESS (1<<0)
#define WLAN_CAPABILITY_IBSS (1<<1)
#define WLAN_CAPABILITY_CF_POLLABLE (1<<2)
#define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3)
#define WLAN_CAPABILITY_PRIVACY (1<<4)
#define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5)
#define WLAN_CAPABILITY_PBCC (1<<6)
#define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7)
#define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8)
#define WLAN_CAPABILITY_QOS (1<<9)
#define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10)
#define WLAN_CAPABILITY_APSD (1<<11)
#define WLAN_CAPABILITY_RADIO_MEASURE (1<<12)
#define WLAN_CAPABILITY_DSSS_OFDM (1<<13)
#define WLAN_CAPABILITY_DEL_BACK (1<<14)
#define WLAN_CAPABILITY_IMM_BACK (1<<15)
/* DMG (60gHz) 802.11ad */
/* type - bits 0..1 */
#define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0)
#define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */
#define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */
#define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */
#define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2)
#define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3)
#define WLAN_CAPABILITY_DMG_PRIVACY (1<<4)
#define WLAN_CAPABILITY_DMG_ECPAC (1<<5)
#define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8)
#define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12)
static unsigned char ms_oui[3] = { 0x00, 0x50, 0xf2 };
static unsigned char ieee80211_oui[3] = { 0x00, 0x0f, 0xac };
static unsigned char wfa_oui[3] = { 0x50, 0x6f, 0x9a };
struct scan_params {
bool unknown;
enum print_ie_type type;
bool show_both_ie_sets;
};
#define IEEE80211_COUNTRY_EXTENSION_ID 201
union ieee80211_country_ie_triplet {
struct {
__u8 first_channel;
__u8 num_channels;
__s8 max_power;
} __attribute__ ((packed)) chans;
struct {
__u8 reg_extension_id;
__u8 reg_class;
__u8 coverage_class;
} __attribute__ ((packed)) ext;
} __attribute__ ((packed));
int parse_sched_scan(struct nl_msg *msg, int *argc, char ***argv)
{
struct nl_msg *matchset = NULL, *freqs = NULL, *ssids = NULL;
struct nl_msg *scan_plans = NULL;
struct nlattr *match = NULL, *plan = NULL;
enum {
ND_TOPLEVEL,
ND_MATCH,
ND_FREQS,
ND_ACTIVE,
ND_PLANS,
} parse_state = ND_TOPLEVEL;
int c = *argc;
char *end, **v = *argv;
int err = 0, i = 0;
unsigned int freq, interval = 0, delay = 0, iterations = 0;
bool have_matchset = false, have_freqs = false, have_ssids = false;
bool have_active = false, have_passive = false, have_plans = false;
uint32_t flags = 0;
matchset = nlmsg_alloc();
if (!matchset) {
err = -ENOBUFS;
goto out;
}
freqs = nlmsg_alloc();
if (!freqs) {
err = -ENOBUFS;
goto out;
}
ssids = nlmsg_alloc();
if (!ssids) {
err = -ENOMEM;
goto out;
}
scan_plans = nlmsg_alloc();
if (!scan_plans) {
err = -ENOBUFS;
goto out;
}
while (c) {
switch (parse_state) {
case ND_TOPLEVEL:
if (!strcmp(v[0], "interval")) {
c--; v++;
if (c == 0) {
err = -EINVAL;
goto nla_put_failure;
}
if (interval || have_plans) {
err = -EINVAL;
goto nla_put_failure;
}
interval = strtoul(v[0], &end, 10);
if (*end || !interval) {
err = -EINVAL;
goto nla_put_failure;
}
NLA_PUT_U32(msg,
NL80211_ATTR_SCHED_SCAN_INTERVAL,
interval);
} else if (!strcmp(v[0], "scan_plans")) {
parse_state = ND_PLANS;
if (have_plans || interval) {
err = -EINVAL;
goto nla_put_failure;
}
have_plans = true;
i = 0;
} else if (!strcmp(v[0], "delay")) {
c--; v++;
if (c == 0) {
err = -EINVAL;
goto nla_put_failure;
}
if (delay) {
err = -EINVAL;
goto nla_put_failure;
}
delay = strtoul(v[0], &end, 10);
if (*end) {
err = -EINVAL;
goto nla_put_failure;
}
NLA_PUT_U32(msg,
NL80211_ATTR_SCHED_SCAN_DELAY,
delay);
} else if (!strcmp(v[0], "matches")) {
parse_state = ND_MATCH;
if (have_matchset) {
err = -EINVAL;
goto nla_put_failure;
}
i = 0;
} else if (!strcmp(v[0], "freqs")) {
parse_state = ND_FREQS;
if (have_freqs) {
err = -EINVAL;
goto nla_put_failure;
}
have_freqs = true;
i = 0;
} else if (!strcmp(v[0], "active")) {
parse_state = ND_ACTIVE;
if (have_active || have_passive) {
err = -EINVAL;
goto nla_put_failure;
}
have_active = true;
i = 0;
} else if (!strcmp(v[0], "passive")) {
if (have_active || have_passive) {
err = -EINVAL;
goto nla_put_failure;
}
have_passive = true;
} else if (!strncmp(v[0], "randomise", 9) ||
!strncmp(v[0], "randomize", 9)) {
flags |= NL80211_SCAN_FLAG_RANDOM_ADDR;
err = parse_random_mac_addr(msg, v[0] + 9);
if (err)
goto nla_put_failure;
} else if (!strncmp(v[0], "coloc", 5)) {
flags |= NL80211_SCAN_FLAG_COLOCATED_6GHZ;
} else if (!strncmp(v[0], "flush", 5)) {
flags |= NL80211_SCAN_FLAG_FLUSH;
} else {
/* this element is not for us, so
* return to continue parsing.
*/
goto nla_put_failure;
}
c--; v++;
break;
case ND_MATCH:
if (!strcmp(v[0], "ssid")) {
c--; v++;
if (c == 0) {
err = -EINVAL;
goto nla_put_failure;
}
/* TODO: for now we can only have an
* SSID in the match, so we can start
* the match nest here.
*/
match = nla_nest_start(matchset, i);
if (!match) {
err = -ENOBUFS;
goto nla_put_failure;
}
NLA_PUT(matchset,
NL80211_SCHED_SCAN_MATCH_ATTR_SSID,
strlen(v[0]), v[0]);
nla_nest_end(matchset, match);
match = NULL;
have_matchset = true;
i++;
c--; v++;
} else {
/* other element that cannot be part
* of a match indicates the end of the
* match. */
/* need at least one match in the matchset */
if (i == 0) {
err = -EINVAL;
goto nla_put_failure;
}
parse_state = ND_TOPLEVEL;
}
break;
case ND_FREQS:
freq = strtoul(v[0], &end, 10);
if (*end) {
if (i == 0) {
err = -EINVAL;
goto nla_put_failure;
}
parse_state = ND_TOPLEVEL;
} else {
NLA_PUT_U32(freqs, i, freq);
i++;
c--; v++;
}
break;
case ND_ACTIVE:
if (!strcmp(v[0], "ssid")) {
c--; v++;
if (c == 0) {
err = -EINVAL;
goto nla_put_failure;
}
NLA_PUT(ssids,
NL80211_SCHED_SCAN_MATCH_ATTR_SSID,
strlen(v[0]), v[0]);
have_ssids = true;
i++;
c--; v++;
} else {
/* other element that cannot be part
* of a match indicates the end of the
* active set. */
/* need at least one item in the set */
if (i == 0) {
err = -EINVAL;
goto nla_put_failure;
}
parse_state = ND_TOPLEVEL;
}
break;
case ND_PLANS:
iterations = 0;
interval = strtoul(v[0], &end, 10);
if (*end) {
char *iter;
if (*end != ':') {
err = -EINVAL;
goto nla_put_failure;
}
iter = ++end;
iterations = strtoul(iter, &end, 10);
if (*end || !iterations) {
err = -EINVAL;
goto nla_put_failure;
}
}
plan = nla_nest_start(scan_plans, i + 1);
if (!plan) {
err = -ENOBUFS;
goto nla_put_failure;
}
NLA_PUT_U32(scan_plans,
NL80211_SCHED_SCAN_PLAN_INTERVAL,
interval);
if (iterations)
NLA_PUT_U32(scan_plans,
NL80211_SCHED_SCAN_PLAN_ITERATIONS,
iterations);
else
parse_state = ND_TOPLEVEL;
nla_nest_end(scan_plans, plan);
plan = NULL;
i++;
c--; v++;
break;
}
}
if (!have_ssids)
NLA_PUT(ssids, 1, 0, "");
if (!have_passive)
nla_put_nested(msg, NL80211_ATTR_SCAN_SSIDS, ssids);
if (have_freqs)
nla_put_nested(msg, NL80211_ATTR_SCAN_FREQUENCIES, freqs);
if (have_matchset)
nla_put_nested(msg, NL80211_ATTR_SCHED_SCAN_MATCH, matchset);
if (have_plans)
nla_put_nested(msg, NL80211_ATTR_SCHED_SCAN_PLANS, scan_plans);
if (flags)
NLA_PUT_U32(msg, NL80211_ATTR_SCAN_FLAGS, flags);
nla_put_failure:
if (match)
nla_nest_end(msg, match);
out:
nlmsg_free(freqs);
nlmsg_free(matchset);
nlmsg_free(scan_plans);
nlmsg_free(ssids);
*argc = c;
*argv = v;
return err;
}
static int handle_scan(struct nl80211_state *state,
struct nl_msg *msg,
int argc, char **argv,
enum id_input id)
{
struct nl_msg *ssids = NULL, *freqs = NULL;
char *eptr;
int err = -ENOBUFS;
int i;
enum {
NONE,
FREQ,
IES,
SSID,
MESHID,
DURATION,
DONE,
} parse = NONE;
int freq;
unsigned int duration = 0;
bool passive = false, have_ssids = false, have_freqs = false;
bool duration_mandatory = false;
size_t ies_len = 0, meshid_len = 0;
unsigned char *ies = NULL, *meshid = NULL, *tmpies = NULL;
unsigned int flags = 0;
ssids = nlmsg_alloc();
if (!ssids)
return -ENOMEM;
freqs = nlmsg_alloc();
if (!freqs) {
nlmsg_free(ssids);
return -ENOMEM;
}
for (i = 0; i < argc; i++) {
switch (parse) {
case NONE:
if (strcmp(argv[i], "freq") == 0) {
parse = FREQ;
have_freqs = true;
break;
} else if (strcmp(argv[i], "ies") == 0) {
parse = IES;
break;
} else if (strcmp(argv[i], "lowpri") == 0) {
flags |= NL80211_SCAN_FLAG_LOW_PRIORITY;
break;
} else if (strcmp(argv[i], "flush") == 0) {
flags |= NL80211_SCAN_FLAG_FLUSH;
break;
} else if (strcmp(argv[i], "ap-force") == 0) {
flags |= NL80211_SCAN_FLAG_AP;
break;
} else if (strcmp(argv[i], "coloc") == 0) {
flags |= NL80211_SCAN_FLAG_COLOCATED_6GHZ;
break;
} else if (strcmp(argv[i], "duration-mandatory") == 0) {
duration_mandatory = true;
break;
} else if (strncmp(argv[i], "randomise", 9) == 0 ||
strncmp(argv[i], "randomize", 9) == 0) {
flags |= NL80211_SCAN_FLAG_RANDOM_ADDR;
err = parse_random_mac_addr(msg, argv[i] + 9);
if (err)
goto nla_put_failure;
break;
} else if (strcmp(argv[i], "ssid") == 0) {
parse = SSID;
have_ssids = true;
break;
} else if (strcmp(argv[i], "passive") == 0) {
parse = DONE;
passive = true;
break;
} else if (strcmp(argv[i], "meshid") == 0) {
parse = MESHID;
break;
} else if (strcmp(argv[i], "duration") == 0) {
parse = DURATION;
break;
}
/* fall through - this is an error */
case DONE:
err = 1;
goto nla_put_failure;
case FREQ:
freq = strtoul(argv[i], &eptr, 10);
if (eptr != argv[i] + strlen(argv[i])) {
/* failed to parse as number -- maybe a tag? */
i--;
parse = NONE;
continue;
}
NLA_PUT_U32(freqs, i, freq);
break;
case IES:
if (ies)
free(ies);
ies = parse_hex(argv[i], &ies_len);
if (!ies)
goto nla_put_failure;
parse = NONE;
break;
case SSID:
NLA_PUT(ssids, i, strlen(argv[i]), argv[i]);
break;
case MESHID:
meshid_len = strlen(argv[i]);
meshid = (unsigned char *) malloc(meshid_len + 2);
if (!meshid)
goto nla_put_failure;
meshid[0] = 114; /* mesh element id */
meshid[1] = meshid_len;
memcpy(&meshid[2], argv[i], meshid_len);
meshid_len += 2;
parse = NONE;
break;
case DURATION:
duration = strtoul(argv[i], &eptr, 10);
parse = NONE;
break;
}
}
if (ies || meshid) {
tmpies = (unsigned char *) malloc(ies_len + meshid_len);
if (!tmpies)
goto nla_put_failure;
if (ies)
memcpy(tmpies, ies, ies_len);
if (meshid)
memcpy(&tmpies[ies_len], meshid, meshid_len);
if (nla_put(msg, NL80211_ATTR_IE, ies_len + meshid_len, tmpies) < 0)
goto nla_put_failure;
}
if (!have_ssids)
NLA_PUT(ssids, 1, 0, "");
if (!passive)
nla_put_nested(msg, NL80211_ATTR_SCAN_SSIDS, ssids);
if (have_freqs)
nla_put_nested(msg, NL80211_ATTR_SCAN_FREQUENCIES, freqs);
else
flags |= NL80211_SCAN_FLAG_COLOCATED_6GHZ;
if (flags)
NLA_PUT_U32(msg, NL80211_ATTR_SCAN_FLAGS, flags);
if (duration)
NLA_PUT_U16(msg, NL80211_ATTR_MEASUREMENT_DURATION, duration);
if (duration_mandatory) {
if (duration) {
NLA_PUT_FLAG(msg,
NL80211_ATTR_MEASUREMENT_DURATION_MANDATORY);
} else {
err = -EINVAL;
goto nla_put_failure;
}
}
err = 0;
nla_put_failure:
nlmsg_free(ssids);
nlmsg_free(freqs);
if (meshid)
free(meshid);
if (ies)
free(ies);
if (tmpies)
free(tmpies);
return err;
}
static void tab_on_first(bool *first)
{
if (!*first)
printf("\t");
else
*first = false;
}
struct print_ies_data {
unsigned char *ie;
int ielen;
};
static void print_ssid(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
printf(" ");
print_ssid_escaped(len, data);
printf("\n");
}
#define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126
#define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127
static void print_supprates(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
int i;
printf(" ");
for (i = 0; i < len; i++) {
int r = data[i] & 0x7f;
if (r == BSS_MEMBERSHIP_SELECTOR_VHT_PHY && data[i] & 0x80)
printf("VHT");
else if (r == BSS_MEMBERSHIP_SELECTOR_HT_PHY && data[i] & 0x80)
printf("HT");
else
printf("%d.%d", r/2, 5*(r&1));
printf("%s ", data[i] & 0x80 ? "*" : "");
}
printf("\n");
}
static void print_rm_enabled_capabilities(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
__u64 capa = ((__u64) data[0]) |
((__u64) data[1]) << 8 |
((__u64) data[2]) << 16 |
((__u64) data[3]) << 24 |
((__u64) data[4]) << 32;
printf("\n");
printf("\t\tCapabilities: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n",
data[0], data[1],
data[2], data[3],
data[4]);
#define PRINT_RM_CAPA(_bit, _str) \
do { \
if (capa & BIT(_bit)) \
printf("\t\t\t" _str "\n"); \
} while (0)
PRINT_RM_CAPA(0, "Link Measurement");
PRINT_RM_CAPA(1, "Neighbor Report");
PRINT_RM_CAPA(2, "Parallel Measurements");
PRINT_RM_CAPA(3, "Repeated Measurements");
PRINT_RM_CAPA(4, "Beacon Passive Measurement");
PRINT_RM_CAPA(5, "Beacon Active Measurement");
PRINT_RM_CAPA(6, "Beacon Table Measurement");
PRINT_RM_CAPA(7, "Beacon Measurement Reporting Conditions");
PRINT_RM_CAPA(8, "Frame Measurement");
PRINT_RM_CAPA(9, "Channel Load");
PRINT_RM_CAPA(10, "Noise Histogram Measurement");
PRINT_RM_CAPA(11, "Statistics Measurement");
PRINT_RM_CAPA(12, "LCI Measurement");
PRINT_RM_CAPA(13, "LCI Azimuth");
PRINT_RM_CAPA(14, "Transmit Stream/Category Measurement");
PRINT_RM_CAPA(15, "Triggered Transmit Stream/Category");
PRINT_RM_CAPA(16, "AP Channel Report");
PRINT_RM_CAPA(17, "RM MIB Capability");
PRINT_RM_CAPA(27, "Measurement Pilot Transmission Information");
PRINT_RM_CAPA(28, "Neighbor Report TSF Offset");
PRINT_RM_CAPA(29, "RCPI Measurement");
PRINT_RM_CAPA(30, "RSNI Measurement");
PRINT_RM_CAPA(31, "BSS Average Access Delay");
PRINT_RM_CAPA(32, "BSS Available Admission");
PRINT_RM_CAPA(33, "Antenna");
PRINT_RM_CAPA(34, "FTM Range Report");
PRINT_RM_CAPA(35, "Civic Location Measurement");
printf("\t\tNonoperating Channel Max Measurement Duration: %i\n", data[3] >> 5);
printf("\t\tMeasurement Pilot Capability: %i\n", data[4] & 7);
}
static void print_ds(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
printf(" channel %d\n", data[0]);
}
static const char *country_env_str(char environment)
{
switch (environment) {
case 'I':
return "Indoor only";
case 'O':
return "Outdoor only";
case ' ':
return "Indoor/Outdoor";
default:
return "bogus";
}
}
static void print_country(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
printf(" %.*s", 2, data);
printf("\tEnvironment: %s\n", country_env_str(data[2]));
data += 3;
len -= 3;
if (len < 3) {
printf("\t\tNo country IE triplets present\n");
return;
}
while (len >= 3) {
int end_channel;
union ieee80211_country_ie_triplet *triplet = (void *) data;
if (triplet->ext.reg_extension_id >= IEEE80211_COUNTRY_EXTENSION_ID) {
printf("\t\tExtension ID: %d Regulatory Class: %d Coverage class: %d (up to %dm)\n",
triplet->ext.reg_extension_id,
triplet->ext.reg_class,
triplet->ext.coverage_class,
triplet->ext.coverage_class * 450);
data += 3;
len -= 3;
continue;
}
/* 2 GHz */
if (triplet->chans.first_channel <= 14)
end_channel = triplet->chans.first_channel + (triplet->chans.num_channels - 1);
else
end_channel = triplet->chans.first_channel + (4 * (triplet->chans.num_channels - 1));
printf("\t\tChannels [%d - %d] @ %d dBm\n", triplet->chans.first_channel, end_channel, triplet->chans.max_power);
data += 3;
len -= 3;
}
return;
}
static void print_powerconstraint(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
printf(" %d dB\n", data[0]);
}
static void print_tpcreport(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
printf(" TX power: %d dBm\n", data[0]);
/* printf(" Link Margin (%d dB) is reserved in Beacons\n", data[1]); */
}
static void print_erp(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
if (data[0] == 0x00)
printf(" <no flags>");
if (data[0] & 0x01)
printf(" NonERP_Present");
if (data[0] & 0x02)
printf(" Use_Protection");
if (data[0] & 0x04)
printf(" Barker_Preamble_Mode");
printf("\n");
}
static void print_ap_channel_report(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
uint8_t oper_class = data[0];
int i;
printf("\n");
printf("\t\t * operating class: %d\n", oper_class);
printf("\t\t * channel(s):");
for (i = 1; i < len; ++i) {
printf(" %d", data[i]);
}
printf("\n");
}
static void print_cipher(const uint8_t *data)
{
if (memcmp(data, ms_oui, 3) == 0) {
switch (data[3]) {
case 0:
printf("Use group cipher suite");
break;
case 1:
printf("WEP-40");
break;
case 2:
printf("TKIP");
break;
case 4:
printf("CCMP");
break;
case 5:
printf("WEP-104");
break;
default:
printf("%.02x-%.02x-%.02x:%d",
data[0], data[1] ,data[2], data[3]);
break;
}
} else if (memcmp(data, ieee80211_oui, 3) == 0) {
switch (data[3]) {
case 0:
printf("Use group cipher suite");
break;
case 1:
printf("WEP-40");
break;
case 2:
printf("TKIP");
break;
case 4:
printf("CCMP");
break;
case 5:
printf("WEP-104");
break;
case 6:
printf("AES-128-CMAC");
break;
case 7:
printf("NO-GROUP");
break;
case 8:
printf("GCMP");
break;
default:
printf("%.02x-%.02x-%.02x:%d",
data[0], data[1] ,data[2], data[3]);
break;
}
} else
printf("%.02x-%.02x-%.02x:%d",
data[0], data[1] ,data[2], data[3]);
}
static void print_auth(const uint8_t *data)
{
if (memcmp(data, ms_oui, 3) == 0) {
switch (data[3]) {
case 1:
printf("IEEE 802.1X");
break;
case 2:
printf("PSK");
break;
default:
printf("%.02x-%.02x-%.02x:%d",
data[0], data[1] ,data[2], data[3]);
break;
}
} else if (memcmp(data, ieee80211_oui, 3) == 0) {
switch (data[3]) {
case 1:
printf("IEEE 802.1X");
break;
case 2:
printf("PSK");
break;
case 3:
printf("FT/IEEE 802.1X");
break;
case 4:
printf("FT/PSK");
break;
case 5:
printf("IEEE 802.1X/SHA-256");
break;
case 6:
printf("PSK/SHA-256");
break;
case 7:
printf("TDLS/TPK");
break;
case 8:
printf("SAE");
break;
case 9:
printf("FT/SAE");
break;
case 11:
printf("IEEE 802.1X/SUITE-B");
break;
case 12:
printf("IEEE 802.1X/SUITE-B-192");
break;
case 13:
printf("FT/IEEE 802.1X/SHA-384");
break;
case 14:
printf("FILS/SHA-256");
break;
case 15:
printf("FILS/SHA-384");
break;
case 16:
printf("FT/FILS/SHA-256");
break;
case 17:
printf("FT/FILS/SHA-384");
break;
case 18:
printf("OWE");
break;
default:
printf("%.02x-%.02x-%.02x:%d",
data[0], data[1] ,data[2], data[3]);
break;
}
} else if (memcmp(data, wfa_oui, 3) == 0) {
switch (data[3]) {
case 1:
printf("OSEN");
break;
case 2:
printf("DPP");
break;
default:
printf("%.02x-%.02x-%.02x:%d",
data[0], data[1] ,data[2], data[3]);
break;
}
} else
printf("%.02x-%.02x-%.02x:%d",
data[0], data[1] ,data[2], data[3]);
}
static void _print_rsn_ie(const char *defcipher, const char *defauth,
uint8_t len, const uint8_t *data, int is_osen)
{
bool first = true;
__u16 count, capa;
int i;
if (!is_osen) {
__u16 version;
version = data[0] + (data[1] << 8);
tab_on_first(&first);
printf("\t * Version: %d\n", version);
data += 2;
len -= 2;
}
if (len < 4) {
tab_on_first(&first);
printf("\t * Group cipher: %s\n", defcipher);
printf("\t * Pairwise ciphers: %s\n", defcipher);
return;
}
tab_on_first(&first);
printf("\t * Group cipher: ");
print_cipher(data);
printf("\n");
data += 4;
len -= 4;
if (len < 2) {
tab_on_first(&first);
printf("\t * Pairwise ciphers: %s\n", defcipher);
return;
}
count = data[0] | (data[1] << 8);
if (2 + (count * 4) > len)
goto invalid;
tab_on_first(&first);
printf("\t * Pairwise ciphers:");
for (i = 0; i < count; i++) {
printf(" ");
print_cipher(data + 2 + (i * 4));
}
printf("\n");
data += 2 + (count * 4);
len -= 2 + (count * 4);
if (len < 2) {
tab_on_first(&first);
printf("\t * Authentication suites: %s\n", defauth);
return;
}
count = data[0] | (data[1] << 8);
if (2 + (count * 4) > len)
goto invalid;
tab_on_first(&first);
printf("\t * Authentication suites:");
for (i = 0; i < count; i++) {
printf(" ");
print_auth(data + 2 + (i * 4));
}
printf("\n");
data += 2 + (count * 4);
len -= 2 + (count * 4);
if (len >= 2) {
capa = data[0] | (data[1] << 8);
tab_on_first(&first);
printf("\t * Capabilities:");
if (capa & 0x0001)
printf(" PreAuth");
if (capa & 0x0002)
printf(" NoPairwise");
switch ((capa & 0x000c) >> 2) {
case 0:
printf(" 1-PTKSA-RC");
break;
case 1:
printf(" 2-PTKSA-RC");
break;
case 2:
printf(" 4-PTKSA-RC");
break;
case 3:
printf(" 16-PTKSA-RC");
break;
}
switch ((capa & 0x0030) >> 4) {
case 0:
printf(" 1-GTKSA-RC");
break;
case 1:
printf(" 2-GTKSA-RC");
break;
case 2:
printf(" 4-GTKSA-RC");
break;
case 3:
printf(" 16-GTKSA-RC");
break;
}
if (capa & 0x0040)
printf(" MFP-required");
if (capa & 0x0080)
printf(" MFP-capable");
if (capa & 0x0200)
printf(" Peerkey-enabled");
if (capa & 0x0400)
printf(" SPP-AMSDU-capable");
if (capa & 0x0800)
printf(" SPP-AMSDU-required");
if (capa & 0x2000)
printf(" Extended-Key-ID");
printf(" (0x%.4x)\n", capa);
data += 2;
len -= 2;
}
if (len >= 2) {
int pmkid_count = data[0] | (data[1] << 8);
if (len >= 2 + 16 * pmkid_count) {
tab_on_first(&first);
printf("\t * %d PMKIDs\n", pmkid_count);
/* not printing PMKID values */
data += 2 + 16 * pmkid_count;
len -= 2 + 16 * pmkid_count;
} else
goto invalid;
}
if (len >= 4) {
tab_on_first(&first);
printf("\t * Group mgmt cipher suite: ");
print_cipher(data);
printf("\n");
data += 4;
len -= 4;
}
invalid:
if (len != 0) {
printf("\t\t * bogus tail data (%d):", len);
while (len) {
printf(" %.2x", *data);
data++;
len--;
}
printf("\n");
}
}
static void print_rsn_ie(const char *defcipher, const char *defauth,
uint8_t len, const uint8_t *data)
{
_print_rsn_ie(defcipher, defauth, len, data, 0);
}
static void print_osen_ie(const char *defcipher, const char *defauth,
uint8_t len, const uint8_t *data)
{
printf("\n\t");
_print_rsn_ie(defcipher, defauth, len, data, 1);
}
static void print_rsn(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
print_rsn_ie("CCMP", "IEEE 802.1X", len, data);
}
static void print_ht_capa(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
printf("\n");
print_ht_capability(data[0] | (data[1] << 8));
print_ampdu_length(data[2] & 3);
print_ampdu_spacing((data[2] >> 2) & 7);
print_ht_mcs(data + 3);
}
static const char* ntype_11u(uint8_t t)
{
switch (t) {
case 0: return "Private";
case 1: return "Private with Guest";
case 2: return "Chargeable Public";
case 3: return "Free Public";
case 4: return "Personal Device";
case 5: return "Emergency Services Only";
case 14: return "Test or Experimental";
case 15: return "Wildcard";
default: return "Reserved";
}
}
static const char* vgroup_11u(uint8_t t)
{
switch (t) {
case 0: return "Unspecified";
case 1: return "Assembly";
case 2: return "Business";
case 3: return "Educational";
case 4: return "Factory and Industrial";
case 5: return "Institutional";
case 6: return "Mercantile";
case 7: return "Residential";
case 8: return "Storage";
case 9: return "Utility and Miscellaneous";
case 10: return "Vehicular";
case 11: return "Outdoor";
default: return "Reserved";
}
}
static void print_interworking(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
/* See Section 7.3.2.92 in the 802.11u spec. */
printf("\n");
if (len >= 1) {
uint8_t ano = data[0];
printf("\t\tNetwork Options: 0x%hx\n", (unsigned short)(ano));
printf("\t\t\tNetwork Type: %i (%s)\n",
(int)(ano & 0xf), ntype_11u(ano & 0xf));
if (ano & (1<<4))
printf("\t\t\tInternet\n");
if (ano & (1<<5))
printf("\t\t\tASRA\n");
if (ano & (1<<6))
printf("\t\t\tESR\n");
if (ano & (1<<7))
printf("\t\t\tUESA\n");
}
if ((len == 3) || (len == 9)) {
printf("\t\tVenue Group: %i (%s)\n",
(int)(data[1]), vgroup_11u(data[1]));
printf("\t\tVenue Type: %i\n", (int)(data[2]));
}
if (len == 9)
printf("\t\tHESSID: %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx\n",
data[3], data[4], data[5], data[6], data[7], data[8]);
else if (len == 7)
printf("\t\tHESSID: %02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx\n",
data[1], data[2], data[3], data[4], data[5], data[6]);
}
static void print_11u_advert(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
/* See Section 7.3.2.93 in the 802.11u spec. */
/* TODO: This code below does not decode private protocol IDs */
int idx = 0;
printf("\n");
while (idx < (len - 1)) {
uint8_t qri = data[idx];
uint8_t proto_id = data[idx + 1];
printf("\t\tQuery Response Info: 0x%hx\n", (unsigned short)(qri));
printf("\t\t\tQuery Response Length Limit: %i\n",
(qri & 0x7f));
if (qri & (1<<7))
printf("\t\t\tPAME-BI\n");
switch(proto_id) {
case 0:
printf("\t\t\tANQP\n"); break;
case 1:
printf("\t\t\tMIH Information Service\n"); break;
case 2:
printf("\t\t\tMIH Command and Event Services Capability Discovery\n"); break;
case 3:
printf("\t\t\tEmergency Alert System (EAS)\n"); break;
case 221:
printf("\t\t\tVendor Specific\n"); break;
default:
printf("\t\t\tReserved: %i\n", proto_id); break;
}
idx += 2;
}
}
static void print_11u_rcon(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
/* See Section 7.3.2.96 in the 802.11u spec. */
int idx = 0;
int ln0 = data[1] & 0xf;
int ln1 = ((data[1] & 0xf0) >> 4);
int ln2 = 0;
printf("\n");
if (ln1)
ln2 = len - 2 - ln0 - ln1;
printf("\t\tANQP OIs: %i\n", data[0]);
if (ln0 > 0) {
printf("\t\tOI 1: ");
if (2 + ln0 > len) {
printf("Invalid IE length.\n");
} else {
for (idx = 0; idx < ln0; idx++) {
printf("%02hhx", data[2 + idx]);
}
printf("\n");
}
}
if (ln1 > 0) {
printf("\t\tOI 2: ");
if (2 + ln0 + ln1 > len) {
printf("Invalid IE length.\n");
} else {
for (idx = 0; idx < ln1; idx++) {
printf("%02hhx", data[2 + ln0 + idx]);
}
printf("\n");
}
}
if (ln2 > 0) {
printf("\t\tOI 3: ");
if (2 + ln0 + ln1 + ln2 > len) {
printf("Invalid IE length.\n");
} else {
for (idx = 0; idx < ln2; idx++) {
printf("%02hhx", data[2 + ln0 + ln1 + idx]);
}
printf("\n");
}
}
}
static void print_tx_power_envelope(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
const uint8_t local_max_tx_power_count = data[0] & 7;
const uint8_t local_max_tx_power_unit_interp = (data[0] >> 3) & 7;
int i;
static const char *power_names[] = {
"Local Maximum Transmit Power For 20 MHz",
"Local Maximum Transmit Power For 40 MHz",
"Local Maximum Transmit Power For 80 MHz",
"Local Maximum Transmit Power For 160/80+80 MHz",
};
printf("\n");
if (local_max_tx_power_count + 2 != len)
return;
if (local_max_tx_power_unit_interp != 0)
return;
for (i = 0; i < local_max_tx_power_count + 1; ++i) {
int8_t power_val = ((int8_t)data[1 + i]) >> 1;
int8_t point5 = data[1 + i] & 1;
if (point5)
printf("\t\t * %s: %i.5 dBm\n", power_names[i], power_val);
else
printf("\t\t * %s: %i dBm\n", power_names[i], power_val);
}
}
static const char *ht_secondary_offset[4] = {
"no secondary",
"above",
"[reserved!]",
"below",
};
static void print_ht_op(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
static const char *protection[4] = {
"no",
"nonmember",
"20 MHz",
"non-HT mixed",
};
static const char *sta_chan_width[2] = {
"20 MHz",
"any",
};
printf("\n");
printf("\t\t * primary channel: %d\n", data[0]);
printf("\t\t * secondary channel offset: %s\n",
ht_secondary_offset[data[1] & 0x3]);
printf("\t\t * STA channel width: %s\n", sta_chan_width[(data[1] & 0x4)>>2]);
printf("\t\t * RIFS: %d\n", (data[1] & 0x8)>>3);
printf("\t\t * HT protection: %s\n", protection[data[2] & 0x3]);
printf("\t\t * non-GF present: %d\n", (data[2] & 0x4) >> 2);
printf("\t\t * OBSS non-GF present: %d\n", (data[2] & 0x10) >> 4);
printf("\t\t * dual beacon: %d\n", (data[4] & 0x40) >> 6);
printf("\t\t * dual CTS protection: %d\n", (data[4] & 0x80) >> 7);
printf("\t\t * STBC beacon: %d\n", data[5] & 0x1);
printf("\t\t * L-SIG TXOP Prot: %d\n", (data[5] & 0x2) >> 1);
printf("\t\t * PCO active: %d\n", (data[5] & 0x4) >> 2);
printf("\t\t * PCO phase: %d\n", (data[5] & 0x8) >> 3);
}
static void print_capabilities(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
int i, base, bit, si_duration = 0, max_amsdu = 0;
bool s_psmp_support = false, is_vht_cap = false;
unsigned char *ie = ie_buffer->ie;
int ielen = ie_buffer->ielen;
while (ielen >= 2 && ielen >= ie[1]) {
if (ie[0] == 191) {
is_vht_cap = true;
break;
}
ielen -= ie[1] + 2;
ie += ie[1] + 2;
}
for (i = 0; i < len; i++) {
base = i * 8;
for (bit = 0; bit < 8; bit++) {
if (!(data[i] & (1 << bit)))
continue;
printf("\n\t\t *");
#define CAPA(bit, name) case bit: printf(" " name); break
/* if the capability 'cap' exists add 'val' to 'sum'
* otherwise print 'Reserved' */
#define ADD_BIT_VAL(bit, cap, sum, val) case (bit): do { \
if (!(cap)) { \
printf(" Reserved"); \
break; \
} \
sum += val; \
break; \
} while (0)
switch (bit + base) {
CAPA(0, "HT Information Exchange Supported");
CAPA(1, "reserved (On-demand Beacon)");
CAPA(2, "Extended Channel Switching");
CAPA(3, "reserved (Wave Indication)");
CAPA(4, "PSMP Capability");
CAPA(5, "reserved (Service Interval Granularity)");
case 6:
s_psmp_support = true;
printf(" S-PSMP Capability");
break;
CAPA(7, "Event");
CAPA(8, "Diagnostics");
CAPA(9, "Multicast Diagnostics");
CAPA(10, "Location Tracking");
CAPA(11, "FMS");
CAPA(12, "Proxy ARP Service");
CAPA(13, "Collocated Interference Reporting");
CAPA(14, "Civic Location");
CAPA(15, "Geospatial Location");
CAPA(16, "TFS");
CAPA(17, "WNM-Sleep Mode");
CAPA(18, "TIM Broadcast");
CAPA(19, "BSS Transition");
CAPA(20, "QoS Traffic Capability");
CAPA(21, "AC Station Count");
CAPA(22, "Multiple BSSID");
CAPA(23, "Timing Measurement");
CAPA(24, "Channel Usage");
CAPA(25, "SSID List");
CAPA(26, "DMS");
CAPA(27, "UTC TSF Offset");
CAPA(28, "TDLS Peer U-APSD Buffer STA Support");
CAPA(29, "TDLS Peer PSM Support");
CAPA(30, "TDLS channel switching");
CAPA(31, "Interworking");
CAPA(32, "QoS Map");
CAPA(33, "EBR");
CAPA(34, "SSPN Interface");
CAPA(35, "Reserved");
CAPA(36, "MSGCF Capability");
CAPA(37, "TDLS Support");
CAPA(38, "TDLS Prohibited");
CAPA(39, "TDLS Channel Switching Prohibited");
CAPA(40, "Reject Unadmitted Frame");
ADD_BIT_VAL(41, s_psmp_support, si_duration, 1);
ADD_BIT_VAL(42, s_psmp_support, si_duration, 2);
ADD_BIT_VAL(43, s_psmp_support, si_duration, 4);
CAPA(44, "Identifier Location");
CAPA(45, "U-APSD Coexistence");
CAPA(46, "WNM-Notification");
CAPA(47, "Reserved");
CAPA(48, "UTF-8 SSID");
CAPA(49, "QMFActivated");
CAPA(50, "QMFReconfigurationActivated");
CAPA(51, "Robust AV Streaming");
CAPA(52, "Advanced GCR");
CAPA(53, "Mesh GCR");
CAPA(54, "SCS");
CAPA(55, "QLoad Report");
CAPA(56, "Alternate EDCA");
CAPA(57, "Unprotected TXOP Negotiation");
CAPA(58, "Protected TXOP egotiation");
CAPA(59, "Reserved");
CAPA(60, "Protected QLoad Report");
CAPA(61, "TDLS Wider Bandwidth");
CAPA(62, "Operating Mode Notification");
ADD_BIT_VAL(63, is_vht_cap, max_amsdu, 1);
ADD_BIT_VAL(64, is_vht_cap, max_amsdu, 2);
CAPA(65, "Channel Schedule Management");
CAPA(66, "Geodatabase Inband Enabling Signal");
CAPA(67, "Network Channel Control");
CAPA(68, "White Space Map");
CAPA(69, "Channel Availability Query");
CAPA(70, "FTM Responder");
CAPA(71, "FTM Initiator");
CAPA(72, "Reserved");
CAPA(73, "Extended Spectrum Management Capable");
CAPA(74, "Reserved");
default:
printf(" %d", bit);
break;
}
#undef ADD_BIT_VAL
#undef CAPA
}
}
if (s_psmp_support)
printf("\n\t\t * Service Interval Granularity is %d ms",
(si_duration + 1) * 5);
if (is_vht_cap) {
printf("\n\t\t * Max Number Of MSDUs In A-MSDU is ");
switch (max_amsdu) {
case 0:
printf("unlimited");
break;
case 1:
printf("32");
break;
case 2:
printf("16");
break;
case 3:
printf("8");
break;
default:
break;
}
}
printf("\n");
}
static void print_tim(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
printf(" DTIM Count %u DTIM Period %u Bitmap Control 0x%x "
"Bitmap[0] 0x%x",
data[0], data[1], data[2], data[3]);
if (len - 4)
printf(" (+ %u octet%s)", len - 4, len - 4 == 1 ? "" : "s");
printf("\n");
}
static void print_ibssatim(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
printf(" %d TUs\n", (data[1] << 8) + data[0]);
}
static void print_vht_capa(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
printf("\n");
print_vht_info((__u32) data[0] | ((__u32)data[1] << 8) |
((__u32)data[2] << 16) | ((__u32)data[3] << 24),
data + 4);
}
static void print_vht_oper(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
const char *chandwidths[] = {
[0] = "20 or 40 MHz",
[1] = "80 MHz",
[3] = "80+80 MHz",
[2] = "160 MHz",
};
printf("\n");
printf("\t\t * channel width: %d (%s)\n", data[0],
data[0] < ARRAY_SIZE(chandwidths) ? chandwidths[data[0]] : "unknown");
printf("\t\t * center freq segment 1: %d\n", data[1]);
printf("\t\t * center freq segment 2: %d\n", data[2]);
printf("\t\t * VHT basic MCS set: 0x%.2x%.2x\n", data[4], data[3]);
}
static void print_supp_op_classes(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
uint8_t *p = (uint8_t*) data;
const uint8_t *next_data = p + len;
int zero_delimiter = 0;
int one_hundred_thirty_delimiter = 0;
printf("\n");
printf("\t\t * current operating class: %d\n", *p);
while (++p < next_data) {
if (*p == 130) {
one_hundred_thirty_delimiter = 1;
break;
}
if (*p == 0) {
zero_delimiter = 0;
break;
}
printf("\t\t * operating class: %d\n", *p);
}
if (one_hundred_thirty_delimiter)
while (++p < next_data) {
printf("\t\t * current operating class extension: %d\n", *p);
}
if (zero_delimiter)
while (++p < next_data - 1) {
printf("\t\t * operating class tuple: %d %d\n", p[0], p[1]);
if (*p == 0)
break;
}
}
static void print_measurement_pilot_tx(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
uint8_t *p, len_remaining;
printf("\n");
printf("\t\t * interval: %d TUs\n", data[0]);
if (len <= 1)
return;
p = (uint8_t *) data + 1;
len_remaining = len - 1;
while (len_remaining >=5) {
uint8_t subelement_id = *p, len, *end;
p++;
len = *p;
p++;
end = p + len;
len_remaining -= 2;
/* 802.11-2016 only allows vendor specific elements */
if (subelement_id != 221) {
printf("\t\t * <Invalid subelement ID %d>\n", subelement_id);
return;
}
if (len < 3 || len > len_remaining) {
printf(" <Parse error, element too short>\n");
return;
}
printf("\t\t * vendor specific: OUI %.2x:%.2x:%.2x, data:",
p[0], p[1], p[2]);
/* add only two here and use ++p in while loop */
p += 2;
while (++p < end)
printf(" %.2x", *p);
printf("\n");
len_remaining -= len;
}
}
static void print_obss_scan_params(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
printf("\n");
printf("\t\t * passive dwell: %d TUs\n", (data[1] << 8) | data[0]);
printf("\t\t * active dwell: %d TUs\n", (data[3] << 8) | data[2]);
printf("\t\t * channel width trigger scan interval: %d s\n", (data[5] << 8) | data[4]);
printf("\t\t * scan passive total per channel: %d TUs\n", (data[7] << 8) | data[6]);
printf("\t\t * scan active total per channel: %d TUs\n", (data[9] << 8) | data[8]);
printf("\t\t * BSS width channel transition delay factor: %d\n", (data[11] << 8) | data[10]);
printf("\t\t * OBSS Scan Activity Threshold: %d.%02d %%\n",
((data[13] << 8) | data[12]) / 100, ((data[13] << 8) | data[12]) % 100);
}
static void print_secchan_offs(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
if (data[0] < ARRAY_SIZE(ht_secondary_offset))
printf(" %s (%d)\n", ht_secondary_offset[data[0]], data[0]);
else
printf(" %d\n", data[0]);
}
static void print_bss_load(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
printf("\n");
printf("\t\t * station count: %d\n", (data[1] << 8) | data[0]);
printf("\t\t * channel utilisation: %d/255\n", data[2]);
printf("\t\t * available admission capacity: %d [*32us]\n", (data[4] << 8) | data[3]);
}
static void print_mesh_conf(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
printf("\n");
printf("\t\t * Active Path Selection Protocol ID: %d\n", data[0]);
printf("\t\t * Active Path Selection Metric ID: %d\n", data[1]);
printf("\t\t * Congestion Control Mode ID: %d\n", data[2]);
printf("\t\t * Synchronization Method ID: %d\n", data[3]);
printf("\t\t * Authentication Protocol ID: %d\n", data[4]);
printf("\t\t * Mesh Formation Info:\n");
printf("\t\t\t Number of Peerings: %d\n", (data[5] & 0x7E) >> 1);
if (data[5] & 0x01)
printf("\t\t\t Connected to Mesh Gate\n");
if (data[5] & 0x80)
printf("\t\t\t Connected to AS\n");
printf("\t\t * Mesh Capability\n");
if (data[6] & 0x01)
printf("\t\t\t Accepting Additional Mesh Peerings\n");
if (data[6] & 0x02)
printf("\t\t\t MCCA Supported\n");
if (data[6] & 0x04)
printf("\t\t\t MCCA Enabled\n");
if (data[6] & 0x08)
printf("\t\t\t Forwarding\n");
if (data[6] & 0x10)
printf("\t\t\t MBCA Supported\n");
if (data[6] & 0x20)
printf("\t\t\t TBTT Adjusting\n");
if (data[6] & 0x40)
printf("\t\t\t Mesh Power Save Level\n");
}
struct ie_print {
const char *name;
void (*print)(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer);
uint8_t minlen, maxlen;
uint8_t flags;
};
static void print_ie(const struct ie_print *p, const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
int i;
if (!p->print)
return;
printf("\t%s:", p->name);
if (len < p->minlen || len > p->maxlen) {
if (len > 1) {
printf(" <invalid: %d bytes:", len);
for (i = 0; i < len; i++)
printf(" %.02x", data[i]);
printf(">\n");
} else if (len)
printf(" <invalid: 1 byte: %.02x>\n", data[0]);
else
printf(" <invalid: no data>\n");
return;
}
p->print(type, len, data, ie_buffer);
}
#define PRINT_IGN { \
.name = "IGNORE", \
.print = NULL, \
.minlen = 0, \
.maxlen = 255, \
}
static const struct ie_print ieprinters[] = {
[0] = { "SSID", print_ssid, 0, 32, BIT(PRINT_SCAN) | BIT(PRINT_LINK), },
[1] = { "Supported rates", print_supprates, 0, 255, BIT(PRINT_SCAN), },
[3] = { "DS Parameter set", print_ds, 1, 1, BIT(PRINT_SCAN), },
[5] = { "TIM", print_tim, 4, 255, BIT(PRINT_SCAN), },
[6] = { "IBSS ATIM window", print_ibssatim, 2, 2, BIT(PRINT_SCAN), },
[7] = { "Country", print_country, 3, 255, BIT(PRINT_SCAN), },
[11] = { "BSS Load", print_bss_load, 5, 5, BIT(PRINT_SCAN), },
[32] = { "Power constraint", print_powerconstraint, 1, 1, BIT(PRINT_SCAN), },
[35] = { "TPC report", print_tpcreport, 2, 2, BIT(PRINT_SCAN), },
[42] = { "ERP", print_erp, 1, 255, BIT(PRINT_SCAN), },
[45] = { "HT capabilities", print_ht_capa, 26, 26, BIT(PRINT_SCAN), },
[47] = { "ERP D4.0", print_erp, 1, 255, BIT(PRINT_SCAN), },
[51] = { "AP Channel Report", print_ap_channel_report, 1, 255, BIT(PRINT_SCAN), },
[59] = { "Supported operating classes", print_supp_op_classes, 1, 255, BIT(PRINT_SCAN), },
[66] = { "Measurement Pilot Transmission", print_measurement_pilot_tx, 1, 255, BIT(PRINT_SCAN), },
[74] = { "Overlapping BSS scan params", print_obss_scan_params, 14, 255, BIT(PRINT_SCAN), },
[61] = { "HT operation", print_ht_op, 22, 22, BIT(PRINT_SCAN), },
[62] = { "Secondary Channel Offset", print_secchan_offs, 1, 1, BIT(PRINT_SCAN), },
[191] = { "VHT capabilities", print_vht_capa, 12, 255, BIT(PRINT_SCAN), },
[192] = { "VHT operation", print_vht_oper, 5, 255, BIT(PRINT_SCAN), },
[48] = { "RSN", print_rsn, 2, 255, BIT(PRINT_SCAN), },
[50] = { "Extended supported rates", print_supprates, 0, 255, BIT(PRINT_SCAN), },
[70] = { "RM enabled capabilities", print_rm_enabled_capabilities, 5, 5, BIT(PRINT_SCAN), },
[113] = { "MESH Configuration", print_mesh_conf, 7, 7, BIT(PRINT_SCAN), },
[114] = { "MESH ID", print_ssid, 0, 32, BIT(PRINT_SCAN) | BIT(PRINT_LINK), },
[127] = { "Extended capabilities", print_capabilities, 0, 255, BIT(PRINT_SCAN), },
[107] = { "802.11u Interworking", print_interworking, 0, 255, BIT(PRINT_SCAN), },
[108] = { "802.11u Advertisement", print_11u_advert, 0, 255, BIT(PRINT_SCAN), },
[111] = { "802.11u Roaming Consortium", print_11u_rcon, 2, 255, BIT(PRINT_SCAN), },
[195] = { "Transmit Power Envelope", print_tx_power_envelope, 2, 5, BIT(PRINT_SCAN), },
};
static void print_wifi_wpa(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
print_rsn_ie("TKIP", "IEEE 802.1X", len, data);
}
static void print_wifi_osen(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
print_osen_ie("OSEN", "OSEN", len, data);
}
static bool print_wifi_wmm_param(const uint8_t *data, uint8_t len)
{
int i;
static const char *aci_tbl[] = { "BE", "BK", "VI", "VO" };
if (len < 19)
goto invalid;
if (data[0] != 1) {
printf("Parameter: not version 1: ");
return false;
}
printf("\t * Parameter version 1");
data++;
if (data[0] & 0x80)
printf("\n\t\t * u-APSD");
data += 2;
for (i = 0; i < 4; i++) {
printf("\n\t\t * %s:", aci_tbl[(data[0] >> 5) & 3]);
if (data[0] & 0x10)
printf(" acm");
printf(" CW %d-%d", (1 << (data[1] & 0xf)) - 1,
(1 << (data[1] >> 4)) - 1);
printf(", AIFSN %d", data[0] & 0xf);
if (data[2] | data[3])
printf(", TXOP %d usec", (data[2] + (data[3] << 8)) * 32);
data += 4;
}
printf("\n");
return true;
invalid:
printf("invalid: ");
return false;
}
static void print_wifi_wmm(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
int i;
switch (data[0]) {
case 0x00:
printf(" information:");
break;
case 0x01:
if (print_wifi_wmm_param(data + 1, len - 1))
return;
break;
default:
printf(" type %d:", data[0]);
break;
}
for(i = 1; i < len; i++)
printf(" %.02x", data[i]);
printf("\n");
}
static const char * wifi_wps_dev_passwd_id(uint16_t id)
{
switch (id) {
case 0:
return "Default (PIN)";
case 1:
return "User-specified";
case 2:
return "Machine-specified";
case 3:
return "Rekey";
case 4:
return "PushButton";
case 5:
return "Registrar-specified";
default:
return "??";
}
}
static void print_wifi_wps(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
bool first = true;
__u16 subtype, sublen;
while (len >= 4) {
subtype = (data[0] << 8) + data[1];
sublen = (data[2] << 8) + data[3];
if (sublen > len - 4)
break;
switch (subtype) {
case 0x104a:
tab_on_first(&first);
if (sublen < 1) {
printf("\t * Version: (invalid "
"length %d)\n", sublen);
break;
}
printf("\t * Version: %d.%d\n", data[4] >> 4, data[4] & 0xF);
break;
case 0x1011:
tab_on_first(&first);
printf("\t * Device name: %.*s\n", sublen, data + 4);
break;
case 0x1012: {
uint16_t id;
tab_on_first(&first);
if (sublen != 2) {
printf("\t * Device Password ID: (invalid length %d)\n",
sublen);
break;
}
id = data[4] << 8 | data[5];
printf("\t * Device Password ID: %u (%s)\n",
id, wifi_wps_dev_passwd_id(id));
break;
}
case 0x1021:
tab_on_first(&first);
printf("\t * Manufacturer: %.*s\n", sublen, data + 4);
break;
case 0x1023:
tab_on_first(&first);
printf("\t * Model: %.*s\n", sublen, data + 4);
break;
case 0x1024:
tab_on_first(&first);
printf("\t * Model Number: %.*s\n", sublen, data + 4);
break;
case 0x103b: {
__u8 val;
if (sublen < 1) {
printf("\t * Response Type: (invalid length %d)\n",
sublen);
break;
}
val = data[4];
tab_on_first(&first);
printf("\t * Response Type: %d%s\n",
val, val == 3 ? " (AP)" : "");
break;
}
case 0x103c: {
__u8 val;
if (sublen < 1) {
printf("\t * RF Bands: (invalid length %d)\n",
sublen);
break;
}
val = data[4];
tab_on_first(&first);
printf("\t * RF Bands: 0x%x\n", val);
break;
}
case 0x1041: {
__u8 val;
if (sublen < 1) {
printf("\t * Selected Registrar: (invalid length %d)\n",
sublen);
break;
}
val = data[4];
tab_on_first(&first);
printf("\t * Selected Registrar: 0x%x\n", val);
break;
}
case 0x1042:
tab_on_first(&first);
printf("\t * Serial Number: %.*s\n", sublen, data + 4);
break;
case 0x1044: {
__u8 val;
if (sublen < 1) {
printf("\t * Wi-Fi Protected Setup State: (invalid length %d)\n",
sublen);
break;
}
val = data[4];
tab_on_first(&first);
printf("\t * Wi-Fi Protected Setup State: %d%s%s\n",
val,
val == 1 ? " (Unconfigured)" : "",
val == 2 ? " (Configured)" : "");
break;
}
case 0x1047:
tab_on_first(&first);
printf("\t * UUID: ");
if (sublen != 16) {
printf("(invalid, length=%d)\n", sublen);
break;
}
printf("%02x%02x%02x%02x-%02x%02x-%02x%02x-"
"%02x%02x-%02x%02x%02x%02x%02x%02x\n",
data[4], data[5], data[6], data[7],
data[8], data[9], data[10], data[11],
data[12], data[13], data[14], data[15],
data[16], data[17], data[18], data[19]);
break;
case 0x1049:
tab_on_first(&first);
if (sublen == 6 &&
data[4] == 0x00 &&
data[5] == 0x37 &&
data[6] == 0x2a &&
data[7] == 0x00 &&
data[8] == 0x01) {
uint8_t v2 = data[9];
printf("\t * Version2: %d.%d\n", v2 >> 4, v2 & 0xf);
} else {
printf("\t * Unknown vendor extension. len=%u\n",
sublen);
}
break;
case 0x1054: {
tab_on_first(&first);
if (sublen != 8) {
printf("\t * Primary Device Type: (invalid length %d)\n",
sublen);
break;
}
printf("\t * Primary Device Type: "
"%u-%02x%02x%02x%02x-%u\n",
data[4] << 8 | data[5],
data[6], data[7], data[8], data[9],
data[10] << 8 | data[11]);
break;
}
case 0x1057: {
__u8 val;
tab_on_first(&first);
if (sublen < 1) {
printf("\t * AP setup locked: (invalid length %d)\n",
sublen);
break;
}
val = data[4];
printf("\t * AP setup locked: 0x%.2x\n", val);
break;
}
case 0x1008:
case 0x1053: {
__u16 meth;
bool comma;
if (sublen < 2) {
printf("\t * Config methods: (invalid length %d)\n",
sublen);
break;
}
meth = (data[4] << 8) + data[5];
comma = false;
tab_on_first(&first);
printf("\t * %sConfig methods:",
subtype == 0x1053 ? "Selected Registrar ": "");
#define T(bit, name) do { \
if (meth & (1<<bit)) { \
if (comma) \
printf(","); \
comma = true; \
printf(" " name); \
} } while (0)
T(0, "USB");
T(1, "Ethernet");
T(2, "Label");
T(3, "Display");
T(4, "Ext. NFC");
T(5, "Int. NFC");
T(6, "NFC Intf.");
T(7, "PBC");
T(8, "Keypad");
printf("\n");
break;
#undef T
}
default: {
const __u8 *subdata = data + 4;
__u16 tmplen = sublen;
tab_on_first(&first);
printf("\t * Unknown TLV (%#.4x, %d bytes):",
subtype, tmplen);
while (tmplen) {
printf(" %.2x", *subdata);
subdata++;
tmplen--;
}
printf("\n");
break;
}
}
data += sublen + 4;
len -= sublen + 4;
}
if (len != 0) {
printf("\t\t * bogus tail data (%d):", len);
while (len) {
printf(" %.2x", *data);
data++;
len--;
}
printf("\n");
}
}
static const struct ie_print wifiprinters[] = {
[1] = { "WPA", print_wifi_wpa, 2, 255, BIT(PRINT_SCAN), },
[2] = { "WMM", print_wifi_wmm, 1, 255, BIT(PRINT_SCAN), },
[4] = { "WPS", print_wifi_wps, 0, 255, BIT(PRINT_SCAN), },
};
static inline void print_p2p(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
bool first = true;
__u8 subtype;
__u16 sublen;
while (len >= 3) {
subtype = data[0];
sublen = (data[2] << 8) + data[1];
if (sublen > len - 3)
break;
switch (subtype) {
case 0x02: /* capability */
tab_on_first(&first);
if (sublen < 2) {
printf("\t * malformed capability\n");
break;
}
printf("\t * Group capa: 0x%.2x, Device capa: 0x%.2x\n",
data[3], data[4]);
break;
case 0x0d: /* device info */
if (sublen < 6 + 2 + 8 + 1) {
printf("\t * malformed device info\n");
break;
}
/* fall through */
case 0x00: /* status */
case 0x01: /* minor reason */
case 0x03: /* device ID */
case 0x04: /* GO intent */
case 0x05: /* configuration timeout */
case 0x06: /* listen channel */
case 0x07: /* group BSSID */
case 0x08: /* ext listen timing */
case 0x09: /* intended interface address */
case 0x0a: /* manageability */
case 0x0b: /* channel list */
case 0x0c: /* NoA */
case 0x0e: /* group info */
case 0x0f: /* group ID */
case 0x10: /* interface */
case 0x11: /* operating channel */
case 0x12: /* invitation flags */
case 0xdd: /* vendor specific */
default: {
const __u8 *subdata = data + 3;
__u16 tmplen = sublen;
tab_on_first(&first);
printf("\t * Unknown TLV (%#.2x, %d bytes):",
subtype, tmplen);
while (tmplen) {
printf(" %.2x", *subdata);
subdata++;
tmplen--;
}
printf("\n");
break;
}
}
data += sublen + 3;
len -= sublen + 3;
}
if (len != 0) {
tab_on_first(&first);
printf("\t * bogus tail data (%d):", len);
while (len) {
printf(" %.2x", *data);
data++;
len--;
}
printf("\n");
}
}
static inline void print_hs20_ind(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
/* I can't find the spec for this...just going off what wireshark uses. */
printf("\n");
if (len > 0)
printf("\t\tDGAF: %i\n", (int)(data[0] & 0x1));
else
printf("\t\tUnexpected length: %i\n", len);
}
static void print_wifi_owe_tarns(const uint8_t type, uint8_t len,
const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
char mac_addr[20];
int ssid_len;
printf("\n");
if (len < 7)
return;
mac_addr_n2a(mac_addr, data);
printf("\t\tBSSID: %s\n", mac_addr);
ssid_len = data[6];
if (ssid_len > len - 7)
return;
printf("\t\tSSID: ");
print_ssid_escaped(ssid_len, data + 7);
printf("\n");
/* optional elements */
if (len >= ssid_len + 9) {
printf("\t\tBand Info: %u\n", data[ssid_len + 7]);
printf("\t\tChannel Info: %u\n", data[ssid_len + 8]);
}
}
static const struct ie_print wfa_printers[] = {
[9] = { "P2P", print_p2p, 2, 255, BIT(PRINT_SCAN), },
[16] = { "HotSpot 2.0 Indication", print_hs20_ind, 1, 255, BIT(PRINT_SCAN), },
[18] = { "HotSpot 2.0 OSEN", print_wifi_osen, 1, 255, BIT(PRINT_SCAN), },
[28] = { "OWE Transition Mode", print_wifi_owe_tarns, 7, 255, BIT(PRINT_SCAN), },
};
static void print_vendor(unsigned char len, unsigned char *data,
bool unknown, enum print_ie_type ptype)
{
int i;
if (len < 3) {
printf("\tVendor specific: <too short> data:");
for(i = 0; i < len; i++)
printf(" %.02x", data[i]);
printf("\n");
return;
}
if (len >= 4 && memcmp(data, ms_oui, 3) == 0) {
if (data[3] < ARRAY_SIZE(wifiprinters) &&
wifiprinters[data[3]].name &&
wifiprinters[data[3]].flags & BIT(ptype)) {
print_ie(&wifiprinters[data[3]],
data[3], len - 4, data + 4,
NULL);
return;
}
if (!unknown)
return;
printf("\tMS/WiFi %#.2x, data:", data[3]);
for(i = 0; i < len - 4; i++)
printf(" %.02x", data[i + 4]);
printf("\n");
return;
}
if (len >= 4 && memcmp(data, wfa_oui, 3) == 0) {
if (data[3] < ARRAY_SIZE(wfa_printers) &&
wfa_printers[data[3]].name &&
wfa_printers[data[3]].flags & BIT(ptype)) {
print_ie(&wfa_printers[data[3]],
data[3], len - 4, data + 4,
NULL);
return;
}
if (!unknown)
return;
printf("\tWFA %#.2x, data:", data[3]);
for(i = 0; i < len - 4; i++)
printf(" %.02x", data[i + 4]);
printf("\n");
return;
}
if (!unknown)
return;
printf("\tVendor specific: OUI %.2x:%.2x:%.2x, data:",
data[0], data[1], data[2]);
for (i = 3; i < len; i++)
printf(" %.2x", data[i]);
printf("\n");
}
static void print_he_capa(const uint8_t type, uint8_t len, const uint8_t *data,
const struct print_ies_data *ie_buffer)
{
printf("\n");
print_he_capability(data, len);
}
static const struct ie_print ext_printers[] = {
[35] = { "HE capabilities", print_he_capa, 21, 54, BIT(PRINT_SCAN), },
};
static void print_extension(unsigned char len, unsigned char *ie,
bool unknown, enum print_ie_type ptype)
{
unsigned char tag;
if (len < 1) {
printf("\tExtension IE: <empty>\n");
return;
}
tag = ie[0];
if (tag < ARRAY_SIZE(ext_printers) && ext_printers[tag].name &&
ext_printers[tag].flags & BIT(ptype)) {
print_ie(&ext_printers[tag], tag, len - 1, ie + 1, NULL);
return;
}
if (unknown) {
int i;
printf("\tUnknown Extension ID (%d):", ie[0]);
for (i = 1; i < len; i++)
printf(" %.2x", ie[i]);
printf("\n");
}
}
void print_ies(unsigned char *ie, int ielen, bool unknown,
enum print_ie_type ptype)
{
struct print_ies_data ie_buffer = {
.ie = ie,
.ielen = ielen };
if (ie == NULL || ielen < 0)
return;
while (ielen >= 2 && ielen - 2 >= ie[1]) {
if (ie[0] < ARRAY_SIZE(ieprinters) &&
ieprinters[ie[0]].name &&
ieprinters[ie[0]].flags & BIT(ptype)) {
print_ie(&ieprinters[ie[0]],
ie[0], ie[1], ie + 2, &ie_buffer);
} else if (ie[0] == 221 /* vendor */) {
print_vendor(ie[1], ie + 2, unknown, ptype);
} else if (ie[0] == 255 /* extension */) {
print_extension(ie[1], ie + 2, unknown, ptype);
} else if (unknown) {
int i;
printf("\tUnknown IE (%d):", ie[0]);
for (i=0; i<ie[1]; i++)
printf(" %.2x", ie[2+i]);
printf("\n");
}
ielen -= ie[1] + 2;
ie += ie[1] + 2;
}
}
static void print_capa_dmg(__u16 capa)
{
switch (capa & WLAN_CAPABILITY_DMG_TYPE_MASK) {
case WLAN_CAPABILITY_DMG_TYPE_AP:
printf(" DMG_ESS");
break;
case WLAN_CAPABILITY_DMG_TYPE_PBSS:
printf(" DMG_PCP");
break;
case WLAN_CAPABILITY_DMG_TYPE_IBSS:
printf(" DMG_IBSS");
break;
}
if (capa & WLAN_CAPABILITY_DMG_CBAP_ONLY)
printf(" CBAP_Only");
if (capa & WLAN_CAPABILITY_DMG_CBAP_SOURCE)
printf(" CBAP_Src");
if (capa & WLAN_CAPABILITY_DMG_PRIVACY)
printf(" Privacy");
if (capa & WLAN_CAPABILITY_DMG_ECPAC)
printf(" ECPAC");
if (capa & WLAN_CAPABILITY_DMG_SPECTRUM_MGMT)
printf(" SpectrumMgmt");
if (capa & WLAN_CAPABILITY_DMG_RADIO_MEASURE)
printf(" RadioMeasure");
}
static void print_capa_non_dmg(__u16 capa)
{
if (capa & WLAN_CAPABILITY_ESS)
printf(" ESS");
if (capa & WLAN_CAPABILITY_IBSS)
printf(" IBSS");
if (capa & WLAN_CAPABILITY_CF_POLLABLE)
printf(" CfPollable");
if (capa & WLAN_CAPABILITY_CF_POLL_REQUEST)
printf(" CfPollReq");
if (capa & WLAN_CAPABILITY_PRIVACY)
printf(" Privacy");
if (capa & WLAN_CAPABILITY_SHORT_PREAMBLE)
printf(" ShortPreamble");
if (capa & WLAN_CAPABILITY_PBCC)
printf(" PBCC");
if (capa & WLAN_CAPABILITY_CHANNEL_AGILITY)
printf(" ChannelAgility");
if (capa & WLAN_CAPABILITY_SPECTRUM_MGMT)
printf(" SpectrumMgmt");
if (capa & WLAN_CAPABILITY_QOS)
printf(" QoS");
if (capa & WLAN_CAPABILITY_SHORT_SLOT_TIME)
printf(" ShortSlotTime");
if (capa & WLAN_CAPABILITY_APSD)
printf(" APSD");
if (capa & WLAN_CAPABILITY_RADIO_MEASURE)
printf(" RadioMeasure");
if (capa & WLAN_CAPABILITY_DSSS_OFDM)
printf(" DSSS-OFDM");
if (capa & WLAN_CAPABILITY_DEL_BACK)
printf(" DelayedBACK");
if (capa & WLAN_CAPABILITY_IMM_BACK)
printf(" ImmediateBACK");
}
static int print_bss_handler(struct nl_msg *msg, void *arg)
{
struct nlattr *tb[NL80211_ATTR_MAX + 1];
struct genlmsghdr *gnlh = nlmsg_data(nlmsg_hdr(msg));
struct nlattr *bss[NL80211_BSS_MAX + 1];
char mac_addr[20], dev[20];
static struct nla_policy bss_policy[NL80211_BSS_MAX + 1] = {
[NL80211_BSS_TSF] = { .type = NLA_U64 },
[NL80211_BSS_FREQUENCY] = { .type = NLA_U32 },
[NL80211_BSS_BSSID] = { },
[NL80211_BSS_BEACON_INTERVAL] = { .type = NLA_U16 },
[NL80211_BSS_CAPABILITY] = { .type = NLA_U16 },
[NL80211_BSS_INFORMATION_ELEMENTS] = { },
[NL80211_BSS_SIGNAL_MBM] = { .type = NLA_U32 },
[NL80211_BSS_SIGNAL_UNSPEC] = { .type = NLA_U8 },
[NL80211_BSS_STATUS] = { .type = NLA_U32 },
[NL80211_BSS_SEEN_MS_AGO] = { .type = NLA_U32 },
[NL80211_BSS_BEACON_IES] = { },
};
struct scan_params *params = arg;
int show = params->show_both_ie_sets ? 2 : 1;
bool is_dmg = false;
nla_parse(tb, NL80211_ATTR_MAX, genlmsg_attrdata(gnlh, 0),
genlmsg_attrlen(gnlh, 0), NULL);
if (!tb[NL80211_ATTR_BSS]) {
fprintf(stderr, "bss info missing!\n");
return NL_SKIP;
}
if (nla_parse_nested(bss, NL80211_BSS_MAX,
tb[NL80211_ATTR_BSS],
bss_policy)) {
fprintf(stderr, "failed to parse nested attributes!\n");
return NL_SKIP;
}
if (!bss[NL80211_BSS_BSSID])
return NL_SKIP;
mac_addr_n2a(mac_addr, nla_data(bss[NL80211_BSS_BSSID]));
printf("BSS %s", mac_addr);
if (tb[NL80211_ATTR_IFINDEX]) {
if_indextoname(nla_get_u32(tb[NL80211_ATTR_IFINDEX]), dev);
printf("(on %s)", dev);
}
if (bss[NL80211_BSS_STATUS]) {
switch (nla_get_u32(bss[NL80211_BSS_STATUS])) {
case NL80211_BSS_STATUS_AUTHENTICATED:
printf(" -- authenticated");
break;
case NL80211_BSS_STATUS_ASSOCIATED:
printf(" -- associated");
break;
case NL80211_BSS_STATUS_IBSS_JOINED:
printf(" -- joined");
break;
default:
printf(" -- unknown status: %d",
nla_get_u32(bss[NL80211_BSS_STATUS]));
break;
}
}
printf("\n");
if (bss[NL80211_BSS_LAST_SEEN_BOOTTIME]) {
unsigned long long bt;
bt = (unsigned long long)nla_get_u64(bss[NL80211_BSS_LAST_SEEN_BOOTTIME]);
printf("\tlast seen: %llu.%.3llus [boottime]\n", bt/1000000000, (bt%1000000000)/1000000);
}
if (bss[NL80211_BSS_TSF]) {
unsigned long long tsf;
tsf = (unsigned long long)nla_get_u64(bss[NL80211_BSS_TSF]);
printf("\tTSF: %llu usec (%llud, %.2lld:%.2llu:%.2llu)\n",
tsf, tsf/1000/1000/60/60/24, (tsf/1000/1000/60/60) % 24,
(tsf/1000/1000/60) % 60, (tsf/1000/1000) % 60);
}
if (bss[NL80211_BSS_FREQUENCY]) {
int freq = nla_get_u32(bss[NL80211_BSS_FREQUENCY]);
printf("\tfreq: %d\n", freq);
if (freq > 45000)
is_dmg = true;
}
if (bss[NL80211_BSS_BEACON_INTERVAL])
printf("\tbeacon interval: %d TUs\n",
nla_get_u16(bss[NL80211_BSS_BEACON_INTERVAL]));
if (bss[NL80211_BSS_CAPABILITY]) {
__u16 capa = nla_get_u16(bss[NL80211_BSS_CAPABILITY]);
printf("\tcapability:");
if (is_dmg)
print_capa_dmg(capa);
else
print_capa_non_dmg(capa);
printf(" (0x%.4x)\n", capa);
}
if (bss[NL80211_BSS_SIGNAL_MBM]) {
int s = nla_get_u32(bss[NL80211_BSS_SIGNAL_MBM]);
printf("\tsignal: %d.%.2d dBm\n", s/100, s%100);
}
if (bss[NL80211_BSS_SIGNAL_UNSPEC]) {
unsigned char s = nla_get_u8(bss[NL80211_BSS_SIGNAL_UNSPEC]);
printf("\tsignal: %d/100\n", s);
}
if (bss