| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * fs/dax.c - Direct Access filesystem code | 
 |  * Copyright (c) 2013-2014 Intel Corporation | 
 |  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> | 
 |  * Author: Ross Zwisler <ross.zwisler@linux.intel.com> | 
 |  */ | 
 |  | 
 | #include <linux/atomic.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/dax.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/vmstat.h> | 
 | #include <linux/sizes.h> | 
 | #include <linux/mmu_notifier.h> | 
 | #include <linux/iomap.h> | 
 | #include <linux/rmap.h> | 
 | #include <asm/pgalloc.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/fs_dax.h> | 
 |  | 
 | /* We choose 4096 entries - same as per-zone page wait tables */ | 
 | #define DAX_WAIT_TABLE_BITS 12 | 
 | #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) | 
 |  | 
 | /* The 'colour' (ie low bits) within a PMD of a page offset.  */ | 
 | #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1) | 
 | #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT) | 
 |  | 
 | static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; | 
 |  | 
 | static int __init init_dax_wait_table(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) | 
 | 		init_waitqueue_head(wait_table + i); | 
 | 	return 0; | 
 | } | 
 | fs_initcall(init_dax_wait_table); | 
 |  | 
 | /* | 
 |  * DAX pagecache entries use XArray value entries so they can't be mistaken | 
 |  * for pages.  We use one bit for locking, one bit for the entry size (PMD) | 
 |  * and two more to tell us if the entry is a zero page or an empty entry that | 
 |  * is just used for locking.  In total four special bits. | 
 |  * | 
 |  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE | 
 |  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem | 
 |  * block allocation. | 
 |  */ | 
 | #define DAX_SHIFT	(4) | 
 | #define DAX_LOCKED	(1UL << 0) | 
 | #define DAX_PMD		(1UL << 1) | 
 | #define DAX_ZERO_PAGE	(1UL << 2) | 
 | #define DAX_EMPTY	(1UL << 3) | 
 |  | 
 | static unsigned long dax_to_pfn(void *entry) | 
 | { | 
 | 	return xa_to_value(entry) >> DAX_SHIFT; | 
 | } | 
 |  | 
 | static struct folio *dax_to_folio(void *entry) | 
 | { | 
 | 	return page_folio(pfn_to_page(dax_to_pfn(entry))); | 
 | } | 
 |  | 
 | static void *dax_make_entry(unsigned long pfn, unsigned long flags) | 
 | { | 
 | 	return xa_mk_value(flags | (pfn << DAX_SHIFT)); | 
 | } | 
 |  | 
 | static bool dax_is_locked(void *entry) | 
 | { | 
 | 	return xa_to_value(entry) & DAX_LOCKED; | 
 | } | 
 |  | 
 | static unsigned int dax_entry_order(void *entry) | 
 | { | 
 | 	if (xa_to_value(entry) & DAX_PMD) | 
 | 		return PMD_ORDER; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned long dax_is_pmd_entry(void *entry) | 
 | { | 
 | 	return xa_to_value(entry) & DAX_PMD; | 
 | } | 
 |  | 
 | static bool dax_is_pte_entry(void *entry) | 
 | { | 
 | 	return !(xa_to_value(entry) & DAX_PMD); | 
 | } | 
 |  | 
 | static int dax_is_zero_entry(void *entry) | 
 | { | 
 | 	return xa_to_value(entry) & DAX_ZERO_PAGE; | 
 | } | 
 |  | 
 | static int dax_is_empty_entry(void *entry) | 
 | { | 
 | 	return xa_to_value(entry) & DAX_EMPTY; | 
 | } | 
 |  | 
 | /* | 
 |  * true if the entry that was found is of a smaller order than the entry | 
 |  * we were looking for | 
 |  */ | 
 | static bool dax_is_conflict(void *entry) | 
 | { | 
 | 	return entry == XA_RETRY_ENTRY; | 
 | } | 
 |  | 
 | /* | 
 |  * DAX page cache entry locking | 
 |  */ | 
 | struct exceptional_entry_key { | 
 | 	struct xarray *xa; | 
 | 	pgoff_t entry_start; | 
 | }; | 
 |  | 
 | struct wait_exceptional_entry_queue { | 
 | 	wait_queue_entry_t wait; | 
 | 	struct exceptional_entry_key key; | 
 | }; | 
 |  | 
 | /** | 
 |  * enum dax_wake_mode: waitqueue wakeup behaviour | 
 |  * @WAKE_ALL: wake all waiters in the waitqueue | 
 |  * @WAKE_NEXT: wake only the first waiter in the waitqueue | 
 |  */ | 
 | enum dax_wake_mode { | 
 | 	WAKE_ALL, | 
 | 	WAKE_NEXT, | 
 | }; | 
 |  | 
 | static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, | 
 | 		void *entry, struct exceptional_entry_key *key) | 
 | { | 
 | 	unsigned long hash; | 
 | 	unsigned long index = xas->xa_index; | 
 |  | 
 | 	/* | 
 | 	 * If 'entry' is a PMD, align the 'index' that we use for the wait | 
 | 	 * queue to the start of that PMD.  This ensures that all offsets in | 
 | 	 * the range covered by the PMD map to the same bit lock. | 
 | 	 */ | 
 | 	if (dax_is_pmd_entry(entry)) | 
 | 		index &= ~PG_PMD_COLOUR; | 
 | 	key->xa = xas->xa; | 
 | 	key->entry_start = index; | 
 |  | 
 | 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); | 
 | 	return wait_table + hash; | 
 | } | 
 |  | 
 | static int wake_exceptional_entry_func(wait_queue_entry_t *wait, | 
 | 		unsigned int mode, int sync, void *keyp) | 
 | { | 
 | 	struct exceptional_entry_key *key = keyp; | 
 | 	struct wait_exceptional_entry_queue *ewait = | 
 | 		container_of(wait, struct wait_exceptional_entry_queue, wait); | 
 |  | 
 | 	if (key->xa != ewait->key.xa || | 
 | 	    key->entry_start != ewait->key.entry_start) | 
 | 		return 0; | 
 | 	return autoremove_wake_function(wait, mode, sync, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * @entry may no longer be the entry at the index in the mapping. | 
 |  * The important information it's conveying is whether the entry at | 
 |  * this index used to be a PMD entry. | 
 |  */ | 
 | static void dax_wake_entry(struct xa_state *xas, void *entry, | 
 | 			   enum dax_wake_mode mode) | 
 | { | 
 | 	struct exceptional_entry_key key; | 
 | 	wait_queue_head_t *wq; | 
 |  | 
 | 	wq = dax_entry_waitqueue(xas, entry, &key); | 
 |  | 
 | 	/* | 
 | 	 * Checking for locked entry and prepare_to_wait_exclusive() happens | 
 | 	 * under the i_pages lock, ditto for entry handling in our callers. | 
 | 	 * So at this point all tasks that could have seen our entry locked | 
 | 	 * must be in the waitqueue and the following check will see them. | 
 | 	 */ | 
 | 	if (waitqueue_active(wq)) | 
 | 		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key); | 
 | } | 
 |  | 
 | /* | 
 |  * Look up entry in page cache, wait for it to become unlocked if it | 
 |  * is a DAX entry and return it.  The caller must subsequently call | 
 |  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() | 
 |  * if it did.  The entry returned may have a larger order than @order. | 
 |  * If @order is larger than the order of the entry found in i_pages, this | 
 |  * function returns a dax_is_conflict entry. | 
 |  * | 
 |  * Must be called with the i_pages lock held. | 
 |  */ | 
 | static void *get_next_unlocked_entry(struct xa_state *xas, unsigned int order) | 
 | { | 
 | 	void *entry; | 
 | 	struct wait_exceptional_entry_queue ewait; | 
 | 	wait_queue_head_t *wq; | 
 |  | 
 | 	init_wait(&ewait.wait); | 
 | 	ewait.wait.func = wake_exceptional_entry_func; | 
 |  | 
 | 	for (;;) { | 
 | 		entry = xas_find_conflict(xas); | 
 | 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) | 
 | 			return entry; | 
 | 		if (dax_entry_order(entry) < order) | 
 | 			return XA_RETRY_ENTRY; | 
 | 		if (!dax_is_locked(entry)) | 
 | 			return entry; | 
 |  | 
 | 		wq = dax_entry_waitqueue(xas, entry, &ewait.key); | 
 | 		prepare_to_wait_exclusive(wq, &ewait.wait, | 
 | 					  TASK_UNINTERRUPTIBLE); | 
 | 		xas_unlock_irq(xas); | 
 | 		xas_reset(xas); | 
 | 		schedule(); | 
 | 		finish_wait(wq, &ewait.wait); | 
 | 		xas_lock_irq(xas); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Wait for the given entry to become unlocked. Caller must hold the i_pages | 
 |  * lock and call either put_unlocked_entry() if it did not lock the entry or | 
 |  * dax_unlock_entry() if it did. Returns an unlocked entry if still present. | 
 |  */ | 
 | static void *wait_entry_unlocked_exclusive(struct xa_state *xas, void *entry) | 
 | { | 
 | 	struct wait_exceptional_entry_queue ewait; | 
 | 	wait_queue_head_t *wq; | 
 |  | 
 | 	init_wait(&ewait.wait); | 
 | 	ewait.wait.func = wake_exceptional_entry_func; | 
 |  | 
 | 	while (unlikely(dax_is_locked(entry))) { | 
 | 		wq = dax_entry_waitqueue(xas, entry, &ewait.key); | 
 | 		prepare_to_wait_exclusive(wq, &ewait.wait, | 
 | 					TASK_UNINTERRUPTIBLE); | 
 | 		xas_reset(xas); | 
 | 		xas_unlock_irq(xas); | 
 | 		schedule(); | 
 | 		finish_wait(wq, &ewait.wait); | 
 | 		xas_lock_irq(xas); | 
 | 		entry = xas_load(xas); | 
 | 	} | 
 |  | 
 | 	if (xa_is_internal(entry)) | 
 | 		return NULL; | 
 |  | 
 | 	return entry; | 
 | } | 
 |  | 
 | /* | 
 |  * The only thing keeping the address space around is the i_pages lock | 
 |  * (it's cycled in clear_inode() after removing the entries from i_pages) | 
 |  * After we call xas_unlock_irq(), we cannot touch xas->xa. | 
 |  */ | 
 | static void wait_entry_unlocked(struct xa_state *xas, void *entry) | 
 | { | 
 | 	struct wait_exceptional_entry_queue ewait; | 
 | 	wait_queue_head_t *wq; | 
 |  | 
 | 	init_wait(&ewait.wait); | 
 | 	ewait.wait.func = wake_exceptional_entry_func; | 
 |  | 
 | 	wq = dax_entry_waitqueue(xas, entry, &ewait.key); | 
 | 	/* | 
 | 	 * Unlike get_next_unlocked_entry() there is no guarantee that this | 
 | 	 * path ever successfully retrieves an unlocked entry before an | 
 | 	 * inode dies. Perform a non-exclusive wait in case this path | 
 | 	 * never successfully performs its own wake up. | 
 | 	 */ | 
 | 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); | 
 | 	xas_unlock_irq(xas); | 
 | 	schedule(); | 
 | 	finish_wait(wq, &ewait.wait); | 
 | } | 
 |  | 
 | static void put_unlocked_entry(struct xa_state *xas, void *entry, | 
 | 			       enum dax_wake_mode mode) | 
 | { | 
 | 	if (entry && !dax_is_conflict(entry)) | 
 | 		dax_wake_entry(xas, entry, mode); | 
 | } | 
 |  | 
 | /* | 
 |  * We used the xa_state to get the entry, but then we locked the entry and | 
 |  * dropped the xa_lock, so we know the xa_state is stale and must be reset | 
 |  * before use. | 
 |  */ | 
 | static void dax_unlock_entry(struct xa_state *xas, void *entry) | 
 | { | 
 | 	void *old; | 
 |  | 
 | 	BUG_ON(dax_is_locked(entry)); | 
 | 	xas_reset(xas); | 
 | 	xas_lock_irq(xas); | 
 | 	old = xas_store(xas, entry); | 
 | 	xas_unlock_irq(xas); | 
 | 	BUG_ON(!dax_is_locked(old)); | 
 | 	dax_wake_entry(xas, entry, WAKE_NEXT); | 
 | } | 
 |  | 
 | /* | 
 |  * Return: The entry stored at this location before it was locked. | 
 |  */ | 
 | static void *dax_lock_entry(struct xa_state *xas, void *entry) | 
 | { | 
 | 	unsigned long v = xa_to_value(entry); | 
 | 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); | 
 | } | 
 |  | 
 | static unsigned long dax_entry_size(void *entry) | 
 | { | 
 | 	if (dax_is_zero_entry(entry)) | 
 | 		return 0; | 
 | 	else if (dax_is_empty_entry(entry)) | 
 | 		return 0; | 
 | 	else if (dax_is_pmd_entry(entry)) | 
 | 		return PMD_SIZE; | 
 | 	else | 
 | 		return PAGE_SIZE; | 
 | } | 
 |  | 
 | /* | 
 |  * A DAX folio is considered shared if it has no mapping set and ->share (which | 
 |  * shares the ->index field) is non-zero. Note this may return false even if the | 
 |  * page is shared between multiple files but has not yet actually been mapped | 
 |  * into multiple address spaces. | 
 |  */ | 
 | static inline bool dax_folio_is_shared(struct folio *folio) | 
 | { | 
 | 	return !folio->mapping && folio->share; | 
 | } | 
 |  | 
 | /* | 
 |  * When it is called by dax_insert_entry(), the shared flag will indicate | 
 |  * whether this entry is shared by multiple files. If the page has not | 
 |  * previously been associated with any mappings the ->mapping and ->index | 
 |  * fields will be set. If it has already been associated with a mapping | 
 |  * the mapping will be cleared and the share count set. It's then up to | 
 |  * reverse map users like memory_failure() to call back into the filesystem to | 
 |  * recover ->mapping and ->index information. For example by implementing | 
 |  * dax_holder_operations. | 
 |  */ | 
 | static void dax_folio_make_shared(struct folio *folio) | 
 | { | 
 | 	/* | 
 | 	 * folio is not currently shared so mark it as shared by clearing | 
 | 	 * folio->mapping. | 
 | 	 */ | 
 | 	folio->mapping = NULL; | 
 |  | 
 | 	/* | 
 | 	 * folio has previously been mapped into one address space so set the | 
 | 	 * share count. | 
 | 	 */ | 
 | 	folio->share = 1; | 
 | } | 
 |  | 
 | static inline unsigned long dax_folio_put(struct folio *folio) | 
 | { | 
 | 	unsigned long ref; | 
 | 	int order, i; | 
 |  | 
 | 	if (!dax_folio_is_shared(folio)) | 
 | 		ref = 0; | 
 | 	else | 
 | 		ref = --folio->share; | 
 |  | 
 | 	if (ref) | 
 | 		return ref; | 
 |  | 
 | 	folio->mapping = NULL; | 
 | 	order = folio_order(folio); | 
 | 	if (!order) | 
 | 		return 0; | 
 | 	folio_reset_order(folio); | 
 |  | 
 | 	for (i = 0; i < (1UL << order); i++) { | 
 | 		struct dev_pagemap *pgmap = page_pgmap(&folio->page); | 
 | 		struct page *page = folio_page(folio, i); | 
 | 		struct folio *new_folio = (struct folio *)page; | 
 |  | 
 | 		ClearPageHead(page); | 
 | 		clear_compound_head(page); | 
 |  | 
 | 		new_folio->mapping = NULL; | 
 | 		/* | 
 | 		 * Reset pgmap which was over-written by | 
 | 		 * prep_compound_page(). | 
 | 		 */ | 
 | 		new_folio->pgmap = pgmap; | 
 | 		new_folio->share = 0; | 
 | 		WARN_ON_ONCE(folio_ref_count(new_folio)); | 
 | 	} | 
 |  | 
 | 	return ref; | 
 | } | 
 |  | 
 | static void dax_folio_init(void *entry) | 
 | { | 
 | 	struct folio *folio = dax_to_folio(entry); | 
 | 	int order = dax_entry_order(entry); | 
 |  | 
 | 	/* | 
 | 	 * Folio should have been split back to order-0 pages in | 
 | 	 * dax_folio_put() when they were removed from their | 
 | 	 * final mapping. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(folio_order(folio)); | 
 |  | 
 | 	if (order > 0) { | 
 | 		prep_compound_page(&folio->page, order); | 
 | 		if (order > 1) | 
 | 			INIT_LIST_HEAD(&folio->_deferred_list); | 
 | 		WARN_ON_ONCE(folio_ref_count(folio)); | 
 | 	} | 
 | } | 
 |  | 
 | static void dax_associate_entry(void *entry, struct address_space *mapping, | 
 | 				struct vm_area_struct *vma, | 
 | 				unsigned long address, bool shared) | 
 | { | 
 | 	unsigned long size = dax_entry_size(entry), index; | 
 | 	struct folio *folio = dax_to_folio(entry); | 
 |  | 
 | 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) | 
 | 		return; | 
 |  | 
 | 	index = linear_page_index(vma, address & ~(size - 1)); | 
 | 	if (shared && (folio->mapping || dax_folio_is_shared(folio))) { | 
 | 		if (folio->mapping) | 
 | 			dax_folio_make_shared(folio); | 
 |  | 
 | 		WARN_ON_ONCE(!folio->share); | 
 | 		WARN_ON_ONCE(dax_entry_order(entry) != folio_order(folio)); | 
 | 		folio->share++; | 
 | 	} else { | 
 | 		WARN_ON_ONCE(folio->mapping); | 
 | 		dax_folio_init(entry); | 
 | 		folio = dax_to_folio(entry); | 
 | 		folio->mapping = mapping; | 
 | 		folio->index = index; | 
 | 	} | 
 | } | 
 |  | 
 | static void dax_disassociate_entry(void *entry, struct address_space *mapping, | 
 | 				bool trunc) | 
 | { | 
 | 	struct folio *folio = dax_to_folio(entry); | 
 |  | 
 | 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) | 
 | 		return; | 
 |  | 
 | 	dax_folio_put(folio); | 
 | } | 
 |  | 
 | static struct page *dax_busy_page(void *entry) | 
 | { | 
 | 	struct folio *folio = dax_to_folio(entry); | 
 |  | 
 | 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) | 
 | 		return NULL; | 
 |  | 
 | 	if (folio_ref_count(folio) - folio_mapcount(folio)) | 
 | 		return &folio->page; | 
 | 	else | 
 | 		return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * dax_lock_folio - Lock the DAX entry corresponding to a folio | 
 |  * @folio: The folio whose entry we want to lock | 
 |  * | 
 |  * Context: Process context. | 
 |  * Return: A cookie to pass to dax_unlock_folio() or 0 if the entry could | 
 |  * not be locked. | 
 |  */ | 
 | dax_entry_t dax_lock_folio(struct folio *folio) | 
 | { | 
 | 	XA_STATE(xas, NULL, 0); | 
 | 	void *entry; | 
 |  | 
 | 	/* Ensure folio->mapping isn't freed while we look at it */ | 
 | 	rcu_read_lock(); | 
 | 	for (;;) { | 
 | 		struct address_space *mapping = READ_ONCE(folio->mapping); | 
 |  | 
 | 		entry = NULL; | 
 | 		if (!mapping || !dax_mapping(mapping)) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * In the device-dax case there's no need to lock, a | 
 | 		 * struct dev_pagemap pin is sufficient to keep the | 
 | 		 * inode alive, and we assume we have dev_pagemap pin | 
 | 		 * otherwise we would not have a valid pfn_to_page() | 
 | 		 * translation. | 
 | 		 */ | 
 | 		entry = (void *)~0UL; | 
 | 		if (S_ISCHR(mapping->host->i_mode)) | 
 | 			break; | 
 |  | 
 | 		xas.xa = &mapping->i_pages; | 
 | 		xas_lock_irq(&xas); | 
 | 		if (mapping != folio->mapping) { | 
 | 			xas_unlock_irq(&xas); | 
 | 			continue; | 
 | 		} | 
 | 		xas_set(&xas, folio->index); | 
 | 		entry = xas_load(&xas); | 
 | 		if (dax_is_locked(entry)) { | 
 | 			rcu_read_unlock(); | 
 | 			wait_entry_unlocked(&xas, entry); | 
 | 			rcu_read_lock(); | 
 | 			continue; | 
 | 		} | 
 | 		dax_lock_entry(&xas, entry); | 
 | 		xas_unlock_irq(&xas); | 
 | 		break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return (dax_entry_t)entry; | 
 | } | 
 |  | 
 | void dax_unlock_folio(struct folio *folio, dax_entry_t cookie) | 
 | { | 
 | 	struct address_space *mapping = folio->mapping; | 
 | 	XA_STATE(xas, &mapping->i_pages, folio->index); | 
 |  | 
 | 	if (S_ISCHR(mapping->host->i_mode)) | 
 | 		return; | 
 |  | 
 | 	dax_unlock_entry(&xas, (void *)cookie); | 
 | } | 
 |  | 
 | /* | 
 |  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping | 
 |  * @mapping: the file's mapping whose entry we want to lock | 
 |  * @index: the offset within this file | 
 |  * @page: output the dax page corresponding to this dax entry | 
 |  * | 
 |  * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry | 
 |  * could not be locked. | 
 |  */ | 
 | dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index, | 
 | 		struct page **page) | 
 | { | 
 | 	XA_STATE(xas, NULL, 0); | 
 | 	void *entry; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for (;;) { | 
 | 		entry = NULL; | 
 | 		if (!dax_mapping(mapping)) | 
 | 			break; | 
 |  | 
 | 		xas.xa = &mapping->i_pages; | 
 | 		xas_lock_irq(&xas); | 
 | 		xas_set(&xas, index); | 
 | 		entry = xas_load(&xas); | 
 | 		if (dax_is_locked(entry)) { | 
 | 			rcu_read_unlock(); | 
 | 			wait_entry_unlocked(&xas, entry); | 
 | 			rcu_read_lock(); | 
 | 			continue; | 
 | 		} | 
 | 		if (!entry || | 
 | 		    dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { | 
 | 			/* | 
 | 			 * Because we are looking for entry from file's mapping | 
 | 			 * and index, so the entry may not be inserted for now, | 
 | 			 * or even a zero/empty entry.  We don't think this is | 
 | 			 * an error case.  So, return a special value and do | 
 | 			 * not output @page. | 
 | 			 */ | 
 | 			entry = (void *)~0UL; | 
 | 		} else { | 
 | 			*page = pfn_to_page(dax_to_pfn(entry)); | 
 | 			dax_lock_entry(&xas, entry); | 
 | 		} | 
 | 		xas_unlock_irq(&xas); | 
 | 		break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return (dax_entry_t)entry; | 
 | } | 
 |  | 
 | void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index, | 
 | 		dax_entry_t cookie) | 
 | { | 
 | 	XA_STATE(xas, &mapping->i_pages, index); | 
 |  | 
 | 	if (cookie == ~0UL) | 
 | 		return; | 
 |  | 
 | 	dax_unlock_entry(&xas, (void *)cookie); | 
 | } | 
 |  | 
 | /* | 
 |  * Find page cache entry at given index. If it is a DAX entry, return it | 
 |  * with the entry locked. If the page cache doesn't contain an entry at | 
 |  * that index, add a locked empty entry. | 
 |  * | 
 |  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will | 
 |  * either return that locked entry or will return VM_FAULT_FALLBACK. | 
 |  * This will happen if there are any PTE entries within the PMD range | 
 |  * that we are requesting. | 
 |  * | 
 |  * We always favor PTE entries over PMD entries. There isn't a flow where we | 
 |  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD | 
 |  * insertion will fail if it finds any PTE entries already in the tree, and a | 
 |  * PTE insertion will cause an existing PMD entry to be unmapped and | 
 |  * downgraded to PTE entries.  This happens for both PMD zero pages as | 
 |  * well as PMD empty entries. | 
 |  * | 
 |  * The exception to this downgrade path is for PMD entries that have | 
 |  * real storage backing them.  We will leave these real PMD entries in | 
 |  * the tree, and PTE writes will simply dirty the entire PMD entry. | 
 |  * | 
 |  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For | 
 |  * persistent memory the benefit is doubtful. We can add that later if we can | 
 |  * show it helps. | 
 |  * | 
 |  * On error, this function does not return an ERR_PTR.  Instead it returns | 
 |  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values | 
 |  * overlap with xarray value entries. | 
 |  */ | 
 | static void *grab_mapping_entry(struct xa_state *xas, | 
 | 		struct address_space *mapping, unsigned int order) | 
 | { | 
 | 	unsigned long index = xas->xa_index; | 
 | 	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */ | 
 | 	void *entry; | 
 |  | 
 | retry: | 
 | 	pmd_downgrade = false; | 
 | 	xas_lock_irq(xas); | 
 | 	entry = get_next_unlocked_entry(xas, order); | 
 |  | 
 | 	if (entry) { | 
 | 		if (dax_is_conflict(entry)) | 
 | 			goto fallback; | 
 | 		if (!xa_is_value(entry)) { | 
 | 			xas_set_err(xas, -EIO); | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		if (order == 0) { | 
 | 			if (dax_is_pmd_entry(entry) && | 
 | 			    (dax_is_zero_entry(entry) || | 
 | 			     dax_is_empty_entry(entry))) { | 
 | 				pmd_downgrade = true; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (pmd_downgrade) { | 
 | 		/* | 
 | 		 * Make sure 'entry' remains valid while we drop | 
 | 		 * the i_pages lock. | 
 | 		 */ | 
 | 		dax_lock_entry(xas, entry); | 
 |  | 
 | 		/* | 
 | 		 * Besides huge zero pages the only other thing that gets | 
 | 		 * downgraded are empty entries which don't need to be | 
 | 		 * unmapped. | 
 | 		 */ | 
 | 		if (dax_is_zero_entry(entry)) { | 
 | 			xas_unlock_irq(xas); | 
 | 			unmap_mapping_pages(mapping, | 
 | 					xas->xa_index & ~PG_PMD_COLOUR, | 
 | 					PG_PMD_NR, false); | 
 | 			xas_reset(xas); | 
 | 			xas_lock_irq(xas); | 
 | 		} | 
 |  | 
 | 		dax_disassociate_entry(entry, mapping, false); | 
 | 		xas_store(xas, NULL);	/* undo the PMD join */ | 
 | 		dax_wake_entry(xas, entry, WAKE_ALL); | 
 | 		mapping->nrpages -= PG_PMD_NR; | 
 | 		entry = NULL; | 
 | 		xas_set(xas, index); | 
 | 	} | 
 |  | 
 | 	if (entry) { | 
 | 		dax_lock_entry(xas, entry); | 
 | 	} else { | 
 | 		unsigned long flags = DAX_EMPTY; | 
 |  | 
 | 		if (order > 0) | 
 | 			flags |= DAX_PMD; | 
 | 		entry = dax_make_entry(0, flags); | 
 | 		dax_lock_entry(xas, entry); | 
 | 		if (xas_error(xas)) | 
 | 			goto out_unlock; | 
 | 		mapping->nrpages += 1UL << order; | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	xas_unlock_irq(xas); | 
 | 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) | 
 | 		goto retry; | 
 | 	if (xas->xa_node == XA_ERROR(-ENOMEM)) | 
 | 		return xa_mk_internal(VM_FAULT_OOM); | 
 | 	if (xas_error(xas)) | 
 | 		return xa_mk_internal(VM_FAULT_SIGBUS); | 
 | 	return entry; | 
 | fallback: | 
 | 	xas_unlock_irq(xas); | 
 | 	return xa_mk_internal(VM_FAULT_FALLBACK); | 
 | } | 
 |  | 
 | /** | 
 |  * dax_layout_busy_page_range - find first pinned page in @mapping | 
 |  * @mapping: address space to scan for a page with ref count > 1 | 
 |  * @start: Starting offset. Page containing 'start' is included. | 
 |  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX, | 
 |  *       pages from 'start' till the end of file are included. | 
 |  * | 
 |  * DAX requires ZONE_DEVICE mapped pages. These pages are never | 
 |  * 'onlined' to the page allocator so they are considered idle when | 
 |  * page->count == 1. A filesystem uses this interface to determine if | 
 |  * any page in the mapping is busy, i.e. for DMA, or other | 
 |  * get_user_pages() usages. | 
 |  * | 
 |  * It is expected that the filesystem is holding locks to block the | 
 |  * establishment of new mappings in this address_space. I.e. it expects | 
 |  * to be able to run unmap_mapping_range() and subsequently not race | 
 |  * mapping_mapped() becoming true. | 
 |  */ | 
 | struct page *dax_layout_busy_page_range(struct address_space *mapping, | 
 | 					loff_t start, loff_t end) | 
 | { | 
 | 	void *entry; | 
 | 	unsigned int scanned = 0; | 
 | 	struct page *page = NULL; | 
 | 	pgoff_t start_idx = start >> PAGE_SHIFT; | 
 | 	pgoff_t end_idx; | 
 | 	XA_STATE(xas, &mapping->i_pages, start_idx); | 
 |  | 
 | 	if (!dax_mapping(mapping)) | 
 | 		return NULL; | 
 |  | 
 | 	/* If end == LLONG_MAX, all pages from start to till end of file */ | 
 | 	if (end == LLONG_MAX) | 
 | 		end_idx = ULONG_MAX; | 
 | 	else | 
 | 		end_idx = end >> PAGE_SHIFT; | 
 | 	/* | 
 | 	 * If we race get_user_pages_fast() here either we'll see the | 
 | 	 * elevated page count in the iteration and wait, or | 
 | 	 * get_user_pages_fast() will see that the page it took a reference | 
 | 	 * against is no longer mapped in the page tables and bail to the | 
 | 	 * get_user_pages() slow path.  The slow path is protected by | 
 | 	 * pte_lock() and pmd_lock(). New references are not taken without | 
 | 	 * holding those locks, and unmap_mapping_pages() will not zero the | 
 | 	 * pte or pmd without holding the respective lock, so we are | 
 | 	 * guaranteed to either see new references or prevent new | 
 | 	 * references from being established. | 
 | 	 */ | 
 | 	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0); | 
 |  | 
 | 	xas_lock_irq(&xas); | 
 | 	xas_for_each(&xas, entry, end_idx) { | 
 | 		if (WARN_ON_ONCE(!xa_is_value(entry))) | 
 | 			continue; | 
 | 		entry = wait_entry_unlocked_exclusive(&xas, entry); | 
 | 		if (entry) | 
 | 			page = dax_busy_page(entry); | 
 | 		put_unlocked_entry(&xas, entry, WAKE_NEXT); | 
 | 		if (page) | 
 | 			break; | 
 | 		if (++scanned % XA_CHECK_SCHED) | 
 | 			continue; | 
 |  | 
 | 		xas_pause(&xas); | 
 | 		xas_unlock_irq(&xas); | 
 | 		cond_resched(); | 
 | 		xas_lock_irq(&xas); | 
 | 	} | 
 | 	xas_unlock_irq(&xas); | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_layout_busy_page_range); | 
 |  | 
 | struct page *dax_layout_busy_page(struct address_space *mapping) | 
 | { | 
 | 	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_layout_busy_page); | 
 |  | 
 | static int __dax_invalidate_entry(struct address_space *mapping, | 
 | 				  pgoff_t index, bool trunc) | 
 | { | 
 | 	XA_STATE(xas, &mapping->i_pages, index); | 
 | 	int ret = 0; | 
 | 	void *entry; | 
 |  | 
 | 	xas_lock_irq(&xas); | 
 | 	entry = get_next_unlocked_entry(&xas, 0); | 
 | 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) | 
 | 		goto out; | 
 | 	if (!trunc && | 
 | 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || | 
 | 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) | 
 | 		goto out; | 
 | 	dax_disassociate_entry(entry, mapping, trunc); | 
 | 	xas_store(&xas, NULL); | 
 | 	mapping->nrpages -= 1UL << dax_entry_order(entry); | 
 | 	ret = 1; | 
 | out: | 
 | 	put_unlocked_entry(&xas, entry, WAKE_ALL); | 
 | 	xas_unlock_irq(&xas); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __dax_clear_dirty_range(struct address_space *mapping, | 
 | 		pgoff_t start, pgoff_t end) | 
 | { | 
 | 	XA_STATE(xas, &mapping->i_pages, start); | 
 | 	unsigned int scanned = 0; | 
 | 	void *entry; | 
 |  | 
 | 	xas_lock_irq(&xas); | 
 | 	xas_for_each(&xas, entry, end) { | 
 | 		entry = wait_entry_unlocked_exclusive(&xas, entry); | 
 | 		if (!entry) | 
 | 			continue; | 
 | 		xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); | 
 | 		xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); | 
 | 		put_unlocked_entry(&xas, entry, WAKE_NEXT); | 
 |  | 
 | 		if (++scanned % XA_CHECK_SCHED) | 
 | 			continue; | 
 |  | 
 | 		xas_pause(&xas); | 
 | 		xas_unlock_irq(&xas); | 
 | 		cond_resched(); | 
 | 		xas_lock_irq(&xas); | 
 | 	} | 
 | 	xas_unlock_irq(&xas); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Delete DAX entry at @index from @mapping.  Wait for it | 
 |  * to be unlocked before deleting it. | 
 |  */ | 
 | int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) | 
 | { | 
 | 	int ret = __dax_invalidate_entry(mapping, index, true); | 
 |  | 
 | 	/* | 
 | 	 * This gets called from truncate / punch_hole path. As such, the caller | 
 | 	 * must hold locks protecting against concurrent modifications of the | 
 | 	 * page cache (usually fs-private i_mmap_sem for writing). Since the | 
 | 	 * caller has seen a DAX entry for this index, we better find it | 
 | 	 * at that index as well... | 
 | 	 */ | 
 | 	WARN_ON_ONCE(!ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void dax_delete_mapping_range(struct address_space *mapping, | 
 | 				loff_t start, loff_t end) | 
 | { | 
 | 	void *entry; | 
 | 	pgoff_t start_idx = start >> PAGE_SHIFT; | 
 | 	pgoff_t end_idx; | 
 | 	XA_STATE(xas, &mapping->i_pages, start_idx); | 
 |  | 
 | 	/* If end == LLONG_MAX, all pages from start to till end of file */ | 
 | 	if (end == LLONG_MAX) | 
 | 		end_idx = ULONG_MAX; | 
 | 	else | 
 | 		end_idx = end >> PAGE_SHIFT; | 
 |  | 
 | 	xas_lock_irq(&xas); | 
 | 	xas_for_each(&xas, entry, end_idx) { | 
 | 		if (!xa_is_value(entry)) | 
 | 			continue; | 
 | 		entry = wait_entry_unlocked_exclusive(&xas, entry); | 
 | 		if (!entry) | 
 | 			continue; | 
 | 		dax_disassociate_entry(entry, mapping, true); | 
 | 		xas_store(&xas, NULL); | 
 | 		mapping->nrpages -= 1UL << dax_entry_order(entry); | 
 | 		put_unlocked_entry(&xas, entry, WAKE_ALL); | 
 | 	} | 
 | 	xas_unlock_irq(&xas); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_delete_mapping_range); | 
 |  | 
 | static int wait_page_idle(struct page *page, | 
 | 			void (cb)(struct inode *), | 
 | 			struct inode *inode) | 
 | { | 
 | 	return ___wait_var_event(page, dax_page_is_idle(page), | 
 | 				TASK_INTERRUPTIBLE, 0, 0, cb(inode)); | 
 | } | 
 |  | 
 | static void wait_page_idle_uninterruptible(struct page *page, | 
 | 					struct inode *inode) | 
 | { | 
 | 	___wait_var_event(page, dax_page_is_idle(page), | 
 | 			TASK_UNINTERRUPTIBLE, 0, 0, schedule()); | 
 | } | 
 |  | 
 | /* | 
 |  * Unmaps the inode and waits for any DMA to complete prior to deleting the | 
 |  * DAX mapping entries for the range. | 
 |  * | 
 |  * For NOWAIT behavior, pass @cb as NULL to early-exit on first found | 
 |  * busy page | 
 |  */ | 
 | int dax_break_layout(struct inode *inode, loff_t start, loff_t end, | 
 | 		void (cb)(struct inode *)) | 
 | { | 
 | 	struct page *page; | 
 | 	int error = 0; | 
 |  | 
 | 	if (!dax_mapping(inode->i_mapping)) | 
 | 		return 0; | 
 |  | 
 | 	do { | 
 | 		page = dax_layout_busy_page_range(inode->i_mapping, start, end); | 
 | 		if (!page) | 
 | 			break; | 
 | 		if (!cb) { | 
 | 			error = -ERESTARTSYS; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		error = wait_page_idle(page, cb, inode); | 
 | 	} while (error == 0); | 
 |  | 
 | 	if (!page) | 
 | 		dax_delete_mapping_range(inode->i_mapping, start, end); | 
 |  | 
 | 	return error; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_break_layout); | 
 |  | 
 | void dax_break_layout_final(struct inode *inode) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (!dax_mapping(inode->i_mapping)) | 
 | 		return; | 
 |  | 
 | 	do { | 
 | 		page = dax_layout_busy_page_range(inode->i_mapping, 0, | 
 | 						LLONG_MAX); | 
 | 		if (!page) | 
 | 			break; | 
 |  | 
 | 		wait_page_idle_uninterruptible(page, inode); | 
 | 	} while (true); | 
 |  | 
 | 	if (!page) | 
 | 		dax_delete_mapping_range(inode->i_mapping, 0, LLONG_MAX); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_break_layout_final); | 
 |  | 
 | /* | 
 |  * Invalidate DAX entry if it is clean. | 
 |  */ | 
 | int dax_invalidate_mapping_entry_sync(struct address_space *mapping, | 
 | 				      pgoff_t index) | 
 | { | 
 | 	return __dax_invalidate_entry(mapping, index, false); | 
 | } | 
 |  | 
 | static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos) | 
 | { | 
 | 	return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset); | 
 | } | 
 |  | 
 | static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter) | 
 | { | 
 | 	pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos); | 
 | 	void *vto, *kaddr; | 
 | 	long rc; | 
 | 	int id; | 
 |  | 
 | 	id = dax_read_lock(); | 
 | 	rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS, | 
 | 				&kaddr, NULL); | 
 | 	if (rc < 0) { | 
 | 		dax_read_unlock(id); | 
 | 		return rc; | 
 | 	} | 
 | 	vto = kmap_atomic(vmf->cow_page); | 
 | 	copy_user_page(vto, kaddr, vmf->address, vmf->cow_page); | 
 | 	kunmap_atomic(vto); | 
 | 	dax_read_unlock(id); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * MAP_SYNC on a dax mapping guarantees dirty metadata is | 
 |  * flushed on write-faults (non-cow), but not read-faults. | 
 |  */ | 
 | static bool dax_fault_is_synchronous(const struct iomap_iter *iter, | 
 | 		struct vm_area_struct *vma) | 
 | { | 
 | 	return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) && | 
 | 		(iter->iomap.flags & IOMAP_F_DIRTY); | 
 | } | 
 |  | 
 | /* | 
 |  * By this point grab_mapping_entry() has ensured that we have a locked entry | 
 |  * of the appropriate size so we don't have to worry about downgrading PMDs to | 
 |  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD | 
 |  * already in the tree, we will skip the insertion and just dirty the PMD as | 
 |  * appropriate. | 
 |  */ | 
 | static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf, | 
 | 		const struct iomap_iter *iter, void *entry, unsigned long pfn, | 
 | 		unsigned long flags) | 
 | { | 
 | 	struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
 | 	void *new_entry = dax_make_entry(pfn, flags); | 
 | 	bool write = iter->flags & IOMAP_WRITE; | 
 | 	bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma); | 
 | 	bool shared = iter->iomap.flags & IOMAP_F_SHARED; | 
 |  | 
 | 	if (dirty) | 
 | 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | 
 |  | 
 | 	if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) { | 
 | 		unsigned long index = xas->xa_index; | 
 | 		/* we are replacing a zero page with block mapping */ | 
 | 		if (dax_is_pmd_entry(entry)) | 
 | 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, | 
 | 					PG_PMD_NR, false); | 
 | 		else /* pte entry */ | 
 | 			unmap_mapping_pages(mapping, index, 1, false); | 
 | 	} | 
 |  | 
 | 	xas_reset(xas); | 
 | 	xas_lock_irq(xas); | 
 | 	if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { | 
 | 		void *old; | 
 |  | 
 | 		dax_disassociate_entry(entry, mapping, false); | 
 | 		dax_associate_entry(new_entry, mapping, vmf->vma, | 
 | 					vmf->address, shared); | 
 |  | 
 | 		/* | 
 | 		 * Only swap our new entry into the page cache if the current | 
 | 		 * entry is a zero page or an empty entry.  If a normal PTE or | 
 | 		 * PMD entry is already in the cache, we leave it alone.  This | 
 | 		 * means that if we are trying to insert a PTE and the | 
 | 		 * existing entry is a PMD, we will just leave the PMD in the | 
 | 		 * tree and dirty it if necessary. | 
 | 		 */ | 
 | 		old = dax_lock_entry(xas, new_entry); | 
 | 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | | 
 | 					DAX_LOCKED)); | 
 | 		entry = new_entry; | 
 | 	} else { | 
 | 		xas_load(xas);	/* Walk the xa_state */ | 
 | 	} | 
 |  | 
 | 	if (dirty) | 
 | 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY); | 
 |  | 
 | 	if (write && shared) | 
 | 		xas_set_mark(xas, PAGECACHE_TAG_TOWRITE); | 
 |  | 
 | 	xas_unlock_irq(xas); | 
 | 	return entry; | 
 | } | 
 |  | 
 | static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, | 
 | 		struct address_space *mapping, void *entry) | 
 | { | 
 | 	unsigned long pfn, index, count, end; | 
 | 	long ret = 0; | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	/* | 
 | 	 * A page got tagged dirty in DAX mapping? Something is seriously | 
 | 	 * wrong. | 
 | 	 */ | 
 | 	if (WARN_ON(!xa_is_value(entry))) | 
 | 		return -EIO; | 
 |  | 
 | 	if (unlikely(dax_is_locked(entry))) { | 
 | 		void *old_entry = entry; | 
 |  | 
 | 		entry = get_next_unlocked_entry(xas, 0); | 
 |  | 
 | 		/* Entry got punched out / reallocated? */ | 
 | 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) | 
 | 			goto put_unlocked; | 
 | 		/* | 
 | 		 * Entry got reallocated elsewhere? No need to writeback. | 
 | 		 * We have to compare pfns as we must not bail out due to | 
 | 		 * difference in lockbit or entry type. | 
 | 		 */ | 
 | 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) | 
 | 			goto put_unlocked; | 
 | 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) || | 
 | 					dax_is_zero_entry(entry))) { | 
 | 			ret = -EIO; | 
 | 			goto put_unlocked; | 
 | 		} | 
 |  | 
 | 		/* Another fsync thread may have already done this entry */ | 
 | 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) | 
 | 			goto put_unlocked; | 
 | 	} | 
 |  | 
 | 	/* Lock the entry to serialize with page faults */ | 
 | 	dax_lock_entry(xas, entry); | 
 |  | 
 | 	/* | 
 | 	 * We can clear the tag now but we have to be careful so that concurrent | 
 | 	 * dax_writeback_one() calls for the same index cannot finish before we | 
 | 	 * actually flush the caches. This is achieved as the calls will look | 
 | 	 * at the entry only under the i_pages lock and once they do that | 
 | 	 * they will see the entry locked and wait for it to unlock. | 
 | 	 */ | 
 | 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); | 
 | 	xas_unlock_irq(xas); | 
 |  | 
 | 	/* | 
 | 	 * If dax_writeback_mapping_range() was given a wbc->range_start | 
 | 	 * in the middle of a PMD, the 'index' we use needs to be | 
 | 	 * aligned to the start of the PMD. | 
 | 	 * This allows us to flush for PMD_SIZE and not have to worry about | 
 | 	 * partial PMD writebacks. | 
 | 	 */ | 
 | 	pfn = dax_to_pfn(entry); | 
 | 	count = 1UL << dax_entry_order(entry); | 
 | 	index = xas->xa_index & ~(count - 1); | 
 | 	end = index + count - 1; | 
 |  | 
 | 	/* Walk all mappings of a given index of a file and writeprotect them */ | 
 | 	i_mmap_lock_read(mapping); | 
 | 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) { | 
 | 		pfn_mkclean_range(pfn, count, index, vma); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	i_mmap_unlock_read(mapping); | 
 |  | 
 | 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); | 
 | 	/* | 
 | 	 * After we have flushed the cache, we can clear the dirty tag. There | 
 | 	 * cannot be new dirty data in the pfn after the flush has completed as | 
 | 	 * the pfn mappings are writeprotected and fault waits for mapping | 
 | 	 * entry lock. | 
 | 	 */ | 
 | 	xas_reset(xas); | 
 | 	xas_lock_irq(xas); | 
 | 	xas_store(xas, entry); | 
 | 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); | 
 | 	dax_wake_entry(xas, entry, WAKE_NEXT); | 
 |  | 
 | 	trace_dax_writeback_one(mapping->host, index, count); | 
 | 	return ret; | 
 |  | 
 |  put_unlocked: | 
 | 	put_unlocked_entry(xas, entry, WAKE_NEXT); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Flush the mapping to the persistent domain within the byte range of [start, | 
 |  * end]. This is required by data integrity operations to ensure file data is | 
 |  * on persistent storage prior to completion of the operation. | 
 |  */ | 
 | int dax_writeback_mapping_range(struct address_space *mapping, | 
 | 		struct dax_device *dax_dev, struct writeback_control *wbc) | 
 | { | 
 | 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); | 
 | 	struct inode *inode = mapping->host; | 
 | 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; | 
 | 	void *entry; | 
 | 	int ret = 0; | 
 | 	unsigned int scanned = 0; | 
 |  | 
 | 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) | 
 | 		return -EIO; | 
 |  | 
 | 	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL) | 
 | 		return 0; | 
 |  | 
 | 	trace_dax_writeback_range(inode, xas.xa_index, end_index); | 
 |  | 
 | 	tag_pages_for_writeback(mapping, xas.xa_index, end_index); | 
 |  | 
 | 	xas_lock_irq(&xas); | 
 | 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { | 
 | 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry); | 
 | 		if (ret < 0) { | 
 | 			mapping_set_error(mapping, ret); | 
 | 			break; | 
 | 		} | 
 | 		if (++scanned % XA_CHECK_SCHED) | 
 | 			continue; | 
 |  | 
 | 		xas_pause(&xas); | 
 | 		xas_unlock_irq(&xas); | 
 | 		cond_resched(); | 
 | 		xas_lock_irq(&xas); | 
 | 	} | 
 | 	xas_unlock_irq(&xas); | 
 | 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); | 
 |  | 
 | static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos, | 
 | 		size_t size, void **kaddr, unsigned long *pfnp) | 
 | { | 
 | 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); | 
 | 	int id, rc = 0; | 
 | 	long length; | 
 |  | 
 | 	id = dax_read_lock(); | 
 | 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), | 
 | 				   DAX_ACCESS, kaddr, pfnp); | 
 | 	if (length < 0) { | 
 | 		rc = length; | 
 | 		goto out; | 
 | 	} | 
 | 	if (!pfnp) | 
 | 		goto out_check_addr; | 
 | 	rc = -EINVAL; | 
 | 	if (PFN_PHYS(length) < size) | 
 | 		goto out; | 
 | 	if (*pfnp & (PHYS_PFN(size)-1)) | 
 | 		goto out; | 
 |  | 
 | 	rc = 0; | 
 |  | 
 | out_check_addr: | 
 | 	if (!kaddr) | 
 | 		goto out; | 
 | 	if (!*kaddr) | 
 | 		rc = -EFAULT; | 
 | out: | 
 | 	dax_read_unlock(id); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page | 
 |  * by copying the data before and after the range to be written. | 
 |  * @pos:	address to do copy from. | 
 |  * @length:	size of copy operation. | 
 |  * @align_size:	aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE) | 
 |  * @srcmap:	iomap srcmap | 
 |  * @daddr:	destination address to copy to. | 
 |  * | 
 |  * This can be called from two places. Either during DAX write fault (page | 
 |  * aligned), to copy the length size data to daddr. Or, while doing normal DAX | 
 |  * write operation, dax_iomap_iter() might call this to do the copy of either | 
 |  * start or end unaligned address. In the latter case the rest of the copy of | 
 |  * aligned ranges is taken care by dax_iomap_iter() itself. | 
 |  * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the | 
 |  * area to make sure no old data remains. | 
 |  */ | 
 | static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size, | 
 | 		const struct iomap *srcmap, void *daddr) | 
 | { | 
 | 	loff_t head_off = pos & (align_size - 1); | 
 | 	size_t size = ALIGN(head_off + length, align_size); | 
 | 	loff_t end = pos + length; | 
 | 	loff_t pg_end = round_up(end, align_size); | 
 | 	/* copy_all is usually in page fault case */ | 
 | 	bool copy_all = head_off == 0 && end == pg_end; | 
 | 	/* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */ | 
 | 	bool zero_edge = srcmap->flags & IOMAP_F_SHARED || | 
 | 			 srcmap->type == IOMAP_UNWRITTEN; | 
 | 	void *saddr = NULL; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!zero_edge) { | 
 | 		ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL); | 
 | 		if (ret) | 
 | 			return dax_mem2blk_err(ret); | 
 | 	} | 
 |  | 
 | 	if (copy_all) { | 
 | 		if (zero_edge) | 
 | 			memset(daddr, 0, size); | 
 | 		else | 
 | 			ret = copy_mc_to_kernel(daddr, saddr, length); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Copy the head part of the range */ | 
 | 	if (head_off) { | 
 | 		if (zero_edge) | 
 | 			memset(daddr, 0, head_off); | 
 | 		else { | 
 | 			ret = copy_mc_to_kernel(daddr, saddr, head_off); | 
 | 			if (ret) | 
 | 				return -EIO; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Copy the tail part of the range */ | 
 | 	if (end < pg_end) { | 
 | 		loff_t tail_off = head_off + length; | 
 | 		loff_t tail_len = pg_end - end; | 
 |  | 
 | 		if (zero_edge) | 
 | 			memset(daddr + tail_off, 0, tail_len); | 
 | 		else { | 
 | 			ret = copy_mc_to_kernel(daddr + tail_off, | 
 | 						saddr + tail_off, tail_len); | 
 | 			if (ret) | 
 | 				return -EIO; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	if (zero_edge) | 
 | 		dax_flush(srcmap->dax_dev, daddr, size); | 
 | 	return ret ? -EIO : 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The user has performed a load from a hole in the file.  Allocating a new | 
 |  * page in the file would cause excessive storage usage for workloads with | 
 |  * sparse files.  Instead we insert a read-only mapping of the 4k zero page. | 
 |  * If this page is ever written to we will re-fault and change the mapping to | 
 |  * point to real DAX storage instead. | 
 |  */ | 
 | static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf, | 
 | 		const struct iomap_iter *iter, void **entry) | 
 | { | 
 | 	struct inode *inode = iter->inode; | 
 | 	unsigned long vaddr = vmf->address; | 
 | 	unsigned long pfn = my_zero_pfn(vaddr); | 
 | 	vm_fault_t ret; | 
 |  | 
 | 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE); | 
 |  | 
 | 	ret = vmf_insert_page_mkwrite(vmf, pfn_to_page(pfn), false); | 
 | 	trace_dax_load_hole(inode, vmf, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FS_DAX_PMD | 
 | static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, | 
 | 		const struct iomap_iter *iter, void **entry) | 
 | { | 
 | 	struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
 | 	struct inode *inode = mapping->host; | 
 | 	struct folio *zero_folio; | 
 | 	vm_fault_t ret; | 
 |  | 
 | 	zero_folio = mm_get_huge_zero_folio(vmf->vma->vm_mm); | 
 |  | 
 | 	if (unlikely(!zero_folio)) { | 
 | 		trace_dax_pmd_load_hole_fallback(inode, vmf, zero_folio, *entry); | 
 | 		return VM_FAULT_FALLBACK; | 
 | 	} | 
 |  | 
 | 	*entry = dax_insert_entry(xas, vmf, iter, *entry, folio_pfn(zero_folio), | 
 | 				  DAX_PMD | DAX_ZERO_PAGE); | 
 |  | 
 | 	ret = vmf_insert_folio_pmd(vmf, zero_folio, false); | 
 | 	if (ret == VM_FAULT_NOPAGE) | 
 | 		trace_dax_pmd_load_hole(inode, vmf, zero_folio, *entry); | 
 | 	return ret; | 
 | } | 
 | #else | 
 | static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, | 
 | 		const struct iomap_iter *iter, void **entry) | 
 | { | 
 | 	return VM_FAULT_FALLBACK; | 
 | } | 
 | #endif /* CONFIG_FS_DAX_PMD */ | 
 |  | 
 | static int dax_unshare_iter(struct iomap_iter *iter) | 
 | { | 
 | 	struct iomap *iomap = &iter->iomap; | 
 | 	const struct iomap *srcmap = iomap_iter_srcmap(iter); | 
 | 	loff_t copy_pos = iter->pos; | 
 | 	u64 copy_len = iomap_length(iter); | 
 | 	u32 mod; | 
 | 	int id = 0; | 
 | 	s64 ret; | 
 | 	void *daddr = NULL, *saddr = NULL; | 
 |  | 
 | 	if (!iomap_want_unshare_iter(iter)) | 
 | 		return iomap_iter_advance_full(iter); | 
 |  | 
 | 	/* | 
 | 	 * Extend the file range to be aligned to fsblock/pagesize, because | 
 | 	 * we need to copy entire blocks, not just the byte range specified. | 
 | 	 * Invalidate the mapping because we're about to CoW. | 
 | 	 */ | 
 | 	mod = offset_in_page(copy_pos); | 
 | 	if (mod) { | 
 | 		copy_len += mod; | 
 | 		copy_pos -= mod; | 
 | 	} | 
 |  | 
 | 	mod = offset_in_page(copy_pos + copy_len); | 
 | 	if (mod) | 
 | 		copy_len += PAGE_SIZE - mod; | 
 |  | 
 | 	invalidate_inode_pages2_range(iter->inode->i_mapping, | 
 | 				      copy_pos >> PAGE_SHIFT, | 
 | 				      (copy_pos + copy_len - 1) >> PAGE_SHIFT); | 
 |  | 
 | 	id = dax_read_lock(); | 
 | 	ret = dax_iomap_direct_access(iomap, copy_pos, copy_len, &daddr, NULL); | 
 | 	if (ret < 0) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ret = dax_iomap_direct_access(srcmap, copy_pos, copy_len, &saddr, NULL); | 
 | 	if (ret < 0) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (copy_mc_to_kernel(daddr, saddr, copy_len) != 0) | 
 | 		ret = -EIO; | 
 |  | 
 | out_unlock: | 
 | 	dax_read_unlock(id); | 
 | 	if (ret < 0) | 
 | 		return dax_mem2blk_err(ret); | 
 | 	return iomap_iter_advance_full(iter); | 
 | } | 
 |  | 
 | int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	struct iomap_iter iter = { | 
 | 		.inode		= inode, | 
 | 		.pos		= pos, | 
 | 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX, | 
 | 	}; | 
 | 	loff_t size = i_size_read(inode); | 
 | 	int ret; | 
 |  | 
 | 	if (pos < 0 || pos >= size) | 
 | 		return 0; | 
 |  | 
 | 	iter.len = min(len, size - pos); | 
 | 	while ((ret = iomap_iter(&iter, ops)) > 0) | 
 | 		iter.status = dax_unshare_iter(&iter); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_file_unshare); | 
 |  | 
 | static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size) | 
 | { | 
 | 	const struct iomap *iomap = &iter->iomap; | 
 | 	const struct iomap *srcmap = iomap_iter_srcmap(iter); | 
 | 	unsigned offset = offset_in_page(pos); | 
 | 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); | 
 | 	void *kaddr; | 
 | 	long ret; | 
 |  | 
 | 	ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr, | 
 | 				NULL); | 
 | 	if (ret < 0) | 
 | 		return dax_mem2blk_err(ret); | 
 |  | 
 | 	memset(kaddr + offset, 0, size); | 
 | 	if (iomap->flags & IOMAP_F_SHARED) | 
 | 		ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap, | 
 | 					    kaddr); | 
 | 	else | 
 | 		dax_flush(iomap->dax_dev, kaddr + offset, size); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int dax_zero_iter(struct iomap_iter *iter, bool *did_zero) | 
 | { | 
 | 	const struct iomap *iomap = &iter->iomap; | 
 | 	const struct iomap *srcmap = iomap_iter_srcmap(iter); | 
 | 	u64 length = iomap_length(iter); | 
 | 	int ret; | 
 |  | 
 | 	/* already zeroed?  we're done. */ | 
 | 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) | 
 | 		return iomap_iter_advance(iter, &length); | 
 |  | 
 | 	/* | 
 | 	 * invalidate the pages whose sharing state is to be changed | 
 | 	 * because of CoW. | 
 | 	 */ | 
 | 	if (iomap->flags & IOMAP_F_SHARED) | 
 | 		invalidate_inode_pages2_range(iter->inode->i_mapping, | 
 | 				iter->pos >> PAGE_SHIFT, | 
 | 				(iter->pos + length - 1) >> PAGE_SHIFT); | 
 |  | 
 | 	do { | 
 | 		loff_t pos = iter->pos; | 
 | 		unsigned offset = offset_in_page(pos); | 
 | 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); | 
 | 		int id; | 
 |  | 
 | 		length = min_t(u64, PAGE_SIZE - offset, length); | 
 |  | 
 | 		id = dax_read_lock(); | 
 | 		if (IS_ALIGNED(pos, PAGE_SIZE) && length == PAGE_SIZE) | 
 | 			ret = dax_zero_page_range(iomap->dax_dev, pgoff, 1); | 
 | 		else | 
 | 			ret = dax_memzero(iter, pos, length); | 
 | 		dax_read_unlock(id); | 
 |  | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 |  | 
 | 		ret = iomap_iter_advance(iter, &length); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} while (length > 0); | 
 |  | 
 | 	if (did_zero) | 
 | 		*did_zero = true; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	struct iomap_iter iter = { | 
 | 		.inode		= inode, | 
 | 		.pos		= pos, | 
 | 		.len		= len, | 
 | 		.flags		= IOMAP_DAX | IOMAP_ZERO, | 
 | 	}; | 
 | 	int ret; | 
 |  | 
 | 	while ((ret = iomap_iter(&iter, ops)) > 0) | 
 | 		iter.status = dax_zero_iter(&iter, did_zero); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_zero_range); | 
 |  | 
 | int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	unsigned int blocksize = i_blocksize(inode); | 
 | 	unsigned int off = pos & (blocksize - 1); | 
 |  | 
 | 	/* Block boundary? Nothing to do */ | 
 | 	if (!off) | 
 | 		return 0; | 
 | 	return dax_zero_range(inode, pos, blocksize - off, did_zero, ops); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_truncate_page); | 
 |  | 
 | static int dax_iomap_iter(struct iomap_iter *iomi, struct iov_iter *iter) | 
 | { | 
 | 	const struct iomap *iomap = &iomi->iomap; | 
 | 	const struct iomap *srcmap = iomap_iter_srcmap(iomi); | 
 | 	loff_t length = iomap_length(iomi); | 
 | 	loff_t pos = iomi->pos; | 
 | 	struct dax_device *dax_dev = iomap->dax_dev; | 
 | 	loff_t end = pos + length, done = 0; | 
 | 	bool write = iov_iter_rw(iter) == WRITE; | 
 | 	bool cow = write && iomap->flags & IOMAP_F_SHARED; | 
 | 	ssize_t ret = 0; | 
 | 	size_t xfer; | 
 | 	int id; | 
 |  | 
 | 	if (!write) { | 
 | 		end = min(end, i_size_read(iomi->inode)); | 
 | 		if (pos >= end) | 
 | 			return 0; | 
 |  | 
 | 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) { | 
 | 			done = iov_iter_zero(min(length, end - pos), iter); | 
 | 			return iomap_iter_advance(iomi, &done); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In DAX mode, enforce either pure overwrites of written extents, or | 
 | 	 * writes to unwritten extents as part of a copy-on-write operation. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED && | 
 | 			!(iomap->flags & IOMAP_F_SHARED))) | 
 | 		return -EIO; | 
 |  | 
 | 	/* | 
 | 	 * Write can allocate block for an area which has a hole page mapped | 
 | 	 * into page tables. We have to tear down these mappings so that data | 
 | 	 * written by write(2) is visible in mmap. | 
 | 	 */ | 
 | 	if (iomap->flags & IOMAP_F_NEW || cow) { | 
 | 		/* | 
 | 		 * Filesystem allows CoW on non-shared extents. The src extents | 
 | 		 * may have been mmapped with dirty mark before. To be able to | 
 | 		 * invalidate its dax entries, we need to clear the dirty mark | 
 | 		 * in advance. | 
 | 		 */ | 
 | 		if (cow) | 
 | 			__dax_clear_dirty_range(iomi->inode->i_mapping, | 
 | 						pos >> PAGE_SHIFT, | 
 | 						(end - 1) >> PAGE_SHIFT); | 
 | 		invalidate_inode_pages2_range(iomi->inode->i_mapping, | 
 | 					      pos >> PAGE_SHIFT, | 
 | 					      (end - 1) >> PAGE_SHIFT); | 
 | 	} | 
 |  | 
 | 	id = dax_read_lock(); | 
 | 	while ((pos = iomi->pos) < end) { | 
 | 		unsigned offset = pos & (PAGE_SIZE - 1); | 
 | 		const size_t size = ALIGN(length + offset, PAGE_SIZE); | 
 | 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); | 
 | 		ssize_t map_len; | 
 | 		bool recovery = false; | 
 | 		void *kaddr; | 
 |  | 
 | 		if (fatal_signal_pending(current)) { | 
 | 			ret = -EINTR; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), | 
 | 				DAX_ACCESS, &kaddr, NULL); | 
 | 		if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) { | 
 | 			map_len = dax_direct_access(dax_dev, pgoff, | 
 | 					PHYS_PFN(size), DAX_RECOVERY_WRITE, | 
 | 					&kaddr, NULL); | 
 | 			if (map_len > 0) | 
 | 				recovery = true; | 
 | 		} | 
 | 		if (map_len < 0) { | 
 | 			ret = dax_mem2blk_err(map_len); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (cow) { | 
 | 			ret = dax_iomap_copy_around(pos, length, PAGE_SIZE, | 
 | 						    srcmap, kaddr); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		map_len = PFN_PHYS(map_len); | 
 | 		kaddr += offset; | 
 | 		map_len -= offset; | 
 | 		if (map_len > end - pos) | 
 | 			map_len = end - pos; | 
 |  | 
 | 		if (recovery) | 
 | 			xfer = dax_recovery_write(dax_dev, pgoff, kaddr, | 
 | 					map_len, iter); | 
 | 		else if (write) | 
 | 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, | 
 | 					map_len, iter); | 
 | 		else | 
 | 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, | 
 | 					map_len, iter); | 
 |  | 
 | 		length = xfer; | 
 | 		ret = iomap_iter_advance(iomi, &length); | 
 | 		if (!ret && xfer == 0) | 
 | 			ret = -EFAULT; | 
 | 		if (xfer < map_len) | 
 | 			break; | 
 | 	} | 
 | 	dax_read_unlock(id); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * dax_iomap_rw - Perform I/O to a DAX file | 
 |  * @iocb:	The control block for this I/O | 
 |  * @iter:	The addresses to do I/O from or to | 
 |  * @ops:	iomap ops passed from the file system | 
 |  * | 
 |  * This function performs read and write operations to directly mapped | 
 |  * persistent memory.  The callers needs to take care of read/write exclusion | 
 |  * and evicting any page cache pages in the region under I/O. | 
 |  */ | 
 | ssize_t | 
 | dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	struct iomap_iter iomi = { | 
 | 		.inode		= iocb->ki_filp->f_mapping->host, | 
 | 		.pos		= iocb->ki_pos, | 
 | 		.len		= iov_iter_count(iter), | 
 | 		.flags		= IOMAP_DAX, | 
 | 	}; | 
 | 	loff_t done = 0; | 
 | 	int ret; | 
 |  | 
 | 	if (WARN_ON_ONCE(iocb->ki_flags & IOCB_ATOMIC)) | 
 | 		return -EIO; | 
 |  | 
 | 	if (!iomi.len) | 
 | 		return 0; | 
 |  | 
 | 	if (iov_iter_rw(iter) == WRITE) { | 
 | 		lockdep_assert_held_write(&iomi.inode->i_rwsem); | 
 | 		iomi.flags |= IOMAP_WRITE; | 
 | 	} else { | 
 | 		lockdep_assert_held(&iomi.inode->i_rwsem); | 
 | 	} | 
 |  | 
 | 	if (iocb->ki_flags & IOCB_NOWAIT) | 
 | 		iomi.flags |= IOMAP_NOWAIT; | 
 |  | 
 | 	while ((ret = iomap_iter(&iomi, ops)) > 0) | 
 | 		iomi.status = dax_iomap_iter(&iomi, iter); | 
 |  | 
 | 	done = iomi.pos - iocb->ki_pos; | 
 | 	iocb->ki_pos = iomi.pos; | 
 | 	return done ? done : ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_iomap_rw); | 
 |  | 
 | static vm_fault_t dax_fault_return(int error) | 
 | { | 
 | 	if (error == 0) | 
 | 		return VM_FAULT_NOPAGE; | 
 | 	return vmf_error(error); | 
 | } | 
 |  | 
 | /* | 
 |  * When handling a synchronous page fault and the inode need a fsync, we can | 
 |  * insert the PTE/PMD into page tables only after that fsync happened. Skip | 
 |  * insertion for now and return the pfn so that caller can insert it after the | 
 |  * fsync is done. | 
 |  */ | 
 | static vm_fault_t dax_fault_synchronous_pfnp(unsigned long *pfnp, | 
 | 					unsigned long pfn) | 
 | { | 
 | 	if (WARN_ON_ONCE(!pfnp)) | 
 | 		return VM_FAULT_SIGBUS; | 
 | 	*pfnp = pfn; | 
 | 	return VM_FAULT_NEEDDSYNC; | 
 | } | 
 |  | 
 | static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf, | 
 | 		const struct iomap_iter *iter) | 
 | { | 
 | 	vm_fault_t ret; | 
 | 	int error = 0; | 
 |  | 
 | 	switch (iter->iomap.type) { | 
 | 	case IOMAP_HOLE: | 
 | 	case IOMAP_UNWRITTEN: | 
 | 		clear_user_highpage(vmf->cow_page, vmf->address); | 
 | 		break; | 
 | 	case IOMAP_MAPPED: | 
 | 		error = copy_cow_page_dax(vmf, iter); | 
 | 		break; | 
 | 	default: | 
 | 		WARN_ON_ONCE(1); | 
 | 		error = -EIO; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (error) | 
 | 		return dax_fault_return(error); | 
 |  | 
 | 	__SetPageUptodate(vmf->cow_page); | 
 | 	ret = finish_fault(vmf); | 
 | 	if (!ret) | 
 | 		return VM_FAULT_DONE_COW; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault. | 
 |  * @vmf:	vm fault instance | 
 |  * @iter:	iomap iter | 
 |  * @pfnp:	pfn to be returned | 
 |  * @xas:	the dax mapping tree of a file | 
 |  * @entry:	an unlocked dax entry to be inserted | 
 |  * @pmd:	distinguish whether it is a pmd fault | 
 |  */ | 
 | static vm_fault_t dax_fault_iter(struct vm_fault *vmf, | 
 | 		const struct iomap_iter *iter, unsigned long *pfnp, | 
 | 		struct xa_state *xas, void **entry, bool pmd) | 
 | { | 
 | 	const struct iomap *iomap = &iter->iomap; | 
 | 	const struct iomap *srcmap = iomap_iter_srcmap(iter); | 
 | 	size_t size = pmd ? PMD_SIZE : PAGE_SIZE; | 
 | 	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT; | 
 | 	bool write = iter->flags & IOMAP_WRITE; | 
 | 	unsigned long entry_flags = pmd ? DAX_PMD : 0; | 
 | 	struct folio *folio; | 
 | 	int ret, err = 0; | 
 | 	unsigned long pfn; | 
 | 	void *kaddr; | 
 |  | 
 | 	if (!pmd && vmf->cow_page) | 
 | 		return dax_fault_cow_page(vmf, iter); | 
 |  | 
 | 	/* if we are reading UNWRITTEN and HOLE, return a hole. */ | 
 | 	if (!write && | 
 | 	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) { | 
 | 		if (!pmd) | 
 | 			return dax_load_hole(xas, vmf, iter, entry); | 
 | 		return dax_pmd_load_hole(xas, vmf, iter, entry); | 
 | 	} | 
 |  | 
 | 	if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) { | 
 | 		WARN_ON_ONCE(1); | 
 | 		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS; | 
 | 	} | 
 |  | 
 | 	err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn); | 
 | 	if (err) | 
 | 		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err); | 
 |  | 
 | 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags); | 
 |  | 
 | 	if (write && iomap->flags & IOMAP_F_SHARED) { | 
 | 		err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr); | 
 | 		if (err) | 
 | 			return dax_fault_return(err); | 
 | 	} | 
 |  | 
 | 	folio = dax_to_folio(*entry); | 
 | 	if (dax_fault_is_synchronous(iter, vmf->vma)) | 
 | 		return dax_fault_synchronous_pfnp(pfnp, pfn); | 
 |  | 
 | 	folio_ref_inc(folio); | 
 | 	if (pmd) | 
 | 		ret = vmf_insert_folio_pmd(vmf, pfn_folio(pfn), write); | 
 | 	else | 
 | 		ret = vmf_insert_page_mkwrite(vmf, pfn_to_page(pfn), write); | 
 | 	folio_put(folio); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, unsigned long *pfnp, | 
 | 			       int *iomap_errp, const struct iomap_ops *ops) | 
 | { | 
 | 	struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
 | 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff); | 
 | 	struct iomap_iter iter = { | 
 | 		.inode		= mapping->host, | 
 | 		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT, | 
 | 		.len		= PAGE_SIZE, | 
 | 		.flags		= IOMAP_DAX | IOMAP_FAULT, | 
 | 	}; | 
 | 	vm_fault_t ret = 0; | 
 | 	void *entry; | 
 | 	int error; | 
 |  | 
 | 	trace_dax_pte_fault(iter.inode, vmf, ret); | 
 | 	/* | 
 | 	 * Check whether offset isn't beyond end of file now. Caller is supposed | 
 | 	 * to hold locks serializing us with truncate / punch hole so this is | 
 | 	 * a reliable test. | 
 | 	 */ | 
 | 	if (iter.pos >= i_size_read(iter.inode)) { | 
 | 		ret = VM_FAULT_SIGBUS; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) | 
 | 		iter.flags |= IOMAP_WRITE; | 
 |  | 
 | 	entry = grab_mapping_entry(&xas, mapping, 0); | 
 | 	if (xa_is_internal(entry)) { | 
 | 		ret = xa_to_internal(entry); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It is possible, particularly with mixed reads & writes to private | 
 | 	 * mappings, that we have raced with a PMD fault that overlaps with | 
 | 	 * the PTE we need to set up.  If so just return and the fault will be | 
 | 	 * retried. | 
 | 	 */ | 
 | 	if (pmd_trans_huge(*vmf->pmd)) { | 
 | 		ret = VM_FAULT_NOPAGE; | 
 | 		goto unlock_entry; | 
 | 	} | 
 |  | 
 | 	while ((error = iomap_iter(&iter, ops)) > 0) { | 
 | 		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) { | 
 | 			iter.status = -EIO;	/* fs corruption? */ | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false); | 
 | 		if (ret != VM_FAULT_SIGBUS && | 
 | 		    (iter.iomap.flags & IOMAP_F_NEW)) { | 
 | 			count_vm_event(PGMAJFAULT); | 
 | 			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); | 
 | 			ret |= VM_FAULT_MAJOR; | 
 | 		} | 
 |  | 
 | 		if (!(ret & VM_FAULT_ERROR)) { | 
 | 			u64 length = PAGE_SIZE; | 
 | 			iter.status = iomap_iter_advance(&iter, &length); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (iomap_errp) | 
 | 		*iomap_errp = error; | 
 | 	if (!ret && error) | 
 | 		ret = dax_fault_return(error); | 
 |  | 
 | unlock_entry: | 
 | 	dax_unlock_entry(&xas, entry); | 
 | out: | 
 | 	trace_dax_pte_fault_done(iter.inode, vmf, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FS_DAX_PMD | 
 | static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas, | 
 | 		pgoff_t max_pgoff) | 
 | { | 
 | 	unsigned long pmd_addr = vmf->address & PMD_MASK; | 
 | 	bool write = vmf->flags & FAULT_FLAG_WRITE; | 
 |  | 
 | 	/* | 
 | 	 * Make sure that the faulting address's PMD offset (color) matches | 
 | 	 * the PMD offset from the start of the file.  This is necessary so | 
 | 	 * that a PMD range in the page table overlaps exactly with a PMD | 
 | 	 * range in the page cache. | 
 | 	 */ | 
 | 	if ((vmf->pgoff & PG_PMD_COLOUR) != | 
 | 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) | 
 | 		return true; | 
 |  | 
 | 	/* Fall back to PTEs if we're going to COW */ | 
 | 	if (write && !(vmf->vma->vm_flags & VM_SHARED)) | 
 | 		return true; | 
 |  | 
 | 	/* If the PMD would extend outside the VMA */ | 
 | 	if (pmd_addr < vmf->vma->vm_start) | 
 | 		return true; | 
 | 	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end) | 
 | 		return true; | 
 |  | 
 | 	/* If the PMD would extend beyond the file size */ | 
 | 	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, unsigned long *pfnp, | 
 | 			       const struct iomap_ops *ops) | 
 | { | 
 | 	struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
 | 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); | 
 | 	struct iomap_iter iter = { | 
 | 		.inode		= mapping->host, | 
 | 		.len		= PMD_SIZE, | 
 | 		.flags		= IOMAP_DAX | IOMAP_FAULT, | 
 | 	}; | 
 | 	vm_fault_t ret = VM_FAULT_FALLBACK; | 
 | 	pgoff_t max_pgoff; | 
 | 	void *entry; | 
 |  | 
 | 	if (vmf->flags & FAULT_FLAG_WRITE) | 
 | 		iter.flags |= IOMAP_WRITE; | 
 |  | 
 | 	/* | 
 | 	 * Check whether offset isn't beyond end of file now. Caller is | 
 | 	 * supposed to hold locks serializing us with truncate / punch hole so | 
 | 	 * this is a reliable test. | 
 | 	 */ | 
 | 	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE); | 
 |  | 
 | 	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0); | 
 |  | 
 | 	if (xas.xa_index >= max_pgoff) { | 
 | 		ret = VM_FAULT_SIGBUS; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (dax_fault_check_fallback(vmf, &xas, max_pgoff)) | 
 | 		goto fallback; | 
 |  | 
 | 	/* | 
 | 	 * grab_mapping_entry() will make sure we get an empty PMD entry, | 
 | 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE | 
 | 	 * entry is already in the array, for instance), it will return | 
 | 	 * VM_FAULT_FALLBACK. | 
 | 	 */ | 
 | 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); | 
 | 	if (xa_is_internal(entry)) { | 
 | 		ret = xa_to_internal(entry); | 
 | 		goto fallback; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It is possible, particularly with mixed reads & writes to private | 
 | 	 * mappings, that we have raced with a PTE fault that overlaps with | 
 | 	 * the PMD we need to set up.  If so just return and the fault will be | 
 | 	 * retried. | 
 | 	 */ | 
 | 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd)) { | 
 | 		ret = 0; | 
 | 		goto unlock_entry; | 
 | 	} | 
 |  | 
 | 	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT; | 
 | 	while (iomap_iter(&iter, ops) > 0) { | 
 | 		if (iomap_length(&iter) < PMD_SIZE) | 
 | 			continue; /* actually breaks out of the loop */ | 
 |  | 
 | 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true); | 
 | 		if (ret != VM_FAULT_FALLBACK) { | 
 | 			u64 length = PMD_SIZE; | 
 | 			iter.status = iomap_iter_advance(&iter, &length); | 
 | 		} | 
 | 	} | 
 |  | 
 | unlock_entry: | 
 | 	dax_unlock_entry(&xas, entry); | 
 | fallback: | 
 | 	if (ret == VM_FAULT_FALLBACK) { | 
 | 		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address); | 
 | 		count_vm_event(THP_FAULT_FALLBACK); | 
 | 	} | 
 | out: | 
 | 	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret); | 
 | 	return ret; | 
 | } | 
 | #else | 
 | static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, unsigned long *pfnp, | 
 | 			       const struct iomap_ops *ops) | 
 | { | 
 | 	return VM_FAULT_FALLBACK; | 
 | } | 
 | #endif /* CONFIG_FS_DAX_PMD */ | 
 |  | 
 | /** | 
 |  * dax_iomap_fault - handle a page fault on a DAX file | 
 |  * @vmf: The description of the fault | 
 |  * @order: Order of the page to fault in | 
 |  * @pfnp: PFN to insert for synchronous faults if fsync is required | 
 |  * @iomap_errp: Storage for detailed error code in case of error | 
 |  * @ops: Iomap ops passed from the file system | 
 |  * | 
 |  * When a page fault occurs, filesystems may call this helper in | 
 |  * their fault handler for DAX files. dax_iomap_fault() assumes the caller | 
 |  * has done all the necessary locking for page fault to proceed | 
 |  * successfully. | 
 |  */ | 
 | vm_fault_t dax_iomap_fault(struct vm_fault *vmf, unsigned int order, | 
 | 			unsigned long *pfnp, int *iomap_errp, | 
 | 			const struct iomap_ops *ops) | 
 | { | 
 | 	if (order == 0) | 
 | 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); | 
 | 	else if (order == PMD_ORDER) | 
 | 		return dax_iomap_pmd_fault(vmf, pfnp, ops); | 
 | 	else | 
 | 		return VM_FAULT_FALLBACK; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_iomap_fault); | 
 |  | 
 | /* | 
 |  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables | 
 |  * @vmf: The description of the fault | 
 |  * @pfn: PFN to insert | 
 |  * @order: Order of entry to insert. | 
 |  * | 
 |  * This function inserts a writeable PTE or PMD entry into the page tables | 
 |  * for an mmaped DAX file.  It also marks the page cache entry as dirty. | 
 |  */ | 
 | static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf, | 
 | 					unsigned long pfn, unsigned int order) | 
 | { | 
 | 	struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
 | 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); | 
 | 	struct folio *folio; | 
 | 	void *entry; | 
 | 	vm_fault_t ret; | 
 |  | 
 | 	xas_lock_irq(&xas); | 
 | 	entry = get_next_unlocked_entry(&xas, order); | 
 | 	/* Did we race with someone splitting entry or so? */ | 
 | 	if (!entry || dax_is_conflict(entry) || | 
 | 	    (order == 0 && !dax_is_pte_entry(entry))) { | 
 | 		put_unlocked_entry(&xas, entry, WAKE_NEXT); | 
 | 		xas_unlock_irq(&xas); | 
 | 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, | 
 | 						      VM_FAULT_NOPAGE); | 
 | 		return VM_FAULT_NOPAGE; | 
 | 	} | 
 | 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); | 
 | 	dax_lock_entry(&xas, entry); | 
 | 	xas_unlock_irq(&xas); | 
 | 	folio = pfn_folio(pfn); | 
 | 	folio_ref_inc(folio); | 
 | 	if (order == 0) | 
 | 		ret = vmf_insert_page_mkwrite(vmf, &folio->page, true); | 
 | #ifdef CONFIG_FS_DAX_PMD | 
 | 	else if (order == PMD_ORDER) | 
 | 		ret = vmf_insert_folio_pmd(vmf, folio, FAULT_FLAG_WRITE); | 
 | #endif | 
 | 	else | 
 | 		ret = VM_FAULT_FALLBACK; | 
 | 	folio_put(folio); | 
 | 	dax_unlock_entry(&xas, entry); | 
 | 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * dax_finish_sync_fault - finish synchronous page fault | 
 |  * @vmf: The description of the fault | 
 |  * @order: Order of entry to be inserted | 
 |  * @pfn: PFN to insert | 
 |  * | 
 |  * This function ensures that the file range touched by the page fault is | 
 |  * stored persistently on the media and handles inserting of appropriate page | 
 |  * table entry. | 
 |  */ | 
 | vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, unsigned int order, | 
 | 		unsigned long pfn) | 
 | { | 
 | 	int err; | 
 | 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; | 
 | 	size_t len = PAGE_SIZE << order; | 
 |  | 
 | 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); | 
 | 	if (err) | 
 | 		return VM_FAULT_SIGBUS; | 
 | 	return dax_insert_pfn_mkwrite(vmf, pfn, order); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_finish_sync_fault); | 
 |  | 
 | static int dax_range_compare_iter(struct iomap_iter *it_src, | 
 | 		struct iomap_iter *it_dest, u64 len, bool *same) | 
 | { | 
 | 	const struct iomap *smap = &it_src->iomap; | 
 | 	const struct iomap *dmap = &it_dest->iomap; | 
 | 	loff_t pos1 = it_src->pos, pos2 = it_dest->pos; | 
 | 	u64 dest_len; | 
 | 	void *saddr, *daddr; | 
 | 	int id, ret; | 
 |  | 
 | 	len = min(len, min(smap->length, dmap->length)); | 
 |  | 
 | 	if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) { | 
 | 		*same = true; | 
 | 		goto advance; | 
 | 	} | 
 |  | 
 | 	if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) { | 
 | 		*same = false; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	id = dax_read_lock(); | 
 | 	ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE), | 
 | 				      &saddr, NULL); | 
 | 	if (ret < 0) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE), | 
 | 				      &daddr, NULL); | 
 | 	if (ret < 0) | 
 | 		goto out_unlock; | 
 |  | 
 | 	*same = !memcmp(saddr, daddr, len); | 
 | 	if (!*same) | 
 | 		len = 0; | 
 | 	dax_read_unlock(id); | 
 |  | 
 | advance: | 
 | 	dest_len = len; | 
 | 	ret = iomap_iter_advance(it_src, &len); | 
 | 	if (!ret) | 
 | 		ret = iomap_iter_advance(it_dest, &dest_len); | 
 | 	return ret; | 
 |  | 
 | out_unlock: | 
 | 	dax_read_unlock(id); | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff, | 
 | 		struct inode *dst, loff_t dstoff, loff_t len, bool *same, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	struct iomap_iter src_iter = { | 
 | 		.inode		= src, | 
 | 		.pos		= srcoff, | 
 | 		.len		= len, | 
 | 		.flags		= IOMAP_DAX, | 
 | 	}; | 
 | 	struct iomap_iter dst_iter = { | 
 | 		.inode		= dst, | 
 | 		.pos		= dstoff, | 
 | 		.len		= len, | 
 | 		.flags		= IOMAP_DAX, | 
 | 	}; | 
 | 	int ret, status; | 
 |  | 
 | 	while ((ret = iomap_iter(&src_iter, ops)) > 0 && | 
 | 	       (ret = iomap_iter(&dst_iter, ops)) > 0) { | 
 | 		status = dax_range_compare_iter(&src_iter, &dst_iter, | 
 | 				min(src_iter.len, dst_iter.len), same); | 
 | 		if (status < 0) | 
 | 			return ret; | 
 | 		src_iter.status = dst_iter.status = status; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in, | 
 | 			      struct file *file_out, loff_t pos_out, | 
 | 			      loff_t *len, unsigned int remap_flags, | 
 | 			      const struct iomap_ops *ops) | 
 | { | 
 | 	return __generic_remap_file_range_prep(file_in, pos_in, file_out, | 
 | 					       pos_out, len, remap_flags, ops); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dax_remap_file_range_prep); |