| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  *  linux/mm/swapfile.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  *  Swap reorganised 29.12.95, Stephen Tweedie | 
 |  */ | 
 |  | 
 | #include <linux/blkdev.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/task.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/shmem_fs.h> | 
 | #include <linux/blk-cgroup.h> | 
 | #include <linux/random.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/init.h> | 
 | #include <linux/ksm.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/security.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/capability.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/poll.h> | 
 | #include <linux/oom.h> | 
 | #include <linux/swapfile.h> | 
 | #include <linux/export.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/zswap.h> | 
 | #include <linux/plist.h> | 
 |  | 
 | #include <asm/tlbflush.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/swap_cgroup.h> | 
 | #include "swap_table.h" | 
 | #include "internal.h" | 
 | #include "swap.h" | 
 |  | 
 | static bool swap_count_continued(struct swap_info_struct *, pgoff_t, | 
 | 				 unsigned char); | 
 | static void free_swap_count_continuations(struct swap_info_struct *); | 
 | static void swap_entries_free(struct swap_info_struct *si, | 
 | 			      struct swap_cluster_info *ci, | 
 | 			      swp_entry_t entry, unsigned int nr_pages); | 
 | static void swap_range_alloc(struct swap_info_struct *si, | 
 | 			     unsigned int nr_entries); | 
 | static bool folio_swapcache_freeable(struct folio *folio); | 
 | static void move_cluster(struct swap_info_struct *si, | 
 | 			 struct swap_cluster_info *ci, struct list_head *list, | 
 | 			 enum swap_cluster_flags new_flags); | 
 |  | 
 | static DEFINE_SPINLOCK(swap_lock); | 
 | static unsigned int nr_swapfiles; | 
 | atomic_long_t nr_swap_pages; | 
 | /* | 
 |  * Some modules use swappable objects and may try to swap them out under | 
 |  * memory pressure (via the shrinker). Before doing so, they may wish to | 
 |  * check to see if any swap space is available. | 
 |  */ | 
 | EXPORT_SYMBOL_GPL(nr_swap_pages); | 
 | /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ | 
 | long total_swap_pages; | 
 | static int least_priority = -1; | 
 | unsigned long swapfile_maximum_size; | 
 | #ifdef CONFIG_MIGRATION | 
 | bool swap_migration_ad_supported; | 
 | #endif	/* CONFIG_MIGRATION */ | 
 |  | 
 | static const char Bad_file[] = "Bad swap file entry "; | 
 | static const char Unused_file[] = "Unused swap file entry "; | 
 | static const char Bad_offset[] = "Bad swap offset entry "; | 
 | static const char Unused_offset[] = "Unused swap offset entry "; | 
 |  | 
 | /* | 
 |  * all active swap_info_structs | 
 |  * protected with swap_lock, and ordered by priority. | 
 |  */ | 
 | static PLIST_HEAD(swap_active_head); | 
 |  | 
 | /* | 
 |  * all available (active, not full) swap_info_structs | 
 |  * protected with swap_avail_lock, ordered by priority. | 
 |  * This is used by folio_alloc_swap() instead of swap_active_head | 
 |  * because swap_active_head includes all swap_info_structs, | 
 |  * but folio_alloc_swap() doesn't need to look at full ones. | 
 |  * This uses its own lock instead of swap_lock because when a | 
 |  * swap_info_struct changes between not-full/full, it needs to | 
 |  * add/remove itself to/from this list, but the swap_info_struct->lock | 
 |  * is held and the locking order requires swap_lock to be taken | 
 |  * before any swap_info_struct->lock. | 
 |  */ | 
 | static struct plist_head *swap_avail_heads; | 
 | static DEFINE_SPINLOCK(swap_avail_lock); | 
 |  | 
 | struct swap_info_struct *swap_info[MAX_SWAPFILES]; | 
 |  | 
 | static struct kmem_cache *swap_table_cachep; | 
 |  | 
 | static DEFINE_MUTEX(swapon_mutex); | 
 |  | 
 | static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); | 
 | /* Activity counter to indicate that a swapon or swapoff has occurred */ | 
 | static atomic_t proc_poll_event = ATOMIC_INIT(0); | 
 |  | 
 | atomic_t nr_rotate_swap = ATOMIC_INIT(0); | 
 |  | 
 | struct percpu_swap_cluster { | 
 | 	struct swap_info_struct *si[SWAP_NR_ORDERS]; | 
 | 	unsigned long offset[SWAP_NR_ORDERS]; | 
 | 	local_lock_t lock; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = { | 
 | 	.si = { NULL }, | 
 | 	.offset = { SWAP_ENTRY_INVALID }, | 
 | 	.lock = INIT_LOCAL_LOCK(), | 
 | }; | 
 |  | 
 | /* May return NULL on invalid type, caller must check for NULL return */ | 
 | static struct swap_info_struct *swap_type_to_info(int type) | 
 | { | 
 | 	if (type >= MAX_SWAPFILES) | 
 | 		return NULL; | 
 | 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */ | 
 | } | 
 |  | 
 | /* May return NULL on invalid entry, caller must check for NULL return */ | 
 | static struct swap_info_struct *swap_entry_to_info(swp_entry_t entry) | 
 | { | 
 | 	return swap_type_to_info(swp_type(entry)); | 
 | } | 
 |  | 
 | static inline unsigned char swap_count(unsigned char ent) | 
 | { | 
 | 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */ | 
 | } | 
 |  | 
 | /* | 
 |  * Use the second highest bit of inuse_pages counter as the indicator | 
 |  * if one swap device is on the available plist, so the atomic can | 
 |  * still be updated arithmetically while having special data embedded. | 
 |  * | 
 |  * inuse_pages counter is the only thing indicating if a device should | 
 |  * be on avail_lists or not (except swapon / swapoff). By embedding the | 
 |  * off-list bit in the atomic counter, updates no longer need any lock | 
 |  * to check the list status. | 
 |  * | 
 |  * This bit will be set if the device is not on the plist and not | 
 |  * usable, will be cleared if the device is on the plist. | 
 |  */ | 
 | #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2)) | 
 | #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT) | 
 | static long swap_usage_in_pages(struct swap_info_struct *si) | 
 | { | 
 | 	return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK; | 
 | } | 
 |  | 
 | /* Reclaim the swap entry anyway if possible */ | 
 | #define TTRS_ANYWAY		0x1 | 
 | /* | 
 |  * Reclaim the swap entry if there are no more mappings of the | 
 |  * corresponding page | 
 |  */ | 
 | #define TTRS_UNMAPPED		0x2 | 
 | /* Reclaim the swap entry if swap is getting full */ | 
 | #define TTRS_FULL		0x4 | 
 |  | 
 | static bool swap_only_has_cache(struct swap_info_struct *si, | 
 | 			      unsigned long offset, int nr_pages) | 
 | { | 
 | 	unsigned char *map = si->swap_map + offset; | 
 | 	unsigned char *map_end = map + nr_pages; | 
 |  | 
 | 	do { | 
 | 		VM_BUG_ON(!(*map & SWAP_HAS_CACHE)); | 
 | 		if (*map != SWAP_HAS_CACHE) | 
 | 			return false; | 
 | 	} while (++map < map_end); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool swap_is_last_map(struct swap_info_struct *si, | 
 | 		unsigned long offset, int nr_pages, bool *has_cache) | 
 | { | 
 | 	unsigned char *map = si->swap_map + offset; | 
 | 	unsigned char *map_end = map + nr_pages; | 
 | 	unsigned char count = *map; | 
 |  | 
 | 	if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM) | 
 | 		return false; | 
 |  | 
 | 	while (++map < map_end) { | 
 | 		if (*map != count) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	*has_cache = !!(count & SWAP_HAS_CACHE); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * returns number of pages in the folio that backs the swap entry. If positive, | 
 |  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no | 
 |  * folio was associated with the swap entry. | 
 |  */ | 
 | static int __try_to_reclaim_swap(struct swap_info_struct *si, | 
 | 				 unsigned long offset, unsigned long flags) | 
 | { | 
 | 	const swp_entry_t entry = swp_entry(si->type, offset); | 
 | 	struct swap_cluster_info *ci; | 
 | 	struct folio *folio; | 
 | 	int ret, nr_pages; | 
 | 	bool need_reclaim; | 
 |  | 
 | again: | 
 | 	folio = swap_cache_get_folio(entry); | 
 | 	if (!folio) | 
 | 		return 0; | 
 |  | 
 | 	nr_pages = folio_nr_pages(folio); | 
 | 	ret = -nr_pages; | 
 |  | 
 | 	/* | 
 | 	 * When this function is called from scan_swap_map_slots() and it's | 
 | 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock | 
 | 	 * here. We have to use trylock for avoiding deadlock. This is a special | 
 | 	 * case and you should use folio_free_swap() with explicit folio_lock() | 
 | 	 * in usual operations. | 
 | 	 */ | 
 | 	if (!folio_trylock(folio)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Offset could point to the middle of a large folio, or folio | 
 | 	 * may no longer point to the expected offset before it's locked. | 
 | 	 */ | 
 | 	if (!folio_matches_swap_entry(folio, entry)) { | 
 | 		folio_unlock(folio); | 
 | 		folio_put(folio); | 
 | 		goto again; | 
 | 	} | 
 | 	offset = swp_offset(folio->swap); | 
 |  | 
 | 	need_reclaim = ((flags & TTRS_ANYWAY) || | 
 | 			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || | 
 | 			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))); | 
 | 	if (!need_reclaim || !folio_swapcache_freeable(folio)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * It's safe to delete the folio from swap cache only if the folio's | 
 | 	 * swap_map is HAS_CACHE only, which means the slots have no page table | 
 | 	 * reference or pending writeback, and can't be allocated to others. | 
 | 	 */ | 
 | 	ci = swap_cluster_lock(si, offset); | 
 | 	need_reclaim = swap_only_has_cache(si, offset, nr_pages); | 
 | 	swap_cluster_unlock(ci); | 
 | 	if (!need_reclaim) | 
 | 		goto out_unlock; | 
 |  | 
 | 	swap_cache_del_folio(folio); | 
 | 	folio_set_dirty(folio); | 
 | 	ret = nr_pages; | 
 | out_unlock: | 
 | 	folio_unlock(folio); | 
 | out: | 
 | 	folio_put(folio); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline struct swap_extent *first_se(struct swap_info_struct *sis) | 
 | { | 
 | 	struct rb_node *rb = rb_first(&sis->swap_extent_root); | 
 | 	return rb_entry(rb, struct swap_extent, rb_node); | 
 | } | 
 |  | 
 | static inline struct swap_extent *next_se(struct swap_extent *se) | 
 | { | 
 | 	struct rb_node *rb = rb_next(&se->rb_node); | 
 | 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * swapon tell device that all the old swap contents can be discarded, | 
 |  * to allow the swap device to optimize its wear-levelling. | 
 |  */ | 
 | static int discard_swap(struct swap_info_struct *si) | 
 | { | 
 | 	struct swap_extent *se; | 
 | 	sector_t start_block; | 
 | 	sector_t nr_blocks; | 
 | 	int err = 0; | 
 |  | 
 | 	/* Do not discard the swap header page! */ | 
 | 	se = first_se(si); | 
 | 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); | 
 | 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); | 
 | 	if (nr_blocks) { | 
 | 		err = blkdev_issue_discard(si->bdev, start_block, | 
 | 				nr_blocks, GFP_KERNEL); | 
 | 		if (err) | 
 | 			return err; | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	for (se = next_se(se); se; se = next_se(se)) { | 
 | 		start_block = se->start_block << (PAGE_SHIFT - 9); | 
 | 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); | 
 |  | 
 | 		err = blkdev_issue_discard(si->bdev, start_block, | 
 | 				nr_blocks, GFP_KERNEL); | 
 | 		if (err) | 
 | 			break; | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return err;		/* That will often be -EOPNOTSUPP */ | 
 | } | 
 |  | 
 | static struct swap_extent * | 
 | offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) | 
 | { | 
 | 	struct swap_extent *se; | 
 | 	struct rb_node *rb; | 
 |  | 
 | 	rb = sis->swap_extent_root.rb_node; | 
 | 	while (rb) { | 
 | 		se = rb_entry(rb, struct swap_extent, rb_node); | 
 | 		if (offset < se->start_page) | 
 | 			rb = rb->rb_left; | 
 | 		else if (offset >= se->start_page + se->nr_pages) | 
 | 			rb = rb->rb_right; | 
 | 		else | 
 | 			return se; | 
 | 	} | 
 | 	/* It *must* be present */ | 
 | 	BUG(); | 
 | } | 
 |  | 
 | sector_t swap_folio_sector(struct folio *folio) | 
 | { | 
 | 	struct swap_info_struct *sis = __swap_entry_to_info(folio->swap); | 
 | 	struct swap_extent *se; | 
 | 	sector_t sector; | 
 | 	pgoff_t offset; | 
 |  | 
 | 	offset = swp_offset(folio->swap); | 
 | 	se = offset_to_swap_extent(sis, offset); | 
 | 	sector = se->start_block + (offset - se->start_page); | 
 | 	return sector << (PAGE_SHIFT - 9); | 
 | } | 
 |  | 
 | /* | 
 |  * swap allocation tell device that a cluster of swap can now be discarded, | 
 |  * to allow the swap device to optimize its wear-levelling. | 
 |  */ | 
 | static void discard_swap_cluster(struct swap_info_struct *si, | 
 | 				 pgoff_t start_page, pgoff_t nr_pages) | 
 | { | 
 | 	struct swap_extent *se = offset_to_swap_extent(si, start_page); | 
 |  | 
 | 	while (nr_pages) { | 
 | 		pgoff_t offset = start_page - se->start_page; | 
 | 		sector_t start_block = se->start_block + offset; | 
 | 		sector_t nr_blocks = se->nr_pages - offset; | 
 |  | 
 | 		if (nr_blocks > nr_pages) | 
 | 			nr_blocks = nr_pages; | 
 | 		start_page += nr_blocks; | 
 | 		nr_pages -= nr_blocks; | 
 |  | 
 | 		start_block <<= PAGE_SHIFT - 9; | 
 | 		nr_blocks <<= PAGE_SHIFT - 9; | 
 | 		if (blkdev_issue_discard(si->bdev, start_block, | 
 | 					nr_blocks, GFP_NOIO)) | 
 | 			break; | 
 |  | 
 | 		se = next_se(se); | 
 | 	} | 
 | } | 
 |  | 
 | #define LATENCY_LIMIT		256 | 
 |  | 
 | static inline bool cluster_is_empty(struct swap_cluster_info *info) | 
 | { | 
 | 	return info->count == 0; | 
 | } | 
 |  | 
 | static inline bool cluster_is_discard(struct swap_cluster_info *info) | 
 | { | 
 | 	return info->flags == CLUSTER_FLAG_DISCARD; | 
 | } | 
 |  | 
 | static inline bool cluster_table_is_alloced(struct swap_cluster_info *ci) | 
 | { | 
 | 	return rcu_dereference_protected(ci->table, lockdep_is_held(&ci->lock)); | 
 | } | 
 |  | 
 | static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order) | 
 | { | 
 | 	if (unlikely(ci->flags > CLUSTER_FLAG_USABLE)) | 
 | 		return false; | 
 | 	if (!cluster_table_is_alloced(ci)) | 
 | 		return false; | 
 | 	if (!order) | 
 | 		return true; | 
 | 	return cluster_is_empty(ci) || order == ci->order; | 
 | } | 
 |  | 
 | static inline unsigned int cluster_index(struct swap_info_struct *si, | 
 | 					 struct swap_cluster_info *ci) | 
 | { | 
 | 	return ci - si->cluster_info; | 
 | } | 
 |  | 
 | static inline unsigned int cluster_offset(struct swap_info_struct *si, | 
 | 					  struct swap_cluster_info *ci) | 
 | { | 
 | 	return cluster_index(si, ci) * SWAPFILE_CLUSTER; | 
 | } | 
 |  | 
 | static struct swap_table *swap_table_alloc(gfp_t gfp) | 
 | { | 
 | 	struct folio *folio; | 
 |  | 
 | 	if (!SWP_TABLE_USE_PAGE) | 
 | 		return kmem_cache_zalloc(swap_table_cachep, gfp); | 
 |  | 
 | 	folio = folio_alloc(gfp | __GFP_ZERO, 0); | 
 | 	if (folio) | 
 | 		return folio_address(folio); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void swap_table_free_folio_rcu_cb(struct rcu_head *head) | 
 | { | 
 | 	struct folio *folio; | 
 |  | 
 | 	folio = page_folio(container_of(head, struct page, rcu_head)); | 
 | 	folio_put(folio); | 
 | } | 
 |  | 
 | static void swap_table_free(struct swap_table *table) | 
 | { | 
 | 	if (!SWP_TABLE_USE_PAGE) { | 
 | 		kmem_cache_free(swap_table_cachep, table); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	call_rcu(&(folio_page(virt_to_folio(table), 0)->rcu_head), | 
 | 		 swap_table_free_folio_rcu_cb); | 
 | } | 
 |  | 
 | static void swap_cluster_free_table(struct swap_cluster_info *ci) | 
 | { | 
 | 	unsigned int ci_off; | 
 | 	struct swap_table *table; | 
 |  | 
 | 	/* Only empty cluster's table is allow to be freed  */ | 
 | 	lockdep_assert_held(&ci->lock); | 
 | 	VM_WARN_ON_ONCE(!cluster_is_empty(ci)); | 
 | 	for (ci_off = 0; ci_off < SWAPFILE_CLUSTER; ci_off++) | 
 | 		VM_WARN_ON_ONCE(!swp_tb_is_null(__swap_table_get(ci, ci_off))); | 
 | 	table = (void *)rcu_dereference_protected(ci->table, true); | 
 | 	rcu_assign_pointer(ci->table, NULL); | 
 |  | 
 | 	swap_table_free(table); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate swap table for one cluster. Attempt an atomic allocation first, | 
 |  * then fallback to sleeping allocation. | 
 |  */ | 
 | static struct swap_cluster_info * | 
 | swap_cluster_alloc_table(struct swap_info_struct *si, | 
 | 			 struct swap_cluster_info *ci) | 
 | { | 
 | 	struct swap_table *table; | 
 |  | 
 | 	/* | 
 | 	 * Only cluster isolation from the allocator does table allocation. | 
 | 	 * Swap allocator uses percpu clusters and holds the local lock. | 
 | 	 */ | 
 | 	lockdep_assert_held(&ci->lock); | 
 | 	lockdep_assert_held(&this_cpu_ptr(&percpu_swap_cluster)->lock); | 
 |  | 
 | 	/* The cluster must be free and was just isolated from the free list. */ | 
 | 	VM_WARN_ON_ONCE(ci->flags || !cluster_is_empty(ci)); | 
 |  | 
 | 	table = swap_table_alloc(__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); | 
 | 	if (table) { | 
 | 		rcu_assign_pointer(ci->table, table); | 
 | 		return ci; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Try a sleep allocation. Each isolated free cluster may cause | 
 | 	 * a sleep allocation, but there is a limited number of them, so | 
 | 	 * the potential recursive allocation is limited. | 
 | 	 */ | 
 | 	spin_unlock(&ci->lock); | 
 | 	if (!(si->flags & SWP_SOLIDSTATE)) | 
 | 		spin_unlock(&si->global_cluster_lock); | 
 | 	local_unlock(&percpu_swap_cluster.lock); | 
 |  | 
 | 	table = swap_table_alloc(__GFP_HIGH | __GFP_NOMEMALLOC | GFP_KERNEL); | 
 |  | 
 | 	/* | 
 | 	 * Back to atomic context. We might have migrated to a new CPU with a | 
 | 	 * usable percpu cluster. But just keep using the isolated cluster to | 
 | 	 * make things easier. Migration indicates a slight change of workload | 
 | 	 * so using a new free cluster might not be a bad idea, and the worst | 
 | 	 * could happen with ignoring the percpu cluster is fragmentation, | 
 | 	 * which is acceptable since this fallback and race is rare. | 
 | 	 */ | 
 | 	local_lock(&percpu_swap_cluster.lock); | 
 | 	if (!(si->flags & SWP_SOLIDSTATE)) | 
 | 		spin_lock(&si->global_cluster_lock); | 
 | 	spin_lock(&ci->lock); | 
 |  | 
 | 	/* Nothing except this helper should touch a dangling empty cluster. */ | 
 | 	if (WARN_ON_ONCE(cluster_table_is_alloced(ci))) { | 
 | 		if (table) | 
 | 			swap_table_free(table); | 
 | 		return ci; | 
 | 	} | 
 |  | 
 | 	if (!table) { | 
 | 		move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE); | 
 | 		spin_unlock(&ci->lock); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	rcu_assign_pointer(ci->table, table); | 
 | 	return ci; | 
 | } | 
 |  | 
 | static void move_cluster(struct swap_info_struct *si, | 
 | 			 struct swap_cluster_info *ci, struct list_head *list, | 
 | 			 enum swap_cluster_flags new_flags) | 
 | { | 
 | 	VM_WARN_ON(ci->flags == new_flags); | 
 |  | 
 | 	BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX); | 
 | 	lockdep_assert_held(&ci->lock); | 
 |  | 
 | 	spin_lock(&si->lock); | 
 | 	if (ci->flags == CLUSTER_FLAG_NONE) | 
 | 		list_add_tail(&ci->list, list); | 
 | 	else | 
 | 		list_move_tail(&ci->list, list); | 
 | 	spin_unlock(&si->lock); | 
 | 	ci->flags = new_flags; | 
 | } | 
 |  | 
 | /* Add a cluster to discard list and schedule it to do discard */ | 
 | static void swap_cluster_schedule_discard(struct swap_info_struct *si, | 
 | 		struct swap_cluster_info *ci) | 
 | { | 
 | 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); | 
 | 	move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD); | 
 | 	schedule_work(&si->discard_work); | 
 | } | 
 |  | 
 | static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) | 
 | { | 
 | 	swap_cluster_free_table(ci); | 
 | 	move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE); | 
 | 	ci->order = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Isolate and lock the first cluster that is not contented on a list, | 
 |  * clean its flag before taken off-list. Cluster flag must be in sync | 
 |  * with list status, so cluster updaters can always know the cluster | 
 |  * list status without touching si lock. | 
 |  * | 
 |  * Note it's possible that all clusters on a list are contented so | 
 |  * this returns NULL for an non-empty list. | 
 |  */ | 
 | static struct swap_cluster_info *isolate_lock_cluster( | 
 | 		struct swap_info_struct *si, struct list_head *list, int order) | 
 | { | 
 | 	struct swap_cluster_info *ci, *found = NULL; | 
 |  | 
 | 	spin_lock(&si->lock); | 
 | 	list_for_each_entry(ci, list, list) { | 
 | 		if (!spin_trylock(&ci->lock)) | 
 | 			continue; | 
 |  | 
 | 		/* We may only isolate and clear flags of following lists */ | 
 | 		VM_BUG_ON(!ci->flags); | 
 | 		VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE && | 
 | 			  ci->flags != CLUSTER_FLAG_FULL); | 
 |  | 
 | 		list_del(&ci->list); | 
 | 		ci->flags = CLUSTER_FLAG_NONE; | 
 | 		found = ci; | 
 | 		break; | 
 | 	} | 
 | 	spin_unlock(&si->lock); | 
 |  | 
 | 	if (found && !cluster_table_is_alloced(found)) { | 
 | 		/* Only an empty free cluster's swap table can be freed. */ | 
 | 		VM_WARN_ON_ONCE(list != &si->free_clusters); | 
 | 		VM_WARN_ON_ONCE(!cluster_is_empty(found)); | 
 | 		return swap_cluster_alloc_table(si, found); | 
 | 	} | 
 |  | 
 | 	return found; | 
 | } | 
 |  | 
 | /* | 
 |  * Doing discard actually. After a cluster discard is finished, the cluster | 
 |  * will be added to free cluster list. Discard cluster is a bit special as | 
 |  * they don't participate in allocation or reclaim, so clusters marked as | 
 |  * CLUSTER_FLAG_DISCARD must remain off-list or on discard list. | 
 |  */ | 
 | static bool swap_do_scheduled_discard(struct swap_info_struct *si) | 
 | { | 
 | 	struct swap_cluster_info *ci; | 
 | 	bool ret = false; | 
 | 	unsigned int idx; | 
 |  | 
 | 	spin_lock(&si->lock); | 
 | 	while (!list_empty(&si->discard_clusters)) { | 
 | 		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list); | 
 | 		/* | 
 | 		 * Delete the cluster from list to prepare for discard, but keep | 
 | 		 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be | 
 | 		 * pointing to it, or ran into by relocate_cluster. | 
 | 		 */ | 
 | 		list_del(&ci->list); | 
 | 		idx = cluster_index(si, ci); | 
 | 		spin_unlock(&si->lock); | 
 | 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, | 
 | 				SWAPFILE_CLUSTER); | 
 |  | 
 | 		spin_lock(&ci->lock); | 
 | 		/* | 
 | 		 * Discard is done, clear its flags as it's off-list, then | 
 | 		 * return the cluster to allocation list. | 
 | 		 */ | 
 | 		ci->flags = CLUSTER_FLAG_NONE; | 
 | 		__free_cluster(si, ci); | 
 | 		spin_unlock(&ci->lock); | 
 | 		ret = true; | 
 | 		spin_lock(&si->lock); | 
 | 	} | 
 | 	spin_unlock(&si->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void swap_discard_work(struct work_struct *work) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 |  | 
 | 	si = container_of(work, struct swap_info_struct, discard_work); | 
 |  | 
 | 	swap_do_scheduled_discard(si); | 
 | } | 
 |  | 
 | static void swap_users_ref_free(struct percpu_ref *ref) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 |  | 
 | 	si = container_of(ref, struct swap_info_struct, users); | 
 | 	complete(&si->comp); | 
 | } | 
 |  | 
 | /* | 
 |  * Must be called after freeing if ci->count == 0, moves the cluster to free | 
 |  * or discard list. | 
 |  */ | 
 | static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) | 
 | { | 
 | 	VM_BUG_ON(ci->count != 0); | 
 | 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); | 
 | 	lockdep_assert_held(&ci->lock); | 
 |  | 
 | 	/* | 
 | 	 * If the swap is discardable, prepare discard the cluster | 
 | 	 * instead of free it immediately. The cluster will be freed | 
 | 	 * after discard. | 
 | 	 */ | 
 | 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == | 
 | 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) { | 
 | 		swap_cluster_schedule_discard(si, ci); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	__free_cluster(si, ci); | 
 | } | 
 |  | 
 | /* | 
 |  * Must be called after freeing if ci->count != 0, moves the cluster to | 
 |  * nonfull list. | 
 |  */ | 
 | static void partial_free_cluster(struct swap_info_struct *si, | 
 | 				 struct swap_cluster_info *ci) | 
 | { | 
 | 	VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER); | 
 | 	lockdep_assert_held(&ci->lock); | 
 |  | 
 | 	if (ci->flags != CLUSTER_FLAG_NONFULL) | 
 | 		move_cluster(si, ci, &si->nonfull_clusters[ci->order], | 
 | 			     CLUSTER_FLAG_NONFULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Must be called after allocation, moves the cluster to full or frag list. | 
 |  * Note: allocation doesn't acquire si lock, and may drop the ci lock for | 
 |  * reclaim, so the cluster could be any where when called. | 
 |  */ | 
 | static void relocate_cluster(struct swap_info_struct *si, | 
 | 			     struct swap_cluster_info *ci) | 
 | { | 
 | 	lockdep_assert_held(&ci->lock); | 
 |  | 
 | 	/* Discard cluster must remain off-list or on discard list */ | 
 | 	if (cluster_is_discard(ci)) | 
 | 		return; | 
 |  | 
 | 	if (!ci->count) { | 
 | 		if (ci->flags != CLUSTER_FLAG_FREE) | 
 | 			free_cluster(si, ci); | 
 | 	} else if (ci->count != SWAPFILE_CLUSTER) { | 
 | 		if (ci->flags != CLUSTER_FLAG_FRAG) | 
 | 			move_cluster(si, ci, &si->frag_clusters[ci->order], | 
 | 				     CLUSTER_FLAG_FRAG); | 
 | 	} else { | 
 | 		if (ci->flags != CLUSTER_FLAG_FULL) | 
 | 			move_cluster(si, ci, &si->full_clusters, | 
 | 				     CLUSTER_FLAG_FULL); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The cluster corresponding to page_nr will be used. The cluster will not be | 
 |  * added to free cluster list and its usage counter will be increased by 1. | 
 |  * Only used for initialization. | 
 |  */ | 
 | static int inc_cluster_info_page(struct swap_info_struct *si, | 
 | 	struct swap_cluster_info *cluster_info, unsigned long page_nr) | 
 | { | 
 | 	unsigned long idx = page_nr / SWAPFILE_CLUSTER; | 
 | 	struct swap_table *table; | 
 | 	struct swap_cluster_info *ci; | 
 |  | 
 | 	ci = cluster_info + idx; | 
 | 	if (!ci->table) { | 
 | 		table = swap_table_alloc(GFP_KERNEL); | 
 | 		if (!table) | 
 | 			return -ENOMEM; | 
 | 		rcu_assign_pointer(ci->table, table); | 
 | 	} | 
 |  | 
 | 	ci->count++; | 
 |  | 
 | 	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER); | 
 | 	VM_BUG_ON(ci->flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool cluster_reclaim_range(struct swap_info_struct *si, | 
 | 				  struct swap_cluster_info *ci, | 
 | 				  unsigned long start, unsigned long end) | 
 | { | 
 | 	unsigned char *map = si->swap_map; | 
 | 	unsigned long offset = start; | 
 | 	int nr_reclaim; | 
 |  | 
 | 	spin_unlock(&ci->lock); | 
 | 	do { | 
 | 		switch (READ_ONCE(map[offset])) { | 
 | 		case 0: | 
 | 			offset++; | 
 | 			break; | 
 | 		case SWAP_HAS_CACHE: | 
 | 			nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); | 
 | 			if (nr_reclaim > 0) | 
 | 				offset += nr_reclaim; | 
 | 			else | 
 | 				goto out; | 
 | 			break; | 
 | 		default: | 
 | 			goto out; | 
 | 		} | 
 | 	} while (offset < end); | 
 | out: | 
 | 	spin_lock(&ci->lock); | 
 | 	/* | 
 | 	 * Recheck the range no matter reclaim succeeded or not, the slot | 
 | 	 * could have been be freed while we are not holding the lock. | 
 | 	 */ | 
 | 	for (offset = start; offset < end; offset++) | 
 | 		if (READ_ONCE(map[offset])) | 
 | 			return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool cluster_scan_range(struct swap_info_struct *si, | 
 | 			       struct swap_cluster_info *ci, | 
 | 			       unsigned long start, unsigned int nr_pages, | 
 | 			       bool *need_reclaim) | 
 | { | 
 | 	unsigned long offset, end = start + nr_pages; | 
 | 	unsigned char *map = si->swap_map; | 
 |  | 
 | 	if (cluster_is_empty(ci)) | 
 | 		return true; | 
 |  | 
 | 	for (offset = start; offset < end; offset++) { | 
 | 		switch (READ_ONCE(map[offset])) { | 
 | 		case 0: | 
 | 			continue; | 
 | 		case SWAP_HAS_CACHE: | 
 | 			if (!vm_swap_full()) | 
 | 				return false; | 
 | 			*need_reclaim = true; | 
 | 			continue; | 
 | 		default: | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Currently, the swap table is not used for count tracking, just | 
 |  * do a sanity check here to ensure nothing leaked, so the swap | 
 |  * table should be empty upon freeing. | 
 |  */ | 
 | static void swap_cluster_assert_table_empty(struct swap_cluster_info *ci, | 
 | 				unsigned int start, unsigned int nr) | 
 | { | 
 | 	unsigned int ci_off = start % SWAPFILE_CLUSTER; | 
 | 	unsigned int ci_end = ci_off + nr; | 
 | 	unsigned long swp_tb; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_DEBUG_VM)) { | 
 | 		do { | 
 | 			swp_tb = __swap_table_get(ci, ci_off); | 
 | 			VM_WARN_ON_ONCE(!swp_tb_is_null(swp_tb)); | 
 | 		} while (++ci_off < ci_end); | 
 | 	} | 
 | } | 
 |  | 
 | static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci, | 
 | 				unsigned int start, unsigned char usage, | 
 | 				unsigned int order) | 
 | { | 
 | 	unsigned int nr_pages = 1 << order; | 
 |  | 
 | 	lockdep_assert_held(&ci->lock); | 
 |  | 
 | 	if (!(si->flags & SWP_WRITEOK)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * The first allocation in a cluster makes the | 
 | 	 * cluster exclusive to this order | 
 | 	 */ | 
 | 	if (cluster_is_empty(ci)) | 
 | 		ci->order = order; | 
 |  | 
 | 	memset(si->swap_map + start, usage, nr_pages); | 
 | 	swap_cluster_assert_table_empty(ci, start, nr_pages); | 
 | 	swap_range_alloc(si, nr_pages); | 
 | 	ci->count += nr_pages; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Try use a new cluster for current CPU and allocate from it. */ | 
 | static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, | 
 | 					    struct swap_cluster_info *ci, | 
 | 					    unsigned long offset, | 
 | 					    unsigned int order, | 
 | 					    unsigned char usage) | 
 | { | 
 | 	unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; | 
 | 	unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER); | 
 | 	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max); | 
 | 	unsigned int nr_pages = 1 << order; | 
 | 	bool need_reclaim, ret; | 
 |  | 
 | 	lockdep_assert_held(&ci->lock); | 
 |  | 
 | 	if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER) | 
 | 		goto out; | 
 |  | 
 | 	for (end -= nr_pages; offset <= end; offset += nr_pages) { | 
 | 		need_reclaim = false; | 
 | 		if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim)) | 
 | 			continue; | 
 | 		if (need_reclaim) { | 
 | 			ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages); | 
 | 			/* | 
 | 			 * Reclaim drops ci->lock and cluster could be used | 
 | 			 * by another order. Not checking flag as off-list | 
 | 			 * cluster has no flag set, and change of list | 
 | 			 * won't cause fragmentation. | 
 | 			 */ | 
 | 			if (!cluster_is_usable(ci, order)) | 
 | 				goto out; | 
 | 			if (cluster_is_empty(ci)) | 
 | 				offset = start; | 
 | 			/* Reclaim failed but cluster is usable, try next */ | 
 | 			if (!ret) | 
 | 				continue; | 
 | 		} | 
 | 		if (!cluster_alloc_range(si, ci, offset, usage, order)) | 
 | 			break; | 
 | 		found = offset; | 
 | 		offset += nr_pages; | 
 | 		if (ci->count < SWAPFILE_CLUSTER && offset <= end) | 
 | 			next = offset; | 
 | 		break; | 
 | 	} | 
 | out: | 
 | 	relocate_cluster(si, ci); | 
 | 	swap_cluster_unlock(ci); | 
 | 	if (si->flags & SWP_SOLIDSTATE) { | 
 | 		this_cpu_write(percpu_swap_cluster.offset[order], next); | 
 | 		this_cpu_write(percpu_swap_cluster.si[order], si); | 
 | 	} else { | 
 | 		si->global_cluster->next[order] = next; | 
 | 	} | 
 | 	return found; | 
 | } | 
 |  | 
 | static unsigned int alloc_swap_scan_list(struct swap_info_struct *si, | 
 | 					 struct list_head *list, | 
 | 					 unsigned int order, | 
 | 					 unsigned char usage, | 
 | 					 bool scan_all) | 
 | { | 
 | 	unsigned int found = SWAP_ENTRY_INVALID; | 
 |  | 
 | 	do { | 
 | 		struct swap_cluster_info *ci = isolate_lock_cluster(si, list, order); | 
 | 		unsigned long offset; | 
 |  | 
 | 		if (!ci) | 
 | 			break; | 
 | 		offset = cluster_offset(si, ci); | 
 | 		found = alloc_swap_scan_cluster(si, ci, offset, order, usage); | 
 | 		if (found) | 
 | 			break; | 
 | 	} while (scan_all); | 
 |  | 
 | 	return found; | 
 | } | 
 |  | 
 | static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force) | 
 | { | 
 | 	long to_scan = 1; | 
 | 	unsigned long offset, end; | 
 | 	struct swap_cluster_info *ci; | 
 | 	unsigned char *map = si->swap_map; | 
 | 	int nr_reclaim; | 
 |  | 
 | 	if (force) | 
 | 		to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER; | 
 |  | 
 | 	while ((ci = isolate_lock_cluster(si, &si->full_clusters, 0))) { | 
 | 		offset = cluster_offset(si, ci); | 
 | 		end = min(si->max, offset + SWAPFILE_CLUSTER); | 
 | 		to_scan--; | 
 |  | 
 | 		while (offset < end) { | 
 | 			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) { | 
 | 				spin_unlock(&ci->lock); | 
 | 				nr_reclaim = __try_to_reclaim_swap(si, offset, | 
 | 								   TTRS_ANYWAY); | 
 | 				spin_lock(&ci->lock); | 
 | 				if (nr_reclaim) { | 
 | 					offset += abs(nr_reclaim); | 
 | 					continue; | 
 | 				} | 
 | 			} | 
 | 			offset++; | 
 | 		} | 
 |  | 
 | 		/* in case no swap cache is reclaimed */ | 
 | 		if (ci->flags == CLUSTER_FLAG_NONE) | 
 | 			relocate_cluster(si, ci); | 
 |  | 
 | 		swap_cluster_unlock(ci); | 
 | 		if (to_scan <= 0) | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | static void swap_reclaim_work(struct work_struct *work) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 |  | 
 | 	si = container_of(work, struct swap_info_struct, reclaim_work); | 
 |  | 
 | 	swap_reclaim_full_clusters(si, true); | 
 | } | 
 |  | 
 | /* | 
 |  * Try to allocate swap entries with specified order and try set a new | 
 |  * cluster for current CPU too. | 
 |  */ | 
 | static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order, | 
 | 					      unsigned char usage) | 
 | { | 
 | 	struct swap_cluster_info *ci; | 
 | 	unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; | 
 |  | 
 | 	/* | 
 | 	 * Swapfile is not block device so unable | 
 | 	 * to allocate large entries. | 
 | 	 */ | 
 | 	if (order && !(si->flags & SWP_BLKDEV)) | 
 | 		return 0; | 
 |  | 
 | 	if (!(si->flags & SWP_SOLIDSTATE)) { | 
 | 		/* Serialize HDD SWAP allocation for each device. */ | 
 | 		spin_lock(&si->global_cluster_lock); | 
 | 		offset = si->global_cluster->next[order]; | 
 | 		if (offset == SWAP_ENTRY_INVALID) | 
 | 			goto new_cluster; | 
 |  | 
 | 		ci = swap_cluster_lock(si, offset); | 
 | 		/* Cluster could have been used by another order */ | 
 | 		if (cluster_is_usable(ci, order)) { | 
 | 			if (cluster_is_empty(ci)) | 
 | 				offset = cluster_offset(si, ci); | 
 | 			found = alloc_swap_scan_cluster(si, ci, offset, | 
 | 							order, usage); | 
 | 		} else { | 
 | 			swap_cluster_unlock(ci); | 
 | 		} | 
 | 		if (found) | 
 | 			goto done; | 
 | 	} | 
 |  | 
 | new_cluster: | 
 | 	/* | 
 | 	 * If the device need discard, prefer new cluster over nonfull | 
 | 	 * to spread out the writes. | 
 | 	 */ | 
 | 	if (si->flags & SWP_PAGE_DISCARD) { | 
 | 		found = alloc_swap_scan_list(si, &si->free_clusters, order, usage, | 
 | 					     false); | 
 | 		if (found) | 
 | 			goto done; | 
 | 	} | 
 |  | 
 | 	if (order < PMD_ORDER) { | 
 | 		found = alloc_swap_scan_list(si, &si->nonfull_clusters[order], | 
 | 					     order, usage, true); | 
 | 		if (found) | 
 | 			goto done; | 
 | 	} | 
 |  | 
 | 	if (!(si->flags & SWP_PAGE_DISCARD)) { | 
 | 		found = alloc_swap_scan_list(si, &si->free_clusters, order, usage, | 
 | 					     false); | 
 | 		if (found) | 
 | 			goto done; | 
 | 	} | 
 |  | 
 | 	/* Try reclaim full clusters if free and nonfull lists are drained */ | 
 | 	if (vm_swap_full()) | 
 | 		swap_reclaim_full_clusters(si, false); | 
 |  | 
 | 	if (order < PMD_ORDER) { | 
 | 		/* | 
 | 		 * Scan only one fragment cluster is good enough. Order 0 | 
 | 		 * allocation will surely success, and large allocation | 
 | 		 * failure is not critical. Scanning one cluster still | 
 | 		 * keeps the list rotated and reclaimed (for HAS_CACHE). | 
 | 		 */ | 
 | 		found = alloc_swap_scan_list(si, &si->frag_clusters[order], order, | 
 | 					     usage, false); | 
 | 		if (found) | 
 | 			goto done; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We don't have free cluster but have some clusters in discarding, | 
 | 	 * do discard now and reclaim them. | 
 | 	 */ | 
 | 	if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si)) | 
 | 		goto new_cluster; | 
 |  | 
 | 	if (order) | 
 | 		goto done; | 
 |  | 
 | 	/* Order 0 stealing from higher order */ | 
 | 	for (int o = 1; o < SWAP_NR_ORDERS; o++) { | 
 | 		/* | 
 | 		 * Clusters here have at least one usable slots and can't fail order 0 | 
 | 		 * allocation, but reclaim may drop si->lock and race with another user. | 
 | 		 */ | 
 | 		found = alloc_swap_scan_list(si, &si->frag_clusters[o], | 
 | 					     0, usage, true); | 
 | 		if (found) | 
 | 			goto done; | 
 |  | 
 | 		found = alloc_swap_scan_list(si, &si->nonfull_clusters[o], | 
 | 					     0, usage, true); | 
 | 		if (found) | 
 | 			goto done; | 
 | 	} | 
 | done: | 
 | 	if (!(si->flags & SWP_SOLIDSTATE)) | 
 | 		spin_unlock(&si->global_cluster_lock); | 
 |  | 
 | 	return found; | 
 | } | 
 |  | 
 | /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */ | 
 | static void del_from_avail_list(struct swap_info_struct *si, bool swapoff) | 
 | { | 
 | 	int nid; | 
 | 	unsigned long pages; | 
 |  | 
 | 	spin_lock(&swap_avail_lock); | 
 |  | 
 | 	if (swapoff) { | 
 | 		/* | 
 | 		 * Forcefully remove it. Clear the SWP_WRITEOK flags for | 
 | 		 * swapoff here so it's synchronized by both si->lock and | 
 | 		 * swap_avail_lock, to ensure the result can be seen by | 
 | 		 * add_to_avail_list. | 
 | 		 */ | 
 | 		lockdep_assert_held(&si->lock); | 
 | 		si->flags &= ~SWP_WRITEOK; | 
 | 		atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); | 
 | 	} else { | 
 | 		/* | 
 | 		 * If not called by swapoff, take it off-list only if it's | 
 | 		 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly | 
 | 		 * si->inuse_pages == pages), any concurrent slot freeing, | 
 | 		 * or device already removed from plist by someone else | 
 | 		 * will make this return false. | 
 | 		 */ | 
 | 		pages = si->pages; | 
 | 		if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages, | 
 | 					     pages | SWAP_USAGE_OFFLIST_BIT)) | 
 | 			goto skip; | 
 | 	} | 
 |  | 
 | 	for_each_node(nid) | 
 | 		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]); | 
 |  | 
 | skip: | 
 | 	spin_unlock(&swap_avail_lock); | 
 | } | 
 |  | 
 | /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */ | 
 | static void add_to_avail_list(struct swap_info_struct *si, bool swapon) | 
 | { | 
 | 	int nid; | 
 | 	long val; | 
 | 	unsigned long pages; | 
 |  | 
 | 	spin_lock(&swap_avail_lock); | 
 |  | 
 | 	/* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */ | 
 | 	if (swapon) { | 
 | 		lockdep_assert_held(&si->lock); | 
 | 		si->flags |= SWP_WRITEOK; | 
 | 	} else { | 
 | 		if (!(READ_ONCE(si->flags) & SWP_WRITEOK)) | 
 | 			goto skip; | 
 | 	} | 
 |  | 
 | 	if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT)) | 
 | 		goto skip; | 
 |  | 
 | 	val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); | 
 |  | 
 | 	/* | 
 | 	 * When device is full and device is on the plist, only one updater will | 
 | 	 * see (inuse_pages == si->pages) and will call del_from_avail_list. If | 
 | 	 * that updater happen to be here, just skip adding. | 
 | 	 */ | 
 | 	pages = si->pages; | 
 | 	if (val == pages) { | 
 | 		/* Just like the cmpxchg in del_from_avail_list */ | 
 | 		if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages, | 
 | 					    pages | SWAP_USAGE_OFFLIST_BIT)) | 
 | 			goto skip; | 
 | 	} | 
 |  | 
 | 	for_each_node(nid) | 
 | 		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]); | 
 |  | 
 | skip: | 
 | 	spin_unlock(&swap_avail_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock | 
 |  * within each cluster, so the total contribution to the global counter should | 
 |  * always be positive and cannot exceed the total number of usable slots. | 
 |  */ | 
 | static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries) | 
 | { | 
 | 	long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages); | 
 |  | 
 | 	/* | 
 | 	 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set, | 
 | 	 * remove it from the plist. | 
 | 	 */ | 
 | 	if (unlikely(val == si->pages)) { | 
 | 		del_from_avail_list(si, false); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries) | 
 | { | 
 | 	long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages); | 
 |  | 
 | 	/* | 
 | 	 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set, | 
 | 	 * add it to the plist. | 
 | 	 */ | 
 | 	if (unlikely(val & SWAP_USAGE_OFFLIST_BIT)) | 
 | 		add_to_avail_list(si, false); | 
 | } | 
 |  | 
 | static void swap_range_alloc(struct swap_info_struct *si, | 
 | 			     unsigned int nr_entries) | 
 | { | 
 | 	if (swap_usage_add(si, nr_entries)) { | 
 | 		if (vm_swap_full()) | 
 | 			schedule_work(&si->reclaim_work); | 
 | 	} | 
 | 	atomic_long_sub(nr_entries, &nr_swap_pages); | 
 | } | 
 |  | 
 | static void swap_range_free(struct swap_info_struct *si, unsigned long offset, | 
 | 			    unsigned int nr_entries) | 
 | { | 
 | 	unsigned long begin = offset; | 
 | 	unsigned long end = offset + nr_entries - 1; | 
 | 	void (*swap_slot_free_notify)(struct block_device *, unsigned long); | 
 | 	unsigned int i; | 
 |  | 
 | 	/* | 
 | 	 * Use atomic clear_bit operations only on zeromap instead of non-atomic | 
 | 	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes. | 
 | 	 */ | 
 | 	for (i = 0; i < nr_entries; i++) { | 
 | 		clear_bit(offset + i, si->zeromap); | 
 | 		zswap_invalidate(swp_entry(si->type, offset + i)); | 
 | 	} | 
 |  | 
 | 	if (si->flags & SWP_BLKDEV) | 
 | 		swap_slot_free_notify = | 
 | 			si->bdev->bd_disk->fops->swap_slot_free_notify; | 
 | 	else | 
 | 		swap_slot_free_notify = NULL; | 
 | 	while (offset <= end) { | 
 | 		arch_swap_invalidate_page(si->type, offset); | 
 | 		if (swap_slot_free_notify) | 
 | 			swap_slot_free_notify(si->bdev, offset); | 
 | 		offset++; | 
 | 	} | 
 | 	__swap_cache_clear_shadow(swp_entry(si->type, begin), nr_entries); | 
 |  | 
 | 	/* | 
 | 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 | 
 | 	 * only after the above cleanups are done. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	atomic_long_add(nr_entries, &nr_swap_pages); | 
 | 	swap_usage_sub(si, nr_entries); | 
 | } | 
 |  | 
 | static bool get_swap_device_info(struct swap_info_struct *si) | 
 | { | 
 | 	if (!percpu_ref_tryget_live(&si->users)) | 
 | 		return false; | 
 | 	/* | 
 | 	 * Guarantee the si->users are checked before accessing other | 
 | 	 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is | 
 | 	 * up to dated. | 
 | 	 * | 
 | 	 * Paired with the spin_unlock() after setup_swap_info() in | 
 | 	 * enable_swap_info(), and smp_wmb() in swapoff. | 
 | 	 */ | 
 | 	smp_rmb(); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Fast path try to get swap entries with specified order from current | 
 |  * CPU's swap entry pool (a cluster). | 
 |  */ | 
 | static bool swap_alloc_fast(swp_entry_t *entry, | 
 | 			    int order) | 
 | { | 
 | 	struct swap_cluster_info *ci; | 
 | 	struct swap_info_struct *si; | 
 | 	unsigned int offset, found = SWAP_ENTRY_INVALID; | 
 |  | 
 | 	/* | 
 | 	 * Once allocated, swap_info_struct will never be completely freed, | 
 | 	 * so checking it's liveness by get_swap_device_info is enough. | 
 | 	 */ | 
 | 	si = this_cpu_read(percpu_swap_cluster.si[order]); | 
 | 	offset = this_cpu_read(percpu_swap_cluster.offset[order]); | 
 | 	if (!si || !offset || !get_swap_device_info(si)) | 
 | 		return false; | 
 |  | 
 | 	ci = swap_cluster_lock(si, offset); | 
 | 	if (cluster_is_usable(ci, order)) { | 
 | 		if (cluster_is_empty(ci)) | 
 | 			offset = cluster_offset(si, ci); | 
 | 		found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE); | 
 | 		if (found) | 
 | 			*entry = swp_entry(si->type, found); | 
 | 	} else { | 
 | 		swap_cluster_unlock(ci); | 
 | 	} | 
 |  | 
 | 	put_swap_device(si); | 
 | 	return !!found; | 
 | } | 
 |  | 
 | /* Rotate the device and switch to a new cluster */ | 
 | static bool swap_alloc_slow(swp_entry_t *entry, | 
 | 			    int order) | 
 | { | 
 | 	int node; | 
 | 	unsigned long offset; | 
 | 	struct swap_info_struct *si, *next; | 
 |  | 
 | 	node = numa_node_id(); | 
 | 	spin_lock(&swap_avail_lock); | 
 | start_over: | 
 | 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { | 
 | 		/* Rotate the device and switch to a new cluster */ | 
 | 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); | 
 | 		spin_unlock(&swap_avail_lock); | 
 | 		if (get_swap_device_info(si)) { | 
 | 			offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE); | 
 | 			put_swap_device(si); | 
 | 			if (offset) { | 
 | 				*entry = swp_entry(si->type, offset); | 
 | 				return true; | 
 | 			} | 
 | 			if (order) | 
 | 				return false; | 
 | 		} | 
 |  | 
 | 		spin_lock(&swap_avail_lock); | 
 | 		/* | 
 | 		 * if we got here, it's likely that si was almost full before, | 
 | 		 * and since scan_swap_map_slots() can drop the si->lock, | 
 | 		 * multiple callers probably all tried to get a page from the | 
 | 		 * same si and it filled up before we could get one; or, the si | 
 | 		 * filled up between us dropping swap_avail_lock and taking | 
 | 		 * si->lock. Since we dropped the swap_avail_lock, the | 
 | 		 * swap_avail_head list may have been modified; so if next is | 
 | 		 * still in the swap_avail_head list then try it, otherwise | 
 | 		 * start over if we have not gotten any slots. | 
 | 		 */ | 
 | 		if (plist_node_empty(&next->avail_lists[node])) | 
 | 			goto start_over; | 
 | 	} | 
 | 	spin_unlock(&swap_avail_lock); | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * folio_alloc_swap - allocate swap space for a folio | 
 |  * @folio: folio we want to move to swap | 
 |  * @gfp: gfp mask for shadow nodes | 
 |  * | 
 |  * Allocate swap space for the folio and add the folio to the | 
 |  * swap cache. | 
 |  * | 
 |  * Context: Caller needs to hold the folio lock. | 
 |  * Return: Whether the folio was added to the swap cache. | 
 |  */ | 
 | int folio_alloc_swap(struct folio *folio, gfp_t gfp) | 
 | { | 
 | 	unsigned int order = folio_order(folio); | 
 | 	unsigned int size = 1 << order; | 
 | 	swp_entry_t entry = {}; | 
 |  | 
 | 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
 | 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); | 
 |  | 
 | 	if (order) { | 
 | 		/* | 
 | 		 * Reject large allocation when THP_SWAP is disabled, | 
 | 		 * the caller should split the folio and try again. | 
 | 		 */ | 
 | 		if (!IS_ENABLED(CONFIG_THP_SWAP)) | 
 | 			return -EAGAIN; | 
 |  | 
 | 		/* | 
 | 		 * Allocation size should never exceed cluster size | 
 | 		 * (HPAGE_PMD_SIZE). | 
 | 		 */ | 
 | 		if (size > SWAPFILE_CLUSTER) { | 
 | 			VM_WARN_ON_ONCE(1); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	local_lock(&percpu_swap_cluster.lock); | 
 | 	if (!swap_alloc_fast(&entry, order)) | 
 | 		swap_alloc_slow(&entry, order); | 
 | 	local_unlock(&percpu_swap_cluster.lock); | 
 |  | 
 | 	/* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */ | 
 | 	if (mem_cgroup_try_charge_swap(folio, entry)) | 
 | 		goto out_free; | 
 |  | 
 | 	if (!entry.val) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	swap_cache_add_folio(folio, entry, NULL); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free: | 
 | 	put_swap_folio(folio, entry); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static struct swap_info_struct *_swap_info_get(swp_entry_t entry) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	unsigned long offset; | 
 |  | 
 | 	if (!entry.val) | 
 | 		goto out; | 
 | 	si = swap_entry_to_info(entry); | 
 | 	if (!si) | 
 | 		goto bad_nofile; | 
 | 	if (data_race(!(si->flags & SWP_USED))) | 
 | 		goto bad_device; | 
 | 	offset = swp_offset(entry); | 
 | 	if (offset >= si->max) | 
 | 		goto bad_offset; | 
 | 	if (data_race(!si->swap_map[swp_offset(entry)])) | 
 | 		goto bad_free; | 
 | 	return si; | 
 |  | 
 | bad_free: | 
 | 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); | 
 | 	goto out; | 
 | bad_offset: | 
 | 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); | 
 | 	goto out; | 
 | bad_device: | 
 | 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); | 
 | 	goto out; | 
 | bad_nofile: | 
 | 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); | 
 | out: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static unsigned char swap_entry_put_locked(struct swap_info_struct *si, | 
 | 					   struct swap_cluster_info *ci, | 
 | 					   swp_entry_t entry, | 
 | 					   unsigned char usage) | 
 | { | 
 | 	unsigned long offset = swp_offset(entry); | 
 | 	unsigned char count; | 
 | 	unsigned char has_cache; | 
 |  | 
 | 	count = si->swap_map[offset]; | 
 |  | 
 | 	has_cache = count & SWAP_HAS_CACHE; | 
 | 	count &= ~SWAP_HAS_CACHE; | 
 |  | 
 | 	if (usage == SWAP_HAS_CACHE) { | 
 | 		VM_BUG_ON(!has_cache); | 
 | 		has_cache = 0; | 
 | 	} else if (count == SWAP_MAP_SHMEM) { | 
 | 		/* | 
 | 		 * Or we could insist on shmem.c using a special | 
 | 		 * swap_shmem_free() and free_shmem_swap_and_cache()... | 
 | 		 */ | 
 | 		count = 0; | 
 | 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { | 
 | 		if (count == COUNT_CONTINUED) { | 
 | 			if (swap_count_continued(si, offset, count)) | 
 | 				count = SWAP_MAP_MAX | COUNT_CONTINUED; | 
 | 			else | 
 | 				count = SWAP_MAP_MAX; | 
 | 		} else | 
 | 			count--; | 
 | 	} | 
 |  | 
 | 	usage = count | has_cache; | 
 | 	if (usage) | 
 | 		WRITE_ONCE(si->swap_map[offset], usage); | 
 | 	else | 
 | 		swap_entries_free(si, ci, entry, 1); | 
 |  | 
 | 	return usage; | 
 | } | 
 |  | 
 | /* | 
 |  * When we get a swap entry, if there aren't some other ways to | 
 |  * prevent swapoff, such as the folio in swap cache is locked, RCU | 
 |  * reader side is locked, etc., the swap entry may become invalid | 
 |  * because of swapoff.  Then, we need to enclose all swap related | 
 |  * functions with get_swap_device() and put_swap_device(), unless the | 
 |  * swap functions call get/put_swap_device() by themselves. | 
 |  * | 
 |  * RCU reader side lock (including any spinlock) is sufficient to | 
 |  * prevent swapoff, because synchronize_rcu() is called in swapoff() | 
 |  * before freeing data structures. | 
 |  * | 
 |  * Check whether swap entry is valid in the swap device.  If so, | 
 |  * return pointer to swap_info_struct, and keep the swap entry valid | 
 |  * via preventing the swap device from being swapoff, until | 
 |  * put_swap_device() is called.  Otherwise return NULL. | 
 |  * | 
 |  * Notice that swapoff or swapoff+swapon can still happen before the | 
 |  * percpu_ref_tryget_live() in get_swap_device() or after the | 
 |  * percpu_ref_put() in put_swap_device() if there isn't any other way | 
 |  * to prevent swapoff.  The caller must be prepared for that.  For | 
 |  * example, the following situation is possible. | 
 |  * | 
 |  *   CPU1				CPU2 | 
 |  *   do_swap_page() | 
 |  *     ...				swapoff+swapon | 
 |  *     __read_swap_cache_async() | 
 |  *       swapcache_prepare() | 
 |  *         __swap_duplicate() | 
 |  *           // check swap_map | 
 |  *     // verify PTE not changed | 
 |  * | 
 |  * In __swap_duplicate(), the swap_map need to be checked before | 
 |  * changing partly because the specified swap entry may be for another | 
 |  * swap device which has been swapoff.  And in do_swap_page(), after | 
 |  * the page is read from the swap device, the PTE is verified not | 
 |  * changed with the page table locked to check whether the swap device | 
 |  * has been swapoff or swapoff+swapon. | 
 |  */ | 
 | struct swap_info_struct *get_swap_device(swp_entry_t entry) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	unsigned long offset; | 
 |  | 
 | 	if (!entry.val) | 
 | 		goto out; | 
 | 	si = swap_entry_to_info(entry); | 
 | 	if (!si) | 
 | 		goto bad_nofile; | 
 | 	if (!get_swap_device_info(si)) | 
 | 		goto out; | 
 | 	offset = swp_offset(entry); | 
 | 	if (offset >= si->max) | 
 | 		goto put_out; | 
 |  | 
 | 	return si; | 
 | bad_nofile: | 
 | 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); | 
 | out: | 
 | 	return NULL; | 
 | put_out: | 
 | 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); | 
 | 	percpu_ref_put(&si->users); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void swap_entries_put_cache(struct swap_info_struct *si, | 
 | 				   swp_entry_t entry, int nr) | 
 | { | 
 | 	unsigned long offset = swp_offset(entry); | 
 | 	struct swap_cluster_info *ci; | 
 |  | 
 | 	ci = swap_cluster_lock(si, offset); | 
 | 	if (swap_only_has_cache(si, offset, nr)) { | 
 | 		swap_entries_free(si, ci, entry, nr); | 
 | 	} else { | 
 | 		for (int i = 0; i < nr; i++, entry.val++) | 
 | 			swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE); | 
 | 	} | 
 | 	swap_cluster_unlock(ci); | 
 | } | 
 |  | 
 | static bool swap_entries_put_map(struct swap_info_struct *si, | 
 | 				 swp_entry_t entry, int nr) | 
 | { | 
 | 	unsigned long offset = swp_offset(entry); | 
 | 	struct swap_cluster_info *ci; | 
 | 	bool has_cache = false; | 
 | 	unsigned char count; | 
 | 	int i; | 
 |  | 
 | 	if (nr <= 1) | 
 | 		goto fallback; | 
 | 	count = swap_count(data_race(si->swap_map[offset])); | 
 | 	if (count != 1 && count != SWAP_MAP_SHMEM) | 
 | 		goto fallback; | 
 |  | 
 | 	ci = swap_cluster_lock(si, offset); | 
 | 	if (!swap_is_last_map(si, offset, nr, &has_cache)) { | 
 | 		goto locked_fallback; | 
 | 	} | 
 | 	if (!has_cache) | 
 | 		swap_entries_free(si, ci, entry, nr); | 
 | 	else | 
 | 		for (i = 0; i < nr; i++) | 
 | 			WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE); | 
 | 	swap_cluster_unlock(ci); | 
 |  | 
 | 	return has_cache; | 
 |  | 
 | fallback: | 
 | 	ci = swap_cluster_lock(si, offset); | 
 | locked_fallback: | 
 | 	for (i = 0; i < nr; i++, entry.val++) { | 
 | 		count = swap_entry_put_locked(si, ci, entry, 1); | 
 | 		if (count == SWAP_HAS_CACHE) | 
 | 			has_cache = true; | 
 | 	} | 
 | 	swap_cluster_unlock(ci); | 
 | 	return has_cache; | 
 | } | 
 |  | 
 | /* | 
 |  * Only functions with "_nr" suffix are able to free entries spanning | 
 |  * cross multi clusters, so ensure the range is within a single cluster | 
 |  * when freeing entries with functions without "_nr" suffix. | 
 |  */ | 
 | static bool swap_entries_put_map_nr(struct swap_info_struct *si, | 
 | 				    swp_entry_t entry, int nr) | 
 | { | 
 | 	int cluster_nr, cluster_rest; | 
 | 	unsigned long offset = swp_offset(entry); | 
 | 	bool has_cache = false; | 
 |  | 
 | 	cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER; | 
 | 	while (nr) { | 
 | 		cluster_nr = min(nr, cluster_rest); | 
 | 		has_cache |= swap_entries_put_map(si, entry, cluster_nr); | 
 | 		cluster_rest = SWAPFILE_CLUSTER; | 
 | 		nr -= cluster_nr; | 
 | 		entry.val += cluster_nr; | 
 | 	} | 
 |  | 
 | 	return has_cache; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if it's the last ref of swap entry in the freeing path. | 
 |  * Qualified vlaue includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM. | 
 |  */ | 
 | static inline bool __maybe_unused swap_is_last_ref(unsigned char count) | 
 | { | 
 | 	return (count == SWAP_HAS_CACHE) || (count == 1) || | 
 | 	       (count == SWAP_MAP_SHMEM); | 
 | } | 
 |  | 
 | /* | 
 |  * Drop the last ref of swap entries, caller have to ensure all entries | 
 |  * belong to the same cgroup and cluster. | 
 |  */ | 
 | static void swap_entries_free(struct swap_info_struct *si, | 
 | 			      struct swap_cluster_info *ci, | 
 | 			      swp_entry_t entry, unsigned int nr_pages) | 
 | { | 
 | 	unsigned long offset = swp_offset(entry); | 
 | 	unsigned char *map = si->swap_map + offset; | 
 | 	unsigned char *map_end = map + nr_pages; | 
 |  | 
 | 	/* It should never free entries across different clusters */ | 
 | 	VM_BUG_ON(ci != __swap_offset_to_cluster(si, offset + nr_pages - 1)); | 
 | 	VM_BUG_ON(cluster_is_empty(ci)); | 
 | 	VM_BUG_ON(ci->count < nr_pages); | 
 |  | 
 | 	ci->count -= nr_pages; | 
 | 	do { | 
 | 		VM_BUG_ON(!swap_is_last_ref(*map)); | 
 | 		*map = 0; | 
 | 	} while (++map < map_end); | 
 |  | 
 | 	mem_cgroup_uncharge_swap(entry, nr_pages); | 
 | 	swap_range_free(si, offset, nr_pages); | 
 | 	swap_cluster_assert_table_empty(ci, offset, nr_pages); | 
 |  | 
 | 	if (!ci->count) | 
 | 		free_cluster(si, ci); | 
 | 	else | 
 | 		partial_free_cluster(si, ci); | 
 | } | 
 |  | 
 | /* | 
 |  * Caller has made sure that the swap device corresponding to entry | 
 |  * is still around or has not been recycled. | 
 |  */ | 
 | void swap_free_nr(swp_entry_t entry, int nr_pages) | 
 | { | 
 | 	int nr; | 
 | 	struct swap_info_struct *sis; | 
 | 	unsigned long offset = swp_offset(entry); | 
 |  | 
 | 	sis = _swap_info_get(entry); | 
 | 	if (!sis) | 
 | 		return; | 
 |  | 
 | 	while (nr_pages) { | 
 | 		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); | 
 | 		swap_entries_put_map(sis, swp_entry(sis->type, offset), nr); | 
 | 		offset += nr; | 
 | 		nr_pages -= nr; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Called after dropping swapcache to decrease refcnt to swap entries. | 
 |  */ | 
 | void put_swap_folio(struct folio *folio, swp_entry_t entry) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	int size = 1 << swap_entry_order(folio_order(folio)); | 
 |  | 
 | 	si = _swap_info_get(entry); | 
 | 	if (!si) | 
 | 		return; | 
 |  | 
 | 	swap_entries_put_cache(si, entry, size); | 
 | } | 
 |  | 
 | int __swap_count(swp_entry_t entry) | 
 | { | 
 | 	struct swap_info_struct *si = __swap_entry_to_info(entry); | 
 | 	pgoff_t offset = swp_offset(entry); | 
 |  | 
 | 	return swap_count(si->swap_map[offset]); | 
 | } | 
 |  | 
 | /* | 
 |  * How many references to @entry are currently swapped out? | 
 |  * This does not give an exact answer when swap count is continued, | 
 |  * but does include the high COUNT_CONTINUED flag to allow for that. | 
 |  */ | 
 | bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry) | 
 | { | 
 | 	pgoff_t offset = swp_offset(entry); | 
 | 	struct swap_cluster_info *ci; | 
 | 	int count; | 
 |  | 
 | 	ci = swap_cluster_lock(si, offset); | 
 | 	count = swap_count(si->swap_map[offset]); | 
 | 	swap_cluster_unlock(ci); | 
 | 	return !!count; | 
 | } | 
 |  | 
 | /* | 
 |  * How many references to @entry are currently swapped out? | 
 |  * This considers COUNT_CONTINUED so it returns exact answer. | 
 |  */ | 
 | int swp_swapcount(swp_entry_t entry) | 
 | { | 
 | 	int count, tmp_count, n; | 
 | 	struct swap_info_struct *si; | 
 | 	struct swap_cluster_info *ci; | 
 | 	struct page *page; | 
 | 	pgoff_t offset; | 
 | 	unsigned char *map; | 
 |  | 
 | 	si = _swap_info_get(entry); | 
 | 	if (!si) | 
 | 		return 0; | 
 |  | 
 | 	offset = swp_offset(entry); | 
 |  | 
 | 	ci = swap_cluster_lock(si, offset); | 
 |  | 
 | 	count = swap_count(si->swap_map[offset]); | 
 | 	if (!(count & COUNT_CONTINUED)) | 
 | 		goto out; | 
 |  | 
 | 	count &= ~COUNT_CONTINUED; | 
 | 	n = SWAP_MAP_MAX + 1; | 
 |  | 
 | 	page = vmalloc_to_page(si->swap_map + offset); | 
 | 	offset &= ~PAGE_MASK; | 
 | 	VM_BUG_ON(page_private(page) != SWP_CONTINUED); | 
 |  | 
 | 	do { | 
 | 		page = list_next_entry(page, lru); | 
 | 		map = kmap_local_page(page); | 
 | 		tmp_count = map[offset]; | 
 | 		kunmap_local(map); | 
 |  | 
 | 		count += (tmp_count & ~COUNT_CONTINUED) * n; | 
 | 		n *= (SWAP_CONT_MAX + 1); | 
 | 	} while (tmp_count & COUNT_CONTINUED); | 
 | out: | 
 | 	swap_cluster_unlock(ci); | 
 | 	return count; | 
 | } | 
 |  | 
 | static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, | 
 | 					 swp_entry_t entry, int order) | 
 | { | 
 | 	struct swap_cluster_info *ci; | 
 | 	unsigned char *map = si->swap_map; | 
 | 	unsigned int nr_pages = 1 << order; | 
 | 	unsigned long roffset = swp_offset(entry); | 
 | 	unsigned long offset = round_down(roffset, nr_pages); | 
 | 	int i; | 
 | 	bool ret = false; | 
 |  | 
 | 	ci = swap_cluster_lock(si, offset); | 
 | 	if (nr_pages == 1) { | 
 | 		if (swap_count(map[roffset])) | 
 | 			ret = true; | 
 | 		goto unlock_out; | 
 | 	} | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		if (swap_count(map[offset + i])) { | 
 | 			ret = true; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | unlock_out: | 
 | 	swap_cluster_unlock(ci); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool folio_swapped(struct folio *folio) | 
 | { | 
 | 	swp_entry_t entry = folio->swap; | 
 | 	struct swap_info_struct *si = _swap_info_get(entry); | 
 |  | 
 | 	if (!si) | 
 | 		return false; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) | 
 | 		return swap_entry_swapped(si, entry); | 
 |  | 
 | 	return swap_page_trans_huge_swapped(si, entry, folio_order(folio)); | 
 | } | 
 |  | 
 | static bool folio_swapcache_freeable(struct folio *folio) | 
 | { | 
 | 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
 |  | 
 | 	if (!folio_test_swapcache(folio)) | 
 | 		return false; | 
 | 	if (folio_test_writeback(folio)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Once hibernation has begun to create its image of memory, | 
 | 	 * there's a danger that one of the calls to folio_free_swap() | 
 | 	 * - most probably a call from __try_to_reclaim_swap() while | 
 | 	 * hibernation is allocating its own swap pages for the image, | 
 | 	 * but conceivably even a call from memory reclaim - will free | 
 | 	 * the swap from a folio which has already been recorded in the | 
 | 	 * image as a clean swapcache folio, and then reuse its swap for | 
 | 	 * another page of the image.  On waking from hibernation, the | 
 | 	 * original folio might be freed under memory pressure, then | 
 | 	 * later read back in from swap, now with the wrong data. | 
 | 	 * | 
 | 	 * Hibernation suspends storage while it is writing the image | 
 | 	 * to disk so check that here. | 
 | 	 */ | 
 | 	if (pm_suspended_storage()) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * folio_free_swap() - Free the swap space used for this folio. | 
 |  * @folio: The folio to remove. | 
 |  * | 
 |  * If swap is getting full, or if there are no more mappings of this folio, | 
 |  * then call folio_free_swap to free its swap space. | 
 |  * | 
 |  * Return: true if we were able to release the swap space. | 
 |  */ | 
 | bool folio_free_swap(struct folio *folio) | 
 | { | 
 | 	if (!folio_swapcache_freeable(folio)) | 
 | 		return false; | 
 | 	if (folio_swapped(folio)) | 
 | 		return false; | 
 |  | 
 | 	swap_cache_del_folio(folio); | 
 | 	folio_set_dirty(folio); | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * free_swap_and_cache_nr() - Release reference on range of swap entries and | 
 |  *                            reclaim their cache if no more references remain. | 
 |  * @entry: First entry of range. | 
 |  * @nr: Number of entries in range. | 
 |  * | 
 |  * For each swap entry in the contiguous range, release a reference. If any swap | 
 |  * entries become free, try to reclaim their underlying folios, if present. The | 
 |  * offset range is defined by [entry.offset, entry.offset + nr). | 
 |  */ | 
 | void free_swap_and_cache_nr(swp_entry_t entry, int nr) | 
 | { | 
 | 	const unsigned long start_offset = swp_offset(entry); | 
 | 	const unsigned long end_offset = start_offset + nr; | 
 | 	struct swap_info_struct *si; | 
 | 	bool any_only_cache = false; | 
 | 	unsigned long offset; | 
 |  | 
 | 	si = get_swap_device(entry); | 
 | 	if (!si) | 
 | 		return; | 
 |  | 
 | 	if (WARN_ON(end_offset > si->max)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * First free all entries in the range. | 
 | 	 */ | 
 | 	any_only_cache = swap_entries_put_map_nr(si, entry, nr); | 
 |  | 
 | 	/* | 
 | 	 * Short-circuit the below loop if none of the entries had their | 
 | 	 * reference drop to zero. | 
 | 	 */ | 
 | 	if (!any_only_cache) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Now go back over the range trying to reclaim the swap cache. | 
 | 	 */ | 
 | 	for (offset = start_offset; offset < end_offset; offset += nr) { | 
 | 		nr = 1; | 
 | 		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { | 
 | 			/* | 
 | 			 * Folios are always naturally aligned in swap so | 
 | 			 * advance forward to the next boundary. Zero means no | 
 | 			 * folio was found for the swap entry, so advance by 1 | 
 | 			 * in this case. Negative value means folio was found | 
 | 			 * but could not be reclaimed. Here we can still advance | 
 | 			 * to the next boundary. | 
 | 			 */ | 
 | 			nr = __try_to_reclaim_swap(si, offset, | 
 | 						   TTRS_UNMAPPED | TTRS_FULL); | 
 | 			if (nr == 0) | 
 | 				nr = 1; | 
 | 			else if (nr < 0) | 
 | 				nr = -nr; | 
 | 			nr = ALIGN(offset + 1, nr) - offset; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	put_swap_device(si); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HIBERNATION | 
 |  | 
 | swp_entry_t get_swap_page_of_type(int type) | 
 | { | 
 | 	struct swap_info_struct *si = swap_type_to_info(type); | 
 | 	unsigned long offset; | 
 | 	swp_entry_t entry = {0}; | 
 |  | 
 | 	if (!si) | 
 | 		goto fail; | 
 |  | 
 | 	/* This is called for allocating swap entry, not cache */ | 
 | 	if (get_swap_device_info(si)) { | 
 | 		if (si->flags & SWP_WRITEOK) { | 
 | 			/* | 
 | 			 * Grab the local lock to be complaint | 
 | 			 * with swap table allocation. | 
 | 			 */ | 
 | 			local_lock(&percpu_swap_cluster.lock); | 
 | 			offset = cluster_alloc_swap_entry(si, 0, 1); | 
 | 			local_unlock(&percpu_swap_cluster.lock); | 
 | 			if (offset) { | 
 | 				entry = swp_entry(si->type, offset); | 
 | 				atomic_long_dec(&nr_swap_pages); | 
 | 			} | 
 | 		} | 
 | 		put_swap_device(si); | 
 | 	} | 
 | fail: | 
 | 	return entry; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the swap type that corresponds to given device (if any). | 
 |  * | 
 |  * @offset - number of the PAGE_SIZE-sized block of the device, starting | 
 |  * from 0, in which the swap header is expected to be located. | 
 |  * | 
 |  * This is needed for the suspend to disk (aka swsusp). | 
 |  */ | 
 | int swap_type_of(dev_t device, sector_t offset) | 
 | { | 
 | 	int type; | 
 |  | 
 | 	if (!device) | 
 | 		return -1; | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 		struct swap_info_struct *sis = swap_info[type]; | 
 |  | 
 | 		if (!(sis->flags & SWP_WRITEOK)) | 
 | 			continue; | 
 |  | 
 | 		if (device == sis->bdev->bd_dev) { | 
 | 			struct swap_extent *se = first_se(sis); | 
 |  | 
 | 			if (se->start_block == offset) { | 
 | 				spin_unlock(&swap_lock); | 
 | 				return type; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&swap_lock); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | int find_first_swap(dev_t *device) | 
 | { | 
 | 	int type; | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 		struct swap_info_struct *sis = swap_info[type]; | 
 |  | 
 | 		if (!(sis->flags & SWP_WRITEOK)) | 
 | 			continue; | 
 | 		*device = sis->bdev->bd_dev; | 
 | 		spin_unlock(&swap_lock); | 
 | 		return type; | 
 | 	} | 
 | 	spin_unlock(&swap_lock); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev | 
 |  * corresponding to given index in swap_info (swap type). | 
 |  */ | 
 | sector_t swapdev_block(int type, pgoff_t offset) | 
 | { | 
 | 	struct swap_info_struct *si = swap_type_to_info(type); | 
 | 	struct swap_extent *se; | 
 |  | 
 | 	if (!si || !(si->flags & SWP_WRITEOK)) | 
 | 		return 0; | 
 | 	se = offset_to_swap_extent(si, offset); | 
 | 	return se->start_block + (offset - se->start_page); | 
 | } | 
 |  | 
 | /* | 
 |  * Return either the total number of swap pages of given type, or the number | 
 |  * of free pages of that type (depending on @free) | 
 |  * | 
 |  * This is needed for software suspend | 
 |  */ | 
 | unsigned int count_swap_pages(int type, int free) | 
 | { | 
 | 	unsigned int n = 0; | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	if ((unsigned int)type < nr_swapfiles) { | 
 | 		struct swap_info_struct *sis = swap_info[type]; | 
 |  | 
 | 		spin_lock(&sis->lock); | 
 | 		if (sis->flags & SWP_WRITEOK) { | 
 | 			n = sis->pages; | 
 | 			if (free) | 
 | 				n -= swap_usage_in_pages(sis); | 
 | 		} | 
 | 		spin_unlock(&sis->lock); | 
 | 	} | 
 | 	spin_unlock(&swap_lock); | 
 | 	return n; | 
 | } | 
 | #endif /* CONFIG_HIBERNATION */ | 
 |  | 
 | static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) | 
 | { | 
 | 	return pte_same(pte_swp_clear_flags(pte), swp_pte); | 
 | } | 
 |  | 
 | /* | 
 |  * No need to decide whether this PTE shares the swap entry with others, | 
 |  * just let do_wp_page work it out if a write is requested later - to | 
 |  * force COW, vm_page_prot omits write permission from any private vma. | 
 |  */ | 
 | static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, | 
 | 		unsigned long addr, swp_entry_t entry, struct folio *folio) | 
 | { | 
 | 	struct page *page; | 
 | 	struct folio *swapcache; | 
 | 	spinlock_t *ptl; | 
 | 	pte_t *pte, new_pte, old_pte; | 
 | 	bool hwpoisoned = false; | 
 | 	int ret = 1; | 
 |  | 
 | 	/* | 
 | 	 * If the folio is removed from swap cache by others, continue to | 
 | 	 * unuse other PTEs. try_to_unuse may try again if we missed this one. | 
 | 	 */ | 
 | 	if (!folio_matches_swap_entry(folio, entry)) | 
 | 		return 0; | 
 |  | 
 | 	swapcache = folio; | 
 | 	folio = ksm_might_need_to_copy(folio, vma, addr); | 
 | 	if (unlikely(!folio)) | 
 | 		return -ENOMEM; | 
 | 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { | 
 | 		hwpoisoned = true; | 
 | 		folio = swapcache; | 
 | 	} | 
 |  | 
 | 	page = folio_file_page(folio, swp_offset(entry)); | 
 | 	if (PageHWPoison(page)) | 
 | 		hwpoisoned = true; | 
 |  | 
 | 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
 | 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), | 
 | 						swp_entry_to_pte(entry)))) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	old_pte = ptep_get(pte); | 
 |  | 
 | 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { | 
 | 		swp_entry_t swp_entry; | 
 |  | 
 | 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS); | 
 | 		if (hwpoisoned) { | 
 | 			swp_entry = make_hwpoison_entry(page); | 
 | 		} else { | 
 | 			swp_entry = make_poisoned_swp_entry(); | 
 | 		} | 
 | 		new_pte = swp_entry_to_pte(swp_entry); | 
 | 		ret = 0; | 
 | 		goto setpte; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Some architectures may have to restore extra metadata to the page | 
 | 	 * when reading from swap. This metadata may be indexed by swap entry | 
 | 	 * so this must be called before swap_free(). | 
 | 	 */ | 
 | 	arch_swap_restore(folio_swap(entry, folio), folio); | 
 |  | 
 | 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS); | 
 | 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES); | 
 | 	folio_get(folio); | 
 | 	if (folio == swapcache) { | 
 | 		rmap_t rmap_flags = RMAP_NONE; | 
 |  | 
 | 		/* | 
 | 		 * See do_swap_page(): writeback would be problematic. | 
 | 		 * However, we do a folio_wait_writeback() just before this | 
 | 		 * call and have the folio locked. | 
 | 		 */ | 
 | 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); | 
 | 		if (pte_swp_exclusive(old_pte)) | 
 | 			rmap_flags |= RMAP_EXCLUSIVE; | 
 | 		/* | 
 | 		 * We currently only expect small !anon folios, which are either | 
 | 		 * fully exclusive or fully shared. If we ever get large folios | 
 | 		 * here, we have to be careful. | 
 | 		 */ | 
 | 		if (!folio_test_anon(folio)) { | 
 | 			VM_WARN_ON_ONCE(folio_test_large(folio)); | 
 | 			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); | 
 | 			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags); | 
 | 		} else { | 
 | 			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); | 
 | 		} | 
 | 	} else { /* ksm created a completely new copy */ | 
 | 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); | 
 | 		folio_add_lru_vma(folio, vma); | 
 | 	} | 
 | 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); | 
 | 	if (pte_swp_soft_dirty(old_pte)) | 
 | 		new_pte = pte_mksoft_dirty(new_pte); | 
 | 	if (pte_swp_uffd_wp(old_pte)) | 
 | 		new_pte = pte_mkuffd_wp(new_pte); | 
 | setpte: | 
 | 	set_pte_at(vma->vm_mm, addr, pte, new_pte); | 
 | 	swap_free(entry); | 
 | out: | 
 | 	if (pte) | 
 | 		pte_unmap_unlock(pte, ptl); | 
 | 	if (folio != swapcache) { | 
 | 		folio_unlock(folio); | 
 | 		folio_put(folio); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, | 
 | 			unsigned long addr, unsigned long end, | 
 | 			unsigned int type) | 
 | { | 
 | 	pte_t *pte = NULL; | 
 | 	struct swap_info_struct *si; | 
 |  | 
 | 	si = swap_info[type]; | 
 | 	do { | 
 | 		struct folio *folio; | 
 | 		unsigned long offset; | 
 | 		unsigned char swp_count; | 
 | 		swp_entry_t entry; | 
 | 		int ret; | 
 | 		pte_t ptent; | 
 |  | 
 | 		if (!pte++) { | 
 | 			pte = pte_offset_map(pmd, addr); | 
 | 			if (!pte) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		ptent = ptep_get_lockless(pte); | 
 |  | 
 | 		if (!is_swap_pte(ptent)) | 
 | 			continue; | 
 |  | 
 | 		entry = pte_to_swp_entry(ptent); | 
 | 		if (swp_type(entry) != type) | 
 | 			continue; | 
 |  | 
 | 		offset = swp_offset(entry); | 
 | 		pte_unmap(pte); | 
 | 		pte = NULL; | 
 |  | 
 | 		folio = swap_cache_get_folio(entry); | 
 | 		if (!folio) { | 
 | 			struct vm_fault vmf = { | 
 | 				.vma = vma, | 
 | 				.address = addr, | 
 | 				.real_address = addr, | 
 | 				.pmd = pmd, | 
 | 			}; | 
 |  | 
 | 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, | 
 | 						&vmf); | 
 | 		} | 
 | 		if (!folio) { | 
 | 			swp_count = READ_ONCE(si->swap_map[offset]); | 
 | 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD) | 
 | 				continue; | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		folio_lock(folio); | 
 | 		folio_wait_writeback(folio); | 
 | 		ret = unuse_pte(vma, pmd, addr, entry, folio); | 
 | 		if (ret < 0) { | 
 | 			folio_unlock(folio); | 
 | 			folio_put(folio); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		folio_free_swap(folio); | 
 | 		folio_unlock(folio); | 
 | 		folio_put(folio); | 
 | 	} while (addr += PAGE_SIZE, addr != end); | 
 |  | 
 | 	if (pte) | 
 | 		pte_unmap(pte); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				unsigned int type) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 | 	int ret; | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	do { | 
 | 		cond_resched(); | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		ret = unuse_pte_range(vma, pmd, addr, next, type); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				unsigned int type) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 | 	int ret; | 
 |  | 
 | 	pud = pud_offset(p4d, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (pud_none_or_clear_bad(pud)) | 
 | 			continue; | 
 | 		ret = unuse_pmd_range(vma, pud, addr, next, type); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} while (pud++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				unsigned int type) | 
 | { | 
 | 	p4d_t *p4d; | 
 | 	unsigned long next; | 
 | 	int ret; | 
 |  | 
 | 	p4d = p4d_offset(pgd, addr); | 
 | 	do { | 
 | 		next = p4d_addr_end(addr, end); | 
 | 		if (p4d_none_or_clear_bad(p4d)) | 
 | 			continue; | 
 | 		ret = unuse_pud_range(vma, p4d, addr, next, type); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} while (p4d++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int unuse_vma(struct vm_area_struct *vma, unsigned int type) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long addr, end, next; | 
 | 	int ret; | 
 |  | 
 | 	addr = vma->vm_start; | 
 | 	end = vma->vm_end; | 
 |  | 
 | 	pgd = pgd_offset(vma->vm_mm, addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 			continue; | 
 | 		ret = unuse_p4d_range(vma, pgd, addr, next, type); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} while (pgd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int unuse_mm(struct mm_struct *mm, unsigned int type) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	int ret = 0; | 
 | 	VMA_ITERATOR(vmi, mm, 0); | 
 |  | 
 | 	mmap_read_lock(mm); | 
 | 	if (check_stable_address_space(mm)) | 
 | 		goto unlock; | 
 | 	for_each_vma(vmi, vma) { | 
 | 		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) { | 
 | 			ret = unuse_vma(vma, type); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 | unlock: | 
 | 	mmap_read_unlock(mm); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Scan swap_map from current position to next entry still in use. | 
 |  * Return 0 if there are no inuse entries after prev till end of | 
 |  * the map. | 
 |  */ | 
 | static unsigned int find_next_to_unuse(struct swap_info_struct *si, | 
 | 					unsigned int prev) | 
 | { | 
 | 	unsigned int i; | 
 | 	unsigned char count; | 
 |  | 
 | 	/* | 
 | 	 * No need for swap_lock here: we're just looking | 
 | 	 * for whether an entry is in use, not modifying it; false | 
 | 	 * hits are okay, and sys_swapoff() has already prevented new | 
 | 	 * allocations from this area (while holding swap_lock). | 
 | 	 */ | 
 | 	for (i = prev + 1; i < si->max; i++) { | 
 | 		count = READ_ONCE(si->swap_map[i]); | 
 | 		if (count && swap_count(count) != SWAP_MAP_BAD) | 
 | 			break; | 
 | 		if ((i % LATENCY_LIMIT) == 0) | 
 | 			cond_resched(); | 
 | 	} | 
 |  | 
 | 	if (i == si->max) | 
 | 		i = 0; | 
 |  | 
 | 	return i; | 
 | } | 
 |  | 
 | static int try_to_unuse(unsigned int type) | 
 | { | 
 | 	struct mm_struct *prev_mm; | 
 | 	struct mm_struct *mm; | 
 | 	struct list_head *p; | 
 | 	int retval = 0; | 
 | 	struct swap_info_struct *si = swap_info[type]; | 
 | 	struct folio *folio; | 
 | 	swp_entry_t entry; | 
 | 	unsigned int i; | 
 |  | 
 | 	if (!swap_usage_in_pages(si)) | 
 | 		goto success; | 
 |  | 
 | retry: | 
 | 	retval = shmem_unuse(type); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	prev_mm = &init_mm; | 
 | 	mmget(prev_mm); | 
 |  | 
 | 	spin_lock(&mmlist_lock); | 
 | 	p = &init_mm.mmlist; | 
 | 	while (swap_usage_in_pages(si) && | 
 | 	       !signal_pending(current) && | 
 | 	       (p = p->next) != &init_mm.mmlist) { | 
 |  | 
 | 		mm = list_entry(p, struct mm_struct, mmlist); | 
 | 		if (!mmget_not_zero(mm)) | 
 | 			continue; | 
 | 		spin_unlock(&mmlist_lock); | 
 | 		mmput(prev_mm); | 
 | 		prev_mm = mm; | 
 | 		retval = unuse_mm(mm, type); | 
 | 		if (retval) { | 
 | 			mmput(prev_mm); | 
 | 			return retval; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Make sure that we aren't completely killing | 
 | 		 * interactive performance. | 
 | 		 */ | 
 | 		cond_resched(); | 
 | 		spin_lock(&mmlist_lock); | 
 | 	} | 
 | 	spin_unlock(&mmlist_lock); | 
 |  | 
 | 	mmput(prev_mm); | 
 |  | 
 | 	i = 0; | 
 | 	while (swap_usage_in_pages(si) && | 
 | 	       !signal_pending(current) && | 
 | 	       (i = find_next_to_unuse(si, i)) != 0) { | 
 |  | 
 | 		entry = swp_entry(type, i); | 
 | 		folio = swap_cache_get_folio(entry); | 
 | 		if (!folio) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * It is conceivable that a racing task removed this folio from | 
 | 		 * swap cache just before we acquired the page lock. The folio | 
 | 		 * might even be back in swap cache on another swap area. But | 
 | 		 * that is okay, folio_free_swap() only removes stale folios. | 
 | 		 */ | 
 | 		folio_lock(folio); | 
 | 		folio_wait_writeback(folio); | 
 | 		folio_free_swap(folio); | 
 | 		folio_unlock(folio); | 
 | 		folio_put(folio); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Lets check again to see if there are still swap entries in the map. | 
 | 	 * If yes, we would need to do retry the unuse logic again. | 
 | 	 * Under global memory pressure, swap entries can be reinserted back | 
 | 	 * into process space after the mmlist loop above passes over them. | 
 | 	 * | 
 | 	 * Limit the number of retries? No: when mmget_not_zero() | 
 | 	 * above fails, that mm is likely to be freeing swap from | 
 | 	 * exit_mmap(), which proceeds at its own independent pace; | 
 | 	 * and even shmem_writeout() could have been preempted after | 
 | 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy | 
 | 	 * and robust (though cpu-intensive) just to keep retrying. | 
 | 	 */ | 
 | 	if (swap_usage_in_pages(si)) { | 
 | 		if (!signal_pending(current)) | 
 | 			goto retry; | 
 | 		return -EINTR; | 
 | 	} | 
 |  | 
 | success: | 
 | 	/* | 
 | 	 * Make sure that further cleanups after try_to_unuse() returns happen | 
 | 	 * after swap_range_free() reduces si->inuse_pages to 0. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * After a successful try_to_unuse, if no swap is now in use, we know | 
 |  * we can empty the mmlist.  swap_lock must be held on entry and exit. | 
 |  * Note that mmlist_lock nests inside swap_lock, and an mm must be | 
 |  * added to the mmlist just after page_duplicate - before would be racy. | 
 |  */ | 
 | static void drain_mmlist(void) | 
 | { | 
 | 	struct list_head *p, *next; | 
 | 	unsigned int type; | 
 |  | 
 | 	for (type = 0; type < nr_swapfiles; type++) | 
 | 		if (swap_usage_in_pages(swap_info[type])) | 
 | 			return; | 
 | 	spin_lock(&mmlist_lock); | 
 | 	list_for_each_safe(p, next, &init_mm.mmlist) | 
 | 		list_del_init(p); | 
 | 	spin_unlock(&mmlist_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Free all of a swapdev's extent information | 
 |  */ | 
 | static void destroy_swap_extents(struct swap_info_struct *sis) | 
 | { | 
 | 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { | 
 | 		struct rb_node *rb = sis->swap_extent_root.rb_node; | 
 | 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); | 
 |  | 
 | 		rb_erase(rb, &sis->swap_extent_root); | 
 | 		kfree(se); | 
 | 	} | 
 |  | 
 | 	if (sis->flags & SWP_ACTIVATED) { | 
 | 		struct file *swap_file = sis->swap_file; | 
 | 		struct address_space *mapping = swap_file->f_mapping; | 
 |  | 
 | 		sis->flags &= ~SWP_ACTIVATED; | 
 | 		if (mapping->a_ops->swap_deactivate) | 
 | 			mapping->a_ops->swap_deactivate(swap_file); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Add a block range (and the corresponding page range) into this swapdev's | 
 |  * extent tree. | 
 |  * | 
 |  * This function rather assumes that it is called in ascending page order. | 
 |  */ | 
 | int | 
 | add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, | 
 | 		unsigned long nr_pages, sector_t start_block) | 
 | { | 
 | 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; | 
 | 	struct swap_extent *se; | 
 | 	struct swap_extent *new_se; | 
 |  | 
 | 	/* | 
 | 	 * place the new node at the right most since the | 
 | 	 * function is called in ascending page order. | 
 | 	 */ | 
 | 	while (*link) { | 
 | 		parent = *link; | 
 | 		link = &parent->rb_right; | 
 | 	} | 
 |  | 
 | 	if (parent) { | 
 | 		se = rb_entry(parent, struct swap_extent, rb_node); | 
 | 		BUG_ON(se->start_page + se->nr_pages != start_page); | 
 | 		if (se->start_block + se->nr_pages == start_block) { | 
 | 			/* Merge it */ | 
 | 			se->nr_pages += nr_pages; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* No merge, insert a new extent. */ | 
 | 	new_se = kmalloc(sizeof(*se), GFP_KERNEL); | 
 | 	if (new_se == NULL) | 
 | 		return -ENOMEM; | 
 | 	new_se->start_page = start_page; | 
 | 	new_se->nr_pages = nr_pages; | 
 | 	new_se->start_block = start_block; | 
 |  | 
 | 	rb_link_node(&new_se->rb_node, parent, link); | 
 | 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(add_swap_extent); | 
 |  | 
 | /* | 
 |  * A `swap extent' is a simple thing which maps a contiguous range of pages | 
 |  * onto a contiguous range of disk blocks.  A rbtree of swap extents is | 
 |  * built at swapon time and is then used at swap_writepage/swap_read_folio | 
 |  * time for locating where on disk a page belongs. | 
 |  * | 
 |  * If the swapfile is an S_ISBLK block device, a single extent is installed. | 
 |  * This is done so that the main operating code can treat S_ISBLK and S_ISREG | 
 |  * swap files identically. | 
 |  * | 
 |  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap | 
 |  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK | 
 |  * swapfiles are handled *identically* after swapon time. | 
 |  * | 
 |  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks | 
 |  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray | 
 |  * blocks are found which do not fall within the PAGE_SIZE alignment | 
 |  * requirements, they are simply tossed out - we will never use those blocks | 
 |  * for swapping. | 
 |  * | 
 |  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This | 
 |  * prevents users from writing to the swap device, which will corrupt memory. | 
 |  * | 
 |  * The amount of disk space which a single swap extent represents varies. | 
 |  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of | 
 |  * extents in the rbtree. - akpm. | 
 |  */ | 
 | static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) | 
 | { | 
 | 	struct file *swap_file = sis->swap_file; | 
 | 	struct address_space *mapping = swap_file->f_mapping; | 
 | 	struct inode *inode = mapping->host; | 
 | 	int ret; | 
 |  | 
 | 	if (S_ISBLK(inode->i_mode)) { | 
 | 		ret = add_swap_extent(sis, 0, sis->max, 0); | 
 | 		*span = sis->pages; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (mapping->a_ops->swap_activate) { | 
 | 		ret = mapping->a_ops->swap_activate(sis, swap_file, span); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		sis->flags |= SWP_ACTIVATED; | 
 | 		if ((sis->flags & SWP_FS_OPS) && | 
 | 		    sio_pool_init() != 0) { | 
 | 			destroy_swap_extents(sis); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return generic_swapfile_activate(sis, swap_file, span); | 
 | } | 
 |  | 
 | static int swap_node(struct swap_info_struct *si) | 
 | { | 
 | 	struct block_device *bdev; | 
 |  | 
 | 	if (si->bdev) | 
 | 		bdev = si->bdev; | 
 | 	else | 
 | 		bdev = si->swap_file->f_inode->i_sb->s_bdev; | 
 |  | 
 | 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; | 
 | } | 
 |  | 
 | static void setup_swap_info(struct swap_info_struct *si, int prio, | 
 | 			    unsigned char *swap_map, | 
 | 			    struct swap_cluster_info *cluster_info, | 
 | 			    unsigned long *zeromap) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (prio >= 0) | 
 | 		si->prio = prio; | 
 | 	else | 
 | 		si->prio = --least_priority; | 
 | 	/* | 
 | 	 * the plist prio is negated because plist ordering is | 
 | 	 * low-to-high, while swap ordering is high-to-low | 
 | 	 */ | 
 | 	si->list.prio = -si->prio; | 
 | 	for_each_node(i) { | 
 | 		if (si->prio >= 0) | 
 | 			si->avail_lists[i].prio = -si->prio; | 
 | 		else { | 
 | 			if (swap_node(si) == i) | 
 | 				si->avail_lists[i].prio = 1; | 
 | 			else | 
 | 				si->avail_lists[i].prio = -si->prio; | 
 | 		} | 
 | 	} | 
 | 	si->swap_map = swap_map; | 
 | 	si->cluster_info = cluster_info; | 
 | 	si->zeromap = zeromap; | 
 | } | 
 |  | 
 | static void _enable_swap_info(struct swap_info_struct *si) | 
 | { | 
 | 	atomic_long_add(si->pages, &nr_swap_pages); | 
 | 	total_swap_pages += si->pages; | 
 |  | 
 | 	assert_spin_locked(&swap_lock); | 
 | 	/* | 
 | 	 * both lists are plists, and thus priority ordered. | 
 | 	 * swap_active_head needs to be priority ordered for swapoff(), | 
 | 	 * which on removal of any swap_info_struct with an auto-assigned | 
 | 	 * (i.e. negative) priority increments the auto-assigned priority | 
 | 	 * of any lower-priority swap_info_structs. | 
 | 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), | 
 | 	 * which allocates swap pages from the highest available priority | 
 | 	 * swap_info_struct. | 
 | 	 */ | 
 | 	plist_add(&si->list, &swap_active_head); | 
 |  | 
 | 	/* Add back to available list */ | 
 | 	add_to_avail_list(si, true); | 
 | } | 
 |  | 
 | static void enable_swap_info(struct swap_info_struct *si, int prio, | 
 | 				unsigned char *swap_map, | 
 | 				struct swap_cluster_info *cluster_info, | 
 | 				unsigned long *zeromap) | 
 | { | 
 | 	spin_lock(&swap_lock); | 
 | 	spin_lock(&si->lock); | 
 | 	setup_swap_info(si, prio, swap_map, cluster_info, zeromap); | 
 | 	spin_unlock(&si->lock); | 
 | 	spin_unlock(&swap_lock); | 
 | 	/* | 
 | 	 * Finished initializing swap device, now it's safe to reference it. | 
 | 	 */ | 
 | 	percpu_ref_resurrect(&si->users); | 
 | 	spin_lock(&swap_lock); | 
 | 	spin_lock(&si->lock); | 
 | 	_enable_swap_info(si); | 
 | 	spin_unlock(&si->lock); | 
 | 	spin_unlock(&swap_lock); | 
 | } | 
 |  | 
 | static void reinsert_swap_info(struct swap_info_struct *si) | 
 | { | 
 | 	spin_lock(&swap_lock); | 
 | 	spin_lock(&si->lock); | 
 | 	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap); | 
 | 	_enable_swap_info(si); | 
 | 	spin_unlock(&si->lock); | 
 | 	spin_unlock(&swap_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range | 
 |  * see the updated flags, so there will be no more allocations. | 
 |  */ | 
 | static void wait_for_allocation(struct swap_info_struct *si) | 
 | { | 
 | 	unsigned long offset; | 
 | 	unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER); | 
 | 	struct swap_cluster_info *ci; | 
 |  | 
 | 	BUG_ON(si->flags & SWP_WRITEOK); | 
 |  | 
 | 	for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) { | 
 | 		ci = swap_cluster_lock(si, offset); | 
 | 		swap_cluster_unlock(ci); | 
 | 	} | 
 | } | 
 |  | 
 | static void free_cluster_info(struct swap_cluster_info *cluster_info, | 
 | 			      unsigned long maxpages) | 
 | { | 
 | 	struct swap_cluster_info *ci; | 
 | 	int i, nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); | 
 |  | 
 | 	if (!cluster_info) | 
 | 		return; | 
 | 	for (i = 0; i < nr_clusters; i++) { | 
 | 		ci = cluster_info + i; | 
 | 		/* Cluster with bad marks count will have a remaining table */ | 
 | 		spin_lock(&ci->lock); | 
 | 		if (rcu_dereference_protected(ci->table, true)) { | 
 | 			ci->count = 0; | 
 | 			swap_cluster_free_table(ci); | 
 | 		} | 
 | 		spin_unlock(&ci->lock); | 
 | 	} | 
 | 	kvfree(cluster_info); | 
 | } | 
 |  | 
 | /* | 
 |  * Called after swap device's reference count is dead, so | 
 |  * neither scan nor allocation will use it. | 
 |  */ | 
 | static void flush_percpu_swap_cluster(struct swap_info_struct *si) | 
 | { | 
 | 	int cpu, i; | 
 | 	struct swap_info_struct **pcp_si; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu); | 
 | 		/* | 
 | 		 * Invalidate the percpu swap cluster cache, si->users | 
 | 		 * is dead, so no new user will point to it, just flush | 
 | 		 * any existing user. | 
 | 		 */ | 
 | 		for (i = 0; i < SWAP_NR_ORDERS; i++) | 
 | 			cmpxchg(&pcp_si[i], si, NULL); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) | 
 | { | 
 | 	struct swap_info_struct *p = NULL; | 
 | 	unsigned char *swap_map; | 
 | 	unsigned long *zeromap; | 
 | 	struct swap_cluster_info *cluster_info; | 
 | 	struct file *swap_file, *victim; | 
 | 	struct address_space *mapping; | 
 | 	struct inode *inode; | 
 | 	struct filename *pathname; | 
 | 	unsigned int maxpages; | 
 | 	int err, found = 0; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	BUG_ON(!current->mm); | 
 |  | 
 | 	pathname = getname(specialfile); | 
 | 	if (IS_ERR(pathname)) | 
 | 		return PTR_ERR(pathname); | 
 |  | 
 | 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); | 
 | 	err = PTR_ERR(victim); | 
 | 	if (IS_ERR(victim)) | 
 | 		goto out; | 
 |  | 
 | 	mapping = victim->f_mapping; | 
 | 	spin_lock(&swap_lock); | 
 | 	plist_for_each_entry(p, &swap_active_head, list) { | 
 | 		if (p->flags & SWP_WRITEOK) { | 
 | 			if (p->swap_file->f_mapping == mapping) { | 
 | 				found = 1; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (!found) { | 
 | 		err = -EINVAL; | 
 | 		spin_unlock(&swap_lock); | 
 | 		goto out_dput; | 
 | 	} | 
 | 	if (!security_vm_enough_memory_mm(current->mm, p->pages)) | 
 | 		vm_unacct_memory(p->pages); | 
 | 	else { | 
 | 		err = -ENOMEM; | 
 | 		spin_unlock(&swap_lock); | 
 | 		goto out_dput; | 
 | 	} | 
 | 	spin_lock(&p->lock); | 
 | 	del_from_avail_list(p, true); | 
 | 	if (p->prio < 0) { | 
 | 		struct swap_info_struct *si = p; | 
 | 		int nid; | 
 |  | 
 | 		plist_for_each_entry_continue(si, &swap_active_head, list) { | 
 | 			si->prio++; | 
 | 			si->list.prio--; | 
 | 			for_each_node(nid) { | 
 | 				if (si->avail_lists[nid].prio != 1) | 
 | 					si->avail_lists[nid].prio--; | 
 | 			} | 
 | 		} | 
 | 		least_priority++; | 
 | 	} | 
 | 	plist_del(&p->list, &swap_active_head); | 
 | 	atomic_long_sub(p->pages, &nr_swap_pages); | 
 | 	total_swap_pages -= p->pages; | 
 | 	spin_unlock(&p->lock); | 
 | 	spin_unlock(&swap_lock); | 
 |  | 
 | 	wait_for_allocation(p); | 
 |  | 
 | 	set_current_oom_origin(); | 
 | 	err = try_to_unuse(p->type); | 
 | 	clear_current_oom_origin(); | 
 |  | 
 | 	if (err) { | 
 | 		/* re-insert swap space back into swap_list */ | 
 | 		reinsert_swap_info(p); | 
 | 		goto out_dput; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Wait for swap operations protected by get/put_swap_device() | 
 | 	 * to complete.  Because of synchronize_rcu() here, all swap | 
 | 	 * operations protected by RCU reader side lock (including any | 
 | 	 * spinlock) will be waited too.  This makes it easy to | 
 | 	 * prevent folio_test_swapcache() and the following swap cache | 
 | 	 * operations from racing with swapoff. | 
 | 	 */ | 
 | 	percpu_ref_kill(&p->users); | 
 | 	synchronize_rcu(); | 
 | 	wait_for_completion(&p->comp); | 
 |  | 
 | 	flush_work(&p->discard_work); | 
 | 	flush_work(&p->reclaim_work); | 
 | 	flush_percpu_swap_cluster(p); | 
 |  | 
 | 	destroy_swap_extents(p); | 
 | 	if (p->flags & SWP_CONTINUED) | 
 | 		free_swap_count_continuations(p); | 
 |  | 
 | 	if (!p->bdev || !bdev_nonrot(p->bdev)) | 
 | 		atomic_dec(&nr_rotate_swap); | 
 |  | 
 | 	mutex_lock(&swapon_mutex); | 
 | 	spin_lock(&swap_lock); | 
 | 	spin_lock(&p->lock); | 
 | 	drain_mmlist(); | 
 |  | 
 | 	swap_file = p->swap_file; | 
 | 	p->swap_file = NULL; | 
 | 	swap_map = p->swap_map; | 
 | 	p->swap_map = NULL; | 
 | 	zeromap = p->zeromap; | 
 | 	p->zeromap = NULL; | 
 | 	maxpages = p->max; | 
 | 	cluster_info = p->cluster_info; | 
 | 	p->max = 0; | 
 | 	p->cluster_info = NULL; | 
 | 	spin_unlock(&p->lock); | 
 | 	spin_unlock(&swap_lock); | 
 | 	arch_swap_invalidate_area(p->type); | 
 | 	zswap_swapoff(p->type); | 
 | 	mutex_unlock(&swapon_mutex); | 
 | 	kfree(p->global_cluster); | 
 | 	p->global_cluster = NULL; | 
 | 	vfree(swap_map); | 
 | 	kvfree(zeromap); | 
 | 	free_cluster_info(cluster_info, maxpages); | 
 | 	/* Destroy swap account information */ | 
 | 	swap_cgroup_swapoff(p->type); | 
 |  | 
 | 	inode = mapping->host; | 
 |  | 
 | 	inode_lock(inode); | 
 | 	inode->i_flags &= ~S_SWAPFILE; | 
 | 	inode_unlock(inode); | 
 | 	filp_close(swap_file, NULL); | 
 |  | 
 | 	/* | 
 | 	 * Clear the SWP_USED flag after all resources are freed so that swapon | 
 | 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to | 
 | 	 * not hold p->lock after we cleared its SWP_WRITEOK. | 
 | 	 */ | 
 | 	spin_lock(&swap_lock); | 
 | 	p->flags = 0; | 
 | 	spin_unlock(&swap_lock); | 
 |  | 
 | 	err = 0; | 
 | 	atomic_inc(&proc_poll_event); | 
 | 	wake_up_interruptible(&proc_poll_wait); | 
 |  | 
 | out_dput: | 
 | 	filp_close(victim, NULL); | 
 | out: | 
 | 	putname(pathname); | 
 | 	return err; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | static __poll_t swaps_poll(struct file *file, poll_table *wait) | 
 | { | 
 | 	struct seq_file *seq = file->private_data; | 
 |  | 
 | 	poll_wait(file, &proc_poll_wait, wait); | 
 |  | 
 | 	if (seq->poll_event != atomic_read(&proc_poll_event)) { | 
 | 		seq->poll_event = atomic_read(&proc_poll_event); | 
 | 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; | 
 | 	} | 
 |  | 
 | 	return EPOLLIN | EPOLLRDNORM; | 
 | } | 
 |  | 
 | /* iterator */ | 
 | static void *swap_start(struct seq_file *swap, loff_t *pos) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	int type; | 
 | 	loff_t l = *pos; | 
 |  | 
 | 	mutex_lock(&swapon_mutex); | 
 |  | 
 | 	if (!l) | 
 | 		return SEQ_START_TOKEN; | 
 |  | 
 | 	for (type = 0; (si = swap_type_to_info(type)); type++) { | 
 | 		if (!(si->flags & SWP_USED) || !si->swap_map) | 
 | 			continue; | 
 | 		if (!--l) | 
 | 			return si; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) | 
 | { | 
 | 	struct swap_info_struct *si = v; | 
 | 	int type; | 
 |  | 
 | 	if (v == SEQ_START_TOKEN) | 
 | 		type = 0; | 
 | 	else | 
 | 		type = si->type + 1; | 
 |  | 
 | 	++(*pos); | 
 | 	for (; (si = swap_type_to_info(type)); type++) { | 
 | 		if (!(si->flags & SWP_USED) || !si->swap_map) | 
 | 			continue; | 
 | 		return si; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void swap_stop(struct seq_file *swap, void *v) | 
 | { | 
 | 	mutex_unlock(&swapon_mutex); | 
 | } | 
 |  | 
 | static int swap_show(struct seq_file *swap, void *v) | 
 | { | 
 | 	struct swap_info_struct *si = v; | 
 | 	struct file *file; | 
 | 	int len; | 
 | 	unsigned long bytes, inuse; | 
 |  | 
 | 	if (si == SEQ_START_TOKEN) { | 
 | 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	bytes = K(si->pages); | 
 | 	inuse = K(swap_usage_in_pages(si)); | 
 |  | 
 | 	file = si->swap_file; | 
 | 	len = seq_file_path(swap, file, " \t\n\\"); | 
 | 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", | 
 | 			len < 40 ? 40 - len : 1, " ", | 
 | 			S_ISBLK(file_inode(file)->i_mode) ? | 
 | 				"partition" : "file\t", | 
 | 			bytes, bytes < 10000000 ? "\t" : "", | 
 | 			inuse, inuse < 10000000 ? "\t" : "", | 
 | 			si->prio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct seq_operations swaps_op = { | 
 | 	.start =	swap_start, | 
 | 	.next =		swap_next, | 
 | 	.stop =		swap_stop, | 
 | 	.show =		swap_show | 
 | }; | 
 |  | 
 | static int swaps_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct seq_file *seq; | 
 | 	int ret; | 
 |  | 
 | 	ret = seq_open(file, &swaps_op); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	seq = file->private_data; | 
 | 	seq->poll_event = atomic_read(&proc_poll_event); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct proc_ops swaps_proc_ops = { | 
 | 	.proc_flags	= PROC_ENTRY_PERMANENT, | 
 | 	.proc_open	= swaps_open, | 
 | 	.proc_read	= seq_read, | 
 | 	.proc_lseek	= seq_lseek, | 
 | 	.proc_release	= seq_release, | 
 | 	.proc_poll	= swaps_poll, | 
 | }; | 
 |  | 
 | static int __init procswaps_init(void) | 
 | { | 
 | 	proc_create("swaps", 0, NULL, &swaps_proc_ops); | 
 | 	return 0; | 
 | } | 
 | __initcall(procswaps_init); | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | #ifdef MAX_SWAPFILES_CHECK | 
 | static int __init max_swapfiles_check(void) | 
 | { | 
 | 	MAX_SWAPFILES_CHECK(); | 
 | 	return 0; | 
 | } | 
 | late_initcall(max_swapfiles_check); | 
 | #endif | 
 |  | 
 | static struct swap_info_struct *alloc_swap_info(void) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 | 	struct swap_info_struct *defer = NULL; | 
 | 	unsigned int type; | 
 | 	int i; | 
 |  | 
 | 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); | 
 | 	if (!p) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	if (percpu_ref_init(&p->users, swap_users_ref_free, | 
 | 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { | 
 | 		kvfree(p); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 		if (!(swap_info[type]->flags & SWP_USED)) | 
 | 			break; | 
 | 	} | 
 | 	if (type >= MAX_SWAPFILES) { | 
 | 		spin_unlock(&swap_lock); | 
 | 		percpu_ref_exit(&p->users); | 
 | 		kvfree(p); | 
 | 		return ERR_PTR(-EPERM); | 
 | 	} | 
 | 	if (type >= nr_swapfiles) { | 
 | 		p->type = type; | 
 | 		/* | 
 | 		 * Publish the swap_info_struct after initializing it. | 
 | 		 * Note that kvzalloc() above zeroes all its fields. | 
 | 		 */ | 
 | 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ | 
 | 		nr_swapfiles++; | 
 | 	} else { | 
 | 		defer = p; | 
 | 		p = swap_info[type]; | 
 | 		/* | 
 | 		 * Do not memset this entry: a racing procfs swap_next() | 
 | 		 * would be relying on p->type to remain valid. | 
 | 		 */ | 
 | 	} | 
 | 	p->swap_extent_root = RB_ROOT; | 
 | 	plist_node_init(&p->list, 0); | 
 | 	for_each_node(i) | 
 | 		plist_node_init(&p->avail_lists[i], 0); | 
 | 	p->flags = SWP_USED; | 
 | 	spin_unlock(&swap_lock); | 
 | 	if (defer) { | 
 | 		percpu_ref_exit(&defer->users); | 
 | 		kvfree(defer); | 
 | 	} | 
 | 	spin_lock_init(&p->lock); | 
 | 	spin_lock_init(&p->cont_lock); | 
 | 	atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT); | 
 | 	init_completion(&p->comp); | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | static int claim_swapfile(struct swap_info_struct *si, struct inode *inode) | 
 | { | 
 | 	if (S_ISBLK(inode->i_mode)) { | 
 | 		si->bdev = I_BDEV(inode); | 
 | 		/* | 
 | 		 * Zoned block devices contain zones that have a sequential | 
 | 		 * write only restriction.  Hence zoned block devices are not | 
 | 		 * suitable for swapping.  Disallow them here. | 
 | 		 */ | 
 | 		if (bdev_is_zoned(si->bdev)) | 
 | 			return -EINVAL; | 
 | 		si->flags |= SWP_BLKDEV; | 
 | 	} else if (S_ISREG(inode->i_mode)) { | 
 | 		si->bdev = inode->i_sb->s_bdev; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Find out how many pages are allowed for a single swap device. There | 
 |  * are two limiting factors: | 
 |  * 1) the number of bits for the swap offset in the swp_entry_t type, and | 
 |  * 2) the number of bits in the swap pte, as defined by the different | 
 |  * architectures. | 
 |  * | 
 |  * In order to find the largest possible bit mask, a swap entry with | 
 |  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, | 
 |  * decoded to a swp_entry_t again, and finally the swap offset is | 
 |  * extracted. | 
 |  * | 
 |  * This will mask all the bits from the initial ~0UL mask that can't | 
 |  * be encoded in either the swp_entry_t or the architecture definition | 
 |  * of a swap pte. | 
 |  */ | 
 | unsigned long generic_max_swapfile_size(void) | 
 | { | 
 | 	return swp_offset(pte_to_swp_entry( | 
 | 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; | 
 | } | 
 |  | 
 | /* Can be overridden by an architecture for additional checks. */ | 
 | __weak unsigned long arch_max_swapfile_size(void) | 
 | { | 
 | 	return generic_max_swapfile_size(); | 
 | } | 
 |  | 
 | static unsigned long read_swap_header(struct swap_info_struct *si, | 
 | 					union swap_header *swap_header, | 
 | 					struct inode *inode) | 
 | { | 
 | 	int i; | 
 | 	unsigned long maxpages; | 
 | 	unsigned long swapfilepages; | 
 | 	unsigned long last_page; | 
 |  | 
 | 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { | 
 | 		pr_err("Unable to find swap-space signature\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* swap partition endianness hack... */ | 
 | 	if (swab32(swap_header->info.version) == 1) { | 
 | 		swab32s(&swap_header->info.version); | 
 | 		swab32s(&swap_header->info.last_page); | 
 | 		swab32s(&swap_header->info.nr_badpages); | 
 | 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) | 
 | 			return 0; | 
 | 		for (i = 0; i < swap_header->info.nr_badpages; i++) | 
 | 			swab32s(&swap_header->info.badpages[i]); | 
 | 	} | 
 | 	/* Check the swap header's sub-version */ | 
 | 	if (swap_header->info.version != 1) { | 
 | 		pr_warn("Unable to handle swap header version %d\n", | 
 | 			swap_header->info.version); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	maxpages = swapfile_maximum_size; | 
 | 	last_page = swap_header->info.last_page; | 
 | 	if (!last_page) { | 
 | 		pr_warn("Empty swap-file\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	if (last_page > maxpages) { | 
 | 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", | 
 | 			K(maxpages), K(last_page)); | 
 | 	} | 
 | 	if (maxpages > last_page) { | 
 | 		maxpages = last_page + 1; | 
 | 		/* p->max is an unsigned int: don't overflow it */ | 
 | 		if ((unsigned int)maxpages == 0) | 
 | 			maxpages = UINT_MAX; | 
 | 	} | 
 |  | 
 | 	if (!maxpages) | 
 | 		return 0; | 
 | 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT; | 
 | 	if (swapfilepages && maxpages > swapfilepages) { | 
 | 		pr_warn("Swap area shorter than signature indicates\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) | 
 | 		return 0; | 
 | 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) | 
 | 		return 0; | 
 |  | 
 | 	return maxpages; | 
 | } | 
 |  | 
 | static int setup_swap_map(struct swap_info_struct *si, | 
 | 			  union swap_header *swap_header, | 
 | 			  unsigned char *swap_map, | 
 | 			  unsigned long maxpages) | 
 | { | 
 | 	unsigned long i; | 
 |  | 
 | 	swap_map[0] = SWAP_MAP_BAD; /* omit header page */ | 
 | 	for (i = 0; i < swap_header->info.nr_badpages; i++) { | 
 | 		unsigned int page_nr = swap_header->info.badpages[i]; | 
 | 		if (page_nr == 0 || page_nr > swap_header->info.last_page) | 
 | 			return -EINVAL; | 
 | 		if (page_nr < maxpages) { | 
 | 			swap_map[page_nr] = SWAP_MAP_BAD; | 
 | 			si->pages--; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!si->pages) { | 
 | 		pr_warn("Empty swap-file\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si, | 
 | 						union swap_header *swap_header, | 
 | 						unsigned long maxpages) | 
 | { | 
 | 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); | 
 | 	struct swap_cluster_info *cluster_info; | 
 | 	int err = -ENOMEM; | 
 | 	unsigned long i; | 
 |  | 
 | 	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL); | 
 | 	if (!cluster_info) | 
 | 		goto err; | 
 |  | 
 | 	for (i = 0; i < nr_clusters; i++) | 
 | 		spin_lock_init(&cluster_info[i].lock); | 
 |  | 
 | 	if (!(si->flags & SWP_SOLIDSTATE)) { | 
 | 		si->global_cluster = kmalloc(sizeof(*si->global_cluster), | 
 | 				     GFP_KERNEL); | 
 | 		if (!si->global_cluster) | 
 | 			goto err_free; | 
 | 		for (i = 0; i < SWAP_NR_ORDERS; i++) | 
 | 			si->global_cluster->next[i] = SWAP_ENTRY_INVALID; | 
 | 		spin_lock_init(&si->global_cluster_lock); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Mark unusable pages as unavailable. The clusters aren't | 
 | 	 * marked free yet, so no list operations are involved yet. | 
 | 	 * | 
 | 	 * See setup_swap_map(): header page, bad pages, | 
 | 	 * and the EOF part of the last cluster. | 
 | 	 */ | 
 | 	err = inc_cluster_info_page(si, cluster_info, 0); | 
 | 	if (err) | 
 | 		goto err; | 
 | 	for (i = 0; i < swap_header->info.nr_badpages; i++) { | 
 | 		unsigned int page_nr = swap_header->info.badpages[i]; | 
 |  | 
 | 		if (page_nr >= maxpages) | 
 | 			continue; | 
 | 		err = inc_cluster_info_page(si, cluster_info, page_nr); | 
 | 		if (err) | 
 | 			goto err; | 
 | 	} | 
 | 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) { | 
 | 		err = inc_cluster_info_page(si, cluster_info, i); | 
 | 		if (err) | 
 | 			goto err; | 
 | 	} | 
 |  | 
 | 	INIT_LIST_HEAD(&si->free_clusters); | 
 | 	INIT_LIST_HEAD(&si->full_clusters); | 
 | 	INIT_LIST_HEAD(&si->discard_clusters); | 
 |  | 
 | 	for (i = 0; i < SWAP_NR_ORDERS; i++) { | 
 | 		INIT_LIST_HEAD(&si->nonfull_clusters[i]); | 
 | 		INIT_LIST_HEAD(&si->frag_clusters[i]); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < nr_clusters; i++) { | 
 | 		struct swap_cluster_info *ci = &cluster_info[i]; | 
 |  | 
 | 		if (ci->count) { | 
 | 			ci->flags = CLUSTER_FLAG_NONFULL; | 
 | 			list_add_tail(&ci->list, &si->nonfull_clusters[0]); | 
 | 		} else { | 
 | 			ci->flags = CLUSTER_FLAG_FREE; | 
 | 			list_add_tail(&ci->list, &si->free_clusters); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return cluster_info; | 
 | err_free: | 
 | 	free_cluster_info(cluster_info, maxpages); | 
 | err: | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	struct filename *name; | 
 | 	struct file *swap_file = NULL; | 
 | 	struct address_space *mapping; | 
 | 	struct dentry *dentry; | 
 | 	int prio; | 
 | 	int error; | 
 | 	union swap_header *swap_header; | 
 | 	int nr_extents; | 
 | 	sector_t span; | 
 | 	unsigned long maxpages; | 
 | 	unsigned char *swap_map = NULL; | 
 | 	unsigned long *zeromap = NULL; | 
 | 	struct swap_cluster_info *cluster_info = NULL; | 
 | 	struct folio *folio = NULL; | 
 | 	struct inode *inode = NULL; | 
 | 	bool inced_nr_rotate_swap = false; | 
 |  | 
 | 	if (swap_flags & ~SWAP_FLAGS_VALID) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (!swap_avail_heads) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	si = alloc_swap_info(); | 
 | 	if (IS_ERR(si)) | 
 | 		return PTR_ERR(si); | 
 |  | 
 | 	INIT_WORK(&si->discard_work, swap_discard_work); | 
 | 	INIT_WORK(&si->reclaim_work, swap_reclaim_work); | 
 |  | 
 | 	name = getname(specialfile); | 
 | 	if (IS_ERR(name)) { | 
 | 		error = PTR_ERR(name); | 
 | 		name = NULL; | 
 | 		goto bad_swap; | 
 | 	} | 
 | 	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0); | 
 | 	if (IS_ERR(swap_file)) { | 
 | 		error = PTR_ERR(swap_file); | 
 | 		swap_file = NULL; | 
 | 		goto bad_swap; | 
 | 	} | 
 |  | 
 | 	si->swap_file = swap_file; | 
 | 	mapping = swap_file->f_mapping; | 
 | 	dentry = swap_file->f_path.dentry; | 
 | 	inode = mapping->host; | 
 |  | 
 | 	error = claim_swapfile(si, inode); | 
 | 	if (unlikely(error)) | 
 | 		goto bad_swap; | 
 |  | 
 | 	inode_lock(inode); | 
 | 	if (d_unlinked(dentry) || cant_mount(dentry)) { | 
 | 		error = -ENOENT; | 
 | 		goto bad_swap_unlock_inode; | 
 | 	} | 
 | 	if (IS_SWAPFILE(inode)) { | 
 | 		error = -EBUSY; | 
 | 		goto bad_swap_unlock_inode; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The swap subsystem needs a major overhaul to support this. | 
 | 	 * It doesn't work yet so just disable it for now. | 
 | 	 */ | 
 | 	if (mapping_min_folio_order(mapping) > 0) { | 
 | 		error = -EINVAL; | 
 | 		goto bad_swap_unlock_inode; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Read the swap header. | 
 | 	 */ | 
 | 	if (!mapping->a_ops->read_folio) { | 
 | 		error = -EINVAL; | 
 | 		goto bad_swap_unlock_inode; | 
 | 	} | 
 | 	folio = read_mapping_folio(mapping, 0, swap_file); | 
 | 	if (IS_ERR(folio)) { | 
 | 		error = PTR_ERR(folio); | 
 | 		goto bad_swap_unlock_inode; | 
 | 	} | 
 | 	swap_header = kmap_local_folio(folio, 0); | 
 |  | 
 | 	maxpages = read_swap_header(si, swap_header, inode); | 
 | 	if (unlikely(!maxpages)) { | 
 | 		error = -EINVAL; | 
 | 		goto bad_swap_unlock_inode; | 
 | 	} | 
 |  | 
 | 	si->max = maxpages; | 
 | 	si->pages = maxpages - 1; | 
 | 	nr_extents = setup_swap_extents(si, &span); | 
 | 	if (nr_extents < 0) { | 
 | 		error = nr_extents; | 
 | 		goto bad_swap_unlock_inode; | 
 | 	} | 
 | 	if (si->pages != si->max - 1) { | 
 | 		pr_err("swap:%u != (max:%u - 1)\n", si->pages, si->max); | 
 | 		error = -EINVAL; | 
 | 		goto bad_swap_unlock_inode; | 
 | 	} | 
 |  | 
 | 	maxpages = si->max; | 
 |  | 
 | 	/* OK, set up the swap map and apply the bad block list */ | 
 | 	swap_map = vzalloc(maxpages); | 
 | 	if (!swap_map) { | 
 | 		error = -ENOMEM; | 
 | 		goto bad_swap_unlock_inode; | 
 | 	} | 
 |  | 
 | 	error = swap_cgroup_swapon(si->type, maxpages); | 
 | 	if (error) | 
 | 		goto bad_swap_unlock_inode; | 
 |  | 
 | 	error = setup_swap_map(si, swap_header, swap_map, maxpages); | 
 | 	if (error) | 
 | 		goto bad_swap_unlock_inode; | 
 |  | 
 | 	/* | 
 | 	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might | 
 | 	 * be above MAX_PAGE_ORDER incase of a large swap file. | 
 | 	 */ | 
 | 	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long), | 
 | 				    GFP_KERNEL | __GFP_ZERO); | 
 | 	if (!zeromap) { | 
 | 		error = -ENOMEM; | 
 | 		goto bad_swap_unlock_inode; | 
 | 	} | 
 |  | 
 | 	if (si->bdev && bdev_stable_writes(si->bdev)) | 
 | 		si->flags |= SWP_STABLE_WRITES; | 
 |  | 
 | 	if (si->bdev && bdev_synchronous(si->bdev)) | 
 | 		si->flags |= SWP_SYNCHRONOUS_IO; | 
 |  | 
 | 	if (si->bdev && bdev_nonrot(si->bdev)) { | 
 | 		si->flags |= SWP_SOLIDSTATE; | 
 | 	} else { | 
 | 		atomic_inc(&nr_rotate_swap); | 
 | 		inced_nr_rotate_swap = true; | 
 | 	} | 
 |  | 
 | 	cluster_info = setup_clusters(si, swap_header, maxpages); | 
 | 	if (IS_ERR(cluster_info)) { | 
 | 		error = PTR_ERR(cluster_info); | 
 | 		cluster_info = NULL; | 
 | 		goto bad_swap_unlock_inode; | 
 | 	} | 
 |  | 
 | 	if ((swap_flags & SWAP_FLAG_DISCARD) && | 
 | 	    si->bdev && bdev_max_discard_sectors(si->bdev)) { | 
 | 		/* | 
 | 		 * When discard is enabled for swap with no particular | 
 | 		 * policy flagged, we set all swap discard flags here in | 
 | 		 * order to sustain backward compatibility with older | 
 | 		 * swapon(8) releases. | 
 | 		 */ | 
 | 		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | | 
 | 			     SWP_PAGE_DISCARD); | 
 |  | 
 | 		/* | 
 | 		 * By flagging sys_swapon, a sysadmin can tell us to | 
 | 		 * either do single-time area discards only, or to just | 
 | 		 * perform discards for released swap page-clusters. | 
 | 		 * Now it's time to adjust the p->flags accordingly. | 
 | 		 */ | 
 | 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE) | 
 | 			si->flags &= ~SWP_PAGE_DISCARD; | 
 | 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) | 
 | 			si->flags &= ~SWP_AREA_DISCARD; | 
 |  | 
 | 		/* issue a swapon-time discard if it's still required */ | 
 | 		if (si->flags & SWP_AREA_DISCARD) { | 
 | 			int err = discard_swap(si); | 
 | 			if (unlikely(err)) | 
 | 				pr_err("swapon: discard_swap(%p): %d\n", | 
 | 					si, err); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	error = zswap_swapon(si->type, maxpages); | 
 | 	if (error) | 
 | 		goto bad_swap_unlock_inode; | 
 |  | 
 | 	/* | 
 | 	 * Flush any pending IO and dirty mappings before we start using this | 
 | 	 * swap device. | 
 | 	 */ | 
 | 	inode->i_flags |= S_SWAPFILE; | 
 | 	error = inode_drain_writes(inode); | 
 | 	if (error) { | 
 | 		inode->i_flags &= ~S_SWAPFILE; | 
 | 		goto free_swap_zswap; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&swapon_mutex); | 
 | 	prio = -1; | 
 | 	if (swap_flags & SWAP_FLAG_PREFER) | 
 | 		prio = swap_flags & SWAP_FLAG_PRIO_MASK; | 
 | 	enable_swap_info(si, prio, swap_map, cluster_info, zeromap); | 
 |  | 
 | 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n", | 
 | 		K(si->pages), name->name, si->prio, nr_extents, | 
 | 		K((unsigned long long)span), | 
 | 		(si->flags & SWP_SOLIDSTATE) ? "SS" : "", | 
 | 		(si->flags & SWP_DISCARDABLE) ? "D" : "", | 
 | 		(si->flags & SWP_AREA_DISCARD) ? "s" : "", | 
 | 		(si->flags & SWP_PAGE_DISCARD) ? "c" : ""); | 
 |  | 
 | 	mutex_unlock(&swapon_mutex); | 
 | 	atomic_inc(&proc_poll_event); | 
 | 	wake_up_interruptible(&proc_poll_wait); | 
 |  | 
 | 	error = 0; | 
 | 	goto out; | 
 | free_swap_zswap: | 
 | 	zswap_swapoff(si->type); | 
 | bad_swap_unlock_inode: | 
 | 	inode_unlock(inode); | 
 | bad_swap: | 
 | 	kfree(si->global_cluster); | 
 | 	si->global_cluster = NULL; | 
 | 	inode = NULL; | 
 | 	destroy_swap_extents(si); | 
 | 	swap_cgroup_swapoff(si->type); | 
 | 	spin_lock(&swap_lock); | 
 | 	si->swap_file = NULL; | 
 | 	si->flags = 0; | 
 | 	spin_unlock(&swap_lock); | 
 | 	vfree(swap_map); | 
 | 	kvfree(zeromap); | 
 | 	if (cluster_info) | 
 | 		free_cluster_info(cluster_info, maxpages); | 
 | 	if (inced_nr_rotate_swap) | 
 | 		atomic_dec(&nr_rotate_swap); | 
 | 	if (swap_file) | 
 | 		filp_close(swap_file, NULL); | 
 | out: | 
 | 	if (!IS_ERR_OR_NULL(folio)) | 
 | 		folio_release_kmap(folio, swap_header); | 
 | 	if (name) | 
 | 		putname(name); | 
 | 	if (inode) | 
 | 		inode_unlock(inode); | 
 | 	return error; | 
 | } | 
 |  | 
 | void si_swapinfo(struct sysinfo *val) | 
 | { | 
 | 	unsigned int type; | 
 | 	unsigned long nr_to_be_unused = 0; | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 		struct swap_info_struct *si = swap_info[type]; | 
 |  | 
 | 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) | 
 | 			nr_to_be_unused += swap_usage_in_pages(si); | 
 | 	} | 
 | 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; | 
 | 	val->totalswap = total_swap_pages + nr_to_be_unused; | 
 | 	spin_unlock(&swap_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Verify that nr swap entries are valid and increment their swap map counts. | 
 |  * | 
 |  * Returns error code in following case. | 
 |  * - success -> 0 | 
 |  * - swp_entry is invalid -> EINVAL | 
 |  * - swap-cache reference is requested but there is already one. -> EEXIST | 
 |  * - swap-cache reference is requested but the entry is not used. -> ENOENT | 
 |  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM | 
 |  */ | 
 | static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	struct swap_cluster_info *ci; | 
 | 	unsigned long offset; | 
 | 	unsigned char count; | 
 | 	unsigned char has_cache; | 
 | 	int err, i; | 
 |  | 
 | 	si = swap_entry_to_info(entry); | 
 | 	if (WARN_ON_ONCE(!si)) { | 
 | 		pr_err("%s%08lx\n", Bad_file, entry.val); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	offset = swp_offset(entry); | 
 | 	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); | 
 | 	VM_WARN_ON(usage == 1 && nr > 1); | 
 | 	ci = swap_cluster_lock(si, offset); | 
 |  | 
 | 	err = 0; | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		count = si->swap_map[offset + i]; | 
 |  | 
 | 		/* | 
 | 		 * swapin_readahead() doesn't check if a swap entry is valid, so the | 
 | 		 * swap entry could be SWAP_MAP_BAD. Check here with lock held. | 
 | 		 */ | 
 | 		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { | 
 | 			err = -ENOENT; | 
 | 			goto unlock_out; | 
 | 		} | 
 |  | 
 | 		has_cache = count & SWAP_HAS_CACHE; | 
 | 		count &= ~SWAP_HAS_CACHE; | 
 |  | 
 | 		if (!count && !has_cache) { | 
 | 			err = -ENOENT; | 
 | 		} else if (usage == SWAP_HAS_CACHE) { | 
 | 			if (has_cache) | 
 | 				err = -EEXIST; | 
 | 		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) { | 
 | 			err = -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (err) | 
 | 			goto unlock_out; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		count = si->swap_map[offset + i]; | 
 | 		has_cache = count & SWAP_HAS_CACHE; | 
 | 		count &= ~SWAP_HAS_CACHE; | 
 |  | 
 | 		if (usage == SWAP_HAS_CACHE) | 
 | 			has_cache = SWAP_HAS_CACHE; | 
 | 		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) | 
 | 			count += usage; | 
 | 		else if (swap_count_continued(si, offset + i, count)) | 
 | 			count = COUNT_CONTINUED; | 
 | 		else { | 
 | 			/* | 
 | 			 * Don't need to rollback changes, because if | 
 | 			 * usage == 1, there must be nr == 1. | 
 | 			 */ | 
 | 			err = -ENOMEM; | 
 | 			goto unlock_out; | 
 | 		} | 
 |  | 
 | 		WRITE_ONCE(si->swap_map[offset + i], count | has_cache); | 
 | 	} | 
 |  | 
 | unlock_out: | 
 | 	swap_cluster_unlock(ci); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Help swapoff by noting that swap entry belongs to shmem/tmpfs | 
 |  * (in which case its reference count is never incremented). | 
 |  */ | 
 | void swap_shmem_alloc(swp_entry_t entry, int nr) | 
 | { | 
 | 	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr); | 
 | } | 
 |  | 
 | /* | 
 |  * Increase reference count of swap entry by 1. | 
 |  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required | 
 |  * but could not be atomically allocated.  Returns 0, just as if it succeeded, | 
 |  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which | 
 |  * might occur if a page table entry has got corrupted. | 
 |  */ | 
 | int swap_duplicate(swp_entry_t entry) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM) | 
 | 		err = add_swap_count_continuation(entry, GFP_ATOMIC); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * @entry: first swap entry from which we allocate nr swap cache. | 
 |  * | 
 |  * Called when allocating swap cache for existing swap entries, | 
 |  * This can return error codes. Returns 0 at success. | 
 |  * -EEXIST means there is a swap cache. | 
 |  * Note: return code is different from swap_duplicate(). | 
 |  */ | 
 | int swapcache_prepare(swp_entry_t entry, int nr) | 
 | { | 
 | 	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr); | 
 | } | 
 |  | 
 | /* | 
 |  * Caller should ensure entries belong to the same folio so | 
 |  * the entries won't span cross cluster boundary. | 
 |  */ | 
 | void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr) | 
 | { | 
 | 	swap_entries_put_cache(si, entry, nr); | 
 | } | 
 |  | 
 | /* | 
 |  * add_swap_count_continuation - called when a swap count is duplicated | 
 |  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's | 
 |  * page of the original vmalloc'ed swap_map, to hold the continuation count | 
 |  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called | 
 |  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. | 
 |  * | 
 |  * These continuation pages are seldom referenced: the common paths all work | 
 |  * on the original swap_map, only referring to a continuation page when the | 
 |  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. | 
 |  * | 
 |  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding | 
 |  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) | 
 |  * can be called after dropping locks. | 
 |  */ | 
 | int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	struct swap_cluster_info *ci; | 
 | 	struct page *head; | 
 | 	struct page *page; | 
 | 	struct page *list_page; | 
 | 	pgoff_t offset; | 
 | 	unsigned char count; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better | 
 | 	 * for latency not to zero a page while GFP_ATOMIC and holding locks. | 
 | 	 */ | 
 | 	page = alloc_page(gfp_mask | __GFP_HIGHMEM); | 
 |  | 
 | 	si = get_swap_device(entry); | 
 | 	if (!si) { | 
 | 		/* | 
 | 		 * An acceptable race has occurred since the failing | 
 | 		 * __swap_duplicate(): the swap device may be swapoff | 
 | 		 */ | 
 | 		goto outer; | 
 | 	} | 
 |  | 
 | 	offset = swp_offset(entry); | 
 |  | 
 | 	ci = swap_cluster_lock(si, offset); | 
 |  | 
 | 	count = swap_count(si->swap_map[offset]); | 
 |  | 
 | 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { | 
 | 		/* | 
 | 		 * The higher the swap count, the more likely it is that tasks | 
 | 		 * will race to add swap count continuation: we need to avoid | 
 | 		 * over-provisioning. | 
 | 		 */ | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!page) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	head = vmalloc_to_page(si->swap_map + offset); | 
 | 	offset &= ~PAGE_MASK; | 
 |  | 
 | 	spin_lock(&si->cont_lock); | 
 | 	/* | 
 | 	 * Page allocation does not initialize the page's lru field, | 
 | 	 * but it does always reset its private field. | 
 | 	 */ | 
 | 	if (!page_private(head)) { | 
 | 		BUG_ON(count & COUNT_CONTINUED); | 
 | 		INIT_LIST_HEAD(&head->lru); | 
 | 		set_page_private(head, SWP_CONTINUED); | 
 | 		si->flags |= SWP_CONTINUED; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(list_page, &head->lru, lru) { | 
 | 		unsigned char *map; | 
 |  | 
 | 		/* | 
 | 		 * If the previous map said no continuation, but we've found | 
 | 		 * a continuation page, free our allocation and use this one. | 
 | 		 */ | 
 | 		if (!(count & COUNT_CONTINUED)) | 
 | 			goto out_unlock_cont; | 
 |  | 
 | 		map = kmap_local_page(list_page) + offset; | 
 | 		count = *map; | 
 | 		kunmap_local(map); | 
 |  | 
 | 		/* | 
 | 		 * If this continuation count now has some space in it, | 
 | 		 * free our allocation and use this one. | 
 | 		 */ | 
 | 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) | 
 | 			goto out_unlock_cont; | 
 | 	} | 
 |  | 
 | 	list_add_tail(&page->lru, &head->lru); | 
 | 	page = NULL;			/* now it's attached, don't free it */ | 
 | out_unlock_cont: | 
 | 	spin_unlock(&si->cont_lock); | 
 | out: | 
 | 	swap_cluster_unlock(ci); | 
 | 	put_swap_device(si); | 
 | outer: | 
 | 	if (page) | 
 | 		__free_page(page); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * swap_count_continued - when the original swap_map count is incremented | 
 |  * from SWAP_MAP_MAX, check if there is already a continuation page to carry | 
 |  * into, carry if so, or else fail until a new continuation page is allocated; | 
 |  * when the original swap_map count is decremented from 0 with continuation, | 
 |  * borrow from the continuation and report whether it still holds more. | 
 |  * Called while __swap_duplicate() or caller of swap_entry_put_locked() | 
 |  * holds cluster lock. | 
 |  */ | 
 | static bool swap_count_continued(struct swap_info_struct *si, | 
 | 				 pgoff_t offset, unsigned char count) | 
 | { | 
 | 	struct page *head; | 
 | 	struct page *page; | 
 | 	unsigned char *map; | 
 | 	bool ret; | 
 |  | 
 | 	head = vmalloc_to_page(si->swap_map + offset); | 
 | 	if (page_private(head) != SWP_CONTINUED) { | 
 | 		BUG_ON(count & COUNT_CONTINUED); | 
 | 		return false;		/* need to add count continuation */ | 
 | 	} | 
 |  | 
 | 	spin_lock(&si->cont_lock); | 
 | 	offset &= ~PAGE_MASK; | 
 | 	page = list_next_entry(head, lru); | 
 | 	map = kmap_local_page(page) + offset; | 
 |  | 
 | 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */ | 
 | 		goto init_map;		/* jump over SWAP_CONT_MAX checks */ | 
 |  | 
 | 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ | 
 | 		/* | 
 | 		 * Think of how you add 1 to 999 | 
 | 		 */ | 
 | 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { | 
 | 			kunmap_local(map); | 
 | 			page = list_next_entry(page, lru); | 
 | 			BUG_ON(page == head); | 
 | 			map = kmap_local_page(page) + offset; | 
 | 		} | 
 | 		if (*map == SWAP_CONT_MAX) { | 
 | 			kunmap_local(map); | 
 | 			page = list_next_entry(page, lru); | 
 | 			if (page == head) { | 
 | 				ret = false;	/* add count continuation */ | 
 | 				goto out; | 
 | 			} | 
 | 			map = kmap_local_page(page) + offset; | 
 | init_map:		*map = 0;		/* we didn't zero the page */ | 
 | 		} | 
 | 		*map += 1; | 
 | 		kunmap_local(map); | 
 | 		while ((page = list_prev_entry(page, lru)) != head) { | 
 | 			map = kmap_local_page(page) + offset; | 
 | 			*map = COUNT_CONTINUED; | 
 | 			kunmap_local(map); | 
 | 		} | 
 | 		ret = true;			/* incremented */ | 
 |  | 
 | 	} else {				/* decrementing */ | 
 | 		/* | 
 | 		 * Think of how you subtract 1 from 1000 | 
 | 		 */ | 
 | 		BUG_ON(count != COUNT_CONTINUED); | 
 | 		while (*map == COUNT_CONTINUED) { | 
 | 			kunmap_local(map); | 
 | 			page = list_next_entry(page, lru); | 
 | 			BUG_ON(page == head); | 
 | 			map = kmap_local_page(page) + offset; | 
 | 		} | 
 | 		BUG_ON(*map == 0); | 
 | 		*map -= 1; | 
 | 		if (*map == 0) | 
 | 			count = 0; | 
 | 		kunmap_local(map); | 
 | 		while ((page = list_prev_entry(page, lru)) != head) { | 
 | 			map = kmap_local_page(page) + offset; | 
 | 			*map = SWAP_CONT_MAX | count; | 
 | 			count = COUNT_CONTINUED; | 
 | 			kunmap_local(map); | 
 | 		} | 
 | 		ret = count == COUNT_CONTINUED; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&si->cont_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * free_swap_count_continuations - swapoff free all the continuation pages | 
 |  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. | 
 |  */ | 
 | static void free_swap_count_continuations(struct swap_info_struct *si) | 
 | { | 
 | 	pgoff_t offset; | 
 |  | 
 | 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) { | 
 | 		struct page *head; | 
 | 		head = vmalloc_to_page(si->swap_map + offset); | 
 | 		if (page_private(head)) { | 
 | 			struct page *page, *next; | 
 |  | 
 | 			list_for_each_entry_safe(page, next, &head->lru, lru) { | 
 | 				list_del(&page->lru); | 
 | 				__free_page(page); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) | 
 | static bool __has_usable_swap(void) | 
 | { | 
 | 	return !plist_head_empty(&swap_active_head); | 
 | } | 
 |  | 
 | void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) | 
 | { | 
 | 	struct swap_info_struct *si, *next; | 
 | 	int nid = folio_nid(folio); | 
 |  | 
 | 	if (!(gfp & __GFP_IO)) | 
 | 		return; | 
 |  | 
 | 	if (!__has_usable_swap()) | 
 | 		return; | 
 |  | 
 | 	if (!blk_cgroup_congested()) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We've already scheduled a throttle, avoid taking the global swap | 
 | 	 * lock. | 
 | 	 */ | 
 | 	if (current->throttle_disk) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&swap_avail_lock); | 
 | 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], | 
 | 				  avail_lists[nid]) { | 
 | 		if (si->bdev) { | 
 | 			blkcg_schedule_throttle(si->bdev->bd_disk, true); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&swap_avail_lock); | 
 | } | 
 | #endif | 
 |  | 
 | static int __init swapfile_init(void) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), | 
 | 					 GFP_KERNEL); | 
 | 	if (!swap_avail_heads) { | 
 | 		pr_emerg("Not enough memory for swap heads, swap is disabled\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	for_each_node(nid) | 
 | 		plist_head_init(&swap_avail_heads[nid]); | 
 |  | 
 | 	swapfile_maximum_size = arch_max_swapfile_size(); | 
 |  | 
 | 	/* | 
 | 	 * Once a cluster is freed, it's swap table content is read | 
 | 	 * only, and all swap cache readers (swap_cache_*) verifies | 
 | 	 * the content before use. So it's safe to use RCU slab here. | 
 | 	 */ | 
 | 	if (!SWP_TABLE_USE_PAGE) | 
 | 		swap_table_cachep = kmem_cache_create("swap_table", | 
 | 				    sizeof(struct swap_table), | 
 | 				    0, SLAB_PANIC | SLAB_TYPESAFE_BY_RCU, NULL); | 
 |  | 
 | #ifdef CONFIG_MIGRATION | 
 | 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) | 
 | 		swap_migration_ad_supported = true; | 
 | #endif	/* CONFIG_MIGRATION */ | 
 |  | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(swapfile_init); |