| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * linux/fs/binfmt_elf.c | 
 |  * | 
 |  * These are the functions used to load ELF format executables as used | 
 |  * on SVr4 machines.  Information on the format may be found in the book | 
 |  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support | 
 |  * Tools". | 
 |  * | 
 |  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/signal.h> | 
 | #include <linux/binfmts.h> | 
 | #include <linux/string.h> | 
 | #include <linux/file.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/personality.h> | 
 | #include <linux/elfcore.h> | 
 | #include <linux/init.h> | 
 | #include <linux/highuid.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/security.h> | 
 | #include <linux/random.h> | 
 | #include <linux/elf.h> | 
 | #include <linux/elf-randomize.h> | 
 | #include <linux/utsname.h> | 
 | #include <linux/coredump.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/coredump.h> | 
 | #include <linux/sched/task_stack.h> | 
 | #include <linux/sched/cputime.h> | 
 | #include <linux/sizes.h> | 
 | #include <linux/types.h> | 
 | #include <linux/cred.h> | 
 | #include <linux/dax.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/rseq.h> | 
 | #include <asm/param.h> | 
 | #include <asm/page.h> | 
 |  | 
 | #ifndef ELF_COMPAT | 
 | #define ELF_COMPAT 0 | 
 | #endif | 
 |  | 
 | #ifndef user_long_t | 
 | #define user_long_t long | 
 | #endif | 
 | #ifndef user_siginfo_t | 
 | #define user_siginfo_t siginfo_t | 
 | #endif | 
 |  | 
 | /* That's for binfmt_elf_fdpic to deal with */ | 
 | #ifndef elf_check_fdpic | 
 | #define elf_check_fdpic(ex) false | 
 | #endif | 
 |  | 
 | static int load_elf_binary(struct linux_binprm *bprm); | 
 |  | 
 | /* | 
 |  * If we don't support core dumping, then supply a NULL so we | 
 |  * don't even try. | 
 |  */ | 
 | #ifdef CONFIG_ELF_CORE | 
 | static int elf_core_dump(struct coredump_params *cprm); | 
 | #else | 
 | #define elf_core_dump	NULL | 
 | #endif | 
 |  | 
 | #if ELF_EXEC_PAGESIZE > PAGE_SIZE | 
 | #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE | 
 | #else | 
 | #define ELF_MIN_ALIGN	PAGE_SIZE | 
 | #endif | 
 |  | 
 | #ifndef ELF_CORE_EFLAGS | 
 | #define ELF_CORE_EFLAGS	0 | 
 | #endif | 
 |  | 
 | #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1)) | 
 | #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) | 
 | #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) | 
 |  | 
 | static struct linux_binfmt elf_format = { | 
 | 	.module		= THIS_MODULE, | 
 | 	.load_binary	= load_elf_binary, | 
 | #ifdef CONFIG_COREDUMP | 
 | 	.core_dump	= elf_core_dump, | 
 | 	.min_coredump	= ELF_EXEC_PAGESIZE, | 
 | #endif | 
 | }; | 
 |  | 
 | #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE)) | 
 |  | 
 | static inline void elf_coredump_set_mm_eflags(struct mm_struct *mm, u32 flags) | 
 | { | 
 | #ifdef CONFIG_ARCH_HAS_ELF_CORE_EFLAGS | 
 | 	mm->saved_e_flags = flags; | 
 | #endif | 
 | } | 
 |  | 
 | static inline u32 elf_coredump_get_mm_eflags(struct mm_struct *mm, u32 flags) | 
 | { | 
 | #ifdef CONFIG_ARCH_HAS_ELF_CORE_EFLAGS | 
 | 	flags = mm->saved_e_flags; | 
 | #endif | 
 | 	return flags; | 
 | } | 
 |  | 
 | /* | 
 |  * We need to explicitly zero any trailing portion of the page that follows | 
 |  * p_filesz when it ends before the page ends (e.g. bss), otherwise this | 
 |  * memory will contain the junk from the file that should not be present. | 
 |  */ | 
 | static int padzero(unsigned long address) | 
 | { | 
 | 	unsigned long nbyte; | 
 |  | 
 | 	nbyte = ELF_PAGEOFFSET(address); | 
 | 	if (nbyte) { | 
 | 		nbyte = ELF_MIN_ALIGN - nbyte; | 
 | 		if (clear_user((void __user *)address, nbyte)) | 
 | 			return -EFAULT; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Let's use some macros to make this stack manipulation a little clearer */ | 
 | #ifdef CONFIG_STACK_GROWSUP | 
 | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) | 
 | #define STACK_ROUND(sp, items) \ | 
 | 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL) | 
 | #define STACK_ALLOC(sp, len) ({ \ | 
 | 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ | 
 | 	old_sp; }) | 
 | #else | 
 | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) | 
 | #define STACK_ROUND(sp, items) \ | 
 | 	(((unsigned long) (sp - items)) &~ 15UL) | 
 | #define STACK_ALLOC(sp, len) (sp -= len) | 
 | #endif | 
 |  | 
 | #ifndef ELF_BASE_PLATFORM | 
 | /* | 
 |  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. | 
 |  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value | 
 |  * will be copied to the user stack in the same manner as AT_PLATFORM. | 
 |  */ | 
 | #define ELF_BASE_PLATFORM NULL | 
 | #endif | 
 |  | 
 | static int | 
 | create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec, | 
 | 		unsigned long interp_load_addr, | 
 | 		unsigned long e_entry, unsigned long phdr_addr) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	unsigned long p = bprm->p; | 
 | 	int argc = bprm->argc; | 
 | 	int envc = bprm->envc; | 
 | 	elf_addr_t __user *sp; | 
 | 	elf_addr_t __user *u_platform; | 
 | 	elf_addr_t __user *u_base_platform; | 
 | 	elf_addr_t __user *u_rand_bytes; | 
 | 	const char *k_platform = ELF_PLATFORM; | 
 | 	const char *k_base_platform = ELF_BASE_PLATFORM; | 
 | 	unsigned char k_rand_bytes[16]; | 
 | 	int items; | 
 | 	elf_addr_t *elf_info; | 
 | 	elf_addr_t flags = 0; | 
 | 	int ei_index; | 
 | 	const struct cred *cred = current_cred(); | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	/* | 
 | 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1 | 
 | 	 * evictions by the processes running on the same package. One | 
 | 	 * thing we can do is to shuffle the initial stack for them. | 
 | 	 */ | 
 |  | 
 | 	p = arch_align_stack(p); | 
 |  | 
 | 	/* | 
 | 	 * If this architecture has a platform capability string, copy it | 
 | 	 * to userspace.  In some cases (Sparc), this info is impossible | 
 | 	 * for userspace to get any other way, in others (i386) it is | 
 | 	 * merely difficult. | 
 | 	 */ | 
 | 	u_platform = NULL; | 
 | 	if (k_platform) { | 
 | 		size_t len = strlen(k_platform) + 1; | 
 |  | 
 | 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); | 
 | 		if (copy_to_user(u_platform, k_platform, len)) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this architecture has a "base" platform capability | 
 | 	 * string, copy it to userspace. | 
 | 	 */ | 
 | 	u_base_platform = NULL; | 
 | 	if (k_base_platform) { | 
 | 		size_t len = strlen(k_base_platform) + 1; | 
 |  | 
 | 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); | 
 | 		if (copy_to_user(u_base_platform, k_base_platform, len)) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Generate 16 random bytes for userspace PRNG seeding. | 
 | 	 */ | 
 | 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); | 
 | 	u_rand_bytes = (elf_addr_t __user *) | 
 | 		       STACK_ALLOC(p, sizeof(k_rand_bytes)); | 
 | 	if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* Create the ELF interpreter info */ | 
 | 	elf_info = (elf_addr_t *)mm->saved_auxv; | 
 | 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ | 
 | #define NEW_AUX_ENT(id, val) \ | 
 | 	do { \ | 
 | 		*elf_info++ = id; \ | 
 | 		*elf_info++ = val; \ | 
 | 	} while (0) | 
 |  | 
 | #ifdef ARCH_DLINFO | 
 | 	/* | 
 | 	 * ARCH_DLINFO must come first so PPC can do its special alignment of | 
 | 	 * AUXV. | 
 | 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in | 
 | 	 * ARCH_DLINFO changes | 
 | 	 */ | 
 | 	ARCH_DLINFO; | 
 | #endif | 
 | 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); | 
 | 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); | 
 | 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); | 
 | 	NEW_AUX_ENT(AT_PHDR, phdr_addr); | 
 | 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); | 
 | 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); | 
 | 	NEW_AUX_ENT(AT_BASE, interp_load_addr); | 
 | 	if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0) | 
 | 		flags |= AT_FLAGS_PRESERVE_ARGV0; | 
 | 	NEW_AUX_ENT(AT_FLAGS, flags); | 
 | 	NEW_AUX_ENT(AT_ENTRY, e_entry); | 
 | 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); | 
 | 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); | 
 | 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); | 
 | 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); | 
 | 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec); | 
 | 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); | 
 | #ifdef ELF_HWCAP2 | 
 | 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); | 
 | #endif | 
 | #ifdef ELF_HWCAP3 | 
 | 	NEW_AUX_ENT(AT_HWCAP3, ELF_HWCAP3); | 
 | #endif | 
 | #ifdef ELF_HWCAP4 | 
 | 	NEW_AUX_ENT(AT_HWCAP4, ELF_HWCAP4); | 
 | #endif | 
 | 	NEW_AUX_ENT(AT_EXECFN, bprm->exec); | 
 | 	if (k_platform) { | 
 | 		NEW_AUX_ENT(AT_PLATFORM, | 
 | 			    (elf_addr_t)(unsigned long)u_platform); | 
 | 	} | 
 | 	if (k_base_platform) { | 
 | 		NEW_AUX_ENT(AT_BASE_PLATFORM, | 
 | 			    (elf_addr_t)(unsigned long)u_base_platform); | 
 | 	} | 
 | 	if (bprm->have_execfd) { | 
 | 		NEW_AUX_ENT(AT_EXECFD, bprm->execfd); | 
 | 	} | 
 | #ifdef CONFIG_RSEQ | 
 | 	NEW_AUX_ENT(AT_RSEQ_FEATURE_SIZE, offsetof(struct rseq, end)); | 
 | 	NEW_AUX_ENT(AT_RSEQ_ALIGN, __alignof__(struct rseq)); | 
 | #endif | 
 | #undef NEW_AUX_ENT | 
 | 	/* AT_NULL is zero; clear the rest too */ | 
 | 	memset(elf_info, 0, (char *)mm->saved_auxv + | 
 | 			sizeof(mm->saved_auxv) - (char *)elf_info); | 
 |  | 
 | 	/* And advance past the AT_NULL entry.  */ | 
 | 	elf_info += 2; | 
 |  | 
 | 	ei_index = elf_info - (elf_addr_t *)mm->saved_auxv; | 
 | 	sp = STACK_ADD(p, ei_index); | 
 |  | 
 | 	items = (argc + 1) + (envc + 1) + 1; | 
 | 	bprm->p = STACK_ROUND(sp, items); | 
 |  | 
 | 	/* Point sp at the lowest address on the stack */ | 
 | #ifdef CONFIG_STACK_GROWSUP | 
 | 	sp = (elf_addr_t __user *)bprm->p - items - ei_index; | 
 | 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ | 
 | #else | 
 | 	sp = (elf_addr_t __user *)bprm->p; | 
 | #endif | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * Grow the stack manually; some architectures have a limit on how | 
 | 	 * far ahead a user-space access may be in order to grow the stack. | 
 | 	 */ | 
 | 	if (mmap_write_lock_killable(mm)) | 
 | 		return -EINTR; | 
 | 	vma = find_extend_vma_locked(mm, bprm->p); | 
 | 	mmap_write_unlock(mm); | 
 | 	if (!vma) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */ | 
 | 	if (put_user(argc, sp++)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* Populate list of argv pointers back to argv strings. */ | 
 | 	p = mm->arg_end = mm->arg_start; | 
 | 	while (argc-- > 0) { | 
 | 		size_t len; | 
 | 		if (put_user((elf_addr_t)p, sp++)) | 
 | 			return -EFAULT; | 
 | 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); | 
 | 		if (!len || len > MAX_ARG_STRLEN) | 
 | 			return -EINVAL; | 
 | 		p += len; | 
 | 	} | 
 | 	if (put_user(0, sp++)) | 
 | 		return -EFAULT; | 
 | 	mm->arg_end = p; | 
 |  | 
 | 	/* Populate list of envp pointers back to envp strings. */ | 
 | 	mm->env_end = mm->env_start = p; | 
 | 	while (envc-- > 0) { | 
 | 		size_t len; | 
 | 		if (put_user((elf_addr_t)p, sp++)) | 
 | 			return -EFAULT; | 
 | 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); | 
 | 		if (!len || len > MAX_ARG_STRLEN) | 
 | 			return -EINVAL; | 
 | 		p += len; | 
 | 	} | 
 | 	if (put_user(0, sp++)) | 
 | 		return -EFAULT; | 
 | 	mm->env_end = p; | 
 |  | 
 | 	/* Put the elf_info on the stack in the right place.  */ | 
 | 	if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t))) | 
 | 		return -EFAULT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset" | 
 |  * into memory at "addr". (Note that p_filesz is rounded up to the | 
 |  * next page, so any extra bytes from the file must be wiped.) | 
 |  */ | 
 | static unsigned long elf_map(struct file *filep, unsigned long addr, | 
 | 		const struct elf_phdr *eppnt, int prot, int type, | 
 | 		unsigned long total_size) | 
 | { | 
 | 	unsigned long map_addr; | 
 | 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); | 
 | 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); | 
 | 	addr = ELF_PAGESTART(addr); | 
 | 	size = ELF_PAGEALIGN(size); | 
 |  | 
 | 	/* mmap() will return -EINVAL if given a zero size, but a | 
 | 	 * segment with zero filesize is perfectly valid */ | 
 | 	if (!size) | 
 | 		return addr; | 
 |  | 
 | 	/* | 
 | 	* total_size is the size of the ELF (interpreter) image. | 
 | 	* The _first_ mmap needs to know the full size, otherwise | 
 | 	* randomization might put this image into an overlapping | 
 | 	* position with the ELF binary image. (since size < total_size) | 
 | 	* So we first map the 'big' image - and unmap the remainder at | 
 | 	* the end. (which unmap is needed for ELF images with holes.) | 
 | 	*/ | 
 | 	if (total_size) { | 
 | 		total_size = ELF_PAGEALIGN(total_size); | 
 | 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off); | 
 | 		if (!BAD_ADDR(map_addr)) | 
 | 			vm_munmap(map_addr+size, total_size-size); | 
 | 	} else | 
 | 		map_addr = vm_mmap(filep, addr, size, prot, type, off); | 
 |  | 
 | 	if ((type & MAP_FIXED_NOREPLACE) && | 
 | 	    PTR_ERR((void *)map_addr) == -EEXIST) | 
 | 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n", | 
 | 			task_pid_nr(current), current->comm, (void *)addr); | 
 |  | 
 | 	return(map_addr); | 
 | } | 
 |  | 
 | /* | 
 |  * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset" | 
 |  * into memory at "addr". Memory from "p_filesz" through "p_memsz" | 
 |  * rounded up to the next page is zeroed. | 
 |  */ | 
 | static unsigned long elf_load(struct file *filep, unsigned long addr, | 
 | 		const struct elf_phdr *eppnt, int prot, int type, | 
 | 		unsigned long total_size) | 
 | { | 
 | 	unsigned long zero_start, zero_end; | 
 | 	unsigned long map_addr; | 
 |  | 
 | 	if (eppnt->p_filesz) { | 
 | 		map_addr = elf_map(filep, addr, eppnt, prot, type, total_size); | 
 | 		if (BAD_ADDR(map_addr)) | 
 | 			return map_addr; | 
 | 		if (eppnt->p_memsz > eppnt->p_filesz) { | 
 | 			zero_start = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) + | 
 | 				eppnt->p_filesz; | 
 | 			zero_end = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) + | 
 | 				eppnt->p_memsz; | 
 |  | 
 | 			/* | 
 | 			 * Zero the end of the last mapped page but ignore | 
 | 			 * any errors if the segment isn't writable. | 
 | 			 */ | 
 | 			if (padzero(zero_start) && (prot & PROT_WRITE)) | 
 | 				return -EFAULT; | 
 | 		} | 
 | 	} else { | 
 | 		map_addr = zero_start = ELF_PAGESTART(addr); | 
 | 		zero_end = zero_start + ELF_PAGEOFFSET(eppnt->p_vaddr) + | 
 | 			eppnt->p_memsz; | 
 | 	} | 
 | 	if (eppnt->p_memsz > eppnt->p_filesz) { | 
 | 		/* | 
 | 		 * Map the last of the segment. | 
 | 		 * If the header is requesting these pages to be | 
 | 		 * executable, honour that (ppc32 needs this). | 
 | 		 */ | 
 | 		int error; | 
 |  | 
 | 		zero_start = ELF_PAGEALIGN(zero_start); | 
 | 		zero_end = ELF_PAGEALIGN(zero_end); | 
 |  | 
 | 		error = vm_brk_flags(zero_start, zero_end - zero_start, | 
 | 				     prot & PROT_EXEC ? VM_EXEC : 0); | 
 | 		if (error) | 
 | 			map_addr = error; | 
 | 	} | 
 | 	return map_addr; | 
 | } | 
 |  | 
 |  | 
 | static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr) | 
 | { | 
 | 	elf_addr_t min_addr = -1; | 
 | 	elf_addr_t max_addr = 0; | 
 | 	bool pt_load = false; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		if (phdr[i].p_type == PT_LOAD) { | 
 | 			min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr)); | 
 | 			max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz); | 
 | 			pt_load = true; | 
 | 		} | 
 | 	} | 
 | 	return pt_load ? (max_addr - min_addr) : 0; | 
 | } | 
 |  | 
 | static int elf_read(struct file *file, void *buf, size_t len, loff_t pos) | 
 | { | 
 | 	ssize_t rv; | 
 |  | 
 | 	rv = kernel_read(file, buf, len, &pos); | 
 | 	if (unlikely(rv != len)) { | 
 | 		return (rv < 0) ? rv : -EIO; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr) | 
 | { | 
 | 	unsigned long alignment = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		if (cmds[i].p_type == PT_LOAD) { | 
 | 			unsigned long p_align = cmds[i].p_align; | 
 |  | 
 | 			/* skip non-power of two alignments as invalid */ | 
 | 			if (!is_power_of_2(p_align)) | 
 | 				continue; | 
 | 			alignment = max(alignment, p_align); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* ensure we align to at least one page */ | 
 | 	return ELF_PAGEALIGN(alignment); | 
 | } | 
 |  | 
 | /** | 
 |  * load_elf_phdrs() - load ELF program headers | 
 |  * @elf_ex:   ELF header of the binary whose program headers should be loaded | 
 |  * @elf_file: the opened ELF binary file | 
 |  * | 
 |  * Loads ELF program headers from the binary file elf_file, which has the ELF | 
 |  * header pointed to by elf_ex, into a newly allocated array. The caller is | 
 |  * responsible for freeing the allocated data. Returns NULL upon failure. | 
 |  */ | 
 | static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex, | 
 | 				       struct file *elf_file) | 
 | { | 
 | 	struct elf_phdr *elf_phdata = NULL; | 
 | 	int retval = -1; | 
 | 	unsigned int size; | 
 |  | 
 | 	/* | 
 | 	 * If the size of this structure has changed, then punt, since | 
 | 	 * we will be doing the wrong thing. | 
 | 	 */ | 
 | 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) | 
 | 		goto out; | 
 |  | 
 | 	/* Sanity check the number of program headers... */ | 
 | 	/* ...and their total size. */ | 
 | 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum; | 
 | 	if (size == 0 || size > 65536) | 
 | 		goto out; | 
 |  | 
 | 	elf_phdata = kmalloc(size, GFP_KERNEL); | 
 | 	if (!elf_phdata) | 
 | 		goto out; | 
 |  | 
 | 	/* Read in the program headers */ | 
 | 	retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff); | 
 |  | 
 | out: | 
 | 	if (retval) { | 
 | 		kfree(elf_phdata); | 
 | 		elf_phdata = NULL; | 
 | 	} | 
 | 	return elf_phdata; | 
 | } | 
 |  | 
 | #ifndef CONFIG_ARCH_BINFMT_ELF_STATE | 
 |  | 
 | /** | 
 |  * struct arch_elf_state - arch-specific ELF loading state | 
 |  * | 
 |  * This structure is used to preserve architecture specific data during | 
 |  * the loading of an ELF file, throughout the checking of architecture | 
 |  * specific ELF headers & through to the point where the ELF load is | 
 |  * known to be proceeding (ie. SET_PERSONALITY). | 
 |  * | 
 |  * This implementation is a dummy for architectures which require no | 
 |  * specific state. | 
 |  */ | 
 | struct arch_elf_state { | 
 | }; | 
 |  | 
 | #define INIT_ARCH_ELF_STATE {} | 
 |  | 
 | /** | 
 |  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header | 
 |  * @ehdr:	The main ELF header | 
 |  * @phdr:	The program header to check | 
 |  * @elf:	The open ELF file | 
 |  * @is_interp:	True if the phdr is from the interpreter of the ELF being | 
 |  *		loaded, else false. | 
 |  * @state:	Architecture-specific state preserved throughout the process | 
 |  *		of loading the ELF. | 
 |  * | 
 |  * Inspects the program header phdr to validate its correctness and/or | 
 |  * suitability for the system. Called once per ELF program header in the | 
 |  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its | 
 |  * interpreter. | 
 |  * | 
 |  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load | 
 |  *         with that return code. | 
 |  */ | 
 | static inline int arch_elf_pt_proc(struct elfhdr *ehdr, | 
 | 				   struct elf_phdr *phdr, | 
 | 				   struct file *elf, bool is_interp, | 
 | 				   struct arch_elf_state *state) | 
 | { | 
 | 	/* Dummy implementation, always proceed */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * arch_check_elf() - check an ELF executable | 
 |  * @ehdr:	The main ELF header | 
 |  * @has_interp:	True if the ELF has an interpreter, else false. | 
 |  * @interp_ehdr: The interpreter's ELF header | 
 |  * @state:	Architecture-specific state preserved throughout the process | 
 |  *		of loading the ELF. | 
 |  * | 
 |  * Provides a final opportunity for architecture code to reject the loading | 
 |  * of the ELF & cause an exec syscall to return an error. This is called after | 
 |  * all program headers to be checked by arch_elf_pt_proc have been. | 
 |  * | 
 |  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load | 
 |  *         with that return code. | 
 |  */ | 
 | static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, | 
 | 				 struct elfhdr *interp_ehdr, | 
 | 				 struct arch_elf_state *state) | 
 | { | 
 | 	/* Dummy implementation, always proceed */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ | 
 |  | 
 | static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state, | 
 | 			    bool has_interp, bool is_interp) | 
 | { | 
 | 	int prot = 0; | 
 |  | 
 | 	if (p_flags & PF_R) | 
 | 		prot |= PROT_READ; | 
 | 	if (p_flags & PF_W) | 
 | 		prot |= PROT_WRITE; | 
 | 	if (p_flags & PF_X) | 
 | 		prot |= PROT_EXEC; | 
 |  | 
 | 	return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp); | 
 | } | 
 |  | 
 | /* This is much more generalized than the library routine read function, | 
 |    so we keep this separate.  Technically the library read function | 
 |    is only provided so that we can read a.out libraries that have | 
 |    an ELF header */ | 
 |  | 
 | static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, | 
 | 		struct file *interpreter, | 
 | 		unsigned long no_base, struct elf_phdr *interp_elf_phdata, | 
 | 		struct arch_elf_state *arch_state) | 
 | { | 
 | 	struct elf_phdr *eppnt; | 
 | 	unsigned long load_addr = 0; | 
 | 	int load_addr_set = 0; | 
 | 	unsigned long error = ~0UL; | 
 | 	unsigned long total_size; | 
 | 	int i; | 
 |  | 
 | 	/* First of all, some simple consistency checks */ | 
 | 	if (interp_elf_ex->e_type != ET_EXEC && | 
 | 	    interp_elf_ex->e_type != ET_DYN) | 
 | 		goto out; | 
 | 	if (!elf_check_arch(interp_elf_ex) || | 
 | 	    elf_check_fdpic(interp_elf_ex)) | 
 | 		goto out; | 
 | 	if (!can_mmap_file(interpreter)) | 
 | 		goto out; | 
 |  | 
 | 	total_size = total_mapping_size(interp_elf_phdata, | 
 | 					interp_elf_ex->e_phnum); | 
 | 	if (!total_size) { | 
 | 		error = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	eppnt = interp_elf_phdata; | 
 | 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { | 
 | 		if (eppnt->p_type == PT_LOAD) { | 
 | 			int elf_type = MAP_PRIVATE; | 
 | 			int elf_prot = make_prot(eppnt->p_flags, arch_state, | 
 | 						 true, true); | 
 | 			unsigned long vaddr = 0; | 
 | 			unsigned long k, map_addr; | 
 |  | 
 | 			vaddr = eppnt->p_vaddr; | 
 | 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) | 
 | 				elf_type |= MAP_FIXED; | 
 | 			else if (no_base && interp_elf_ex->e_type == ET_DYN) | 
 | 				load_addr = -vaddr; | 
 |  | 
 | 			map_addr = elf_load(interpreter, load_addr + vaddr, | 
 | 					eppnt, elf_prot, elf_type, total_size); | 
 | 			total_size = 0; | 
 | 			error = map_addr; | 
 | 			if (BAD_ADDR(map_addr)) | 
 | 				goto out; | 
 |  | 
 | 			if (!load_addr_set && | 
 | 			    interp_elf_ex->e_type == ET_DYN) { | 
 | 				load_addr = map_addr - ELF_PAGESTART(vaddr); | 
 | 				load_addr_set = 1; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Check to see if the section's size will overflow the | 
 | 			 * allowed task size. Note that p_filesz must always be | 
 | 			 * <= p_memsize so it's only necessary to check p_memsz. | 
 | 			 */ | 
 | 			k = load_addr + eppnt->p_vaddr; | 
 | 			if (BAD_ADDR(k) || | 
 | 			    eppnt->p_filesz > eppnt->p_memsz || | 
 | 			    eppnt->p_memsz > TASK_SIZE || | 
 | 			    TASK_SIZE - eppnt->p_memsz < k) { | 
 | 				error = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	error = load_addr; | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * These are the functions used to load ELF style executables and shared | 
 |  * libraries.  There is no binary dependent code anywhere else. | 
 |  */ | 
 |  | 
 | static int parse_elf_property(const char *data, size_t *off, size_t datasz, | 
 | 			      struct arch_elf_state *arch, | 
 | 			      bool have_prev_type, u32 *prev_type) | 
 | { | 
 | 	size_t o, step; | 
 | 	const struct gnu_property *pr; | 
 | 	int ret; | 
 |  | 
 | 	if (*off == datasz) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN)) | 
 | 		return -EIO; | 
 | 	o = *off; | 
 | 	datasz -= *off; | 
 |  | 
 | 	if (datasz < sizeof(*pr)) | 
 | 		return -ENOEXEC; | 
 | 	pr = (const struct gnu_property *)(data + o); | 
 | 	o += sizeof(*pr); | 
 | 	datasz -= sizeof(*pr); | 
 |  | 
 | 	if (pr->pr_datasz > datasz) | 
 | 		return -ENOEXEC; | 
 |  | 
 | 	WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN); | 
 | 	step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN); | 
 | 	if (step > datasz) | 
 | 		return -ENOEXEC; | 
 |  | 
 | 	/* Properties are supposed to be unique and sorted on pr_type: */ | 
 | 	if (have_prev_type && pr->pr_type <= *prev_type) | 
 | 		return -ENOEXEC; | 
 | 	*prev_type = pr->pr_type; | 
 |  | 
 | 	ret = arch_parse_elf_property(pr->pr_type, data + o, | 
 | 				      pr->pr_datasz, ELF_COMPAT, arch); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	*off = o + step; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define NOTE_DATA_SZ SZ_1K | 
 | #define NOTE_NAME_SZ (sizeof(NN_GNU_PROPERTY_TYPE_0)) | 
 |  | 
 | static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr, | 
 | 				struct arch_elf_state *arch) | 
 | { | 
 | 	union { | 
 | 		struct elf_note nhdr; | 
 | 		char data[NOTE_DATA_SZ]; | 
 | 	} note; | 
 | 	loff_t pos; | 
 | 	ssize_t n; | 
 | 	size_t off, datasz; | 
 | 	int ret; | 
 | 	bool have_prev_type; | 
 | 	u32 prev_type; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr) | 
 | 		return 0; | 
 |  | 
 | 	/* load_elf_binary() shouldn't call us unless this is true... */ | 
 | 	if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY)) | 
 | 		return -ENOEXEC; | 
 |  | 
 | 	/* If the properties are crazy large, that's too bad (for now): */ | 
 | 	if (phdr->p_filesz > sizeof(note)) | 
 | 		return -ENOEXEC; | 
 |  | 
 | 	pos = phdr->p_offset; | 
 | 	n = kernel_read(f, ¬e, phdr->p_filesz, &pos); | 
 |  | 
 | 	BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ); | 
 | 	if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ) | 
 | 		return -EIO; | 
 |  | 
 | 	if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || | 
 | 	    note.nhdr.n_namesz != NOTE_NAME_SZ || | 
 | 	    strncmp(note.data + sizeof(note.nhdr), | 
 | 		    NN_GNU_PROPERTY_TYPE_0, n - sizeof(note.nhdr))) | 
 | 		return -ENOEXEC; | 
 |  | 
 | 	off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ, | 
 | 		       ELF_GNU_PROPERTY_ALIGN); | 
 | 	if (off > n) | 
 | 		return -ENOEXEC; | 
 |  | 
 | 	if (note.nhdr.n_descsz > n - off) | 
 | 		return -ENOEXEC; | 
 | 	datasz = off + note.nhdr.n_descsz; | 
 |  | 
 | 	have_prev_type = false; | 
 | 	do { | 
 | 		ret = parse_elf_property(note.data, &off, datasz, arch, | 
 | 					 have_prev_type, &prev_type); | 
 | 		have_prev_type = true; | 
 | 	} while (!ret); | 
 |  | 
 | 	return ret == -ENOENT ? 0 : ret; | 
 | } | 
 |  | 
 | static int load_elf_binary(struct linux_binprm *bprm) | 
 | { | 
 | 	struct file *interpreter = NULL; /* to shut gcc up */ | 
 | 	unsigned long load_bias = 0, phdr_addr = 0; | 
 | 	int first_pt_load = 1; | 
 | 	unsigned long error; | 
 | 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; | 
 | 	struct elf_phdr *elf_property_phdata = NULL; | 
 | 	unsigned long elf_brk; | 
 | 	bool brk_moved = false; | 
 | 	int retval, i; | 
 | 	unsigned long elf_entry; | 
 | 	unsigned long e_entry; | 
 | 	unsigned long interp_load_addr = 0; | 
 | 	unsigned long start_code, end_code, start_data, end_data; | 
 | 	unsigned long reloc_func_desc __maybe_unused = 0; | 
 | 	int executable_stack = EXSTACK_DEFAULT; | 
 | 	struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf; | 
 | 	struct elfhdr *interp_elf_ex = NULL; | 
 | 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; | 
 | 	struct mm_struct *mm; | 
 | 	struct pt_regs *regs; | 
 |  | 
 | 	retval = -ENOEXEC; | 
 | 	/* First of all, some simple consistency checks */ | 
 | 	if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0) | 
 | 		goto out; | 
 |  | 
 | 	if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN) | 
 | 		goto out; | 
 | 	if (!elf_check_arch(elf_ex)) | 
 | 		goto out; | 
 | 	if (elf_check_fdpic(elf_ex)) | 
 | 		goto out; | 
 | 	if (!can_mmap_file(bprm->file)) | 
 | 		goto out; | 
 |  | 
 | 	elf_phdata = load_elf_phdrs(elf_ex, bprm->file); | 
 | 	if (!elf_phdata) | 
 | 		goto out; | 
 |  | 
 | 	elf_ppnt = elf_phdata; | 
 | 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) { | 
 | 		char *elf_interpreter; | 
 |  | 
 | 		if (elf_ppnt->p_type == PT_GNU_PROPERTY) { | 
 | 			elf_property_phdata = elf_ppnt; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (elf_ppnt->p_type != PT_INTERP) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * This is the program interpreter used for shared libraries - | 
 | 		 * for now assume that this is an a.out format binary. | 
 | 		 */ | 
 | 		retval = -ENOEXEC; | 
 | 		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2) | 
 | 			goto out_free_ph; | 
 |  | 
 | 		retval = -ENOMEM; | 
 | 		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL); | 
 | 		if (!elf_interpreter) | 
 | 			goto out_free_ph; | 
 |  | 
 | 		retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz, | 
 | 				  elf_ppnt->p_offset); | 
 | 		if (retval < 0) | 
 | 			goto out_free_interp; | 
 | 		/* make sure path is NULL terminated */ | 
 | 		retval = -ENOEXEC; | 
 | 		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') | 
 | 			goto out_free_interp; | 
 |  | 
 | 		interpreter = open_exec(elf_interpreter); | 
 | 		kfree(elf_interpreter); | 
 | 		retval = PTR_ERR(interpreter); | 
 | 		if (IS_ERR(interpreter)) | 
 | 			goto out_free_ph; | 
 |  | 
 | 		/* | 
 | 		 * If the binary is not readable then enforce mm->dumpable = 0 | 
 | 		 * regardless of the interpreter's permissions. | 
 | 		 */ | 
 | 		would_dump(bprm, interpreter); | 
 |  | 
 | 		interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL); | 
 | 		if (!interp_elf_ex) { | 
 | 			retval = -ENOMEM; | 
 | 			goto out_free_file; | 
 | 		} | 
 |  | 
 | 		/* Get the exec headers */ | 
 | 		retval = elf_read(interpreter, interp_elf_ex, | 
 | 				  sizeof(*interp_elf_ex), 0); | 
 | 		if (retval < 0) | 
 | 			goto out_free_dentry; | 
 |  | 
 | 		break; | 
 |  | 
 | out_free_interp: | 
 | 		kfree(elf_interpreter); | 
 | 		goto out_free_ph; | 
 | 	} | 
 |  | 
 | 	elf_ppnt = elf_phdata; | 
 | 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) | 
 | 		switch (elf_ppnt->p_type) { | 
 | 		case PT_GNU_STACK: | 
 | 			if (elf_ppnt->p_flags & PF_X) | 
 | 				executable_stack = EXSTACK_ENABLE_X; | 
 | 			else | 
 | 				executable_stack = EXSTACK_DISABLE_X; | 
 | 			break; | 
 |  | 
 | 		case PT_LOPROC ... PT_HIPROC: | 
 | 			retval = arch_elf_pt_proc(elf_ex, elf_ppnt, | 
 | 						  bprm->file, false, | 
 | 						  &arch_state); | 
 | 			if (retval) | 
 | 				goto out_free_dentry; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 	/* Some simple consistency checks for the interpreter */ | 
 | 	if (interpreter) { | 
 | 		retval = -ELIBBAD; | 
 | 		/* Not an ELF interpreter */ | 
 | 		if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0) | 
 | 			goto out_free_dentry; | 
 | 		/* Verify the interpreter has a valid arch */ | 
 | 		if (!elf_check_arch(interp_elf_ex) || | 
 | 		    elf_check_fdpic(interp_elf_ex)) | 
 | 			goto out_free_dentry; | 
 |  | 
 | 		/* Load the interpreter program headers */ | 
 | 		interp_elf_phdata = load_elf_phdrs(interp_elf_ex, | 
 | 						   interpreter); | 
 | 		if (!interp_elf_phdata) | 
 | 			goto out_free_dentry; | 
 |  | 
 | 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */ | 
 | 		elf_property_phdata = NULL; | 
 | 		elf_ppnt = interp_elf_phdata; | 
 | 		for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++) | 
 | 			switch (elf_ppnt->p_type) { | 
 | 			case PT_GNU_PROPERTY: | 
 | 				elf_property_phdata = elf_ppnt; | 
 | 				break; | 
 |  | 
 | 			case PT_LOPROC ... PT_HIPROC: | 
 | 				retval = arch_elf_pt_proc(interp_elf_ex, | 
 | 							  elf_ppnt, interpreter, | 
 | 							  true, &arch_state); | 
 | 				if (retval) | 
 | 					goto out_free_dentry; | 
 | 				break; | 
 | 			} | 
 | 	} | 
 |  | 
 | 	retval = parse_elf_properties(interpreter ?: bprm->file, | 
 | 				      elf_property_phdata, &arch_state); | 
 | 	if (retval) | 
 | 		goto out_free_dentry; | 
 |  | 
 | 	/* | 
 | 	 * Allow arch code to reject the ELF at this point, whilst it's | 
 | 	 * still possible to return an error to the code that invoked | 
 | 	 * the exec syscall. | 
 | 	 */ | 
 | 	retval = arch_check_elf(elf_ex, | 
 | 				!!interpreter, interp_elf_ex, | 
 | 				&arch_state); | 
 | 	if (retval) | 
 | 		goto out_free_dentry; | 
 |  | 
 | 	/* Flush all traces of the currently running executable */ | 
 | 	retval = begin_new_exec(bprm); | 
 | 	if (retval) | 
 | 		goto out_free_dentry; | 
 |  | 
 | 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages | 
 | 	   may depend on the personality.  */ | 
 | 	SET_PERSONALITY2(*elf_ex, &arch_state); | 
 | 	if (elf_read_implies_exec(*elf_ex, executable_stack)) | 
 | 		current->personality |= READ_IMPLIES_EXEC; | 
 |  | 
 | 	const int snapshot_randomize_va_space = READ_ONCE(randomize_va_space); | 
 | 	if (!(current->personality & ADDR_NO_RANDOMIZE) && snapshot_randomize_va_space) | 
 | 		current->flags |= PF_RANDOMIZE; | 
 |  | 
 | 	setup_new_exec(bprm); | 
 |  | 
 | 	/* Do this so that we can load the interpreter, if need be.  We will | 
 | 	   change some of these later */ | 
 | 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), | 
 | 				 executable_stack); | 
 | 	if (retval < 0) | 
 | 		goto out_free_dentry; | 
 |  | 
 | 	elf_brk = 0; | 
 |  | 
 | 	start_code = ~0UL; | 
 | 	end_code = 0; | 
 | 	start_data = 0; | 
 | 	end_data = 0; | 
 |  | 
 | 	/* Now we do a little grungy work by mmapping the ELF image into | 
 | 	   the correct location in memory. */ | 
 | 	for(i = 0, elf_ppnt = elf_phdata; | 
 | 	    i < elf_ex->e_phnum; i++, elf_ppnt++) { | 
 | 		int elf_prot, elf_flags; | 
 | 		unsigned long k, vaddr; | 
 | 		unsigned long total_size = 0; | 
 | 		unsigned long alignment; | 
 |  | 
 | 		if (elf_ppnt->p_type != PT_LOAD) | 
 | 			continue; | 
 |  | 
 | 		elf_prot = make_prot(elf_ppnt->p_flags, &arch_state, | 
 | 				     !!interpreter, false); | 
 |  | 
 | 		elf_flags = MAP_PRIVATE; | 
 |  | 
 | 		vaddr = elf_ppnt->p_vaddr; | 
 | 		/* | 
 | 		 * The first time through the loop, first_pt_load is true: | 
 | 		 * layout will be calculated. Once set, use MAP_FIXED since | 
 | 		 * we know we've already safely mapped the entire region with | 
 | 		 * MAP_FIXED_NOREPLACE in the once-per-binary logic following. | 
 | 		 */ | 
 | 		if (!first_pt_load) { | 
 | 			elf_flags |= MAP_FIXED; | 
 | 		} else if (elf_ex->e_type == ET_EXEC) { | 
 | 			/* | 
 | 			 * This logic is run once for the first LOAD Program | 
 | 			 * Header for ET_EXEC binaries. No special handling | 
 | 			 * is needed. | 
 | 			 */ | 
 | 			elf_flags |= MAP_FIXED_NOREPLACE; | 
 | 		} else if (elf_ex->e_type == ET_DYN) { | 
 | 			/* | 
 | 			 * This logic is run once for the first LOAD Program | 
 | 			 * Header for ET_DYN binaries to calculate the | 
 | 			 * randomization (load_bias) for all the LOAD | 
 | 			 * Program Headers. | 
 | 			 */ | 
 |  | 
 | 			/* | 
 | 			 * Calculate the entire size of the ELF mapping | 
 | 			 * (total_size), used for the initial mapping, | 
 | 			 * due to load_addr_set which is set to true later | 
 | 			 * once the initial mapping is performed. | 
 | 			 * | 
 | 			 * Note that this is only sensible when the LOAD | 
 | 			 * segments are contiguous (or overlapping). If | 
 | 			 * used for LOADs that are far apart, this would | 
 | 			 * cause the holes between LOADs to be mapped, | 
 | 			 * running the risk of having the mapping fail, | 
 | 			 * as it would be larger than the ELF file itself. | 
 | 			 * | 
 | 			 * As a result, only ET_DYN does this, since | 
 | 			 * some ET_EXEC (e.g. ia64) may have large virtual | 
 | 			 * memory holes between LOADs. | 
 | 			 * | 
 | 			 */ | 
 | 			total_size = total_mapping_size(elf_phdata, | 
 | 							elf_ex->e_phnum); | 
 | 			if (!total_size) { | 
 | 				retval = -EINVAL; | 
 | 				goto out_free_dentry; | 
 | 			} | 
 |  | 
 | 			/* Calculate any requested alignment. */ | 
 | 			alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum); | 
 |  | 
 | 			/** | 
 | 			 * DOC: PIE handling | 
 | 			 * | 
 | 			 * There are effectively two types of ET_DYN ELF | 
 | 			 * binaries: programs (i.e. PIE: ET_DYN with | 
 | 			 * PT_INTERP) and loaders (i.e. static PIE: ET_DYN | 
 | 			 * without PT_INTERP, usually the ELF interpreter | 
 | 			 * itself). Loaders must be loaded away from programs | 
 | 			 * since the program may otherwise collide with the | 
 | 			 * loader (especially for ET_EXEC which does not have | 
 | 			 * a randomized position). | 
 | 			 * | 
 | 			 * For example, to handle invocations of | 
 | 			 * "./ld.so someprog" to test out a new version of | 
 | 			 * the loader, the subsequent program that the | 
 | 			 * loader loads must avoid the loader itself, so | 
 | 			 * they cannot share the same load range. Sufficient | 
 | 			 * room for the brk must be allocated with the | 
 | 			 * loader as well, since brk must be available with | 
 | 			 * the loader. | 
 | 			 * | 
 | 			 * Therefore, programs are loaded offset from | 
 | 			 * ELF_ET_DYN_BASE and loaders are loaded into the | 
 | 			 * independently randomized mmap region (0 load_bias | 
 | 			 * without MAP_FIXED nor MAP_FIXED_NOREPLACE). | 
 | 			 * | 
 | 			 * See below for "brk" handling details, which is | 
 | 			 * also affected by program vs loader and ASLR. | 
 | 			 */ | 
 | 			if (interpreter) { | 
 | 				/* On ET_DYN with PT_INTERP, we do the ASLR. */ | 
 | 				load_bias = ELF_ET_DYN_BASE; | 
 | 				if (current->flags & PF_RANDOMIZE) | 
 | 					load_bias += arch_mmap_rnd(); | 
 | 				/* Adjust alignment as requested. */ | 
 | 				if (alignment) | 
 | 					load_bias &= ~(alignment - 1); | 
 | 				elf_flags |= MAP_FIXED_NOREPLACE; | 
 | 			} else { | 
 | 				/* | 
 | 				 * For ET_DYN without PT_INTERP, we rely on | 
 | 				 * the architectures's (potentially ASLR) mmap | 
 | 				 * base address (via a load_bias of 0). | 
 | 				 * | 
 | 				 * When a large alignment is requested, we | 
 | 				 * must do the allocation at address "0" right | 
 | 				 * now to discover where things will load so | 
 | 				 * that we can adjust the resulting alignment. | 
 | 				 * In this case (load_bias != 0), we can use | 
 | 				 * MAP_FIXED_NOREPLACE to make sure the mapping | 
 | 				 * doesn't collide with anything. | 
 | 				 */ | 
 | 				if (alignment > ELF_MIN_ALIGN) { | 
 | 					load_bias = elf_load(bprm->file, 0, elf_ppnt, | 
 | 							     elf_prot, elf_flags, total_size); | 
 | 					if (BAD_ADDR(load_bias)) { | 
 | 						retval = IS_ERR_VALUE(load_bias) ? | 
 | 							 PTR_ERR((void*)load_bias) : -EINVAL; | 
 | 						goto out_free_dentry; | 
 | 					} | 
 | 					vm_munmap(load_bias, total_size); | 
 | 					/* Adjust alignment as requested. */ | 
 | 					if (alignment) | 
 | 						load_bias &= ~(alignment - 1); | 
 | 					elf_flags |= MAP_FIXED_NOREPLACE; | 
 | 				} else | 
 | 					load_bias = 0; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Since load_bias is used for all subsequent loading | 
 | 			 * calculations, we must lower it by the first vaddr | 
 | 			 * so that the remaining calculations based on the | 
 | 			 * ELF vaddrs will be correctly offset. The result | 
 | 			 * is then page aligned. | 
 | 			 */ | 
 | 			load_bias = ELF_PAGESTART(load_bias - vaddr); | 
 | 		} | 
 |  | 
 | 		error = elf_load(bprm->file, load_bias + vaddr, elf_ppnt, | 
 | 				elf_prot, elf_flags, total_size); | 
 | 		if (BAD_ADDR(error)) { | 
 | 			retval = IS_ERR_VALUE(error) ? | 
 | 				PTR_ERR((void*)error) : -EINVAL; | 
 | 			goto out_free_dentry; | 
 | 		} | 
 |  | 
 | 		if (first_pt_load) { | 
 | 			first_pt_load = 0; | 
 | 			if (elf_ex->e_type == ET_DYN) { | 
 | 				load_bias += error - | 
 | 				             ELF_PAGESTART(load_bias + vaddr); | 
 | 				reloc_func_desc = load_bias; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Figure out which segment in the file contains the Program | 
 | 		 * Header table, and map to the associated memory address. | 
 | 		 */ | 
 | 		if (elf_ppnt->p_offset <= elf_ex->e_phoff && | 
 | 		    elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) { | 
 | 			phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset + | 
 | 				    elf_ppnt->p_vaddr; | 
 | 		} | 
 |  | 
 | 		k = elf_ppnt->p_vaddr; | 
 | 		if ((elf_ppnt->p_flags & PF_X) && k < start_code) | 
 | 			start_code = k; | 
 | 		if (start_data < k) | 
 | 			start_data = k; | 
 |  | 
 | 		/* | 
 | 		 * Check to see if the section's size will overflow the | 
 | 		 * allowed task size. Note that p_filesz must always be | 
 | 		 * <= p_memsz so it is only necessary to check p_memsz. | 
 | 		 */ | 
 | 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || | 
 | 		    elf_ppnt->p_memsz > TASK_SIZE || | 
 | 		    TASK_SIZE - elf_ppnt->p_memsz < k) { | 
 | 			/* set_brk can never work. Avoid overflows. */ | 
 | 			retval = -EINVAL; | 
 | 			goto out_free_dentry; | 
 | 		} | 
 |  | 
 | 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; | 
 |  | 
 | 		if ((elf_ppnt->p_flags & PF_X) && end_code < k) | 
 | 			end_code = k; | 
 | 		if (end_data < k) | 
 | 			end_data = k; | 
 | 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; | 
 | 		if (k > elf_brk) | 
 | 			elf_brk = k; | 
 | 	} | 
 |  | 
 | 	e_entry = elf_ex->e_entry + load_bias; | 
 | 	phdr_addr += load_bias; | 
 | 	elf_brk += load_bias; | 
 | 	start_code += load_bias; | 
 | 	end_code += load_bias; | 
 | 	start_data += load_bias; | 
 | 	end_data += load_bias; | 
 |  | 
 | 	if (interpreter) { | 
 | 		elf_entry = load_elf_interp(interp_elf_ex, | 
 | 					    interpreter, | 
 | 					    load_bias, interp_elf_phdata, | 
 | 					    &arch_state); | 
 | 		if (!IS_ERR_VALUE(elf_entry)) { | 
 | 			/* | 
 | 			 * load_elf_interp() returns relocation | 
 | 			 * adjustment | 
 | 			 */ | 
 | 			interp_load_addr = elf_entry; | 
 | 			elf_entry += interp_elf_ex->e_entry; | 
 | 		} | 
 | 		if (BAD_ADDR(elf_entry)) { | 
 | 			retval = IS_ERR_VALUE(elf_entry) ? | 
 | 					(int)elf_entry : -EINVAL; | 
 | 			goto out_free_dentry; | 
 | 		} | 
 | 		reloc_func_desc = interp_load_addr; | 
 |  | 
 | 		exe_file_allow_write_access(interpreter); | 
 | 		fput(interpreter); | 
 |  | 
 | 		kfree(interp_elf_ex); | 
 | 		kfree(interp_elf_phdata); | 
 | 	} else { | 
 | 		elf_entry = e_entry; | 
 | 		if (BAD_ADDR(elf_entry)) { | 
 | 			retval = -EINVAL; | 
 | 			goto out_free_dentry; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	kfree(elf_phdata); | 
 |  | 
 | 	set_binfmt(&elf_format); | 
 |  | 
 | #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES | 
 | 	retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter); | 
 | 	if (retval < 0) | 
 | 		goto out; | 
 | #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ | 
 |  | 
 | 	retval = create_elf_tables(bprm, elf_ex, interp_load_addr, | 
 | 				   e_entry, phdr_addr); | 
 | 	if (retval < 0) | 
 | 		goto out; | 
 |  | 
 | 	mm = current->mm; | 
 | 	mm->end_code = end_code; | 
 | 	mm->start_code = start_code; | 
 | 	mm->start_data = start_data; | 
 | 	mm->end_data = end_data; | 
 | 	mm->start_stack = bprm->p; | 
 |  | 
 | 	elf_coredump_set_mm_eflags(mm, elf_ex->e_flags); | 
 |  | 
 | 	/** | 
 | 	 * DOC: "brk" handling | 
 | 	 * | 
 | 	 * For architectures with ELF randomization, when executing a | 
 | 	 * loader directly (i.e. static PIE: ET_DYN without PT_INTERP), | 
 | 	 * move the brk area out of the mmap region and into the unused | 
 | 	 * ELF_ET_DYN_BASE region. Since "brk" grows up it may collide | 
 | 	 * early with the stack growing down or other regions being put | 
 | 	 * into the mmap region by the kernel (e.g. vdso). | 
 | 	 * | 
 | 	 * In the CONFIG_COMPAT_BRK case, though, everything is turned | 
 | 	 * off because we're not allowed to move the brk at all. | 
 | 	 */ | 
 | 	if (!IS_ENABLED(CONFIG_COMPAT_BRK) && | 
 | 	    IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && | 
 | 	    elf_ex->e_type == ET_DYN && !interpreter) { | 
 | 		elf_brk = ELF_ET_DYN_BASE; | 
 | 		/* This counts as moving the brk, so let brk(2) know. */ | 
 | 		brk_moved = true; | 
 | 	} | 
 | 	mm->start_brk = mm->brk = ELF_PAGEALIGN(elf_brk); | 
 |  | 
 | 	if ((current->flags & PF_RANDOMIZE) && snapshot_randomize_va_space > 1) { | 
 | 		/* | 
 | 		 * If we didn't move the brk to ELF_ET_DYN_BASE (above), | 
 | 		 * leave a gap between .bss and brk. | 
 | 		 */ | 
 | 		if (!brk_moved) | 
 | 			mm->brk = mm->start_brk = mm->brk + PAGE_SIZE; | 
 |  | 
 | 		mm->brk = mm->start_brk = arch_randomize_brk(mm); | 
 | 		brk_moved = true; | 
 | 	} | 
 |  | 
 | #ifdef compat_brk_randomized | 
 | 	if (brk_moved) | 
 | 		current->brk_randomized = 1; | 
 | #endif | 
 |  | 
 | 	if (current->personality & MMAP_PAGE_ZERO) { | 
 | 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only, | 
 | 		   and some applications "depend" upon this behavior. | 
 | 		   Since we do not have the power to recompile these, we | 
 | 		   emulate the SVr4 behavior. Sigh. */ | 
 | 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, | 
 | 				MAP_FIXED | MAP_PRIVATE, 0); | 
 |  | 
 | 		retval = do_mseal(0, PAGE_SIZE, 0); | 
 | 		if (retval) | 
 | 			pr_warn_ratelimited("pid=%d, couldn't seal address 0, ret=%d.\n", | 
 | 					    task_pid_nr(current), retval); | 
 | 	} | 
 |  | 
 | 	regs = current_pt_regs(); | 
 | #ifdef ELF_PLAT_INIT | 
 | 	/* | 
 | 	 * The ABI may specify that certain registers be set up in special | 
 | 	 * ways (on i386 %edx is the address of a DT_FINI function, for | 
 | 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF) | 
 | 	 * that the e_entry field is the address of the function descriptor | 
 | 	 * for the startup routine, rather than the address of the startup | 
 | 	 * routine itself.  This macro performs whatever initialization to | 
 | 	 * the regs structure is required as well as any relocations to the | 
 | 	 * function descriptor entries when executing dynamically links apps. | 
 | 	 */ | 
 | 	ELF_PLAT_INIT(regs, reloc_func_desc); | 
 | #endif | 
 |  | 
 | 	finalize_exec(bprm); | 
 | 	START_THREAD(elf_ex, regs, elf_entry, bprm->p); | 
 | 	retval = 0; | 
 | out: | 
 | 	return retval; | 
 |  | 
 | 	/* error cleanup */ | 
 | out_free_dentry: | 
 | 	kfree(interp_elf_ex); | 
 | 	kfree(interp_elf_phdata); | 
 | out_free_file: | 
 | 	exe_file_allow_write_access(interpreter); | 
 | 	if (interpreter) | 
 | 		fput(interpreter); | 
 | out_free_ph: | 
 | 	kfree(elf_phdata); | 
 | 	goto out; | 
 | } | 
 |  | 
 | #ifdef CONFIG_ELF_CORE | 
 | /* | 
 |  * ELF core dumper | 
 |  * | 
 |  * Modelled on fs/exec.c:aout_core_dump() | 
 |  * Jeremy Fitzhardinge <jeremy@sw.oz.au> | 
 |  */ | 
 |  | 
 | /* An ELF note in memory */ | 
 | struct memelfnote | 
 | { | 
 | 	const char *name; | 
 | 	int type; | 
 | 	unsigned int datasz; | 
 | 	void *data; | 
 | }; | 
 |  | 
 | static int notesize(struct memelfnote *en) | 
 | { | 
 | 	int sz; | 
 |  | 
 | 	sz = sizeof(struct elf_note); | 
 | 	sz += roundup(strlen(en->name) + 1, 4); | 
 | 	sz += roundup(en->datasz, 4); | 
 |  | 
 | 	return sz; | 
 | } | 
 |  | 
 | static int writenote(struct memelfnote *men, struct coredump_params *cprm) | 
 | { | 
 | 	struct elf_note en; | 
 | 	en.n_namesz = strlen(men->name) + 1; | 
 | 	en.n_descsz = men->datasz; | 
 | 	en.n_type = men->type; | 
 |  | 
 | 	return dump_emit(cprm, &en, sizeof(en)) && | 
 | 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && | 
 | 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); | 
 | } | 
 |  | 
 | static void fill_elf_header(struct elfhdr *elf, int segs, | 
 | 			    u16 machine, u32 flags) | 
 | { | 
 | 	memset(elf, 0, sizeof(*elf)); | 
 |  | 
 | 	memcpy(elf->e_ident, ELFMAG, SELFMAG); | 
 | 	elf->e_ident[EI_CLASS] = ELF_CLASS; | 
 | 	elf->e_ident[EI_DATA] = ELF_DATA; | 
 | 	elf->e_ident[EI_VERSION] = EV_CURRENT; | 
 | 	elf->e_ident[EI_OSABI] = ELF_OSABI; | 
 |  | 
 | 	elf->e_type = ET_CORE; | 
 | 	elf->e_machine = machine; | 
 | 	elf->e_version = EV_CURRENT; | 
 | 	elf->e_phoff = sizeof(struct elfhdr); | 
 | 	elf->e_flags = flags; | 
 | 	elf->e_ehsize = sizeof(struct elfhdr); | 
 | 	elf->e_phentsize = sizeof(struct elf_phdr); | 
 | 	elf->e_phnum = segs; | 
 | } | 
 |  | 
 | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) | 
 | { | 
 | 	phdr->p_type = PT_NOTE; | 
 | 	phdr->p_offset = offset; | 
 | 	phdr->p_vaddr = 0; | 
 | 	phdr->p_paddr = 0; | 
 | 	phdr->p_filesz = sz; | 
 | 	phdr->p_memsz = 0; | 
 | 	phdr->p_flags = 0; | 
 | 	phdr->p_align = 4; | 
 | } | 
 |  | 
 | static void __fill_note(struct memelfnote *note, const char *name, int type, | 
 | 			unsigned int sz, void *data) | 
 | { | 
 | 	note->name = name; | 
 | 	note->type = type; | 
 | 	note->datasz = sz; | 
 | 	note->data = data; | 
 | } | 
 |  | 
 | #define fill_note(note, type, sz, data) \ | 
 | 	__fill_note(note, NN_ ## type, NT_ ## type, sz, data) | 
 |  | 
 | /* | 
 |  * fill up all the fields in prstatus from the given task struct, except | 
 |  * registers which need to be filled up separately. | 
 |  */ | 
 | static void fill_prstatus(struct elf_prstatus_common *prstatus, | 
 | 		struct task_struct *p, long signr) | 
 | { | 
 | 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | 
 | 	prstatus->pr_sigpend = p->pending.signal.sig[0]; | 
 | 	prstatus->pr_sighold = p->blocked.sig[0]; | 
 | 	rcu_read_lock(); | 
 | 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); | 
 | 	rcu_read_unlock(); | 
 | 	prstatus->pr_pid = task_pid_vnr(p); | 
 | 	prstatus->pr_pgrp = task_pgrp_vnr(p); | 
 | 	prstatus->pr_sid = task_session_vnr(p); | 
 | 	if (thread_group_leader(p)) { | 
 | 		struct task_cputime cputime; | 
 |  | 
 | 		/* | 
 | 		 * This is the record for the group leader.  It shows the | 
 | 		 * group-wide total, not its individual thread total. | 
 | 		 */ | 
 | 		thread_group_cputime(p, &cputime); | 
 | 		prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime); | 
 | 		prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime); | 
 | 	} else { | 
 | 		u64 utime, stime; | 
 |  | 
 | 		task_cputime(p, &utime, &stime); | 
 | 		prstatus->pr_utime = ns_to_kernel_old_timeval(utime); | 
 | 		prstatus->pr_stime = ns_to_kernel_old_timeval(stime); | 
 | 	} | 
 |  | 
 | 	prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime); | 
 | 	prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime); | 
 | } | 
 |  | 
 | static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, | 
 | 		       struct mm_struct *mm) | 
 | { | 
 | 	const struct cred *cred; | 
 | 	unsigned int i, len; | 
 | 	unsigned int state; | 
 |  | 
 | 	/* first copy the parameters from user space */ | 
 | 	memset(psinfo, 0, sizeof(struct elf_prpsinfo)); | 
 |  | 
 | 	len = mm->arg_end - mm->arg_start; | 
 | 	if (len >= ELF_PRARGSZ) | 
 | 		len = ELF_PRARGSZ-1; | 
 | 	if (copy_from_user(&psinfo->pr_psargs, | 
 | 		           (const char __user *)mm->arg_start, len)) | 
 | 		return -EFAULT; | 
 | 	for(i = 0; i < len; i++) | 
 | 		if (psinfo->pr_psargs[i] == 0) | 
 | 			psinfo->pr_psargs[i] = ' '; | 
 | 	psinfo->pr_psargs[len] = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); | 
 | 	rcu_read_unlock(); | 
 | 	psinfo->pr_pid = task_pid_vnr(p); | 
 | 	psinfo->pr_pgrp = task_pgrp_vnr(p); | 
 | 	psinfo->pr_sid = task_session_vnr(p); | 
 |  | 
 | 	state = READ_ONCE(p->__state); | 
 | 	i = state ? ffz(~state) + 1 : 0; | 
 | 	psinfo->pr_state = i; | 
 | 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; | 
 | 	psinfo->pr_zomb = psinfo->pr_sname == 'Z'; | 
 | 	psinfo->pr_nice = task_nice(p); | 
 | 	psinfo->pr_flag = p->flags; | 
 | 	rcu_read_lock(); | 
 | 	cred = __task_cred(p); | 
 | 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); | 
 | 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); | 
 | 	rcu_read_unlock(); | 
 | 	get_task_comm(psinfo->pr_fname, p); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) | 
 | { | 
 | 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; | 
 | 	int i = 0; | 
 | 	do | 
 | 		i += 2; | 
 | 	while (auxv[i - 2] != AT_NULL); | 
 | 	fill_note(note, AUXV, i * sizeof(elf_addr_t), auxv); | 
 | } | 
 |  | 
 | static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, | 
 | 		const kernel_siginfo_t *siginfo) | 
 | { | 
 | 	copy_siginfo_to_external(csigdata, siginfo); | 
 | 	fill_note(note, SIGINFO, sizeof(*csigdata), csigdata); | 
 | } | 
 |  | 
 | /* | 
 |  * Format of NT_FILE note: | 
 |  * | 
 |  * long count     -- how many files are mapped | 
 |  * long page_size -- units for file_ofs | 
 |  * array of [COUNT] elements of | 
 |  *   long start | 
 |  *   long end | 
 |  *   long file_ofs | 
 |  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... | 
 |  */ | 
 | static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm) | 
 | { | 
 | 	unsigned count, size, names_ofs, remaining, n; | 
 | 	user_long_t *data; | 
 | 	user_long_t *start_end_ofs; | 
 | 	char *name_base, *name_curpos; | 
 | 	int i; | 
 |  | 
 | 	/* *Estimated* file count and total data size needed */ | 
 | 	count = cprm->vma_count; | 
 | 	if (count > UINT_MAX / 64) | 
 | 		return -EINVAL; | 
 | 	size = count * 64; | 
 |  | 
 | 	names_ofs = (2 + 3 * count) * sizeof(data[0]); | 
 |  alloc: | 
 | 	/* paranoia check */ | 
 | 	if (size >= core_file_note_size_limit) { | 
 | 		pr_warn_once("coredump Note size too large: %u (does kernel.core_file_note_size_limit sysctl need adjustment?\n", | 
 | 			      size); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	size = round_up(size, PAGE_SIZE); | 
 | 	/* | 
 | 	 * "size" can be 0 here legitimately. | 
 | 	 * Let it ENOMEM and omit NT_FILE section which will be empty anyway. | 
 | 	 */ | 
 | 	data = kvmalloc(size, GFP_KERNEL); | 
 | 	if (ZERO_OR_NULL_PTR(data)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	start_end_ofs = data + 2; | 
 | 	name_base = name_curpos = ((char *)data) + names_ofs; | 
 | 	remaining = size - names_ofs; | 
 | 	count = 0; | 
 | 	for (i = 0; i < cprm->vma_count; i++) { | 
 | 		struct core_vma_metadata *m = &cprm->vma_meta[i]; | 
 | 		struct file *file; | 
 | 		const char *filename; | 
 |  | 
 | 		file = m->file; | 
 | 		if (!file) | 
 | 			continue; | 
 | 		filename = file_path(file, name_curpos, remaining); | 
 | 		if (IS_ERR(filename)) { | 
 | 			if (PTR_ERR(filename) == -ENAMETOOLONG) { | 
 | 				kvfree(data); | 
 | 				size = size * 5 / 4; | 
 | 				goto alloc; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* file_path() fills at the end, move name down */ | 
 | 		/* n = strlen(filename) + 1: */ | 
 | 		n = (name_curpos + remaining) - filename; | 
 | 		remaining = filename - name_curpos; | 
 | 		memmove(name_curpos, filename, n); | 
 | 		name_curpos += n; | 
 |  | 
 | 		*start_end_ofs++ = m->start; | 
 | 		*start_end_ofs++ = m->end; | 
 | 		*start_end_ofs++ = m->pgoff; | 
 | 		count++; | 
 | 	} | 
 |  | 
 | 	/* Now we know exact count of files, can store it */ | 
 | 	data[0] = count; | 
 | 	data[1] = PAGE_SIZE; | 
 | 	/* | 
 | 	 * Count usually is less than mm->map_count, | 
 | 	 * we need to move filenames down. | 
 | 	 */ | 
 | 	n = cprm->vma_count - count; | 
 | 	if (n != 0) { | 
 | 		unsigned shift_bytes = n * 3 * sizeof(data[0]); | 
 | 		memmove(name_base - shift_bytes, name_base, | 
 | 			name_curpos - name_base); | 
 | 		name_curpos -= shift_bytes; | 
 | 	} | 
 |  | 
 | 	size = name_curpos - (char *)data; | 
 | 	fill_note(note, FILE, size, data); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #include <linux/regset.h> | 
 |  | 
 | struct elf_thread_core_info { | 
 | 	struct elf_thread_core_info *next; | 
 | 	struct task_struct *task; | 
 | 	struct elf_prstatus prstatus; | 
 | 	struct memelfnote notes[]; | 
 | }; | 
 |  | 
 | struct elf_note_info { | 
 | 	struct elf_thread_core_info *thread; | 
 | 	struct memelfnote psinfo; | 
 | 	struct memelfnote signote; | 
 | 	struct memelfnote auxv; | 
 | 	struct memelfnote files; | 
 | 	user_siginfo_t csigdata; | 
 | 	size_t size; | 
 | 	int thread_notes; | 
 | }; | 
 |  | 
 | #ifdef CORE_DUMP_USE_REGSET | 
 | /* | 
 |  * When a regset has a writeback hook, we call it on each thread before | 
 |  * dumping user memory.  On register window machines, this makes sure the | 
 |  * user memory backing the register data is up to date before we read it. | 
 |  */ | 
 | static void do_thread_regset_writeback(struct task_struct *task, | 
 | 				       const struct user_regset *regset) | 
 | { | 
 | 	if (regset->writeback) | 
 | 		regset->writeback(task, regset, 1); | 
 | } | 
 |  | 
 | #ifndef PRSTATUS_SIZE | 
 | #define PRSTATUS_SIZE sizeof(struct elf_prstatus) | 
 | #endif | 
 |  | 
 | #ifndef SET_PR_FPVALID | 
 | #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1) | 
 | #endif | 
 |  | 
 | static int fill_thread_core_info(struct elf_thread_core_info *t, | 
 | 				 const struct user_regset_view *view, | 
 | 				 long signr, struct elf_note_info *info) | 
 | { | 
 | 	unsigned int note_iter, view_iter; | 
 |  | 
 | 	/* | 
 | 	 * NT_PRSTATUS is the one special case, because the regset data | 
 | 	 * goes into the pr_reg field inside the note contents, rather | 
 | 	 * than being the whole note contents.  We fill the regset in here. | 
 | 	 * We assume that regset 0 is NT_PRSTATUS. | 
 | 	 */ | 
 | 	fill_prstatus(&t->prstatus.common, t->task, signr); | 
 | 	regset_get(t->task, &view->regsets[0], | 
 | 		   sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg); | 
 |  | 
 | 	fill_note(&t->notes[0], PRSTATUS, PRSTATUS_SIZE, &t->prstatus); | 
 | 	info->size += notesize(&t->notes[0]); | 
 |  | 
 | 	do_thread_regset_writeback(t->task, &view->regsets[0]); | 
 |  | 
 | 	/* | 
 | 	 * Each other regset might generate a note too.  For each regset | 
 | 	 * that has no core_note_type or is inactive, skip it. | 
 | 	 */ | 
 | 	note_iter = 1; | 
 | 	for (view_iter = 1; view_iter < view->n; ++view_iter) { | 
 | 		const struct user_regset *regset = &view->regsets[view_iter]; | 
 | 		int note_type = regset->core_note_type; | 
 | 		const char *note_name = regset->core_note_name; | 
 | 		bool is_fpreg = note_type == NT_PRFPREG; | 
 | 		void *data; | 
 | 		int ret; | 
 |  | 
 | 		do_thread_regset_writeback(t->task, regset); | 
 | 		if (!note_type) // not for coredumps | 
 | 			continue; | 
 | 		if (regset->active && regset->active(t->task, regset) <= 0) | 
 | 			continue; | 
 |  | 
 | 		ret = regset_get_alloc(t->task, regset, ~0U, &data); | 
 | 		if (ret < 0) | 
 | 			continue; | 
 |  | 
 | 		if (WARN_ON_ONCE(note_iter >= info->thread_notes)) | 
 | 			break; | 
 |  | 
 | 		if (is_fpreg) | 
 | 			SET_PR_FPVALID(&t->prstatus); | 
 |  | 
 | 		/* There should be a note name, but if not, guess: */ | 
 | 		if (WARN_ON_ONCE(!note_name)) | 
 | 			note_name = "LINUX"; | 
 | 		else | 
 | 			/* Warn on non-legacy-compatible names, for now. */ | 
 | 			WARN_ON_ONCE(strcmp(note_name, | 
 | 					    is_fpreg ? "CORE" : "LINUX")); | 
 |  | 
 | 		__fill_note(&t->notes[note_iter], note_name, note_type, | 
 | 			    ret, data); | 
 |  | 
 | 		info->size += notesize(&t->notes[note_iter]); | 
 | 		note_iter++; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 | #else | 
 | static int fill_thread_core_info(struct elf_thread_core_info *t, | 
 | 				 const struct user_regset_view *view, | 
 | 				 long signr, struct elf_note_info *info) | 
 | { | 
 | 	struct task_struct *p = t->task; | 
 | 	elf_fpregset_t *fpu; | 
 |  | 
 | 	fill_prstatus(&t->prstatus.common, p, signr); | 
 | 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg); | 
 |  | 
 | 	fill_note(&t->notes[0], PRSTATUS, sizeof(t->prstatus), &t->prstatus); | 
 | 	info->size += notesize(&t->notes[0]); | 
 |  | 
 | 	fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL); | 
 | 	if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) { | 
 | 		kfree(fpu); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	t->prstatus.pr_fpvalid = 1; | 
 | 	fill_note(&t->notes[1], PRFPREG, sizeof(*fpu), fpu); | 
 | 	info->size += notesize(&t->notes[1]); | 
 |  | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 | static int fill_note_info(struct elfhdr *elf, int phdrs, | 
 | 			  struct elf_note_info *info, | 
 | 			  struct coredump_params *cprm) | 
 | { | 
 | 	struct task_struct *dump_task = current; | 
 | 	const struct user_regset_view *view; | 
 | 	struct elf_thread_core_info *t; | 
 | 	struct elf_prpsinfo *psinfo; | 
 | 	struct core_thread *ct; | 
 | 	u16 machine; | 
 | 	u32 flags; | 
 |  | 
 | 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); | 
 | 	if (!psinfo) | 
 | 		return 0; | 
 | 	fill_note(&info->psinfo, PRPSINFO, sizeof(*psinfo), psinfo); | 
 |  | 
 | #ifdef CORE_DUMP_USE_REGSET | 
 | 	view = task_user_regset_view(dump_task); | 
 |  | 
 | 	/* | 
 | 	 * Figure out how many notes we're going to need for each thread. | 
 | 	 */ | 
 | 	info->thread_notes = 0; | 
 | 	for (int i = 0; i < view->n; ++i) | 
 | 		if (view->regsets[i].core_note_type != 0) | 
 | 			++info->thread_notes; | 
 |  | 
 | 	/* | 
 | 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS, | 
 | 	 * since it is our one special case. | 
 | 	 */ | 
 | 	if (unlikely(info->thread_notes == 0) || | 
 | 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { | 
 | 		WARN_ON(1); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	machine = view->e_machine; | 
 | 	flags = view->e_flags; | 
 | #else | 
 | 	view = NULL; | 
 | 	info->thread_notes = 2; | 
 | 	machine = ELF_ARCH; | 
 | 	flags = ELF_CORE_EFLAGS; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Override ELF e_flags with value taken from process, | 
 | 	 * if arch needs that. | 
 | 	 */ | 
 | 	flags = elf_coredump_get_mm_eflags(dump_task->mm, flags); | 
 |  | 
 | 	/* | 
 | 	 * Initialize the ELF file header. | 
 | 	 */ | 
 | 	fill_elf_header(elf, phdrs, machine, flags); | 
 |  | 
 | 	/* | 
 | 	 * Allocate a structure for each thread. | 
 | 	 */ | 
 | 	info->thread = kzalloc(struct_size(info->thread, notes, info->thread_notes), | 
 | 			       GFP_KERNEL); | 
 | 	if (unlikely(!info->thread)) | 
 | 		return 0; | 
 |  | 
 | 	info->thread->task = dump_task; | 
 | 	for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) { | 
 | 		t = kzalloc(struct_size(t, notes, info->thread_notes), | 
 | 			    GFP_KERNEL); | 
 | 		if (unlikely(!t)) | 
 | 			return 0; | 
 |  | 
 | 		t->task = ct->task; | 
 | 		t->next = info->thread->next; | 
 | 		info->thread->next = t; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now fill in each thread's information. | 
 | 	 */ | 
 | 	for (t = info->thread; t != NULL; t = t->next) | 
 | 		if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info)) | 
 | 			return 0; | 
 |  | 
 | 	/* | 
 | 	 * Fill in the two process-wide notes. | 
 | 	 */ | 
 | 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); | 
 | 	info->size += notesize(&info->psinfo); | 
 |  | 
 | 	fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo); | 
 | 	info->size += notesize(&info->signote); | 
 |  | 
 | 	fill_auxv_note(&info->auxv, current->mm); | 
 | 	info->size += notesize(&info->auxv); | 
 |  | 
 | 	if (fill_files_note(&info->files, cprm) == 0) | 
 | 		info->size += notesize(&info->files); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Write all the notes for each thread.  When writing the first thread, the | 
 |  * process-wide notes are interleaved after the first thread-specific note. | 
 |  */ | 
 | static int write_note_info(struct elf_note_info *info, | 
 | 			   struct coredump_params *cprm) | 
 | { | 
 | 	bool first = true; | 
 | 	struct elf_thread_core_info *t = info->thread; | 
 |  | 
 | 	do { | 
 | 		int i; | 
 |  | 
 | 		if (!writenote(&t->notes[0], cprm)) | 
 | 			return 0; | 
 |  | 
 | 		if (first && !writenote(&info->psinfo, cprm)) | 
 | 			return 0; | 
 | 		if (first && !writenote(&info->signote, cprm)) | 
 | 			return 0; | 
 | 		if (first && !writenote(&info->auxv, cprm)) | 
 | 			return 0; | 
 | 		if (first && info->files.data && | 
 | 				!writenote(&info->files, cprm)) | 
 | 			return 0; | 
 |  | 
 | 		for (i = 1; i < info->thread_notes; ++i) | 
 | 			if (t->notes[i].data && | 
 | 			    !writenote(&t->notes[i], cprm)) | 
 | 				return 0; | 
 |  | 
 | 		first = false; | 
 | 		t = t->next; | 
 | 	} while (t); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void free_note_info(struct elf_note_info *info) | 
 | { | 
 | 	struct elf_thread_core_info *threads = info->thread; | 
 | 	while (threads) { | 
 | 		unsigned int i; | 
 | 		struct elf_thread_core_info *t = threads; | 
 | 		threads = t->next; | 
 | 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); | 
 | 		for (i = 1; i < info->thread_notes; ++i) | 
 | 			kvfree(t->notes[i].data); | 
 | 		kfree(t); | 
 | 	} | 
 | 	kfree(info->psinfo.data); | 
 | 	kvfree(info->files.data); | 
 | } | 
 |  | 
 | static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, | 
 | 			     elf_addr_t e_shoff, int segs) | 
 | { | 
 | 	elf->e_shoff = e_shoff; | 
 | 	elf->e_shentsize = sizeof(*shdr4extnum); | 
 | 	elf->e_shnum = 1; | 
 | 	elf->e_shstrndx = SHN_UNDEF; | 
 |  | 
 | 	memset(shdr4extnum, 0, sizeof(*shdr4extnum)); | 
 |  | 
 | 	shdr4extnum->sh_type = SHT_NULL; | 
 | 	shdr4extnum->sh_size = elf->e_shnum; | 
 | 	shdr4extnum->sh_link = elf->e_shstrndx; | 
 | 	shdr4extnum->sh_info = segs; | 
 | } | 
 |  | 
 | /* | 
 |  * Actual dumper | 
 |  * | 
 |  * This is a two-pass process; first we find the offsets of the bits, | 
 |  * and then they are actually written out.  If we run out of core limit | 
 |  * we just truncate. | 
 |  */ | 
 | static int elf_core_dump(struct coredump_params *cprm) | 
 | { | 
 | 	int has_dumped = 0; | 
 | 	int segs, i; | 
 | 	struct elfhdr elf; | 
 | 	loff_t offset = 0, dataoff; | 
 | 	struct elf_note_info info = { }; | 
 | 	struct elf_phdr *phdr4note = NULL; | 
 | 	struct elf_shdr *shdr4extnum = NULL; | 
 | 	Elf_Half e_phnum; | 
 | 	elf_addr_t e_shoff; | 
 |  | 
 | 	/* | 
 | 	 * The number of segs are recored into ELF header as 16bit value. | 
 | 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. | 
 | 	 */ | 
 | 	segs = cprm->vma_count + elf_core_extra_phdrs(cprm); | 
 |  | 
 | 	/* for notes section */ | 
 | 	segs++; | 
 |  | 
 | 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid | 
 | 	 * this, kernel supports extended numbering. Have a look at | 
 | 	 * include/linux/elf.h for further information. */ | 
 | 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs; | 
 |  | 
 | 	/* | 
 | 	 * Collect all the non-memory information about the process for the | 
 | 	 * notes.  This also sets up the file header. | 
 | 	 */ | 
 | 	if (!fill_note_info(&elf, e_phnum, &info, cprm)) | 
 | 		goto end_coredump; | 
 |  | 
 | 	has_dumped = 1; | 
 |  | 
 | 	offset += sizeof(elf);				/* ELF header */ | 
 | 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */ | 
 |  | 
 | 	/* Write notes phdr entry */ | 
 | 	{ | 
 | 		size_t sz = info.size; | 
 |  | 
 | 		/* For cell spufs and x86 xstate */ | 
 | 		sz += elf_coredump_extra_notes_size(); | 
 |  | 
 | 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); | 
 | 		if (!phdr4note) | 
 | 			goto end_coredump; | 
 |  | 
 | 		fill_elf_note_phdr(phdr4note, sz, offset); | 
 | 		offset += sz; | 
 | 	} | 
 |  | 
 | 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); | 
 |  | 
 | 	offset += cprm->vma_data_size; | 
 | 	offset += elf_core_extra_data_size(cprm); | 
 | 	e_shoff = offset; | 
 |  | 
 | 	if (e_phnum == PN_XNUM) { | 
 | 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); | 
 | 		if (!shdr4extnum) | 
 | 			goto end_coredump; | 
 | 		fill_extnum_info(&elf, shdr4extnum, e_shoff, segs); | 
 | 	} | 
 |  | 
 | 	offset = dataoff; | 
 |  | 
 | 	if (!dump_emit(cprm, &elf, sizeof(elf))) | 
 | 		goto end_coredump; | 
 |  | 
 | 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) | 
 | 		goto end_coredump; | 
 |  | 
 | 	/* Write program headers for segments dump */ | 
 | 	for (i = 0; i < cprm->vma_count; i++) { | 
 | 		struct core_vma_metadata *meta = cprm->vma_meta + i; | 
 | 		struct elf_phdr phdr; | 
 |  | 
 | 		phdr.p_type = PT_LOAD; | 
 | 		phdr.p_offset = offset; | 
 | 		phdr.p_vaddr = meta->start; | 
 | 		phdr.p_paddr = 0; | 
 | 		phdr.p_filesz = meta->dump_size; | 
 | 		phdr.p_memsz = meta->end - meta->start; | 
 | 		offset += phdr.p_filesz; | 
 | 		phdr.p_flags = 0; | 
 | 		if (meta->flags & VM_READ) | 
 | 			phdr.p_flags |= PF_R; | 
 | 		if (meta->flags & VM_WRITE) | 
 | 			phdr.p_flags |= PF_W; | 
 | 		if (meta->flags & VM_EXEC) | 
 | 			phdr.p_flags |= PF_X; | 
 | 		phdr.p_align = ELF_EXEC_PAGESIZE; | 
 |  | 
 | 		if (!dump_emit(cprm, &phdr, sizeof(phdr))) | 
 | 			goto end_coredump; | 
 | 	} | 
 |  | 
 | 	if (!elf_core_write_extra_phdrs(cprm, offset)) | 
 | 		goto end_coredump; | 
 |  | 
 | 	/* write out the notes section */ | 
 | 	if (!write_note_info(&info, cprm)) | 
 | 		goto end_coredump; | 
 |  | 
 | 	/* For cell spufs and x86 xstate */ | 
 | 	if (elf_coredump_extra_notes_write(cprm)) | 
 | 		goto end_coredump; | 
 |  | 
 | 	/* Align to page */ | 
 | 	dump_skip_to(cprm, dataoff); | 
 |  | 
 | 	for (i = 0; i < cprm->vma_count; i++) { | 
 | 		struct core_vma_metadata *meta = cprm->vma_meta + i; | 
 |  | 
 | 		if (!dump_user_range(cprm, meta->start, meta->dump_size)) | 
 | 			goto end_coredump; | 
 | 	} | 
 |  | 
 | 	if (!elf_core_write_extra_data(cprm)) | 
 | 		goto end_coredump; | 
 |  | 
 | 	if (e_phnum == PN_XNUM) { | 
 | 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) | 
 | 			goto end_coredump; | 
 | 	} | 
 |  | 
 | end_coredump: | 
 | 	free_note_info(&info); | 
 | 	kfree(shdr4extnum); | 
 | 	kfree(phdr4note); | 
 | 	return has_dumped; | 
 | } | 
 |  | 
 | #endif		/* CONFIG_ELF_CORE */ | 
 |  | 
 | static int __init init_elf_binfmt(void) | 
 | { | 
 | 	register_binfmt(&elf_format); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __exit exit_elf_binfmt(void) | 
 | { | 
 | 	/* Remove the COFF and ELF loaders. */ | 
 | 	unregister_binfmt(&elf_format); | 
 | } | 
 |  | 
 | core_initcall(init_elf_binfmt); | 
 | module_exit(exit_elf_binfmt); | 
 |  | 
 | #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST | 
 | #include "tests/binfmt_elf_kunit.c" | 
 | #endif |